xref: /linux/arch/um/drivers/vector_kern.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7  * James Leu (jleu@mindspring.net).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10 
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <asm/atomic.h>
26 #include <uapi/linux/filter.h>
27 #include <init.h>
28 #include <irq_kern.h>
29 #include <irq_user.h>
30 #include <net_kern.h>
31 #include <os.h>
32 #include "mconsole_kern.h"
33 #include "vector_user.h"
34 #include "vector_kern.h"
35 
36 /*
37  * Adapted from network devices with the following major changes:
38  * All transports are static - simplifies the code significantly
39  * Multiple FDs/IRQs per device
40  * Vector IO optionally used for read/write, falling back to legacy
41  * based on configuration and/or availability
42  * Configuration is no longer positional - L2TPv3 and GRE require up to
43  * 10 parameters, passing this as positional is not fit for purpose.
44  * Only socket transports are supported
45  */
46 
47 
48 #define DRIVER_NAME "uml-vector"
49 struct vector_cmd_line_arg {
50 	struct list_head list;
51 	int unit;
52 	char *arguments;
53 };
54 
55 struct vector_device {
56 	struct list_head list;
57 	struct net_device *dev;
58 	struct platform_device pdev;
59 	int unit;
60 	int opened;
61 };
62 
63 static LIST_HEAD(vec_cmd_line);
64 
65 static DEFINE_SPINLOCK(vector_devices_lock);
66 static LIST_HEAD(vector_devices);
67 
68 static int driver_registered;
69 
70 static void vector_eth_configure(int n, struct arglist *def);
71 static int vector_mmsg_rx(struct vector_private *vp, int budget);
72 
73 /* Argument accessors to set variables (and/or set default values)
74  * mtu, buffer sizing, default headroom, etc
75  */
76 
77 #define DEFAULT_HEADROOM 2
78 #define SAFETY_MARGIN 32
79 #define DEFAULT_VECTOR_SIZE 64
80 #define TX_SMALL_PACKET 128
81 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
82 
83 static const struct {
84 	const char string[ETH_GSTRING_LEN];
85 } ethtool_stats_keys[] = {
86 	{ "rx_queue_max" },
87 	{ "rx_queue_running_average" },
88 	{ "tx_queue_max" },
89 	{ "tx_queue_running_average" },
90 	{ "rx_encaps_errors" },
91 	{ "tx_timeout_count" },
92 	{ "tx_restart_queue" },
93 	{ "tx_kicks" },
94 	{ "tx_flow_control_xon" },
95 	{ "tx_flow_control_xoff" },
96 	{ "rx_csum_offload_good" },
97 	{ "rx_csum_offload_errors"},
98 	{ "sg_ok"},
99 	{ "sg_linearized"},
100 };
101 
102 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
103 
104 static void vector_reset_stats(struct vector_private *vp)
105 {
106 	/* We reuse the existing queue locks for stats */
107 
108 	/* RX stats are modified with RX head_lock held
109 	 * in vector_poll.
110 	 */
111 
112 	spin_lock(&vp->rx_queue->head_lock);
113 	vp->estats.rx_queue_max = 0;
114 	vp->estats.rx_queue_running_average = 0;
115 	vp->estats.rx_encaps_errors = 0;
116 	vp->estats.sg_ok = 0;
117 	vp->estats.sg_linearized = 0;
118 	spin_unlock(&vp->rx_queue->head_lock);
119 
120 	/* TX stats are modified with TX head_lock held
121 	 * in vector_send.
122 	 */
123 
124 	spin_lock(&vp->tx_queue->head_lock);
125 	vp->estats.tx_timeout_count = 0;
126 	vp->estats.tx_restart_queue = 0;
127 	vp->estats.tx_kicks = 0;
128 	vp->estats.tx_flow_control_xon = 0;
129 	vp->estats.tx_flow_control_xoff = 0;
130 	vp->estats.tx_queue_max = 0;
131 	vp->estats.tx_queue_running_average = 0;
132 	spin_unlock(&vp->tx_queue->head_lock);
133 }
134 
135 static int get_mtu(struct arglist *def)
136 {
137 	char *mtu = uml_vector_fetch_arg(def, "mtu");
138 	long result;
139 
140 	if (mtu != NULL) {
141 		if (kstrtoul(mtu, 10, &result) == 0)
142 			if ((result < (1 << 16) - 1) && (result >= 576))
143 				return result;
144 	}
145 	return ETH_MAX_PACKET;
146 }
147 
148 static char *get_bpf_file(struct arglist *def)
149 {
150 	return uml_vector_fetch_arg(def, "bpffile");
151 }
152 
153 static bool get_bpf_flash(struct arglist *def)
154 {
155 	char *allow = uml_vector_fetch_arg(def, "bpfflash");
156 	long result;
157 
158 	if (allow != NULL) {
159 		if (kstrtoul(allow, 10, &result) == 0)
160 			return result > 0;
161 	}
162 	return false;
163 }
164 
165 static int get_depth(struct arglist *def)
166 {
167 	char *mtu = uml_vector_fetch_arg(def, "depth");
168 	long result;
169 
170 	if (mtu != NULL) {
171 		if (kstrtoul(mtu, 10, &result) == 0)
172 			return result;
173 	}
174 	return DEFAULT_VECTOR_SIZE;
175 }
176 
177 static int get_headroom(struct arglist *def)
178 {
179 	char *mtu = uml_vector_fetch_arg(def, "headroom");
180 	long result;
181 
182 	if (mtu != NULL) {
183 		if (kstrtoul(mtu, 10, &result) == 0)
184 			return result;
185 	}
186 	return DEFAULT_HEADROOM;
187 }
188 
189 static int get_req_size(struct arglist *def)
190 {
191 	char *gro = uml_vector_fetch_arg(def, "gro");
192 	long result;
193 
194 	if (gro != NULL) {
195 		if (kstrtoul(gro, 10, &result) == 0) {
196 			if (result > 0)
197 				return 65536;
198 		}
199 	}
200 	return get_mtu(def) + ETH_HEADER_OTHER +
201 		get_headroom(def) + SAFETY_MARGIN;
202 }
203 
204 
205 static int get_transport_options(struct arglist *def)
206 {
207 	char *transport = uml_vector_fetch_arg(def, "transport");
208 	char *vector = uml_vector_fetch_arg(def, "vec");
209 
210 	int vec_rx = VECTOR_RX;
211 	int vec_tx = VECTOR_TX;
212 	long parsed;
213 	int result = 0;
214 
215 	if (transport == NULL)
216 		return -EINVAL;
217 
218 	if (vector != NULL) {
219 		if (kstrtoul(vector, 10, &parsed) == 0) {
220 			if (parsed == 0) {
221 				vec_rx = 0;
222 				vec_tx = 0;
223 			}
224 		}
225 	}
226 
227 	if (get_bpf_flash(def))
228 		result = VECTOR_BPF_FLASH;
229 
230 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
231 		return result;
232 	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
233 		return (result | vec_rx | VECTOR_BPF);
234 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
235 		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
236 	return (result | vec_rx | vec_tx);
237 }
238 
239 
240 /* A mini-buffer for packet drop read
241  * All of our supported transports are datagram oriented and we always
242  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
243  * than the packet size it still counts as full packet read and will
244  * clean the incoming stream to keep sigio/epoll happy
245  */
246 
247 #define DROP_BUFFER_SIZE 32
248 
249 static char *drop_buffer;
250 
251 
252 /*
253  * Advance the mmsg queue head by n = advance. Resets the queue to
254  * maximum enqueue/dequeue-at-once capacity if possible. Called by
255  * dequeuers. Caller must hold the head_lock!
256  */
257 
258 static int vector_advancehead(struct vector_queue *qi, int advance)
259 {
260 	qi->head =
261 		(qi->head + advance)
262 			% qi->max_depth;
263 
264 
265 	atomic_sub(advance, &qi->queue_depth);
266 	return atomic_read(&qi->queue_depth);
267 }
268 
269 /*	Advance the queue tail by n = advance.
270  *	This is called by enqueuers which should hold the
271  *	head lock already
272  */
273 
274 static int vector_advancetail(struct vector_queue *qi, int advance)
275 {
276 	qi->tail =
277 		(qi->tail + advance)
278 			% qi->max_depth;
279 	atomic_add(advance, &qi->queue_depth);
280 	return atomic_read(&qi->queue_depth);
281 }
282 
283 static int prep_msg(struct vector_private *vp,
284 	struct sk_buff *skb,
285 	struct iovec *iov)
286 {
287 	int iov_index = 0;
288 	int nr_frags, frag;
289 	skb_frag_t *skb_frag;
290 
291 	nr_frags = skb_shinfo(skb)->nr_frags;
292 	if (nr_frags > MAX_IOV_SIZE) {
293 		if (skb_linearize(skb) != 0)
294 			goto drop;
295 	}
296 	if (vp->header_size > 0) {
297 		iov[iov_index].iov_len = vp->header_size;
298 		vp->form_header(iov[iov_index].iov_base, skb, vp);
299 		iov_index++;
300 	}
301 	iov[iov_index].iov_base = skb->data;
302 	if (nr_frags > 0) {
303 		iov[iov_index].iov_len = skb->len - skb->data_len;
304 		vp->estats.sg_ok++;
305 	} else
306 		iov[iov_index].iov_len = skb->len;
307 	iov_index++;
308 	for (frag = 0; frag < nr_frags; frag++) {
309 		skb_frag = &skb_shinfo(skb)->frags[frag];
310 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
311 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
312 		iov_index++;
313 	}
314 	return iov_index;
315 drop:
316 	return -1;
317 }
318 /*
319  * Generic vector enqueue with support for forming headers using transport
320  * specific callback. Allows GRE, L2TPv3, RAW and other transports
321  * to use a common enqueue procedure in vector mode
322  */
323 
324 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
325 {
326 	struct vector_private *vp = netdev_priv(qi->dev);
327 	int queue_depth;
328 	int packet_len;
329 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
330 	int iov_count;
331 
332 	spin_lock(&qi->tail_lock);
333 	queue_depth = atomic_read(&qi->queue_depth);
334 
335 	if (skb)
336 		packet_len = skb->len;
337 
338 	if (queue_depth < qi->max_depth) {
339 
340 		*(qi->skbuff_vector + qi->tail) = skb;
341 		mmsg_vector += qi->tail;
342 		iov_count = prep_msg(
343 			vp,
344 			skb,
345 			mmsg_vector->msg_hdr.msg_iov
346 		);
347 		if (iov_count < 1)
348 			goto drop;
349 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
350 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
351 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
352 		wmb(); /* Make the packet visible to the NAPI poll thread */
353 		queue_depth = vector_advancetail(qi, 1);
354 	} else
355 		goto drop;
356 	spin_unlock(&qi->tail_lock);
357 	return queue_depth;
358 drop:
359 	qi->dev->stats.tx_dropped++;
360 	if (skb != NULL) {
361 		packet_len = skb->len;
362 		dev_consume_skb_any(skb);
363 		netdev_completed_queue(qi->dev, 1, packet_len);
364 	}
365 	spin_unlock(&qi->tail_lock);
366 	return queue_depth;
367 }
368 
369 static int consume_vector_skbs(struct vector_queue *qi, int count)
370 {
371 	struct sk_buff *skb;
372 	int skb_index;
373 	int bytes_compl = 0;
374 
375 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
376 		skb = *(qi->skbuff_vector + skb_index);
377 		/* mark as empty to ensure correct destruction if
378 		 * needed
379 		 */
380 		bytes_compl += skb->len;
381 		*(qi->skbuff_vector + skb_index) = NULL;
382 		dev_consume_skb_any(skb);
383 	}
384 	qi->dev->stats.tx_bytes += bytes_compl;
385 	qi->dev->stats.tx_packets += count;
386 	netdev_completed_queue(qi->dev, count, bytes_compl);
387 	return vector_advancehead(qi, count);
388 }
389 
390 /*
391  * Generic vector dequeue via sendmmsg with support for forming headers
392  * using transport specific callback. Allows GRE, L2TPv3, RAW and
393  * other transports to use a common dequeue procedure in vector mode
394  */
395 
396 
397 static int vector_send(struct vector_queue *qi)
398 {
399 	struct vector_private *vp = netdev_priv(qi->dev);
400 	struct mmsghdr *send_from;
401 	int result = 0, send_len;
402 
403 	if (spin_trylock(&qi->head_lock)) {
404 		/* update queue_depth to current value */
405 		while (atomic_read(&qi->queue_depth) > 0) {
406 			/* Calculate the start of the vector */
407 			send_len = atomic_read(&qi->queue_depth);
408 			send_from = qi->mmsg_vector;
409 			send_from += qi->head;
410 			/* Adjust vector size if wraparound */
411 			if (send_len + qi->head > qi->max_depth)
412 				send_len = qi->max_depth - qi->head;
413 			/* Try to TX as many packets as possible */
414 			if (send_len > 0) {
415 				result = uml_vector_sendmmsg(
416 					 vp->fds->tx_fd,
417 					 send_from,
418 					 send_len,
419 					 0
420 				);
421 				vp->in_write_poll =
422 					(result != send_len);
423 			}
424 			/* For some of the sendmmsg error scenarios
425 			 * we may end being unsure in the TX success
426 			 * for all packets. It is safer to declare
427 			 * them all TX-ed and blame the network.
428 			 */
429 			if (result < 0) {
430 				if (net_ratelimit())
431 					netdev_err(vp->dev, "sendmmsg err=%i\n",
432 						result);
433 				vp->in_error = true;
434 				result = send_len;
435 			}
436 			if (result > 0) {
437 				consume_vector_skbs(qi, result);
438 				/* This is equivalent to an TX IRQ.
439 				 * Restart the upper layers to feed us
440 				 * more packets.
441 				 */
442 				if (result > vp->estats.tx_queue_max)
443 					vp->estats.tx_queue_max = result;
444 				vp->estats.tx_queue_running_average =
445 					(vp->estats.tx_queue_running_average + result) >> 1;
446 			}
447 			netif_wake_queue(qi->dev);
448 			/* if TX is busy, break out of the send loop,
449 			 *  poll write IRQ will reschedule xmit for us.
450 			 */
451 			if (result != send_len) {
452 				vp->estats.tx_restart_queue++;
453 				break;
454 			}
455 		}
456 		spin_unlock(&qi->head_lock);
457 	}
458 	return atomic_read(&qi->queue_depth);
459 }
460 
461 /* Queue destructor. Deliberately stateless so we can use
462  * it in queue cleanup if initialization fails.
463  */
464 
465 static void destroy_queue(struct vector_queue *qi)
466 {
467 	int i;
468 	struct iovec *iov;
469 	struct vector_private *vp = netdev_priv(qi->dev);
470 	struct mmsghdr *mmsg_vector;
471 
472 	if (qi == NULL)
473 		return;
474 	/* deallocate any skbuffs - we rely on any unused to be
475 	 * set to NULL.
476 	 */
477 	if (qi->skbuff_vector != NULL) {
478 		for (i = 0; i < qi->max_depth; i++) {
479 			if (*(qi->skbuff_vector + i) != NULL)
480 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
481 		}
482 		kfree(qi->skbuff_vector);
483 	}
484 	/* deallocate matching IOV structures including header buffs */
485 	if (qi->mmsg_vector != NULL) {
486 		mmsg_vector = qi->mmsg_vector;
487 		for (i = 0; i < qi->max_depth; i++) {
488 			iov = mmsg_vector->msg_hdr.msg_iov;
489 			if (iov != NULL) {
490 				if ((vp->header_size > 0) &&
491 					(iov->iov_base != NULL))
492 					kfree(iov->iov_base);
493 				kfree(iov);
494 			}
495 			mmsg_vector++;
496 		}
497 		kfree(qi->mmsg_vector);
498 	}
499 	kfree(qi);
500 }
501 
502 /*
503  * Queue constructor. Create a queue with a given side.
504  */
505 static struct vector_queue *create_queue(
506 	struct vector_private *vp,
507 	int max_size,
508 	int header_size,
509 	int num_extra_frags)
510 {
511 	struct vector_queue *result;
512 	int i;
513 	struct iovec *iov;
514 	struct mmsghdr *mmsg_vector;
515 
516 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
517 	if (result == NULL)
518 		return NULL;
519 	result->max_depth = max_size;
520 	result->dev = vp->dev;
521 	result->mmsg_vector = kmalloc(
522 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
523 	if (result->mmsg_vector == NULL)
524 		goto out_mmsg_fail;
525 	result->skbuff_vector = kmalloc(
526 		(sizeof(void *) * max_size), GFP_KERNEL);
527 	if (result->skbuff_vector == NULL)
528 		goto out_skb_fail;
529 
530 	/* further failures can be handled safely by destroy_queue*/
531 
532 	mmsg_vector = result->mmsg_vector;
533 	for (i = 0; i < max_size; i++) {
534 		/* Clear all pointers - we use non-NULL as marking on
535 		 * what to free on destruction
536 		 */
537 		*(result->skbuff_vector + i) = NULL;
538 		mmsg_vector->msg_hdr.msg_iov = NULL;
539 		mmsg_vector++;
540 	}
541 	mmsg_vector = result->mmsg_vector;
542 	result->max_iov_frags = num_extra_frags;
543 	for (i = 0; i < max_size; i++) {
544 		if (vp->header_size > 0)
545 			iov = kmalloc_array(3 + num_extra_frags,
546 					    sizeof(struct iovec),
547 					    GFP_KERNEL
548 			);
549 		else
550 			iov = kmalloc_array(2 + num_extra_frags,
551 					    sizeof(struct iovec),
552 					    GFP_KERNEL
553 			);
554 		if (iov == NULL)
555 			goto out_fail;
556 		mmsg_vector->msg_hdr.msg_iov = iov;
557 		mmsg_vector->msg_hdr.msg_iovlen = 1;
558 		mmsg_vector->msg_hdr.msg_control = NULL;
559 		mmsg_vector->msg_hdr.msg_controllen = 0;
560 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
561 		mmsg_vector->msg_hdr.msg_name = NULL;
562 		mmsg_vector->msg_hdr.msg_namelen = 0;
563 		if (vp->header_size > 0) {
564 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
565 			if (iov->iov_base == NULL)
566 				goto out_fail;
567 			iov->iov_len = header_size;
568 			mmsg_vector->msg_hdr.msg_iovlen = 2;
569 			iov++;
570 		}
571 		iov->iov_base = NULL;
572 		iov->iov_len = 0;
573 		mmsg_vector++;
574 	}
575 	spin_lock_init(&result->head_lock);
576 	spin_lock_init(&result->tail_lock);
577 	atomic_set(&result->queue_depth, 0);
578 	result->head = 0;
579 	result->tail = 0;
580 	return result;
581 out_skb_fail:
582 	kfree(result->mmsg_vector);
583 out_mmsg_fail:
584 	kfree(result);
585 	return NULL;
586 out_fail:
587 	destroy_queue(result);
588 	return NULL;
589 }
590 
591 /*
592  * We do not use the RX queue as a proper wraparound queue for now
593  * This is not necessary because the consumption via napi_gro_receive()
594  * happens in-line. While we can try using the return code of
595  * netif_rx() for flow control there are no drivers doing this today.
596  * For this RX specific use we ignore the tail/head locks and
597  * just read into a prepared queue filled with skbuffs.
598  */
599 
600 static struct sk_buff *prep_skb(
601 	struct vector_private *vp,
602 	struct user_msghdr *msg)
603 {
604 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
605 	struct sk_buff *result;
606 	int iov_index = 0, len;
607 	struct iovec *iov = msg->msg_iov;
608 	int err, nr_frags, frag;
609 	skb_frag_t *skb_frag;
610 
611 	if (vp->req_size <= linear)
612 		len = linear;
613 	else
614 		len = vp->req_size;
615 	result = alloc_skb_with_frags(
616 		linear,
617 		len - vp->max_packet,
618 		3,
619 		&err,
620 		GFP_ATOMIC
621 	);
622 	if (vp->header_size > 0)
623 		iov_index++;
624 	if (result == NULL) {
625 		iov[iov_index].iov_base = NULL;
626 		iov[iov_index].iov_len = 0;
627 		goto done;
628 	}
629 	skb_reserve(result, vp->headroom);
630 	result->dev = vp->dev;
631 	skb_put(result, vp->max_packet);
632 	result->data_len = len - vp->max_packet;
633 	result->len += len - vp->max_packet;
634 	skb_reset_mac_header(result);
635 	result->ip_summed = CHECKSUM_NONE;
636 	iov[iov_index].iov_base = result->data;
637 	iov[iov_index].iov_len = vp->max_packet;
638 	iov_index++;
639 
640 	nr_frags = skb_shinfo(result)->nr_frags;
641 	for (frag = 0; frag < nr_frags; frag++) {
642 		skb_frag = &skb_shinfo(result)->frags[frag];
643 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
644 		if (iov[iov_index].iov_base != NULL)
645 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
646 		else
647 			iov[iov_index].iov_len = 0;
648 		iov_index++;
649 	}
650 done:
651 	msg->msg_iovlen = iov_index;
652 	return result;
653 }
654 
655 
656 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
657 
658 static void prep_queue_for_rx(struct vector_queue *qi)
659 {
660 	struct vector_private *vp = netdev_priv(qi->dev);
661 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
662 	void **skbuff_vector = qi->skbuff_vector;
663 	int i, queue_depth;
664 
665 	queue_depth = atomic_read(&qi->queue_depth);
666 
667 	if (queue_depth == 0)
668 		return;
669 
670 	/* RX is always emptied 100% during each cycle, so we do not
671 	 * have to do the tail wraparound math for it.
672 	 */
673 
674 	qi->head = qi->tail = 0;
675 
676 	for (i = 0; i < queue_depth; i++) {
677 		/* it is OK if allocation fails - recvmmsg with NULL data in
678 		 * iov argument still performs an RX, just drops the packet
679 		 * This allows us stop faffing around with a "drop buffer"
680 		 */
681 
682 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
683 		skbuff_vector++;
684 		mmsg_vector++;
685 	}
686 	atomic_set(&qi->queue_depth, 0);
687 }
688 
689 static struct vector_device *find_device(int n)
690 {
691 	struct vector_device *device;
692 	struct list_head *ele;
693 
694 	spin_lock(&vector_devices_lock);
695 	list_for_each(ele, &vector_devices) {
696 		device = list_entry(ele, struct vector_device, list);
697 		if (device->unit == n)
698 			goto out;
699 	}
700 	device = NULL;
701  out:
702 	spin_unlock(&vector_devices_lock);
703 	return device;
704 }
705 
706 static int vector_parse(char *str, int *index_out, char **str_out,
707 			char **error_out)
708 {
709 	int n, err;
710 	char *start = str;
711 
712 	while ((*str != ':') && (strlen(str) > 1))
713 		str++;
714 	if (*str != ':') {
715 		*error_out = "Expected ':' after device number";
716 		return -EINVAL;
717 	}
718 	*str = '\0';
719 
720 	err = kstrtouint(start, 0, &n);
721 	if (err < 0) {
722 		*error_out = "Bad device number";
723 		return err;
724 	}
725 
726 	str++;
727 	if (find_device(n)) {
728 		*error_out = "Device already configured";
729 		return -EINVAL;
730 	}
731 
732 	*index_out = n;
733 	*str_out = str;
734 	return 0;
735 }
736 
737 static int vector_config(char *str, char **error_out)
738 {
739 	int err, n;
740 	char *params;
741 	struct arglist *parsed;
742 
743 	err = vector_parse(str, &n, &params, error_out);
744 	if (err != 0)
745 		return err;
746 
747 	/* This string is broken up and the pieces used by the underlying
748 	 * driver. We should copy it to make sure things do not go wrong
749 	 * later.
750 	 */
751 
752 	params = kstrdup(params, GFP_KERNEL);
753 	if (params == NULL) {
754 		*error_out = "vector_config failed to strdup string";
755 		return -ENOMEM;
756 	}
757 
758 	parsed = uml_parse_vector_ifspec(params);
759 
760 	if (parsed == NULL) {
761 		*error_out = "vector_config failed to parse parameters";
762 		kfree(params);
763 		return -EINVAL;
764 	}
765 
766 	vector_eth_configure(n, parsed);
767 	return 0;
768 }
769 
770 static int vector_id(char **str, int *start_out, int *end_out)
771 {
772 	char *end;
773 	int n;
774 
775 	n = simple_strtoul(*str, &end, 0);
776 	if ((*end != '\0') || (end == *str))
777 		return -1;
778 
779 	*start_out = n;
780 	*end_out = n;
781 	*str = end;
782 	return n;
783 }
784 
785 static int vector_remove(int n, char **error_out)
786 {
787 	struct vector_device *vec_d;
788 	struct net_device *dev;
789 	struct vector_private *vp;
790 
791 	vec_d = find_device(n);
792 	if (vec_d == NULL)
793 		return -ENODEV;
794 	dev = vec_d->dev;
795 	vp = netdev_priv(dev);
796 	if (vp->fds != NULL)
797 		return -EBUSY;
798 	unregister_netdev(dev);
799 	platform_device_unregister(&vec_d->pdev);
800 	return 0;
801 }
802 
803 /*
804  * There is no shared per-transport initialization code, so
805  * we will just initialize each interface one by one and
806  * add them to a list
807  */
808 
809 static struct platform_driver uml_net_driver = {
810 	.driver = {
811 		.name = DRIVER_NAME,
812 	},
813 };
814 
815 
816 static void vector_device_release(struct device *dev)
817 {
818 	struct vector_device *device = dev_get_drvdata(dev);
819 	struct net_device *netdev = device->dev;
820 
821 	list_del(&device->list);
822 	kfree(device);
823 	free_netdev(netdev);
824 }
825 
826 /* Bog standard recv using recvmsg - not used normally unless the user
827  * explicitly specifies not to use recvmmsg vector RX.
828  */
829 
830 static int vector_legacy_rx(struct vector_private *vp)
831 {
832 	int pkt_len;
833 	struct user_msghdr hdr;
834 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
835 	int iovpos = 0;
836 	struct sk_buff *skb;
837 	int header_check;
838 
839 	hdr.msg_name = NULL;
840 	hdr.msg_namelen = 0;
841 	hdr.msg_iov = (struct iovec *) &iov;
842 	hdr.msg_control = NULL;
843 	hdr.msg_controllen = 0;
844 	hdr.msg_flags = 0;
845 
846 	if (vp->header_size > 0) {
847 		iov[0].iov_base = vp->header_rxbuffer;
848 		iov[0].iov_len = vp->header_size;
849 	}
850 
851 	skb = prep_skb(vp, &hdr);
852 
853 	if (skb == NULL) {
854 		/* Read a packet into drop_buffer and don't do
855 		 * anything with it.
856 		 */
857 		iov[iovpos].iov_base = drop_buffer;
858 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
859 		hdr.msg_iovlen = 1;
860 		vp->dev->stats.rx_dropped++;
861 	}
862 
863 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
864 	if (pkt_len < 0) {
865 		vp->in_error = true;
866 		return pkt_len;
867 	}
868 
869 	if (skb != NULL) {
870 		if (pkt_len > vp->header_size) {
871 			if (vp->header_size > 0) {
872 				header_check = vp->verify_header(
873 					vp->header_rxbuffer, skb, vp);
874 				if (header_check < 0) {
875 					dev_kfree_skb_irq(skb);
876 					vp->dev->stats.rx_dropped++;
877 					vp->estats.rx_encaps_errors++;
878 					return 0;
879 				}
880 				if (header_check > 0) {
881 					vp->estats.rx_csum_offload_good++;
882 					skb->ip_summed = CHECKSUM_UNNECESSARY;
883 				}
884 			}
885 			pskb_trim(skb, pkt_len - vp->rx_header_size);
886 			skb->protocol = eth_type_trans(skb, skb->dev);
887 			vp->dev->stats.rx_bytes += skb->len;
888 			vp->dev->stats.rx_packets++;
889 			napi_gro_receive(&vp->napi, skb);
890 		} else {
891 			dev_kfree_skb_irq(skb);
892 		}
893 	}
894 	return pkt_len;
895 }
896 
897 /*
898  * Packet at a time TX which falls back to vector TX if the
899  * underlying transport is busy.
900  */
901 
902 
903 
904 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
905 {
906 	struct iovec iov[3 + MAX_IOV_SIZE];
907 	int iov_count, pkt_len = 0;
908 
909 	iov[0].iov_base = vp->header_txbuffer;
910 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
911 
912 	if (iov_count < 1)
913 		goto drop;
914 
915 	pkt_len = uml_vector_writev(
916 		vp->fds->tx_fd,
917 		(struct iovec *) &iov,
918 		iov_count
919 	);
920 
921 	if (pkt_len < 0)
922 		goto drop;
923 
924 	netif_trans_update(vp->dev);
925 	netif_wake_queue(vp->dev);
926 
927 	if (pkt_len > 0) {
928 		vp->dev->stats.tx_bytes += skb->len;
929 		vp->dev->stats.tx_packets++;
930 	} else {
931 		vp->dev->stats.tx_dropped++;
932 	}
933 	consume_skb(skb);
934 	return pkt_len;
935 drop:
936 	vp->dev->stats.tx_dropped++;
937 	consume_skb(skb);
938 	if (pkt_len < 0)
939 		vp->in_error = true;
940 	return pkt_len;
941 }
942 
943 /*
944  * Receive as many messages as we can in one call using the special
945  * mmsg vector matched to an skb vector which we prepared earlier.
946  */
947 
948 static int vector_mmsg_rx(struct vector_private *vp, int budget)
949 {
950 	int packet_count, i;
951 	struct vector_queue *qi = vp->rx_queue;
952 	struct sk_buff *skb;
953 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
954 	void **skbuff_vector = qi->skbuff_vector;
955 	int header_check;
956 
957 	/* Refresh the vector and make sure it is with new skbs and the
958 	 * iovs are updated to point to them.
959 	 */
960 
961 	prep_queue_for_rx(qi);
962 
963 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
964 
965 	if (budget > qi->max_depth)
966 		budget = qi->max_depth;
967 
968 	packet_count = uml_vector_recvmmsg(
969 		vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
970 
971 	if (packet_count < 0)
972 		vp->in_error = true;
973 
974 	if (packet_count <= 0)
975 		return packet_count;
976 
977 	/* We treat packet processing as enqueue, buffer refresh as dequeue
978 	 * The queue_depth tells us how many buffers have been used and how
979 	 * many do we need to prep the next time prep_queue_for_rx() is called.
980 	 */
981 
982 	atomic_add(packet_count, &qi->queue_depth);
983 
984 	for (i = 0; i < packet_count; i++) {
985 		skb = (*skbuff_vector);
986 		if (mmsg_vector->msg_len > vp->header_size) {
987 			if (vp->header_size > 0) {
988 				header_check = vp->verify_header(
989 					mmsg_vector->msg_hdr.msg_iov->iov_base,
990 					skb,
991 					vp
992 				);
993 				if (header_check < 0) {
994 				/* Overlay header failed to verify - discard.
995 				 * We can actually keep this skb and reuse it,
996 				 * but that will make the prep logic too
997 				 * complex.
998 				 */
999 					dev_kfree_skb_irq(skb);
1000 					vp->estats.rx_encaps_errors++;
1001 					continue;
1002 				}
1003 				if (header_check > 0) {
1004 					vp->estats.rx_csum_offload_good++;
1005 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1006 				}
1007 			}
1008 			pskb_trim(skb,
1009 				mmsg_vector->msg_len - vp->rx_header_size);
1010 			skb->protocol = eth_type_trans(skb, skb->dev);
1011 			/*
1012 			 * We do not need to lock on updating stats here
1013 			 * The interrupt loop is non-reentrant.
1014 			 */
1015 			vp->dev->stats.rx_bytes += skb->len;
1016 			vp->dev->stats.rx_packets++;
1017 			napi_gro_receive(&vp->napi, skb);
1018 		} else {
1019 			/* Overlay header too short to do anything - discard.
1020 			 * We can actually keep this skb and reuse it,
1021 			 * but that will make the prep logic too complex.
1022 			 */
1023 			if (skb != NULL)
1024 				dev_kfree_skb_irq(skb);
1025 		}
1026 		(*skbuff_vector) = NULL;
1027 		/* Move to the next buffer element */
1028 		mmsg_vector++;
1029 		skbuff_vector++;
1030 	}
1031 	if (packet_count > 0) {
1032 		if (vp->estats.rx_queue_max < packet_count)
1033 			vp->estats.rx_queue_max = packet_count;
1034 		vp->estats.rx_queue_running_average =
1035 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1036 	}
1037 	return packet_count;
1038 }
1039 
1040 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1041 {
1042 	struct vector_private *vp = netdev_priv(dev);
1043 	int queue_depth = 0;
1044 
1045 	if (vp->in_error) {
1046 		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1047 		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1048 			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1049 		return NETDEV_TX_BUSY;
1050 	}
1051 
1052 	if ((vp->options & VECTOR_TX) == 0) {
1053 		writev_tx(vp, skb);
1054 		return NETDEV_TX_OK;
1055 	}
1056 
1057 	/* We do BQL only in the vector path, no point doing it in
1058 	 * packet at a time mode as there is no device queue
1059 	 */
1060 
1061 	netdev_sent_queue(vp->dev, skb->len);
1062 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1063 
1064 	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1065 		mod_timer(&vp->tl, vp->coalesce);
1066 		return NETDEV_TX_OK;
1067 	} else {
1068 		queue_depth = vector_send(vp->tx_queue);
1069 		if (queue_depth > 0)
1070 			napi_schedule(&vp->napi);
1071 	}
1072 
1073 	return NETDEV_TX_OK;
1074 }
1075 
1076 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1077 {
1078 	struct net_device *dev = dev_id;
1079 	struct vector_private *vp = netdev_priv(dev);
1080 
1081 	if (!netif_running(dev))
1082 		return IRQ_NONE;
1083 	napi_schedule(&vp->napi);
1084 	return IRQ_HANDLED;
1085 
1086 }
1087 
1088 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1089 {
1090 	struct net_device *dev = dev_id;
1091 	struct vector_private *vp = netdev_priv(dev);
1092 
1093 	if (!netif_running(dev))
1094 		return IRQ_NONE;
1095 	/* We need to pay attention to it only if we got
1096 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1097 	 * we ignore it. In the future, it may be worth
1098 	 * it to improve the IRQ controller a bit to make
1099 	 * tweaking the IRQ mask less costly
1100 	 */
1101 
1102 	napi_schedule(&vp->napi);
1103 	return IRQ_HANDLED;
1104 
1105 }
1106 
1107 static int irq_rr;
1108 
1109 static int vector_net_close(struct net_device *dev)
1110 {
1111 	struct vector_private *vp = netdev_priv(dev);
1112 
1113 	netif_stop_queue(dev);
1114 	del_timer(&vp->tl);
1115 
1116 	vp->opened = false;
1117 
1118 	if (vp->fds == NULL)
1119 		return 0;
1120 
1121 	/* Disable and free all IRQS */
1122 	if (vp->rx_irq > 0) {
1123 		um_free_irq(vp->rx_irq, dev);
1124 		vp->rx_irq = 0;
1125 	}
1126 	if (vp->tx_irq > 0) {
1127 		um_free_irq(vp->tx_irq, dev);
1128 		vp->tx_irq = 0;
1129 	}
1130 	napi_disable(&vp->napi);
1131 	netif_napi_del(&vp->napi);
1132 	if (vp->fds->rx_fd > 0) {
1133 		if (vp->bpf)
1134 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1135 		os_close_file(vp->fds->rx_fd);
1136 		vp->fds->rx_fd = -1;
1137 	}
1138 	if (vp->fds->tx_fd > 0) {
1139 		os_close_file(vp->fds->tx_fd);
1140 		vp->fds->tx_fd = -1;
1141 	}
1142 	if (vp->bpf != NULL)
1143 		kfree(vp->bpf->filter);
1144 	kfree(vp->bpf);
1145 	vp->bpf = NULL;
1146 	kfree(vp->fds->remote_addr);
1147 	kfree(vp->transport_data);
1148 	kfree(vp->header_rxbuffer);
1149 	kfree(vp->header_txbuffer);
1150 	if (vp->rx_queue != NULL)
1151 		destroy_queue(vp->rx_queue);
1152 	if (vp->tx_queue != NULL)
1153 		destroy_queue(vp->tx_queue);
1154 	kfree(vp->fds);
1155 	vp->fds = NULL;
1156 	vp->in_error = false;
1157 	return 0;
1158 }
1159 
1160 static int vector_poll(struct napi_struct *napi, int budget)
1161 {
1162 	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1163 	int work_done = 0;
1164 	int err;
1165 	bool tx_enqueued = false;
1166 
1167 	if ((vp->options & VECTOR_TX) != 0)
1168 		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1169 	spin_lock(&vp->rx_queue->head_lock);
1170 	if ((vp->options & VECTOR_RX) > 0)
1171 		err = vector_mmsg_rx(vp, budget);
1172 	else {
1173 		err = vector_legacy_rx(vp);
1174 		if (err > 0)
1175 			err = 1;
1176 	}
1177 	spin_unlock(&vp->rx_queue->head_lock);
1178 	if (err > 0)
1179 		work_done += err;
1180 
1181 	if (tx_enqueued || err > 0)
1182 		napi_schedule(napi);
1183 	if (work_done <= budget)
1184 		napi_complete_done(napi, work_done);
1185 	return work_done;
1186 }
1187 
1188 static void vector_reset_tx(struct work_struct *work)
1189 {
1190 	struct vector_private *vp =
1191 		container_of(work, struct vector_private, reset_tx);
1192 	netdev_reset_queue(vp->dev);
1193 	netif_start_queue(vp->dev);
1194 	netif_wake_queue(vp->dev);
1195 }
1196 
1197 static int vector_net_open(struct net_device *dev)
1198 {
1199 	struct vector_private *vp = netdev_priv(dev);
1200 	int err = -EINVAL;
1201 	struct vector_device *vdevice;
1202 
1203 	if (vp->opened)
1204 		return -ENXIO;
1205 	vp->opened = true;
1206 
1207 	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1208 
1209 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1210 
1211 	if (vp->fds == NULL)
1212 		goto out_close;
1213 
1214 	if (build_transport_data(vp) < 0)
1215 		goto out_close;
1216 
1217 	if ((vp->options & VECTOR_RX) > 0) {
1218 		vp->rx_queue = create_queue(
1219 			vp,
1220 			get_depth(vp->parsed),
1221 			vp->rx_header_size,
1222 			MAX_IOV_SIZE
1223 		);
1224 		atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1225 	} else {
1226 		vp->header_rxbuffer = kmalloc(
1227 			vp->rx_header_size,
1228 			GFP_KERNEL
1229 		);
1230 		if (vp->header_rxbuffer == NULL)
1231 			goto out_close;
1232 	}
1233 	if ((vp->options & VECTOR_TX) > 0) {
1234 		vp->tx_queue = create_queue(
1235 			vp,
1236 			get_depth(vp->parsed),
1237 			vp->header_size,
1238 			MAX_IOV_SIZE
1239 		);
1240 	} else {
1241 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1242 		if (vp->header_txbuffer == NULL)
1243 			goto out_close;
1244 	}
1245 
1246 	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1247 			      get_depth(vp->parsed));
1248 	napi_enable(&vp->napi);
1249 
1250 	/* READ IRQ */
1251 	err = um_request_irq(
1252 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1253 			IRQ_READ, vector_rx_interrupt,
1254 			IRQF_SHARED, dev->name, dev);
1255 	if (err < 0) {
1256 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1257 		err = -ENETUNREACH;
1258 		goto out_close;
1259 	}
1260 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1261 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1262 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1263 
1264 	/* WRITE IRQ - we need it only if we have vector TX */
1265 	if ((vp->options & VECTOR_TX) > 0) {
1266 		err = um_request_irq(
1267 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1268 				IRQ_WRITE, vector_tx_interrupt,
1269 				IRQF_SHARED, dev->name, dev);
1270 		if (err < 0) {
1271 			netdev_err(dev,
1272 				"vector_open: failed to get tx irq(%d)\n", err);
1273 			err = -ENETUNREACH;
1274 			goto out_close;
1275 		}
1276 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1277 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1278 	}
1279 
1280 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1281 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1282 			vp->options |= VECTOR_BPF;
1283 	}
1284 	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1285 		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1286 
1287 	if (vp->bpf != NULL)
1288 		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1289 
1290 	netif_start_queue(dev);
1291 	vector_reset_stats(vp);
1292 
1293 	/* clear buffer - it can happen that the host side of the interface
1294 	 * is full when we get here. In this case, new data is never queued,
1295 	 * SIGIOs never arrive, and the net never works.
1296 	 */
1297 
1298 	napi_schedule(&vp->napi);
1299 
1300 	vdevice = find_device(vp->unit);
1301 	vdevice->opened = 1;
1302 
1303 	if ((vp->options & VECTOR_TX) != 0)
1304 		add_timer(&vp->tl);
1305 	return 0;
1306 out_close:
1307 	vector_net_close(dev);
1308 	return err;
1309 }
1310 
1311 
1312 static void vector_net_set_multicast_list(struct net_device *dev)
1313 {
1314 	/* TODO: - we can do some BPF games here */
1315 	return;
1316 }
1317 
1318 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1319 {
1320 	struct vector_private *vp = netdev_priv(dev);
1321 
1322 	vp->estats.tx_timeout_count++;
1323 	netif_trans_update(dev);
1324 	schedule_work(&vp->reset_tx);
1325 }
1326 
1327 static netdev_features_t vector_fix_features(struct net_device *dev,
1328 	netdev_features_t features)
1329 {
1330 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1331 	return features;
1332 }
1333 
1334 static int vector_set_features(struct net_device *dev,
1335 	netdev_features_t features)
1336 {
1337 	struct vector_private *vp = netdev_priv(dev);
1338 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1339 	 * no way to negotiate it on raw sockets, so we can change
1340 	 * only our side.
1341 	 */
1342 	if (features & NETIF_F_GRO)
1343 		/* All new frame buffers will be GRO-sized */
1344 		vp->req_size = 65536;
1345 	else
1346 		/* All new frame buffers will be normal sized */
1347 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1348 	return 0;
1349 }
1350 
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 static void vector_net_poll_controller(struct net_device *dev)
1353 {
1354 	disable_irq(dev->irq);
1355 	vector_rx_interrupt(dev->irq, dev);
1356 	enable_irq(dev->irq);
1357 }
1358 #endif
1359 
1360 static void vector_net_get_drvinfo(struct net_device *dev,
1361 				struct ethtool_drvinfo *info)
1362 {
1363 	strscpy(info->driver, DRIVER_NAME);
1364 }
1365 
1366 static int vector_net_load_bpf_flash(struct net_device *dev,
1367 				struct ethtool_flash *efl)
1368 {
1369 	struct vector_private *vp = netdev_priv(dev);
1370 	struct vector_device *vdevice;
1371 	const struct firmware *fw;
1372 	int result = 0;
1373 
1374 	if (!(vp->options & VECTOR_BPF_FLASH)) {
1375 		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1376 		return -1;
1377 	}
1378 
1379 	if (vp->bpf != NULL) {
1380 		if (vp->opened)
1381 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1382 		kfree(vp->bpf->filter);
1383 		vp->bpf->filter = NULL;
1384 	} else {
1385 		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1386 		if (vp->bpf == NULL) {
1387 			netdev_err(dev, "failed to allocate memory for firmware\n");
1388 			goto flash_fail;
1389 		}
1390 	}
1391 
1392 	vdevice = find_device(vp->unit);
1393 
1394 	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1395 		goto flash_fail;
1396 
1397 	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1398 	if (!vp->bpf->filter)
1399 		goto free_buffer;
1400 
1401 	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1402 	release_firmware(fw);
1403 
1404 	if (vp->opened)
1405 		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1406 
1407 	return result;
1408 
1409 free_buffer:
1410 	release_firmware(fw);
1411 
1412 flash_fail:
1413 	if (vp->bpf != NULL)
1414 		kfree(vp->bpf->filter);
1415 	kfree(vp->bpf);
1416 	vp->bpf = NULL;
1417 	return -1;
1418 }
1419 
1420 static void vector_get_ringparam(struct net_device *netdev,
1421 				 struct ethtool_ringparam *ring,
1422 				 struct kernel_ethtool_ringparam *kernel_ring,
1423 				 struct netlink_ext_ack *extack)
1424 {
1425 	struct vector_private *vp = netdev_priv(netdev);
1426 
1427 	ring->rx_max_pending = vp->rx_queue->max_depth;
1428 	ring->tx_max_pending = vp->tx_queue->max_depth;
1429 	ring->rx_pending = vp->rx_queue->max_depth;
1430 	ring->tx_pending = vp->tx_queue->max_depth;
1431 }
1432 
1433 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1434 {
1435 	switch (stringset) {
1436 	case ETH_SS_TEST:
1437 		*buf = '\0';
1438 		break;
1439 	case ETH_SS_STATS:
1440 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1441 		break;
1442 	default:
1443 		WARN_ON(1);
1444 		break;
1445 	}
1446 }
1447 
1448 static int vector_get_sset_count(struct net_device *dev, int sset)
1449 {
1450 	switch (sset) {
1451 	case ETH_SS_TEST:
1452 		return 0;
1453 	case ETH_SS_STATS:
1454 		return VECTOR_NUM_STATS;
1455 	default:
1456 		return -EOPNOTSUPP;
1457 	}
1458 }
1459 
1460 static void vector_get_ethtool_stats(struct net_device *dev,
1461 	struct ethtool_stats *estats,
1462 	u64 *tmp_stats)
1463 {
1464 	struct vector_private *vp = netdev_priv(dev);
1465 
1466 	/* Stats are modified in the dequeue portions of
1467 	 * rx/tx which are protected by the head locks
1468 	 * grabbing these locks here ensures they are up
1469 	 * to date.
1470 	 */
1471 
1472 	spin_lock(&vp->tx_queue->head_lock);
1473 	spin_lock(&vp->rx_queue->head_lock);
1474 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1475 	spin_unlock(&vp->rx_queue->head_lock);
1476 	spin_unlock(&vp->tx_queue->head_lock);
1477 }
1478 
1479 static int vector_get_coalesce(struct net_device *netdev,
1480 			       struct ethtool_coalesce *ec,
1481 			       struct kernel_ethtool_coalesce *kernel_coal,
1482 			       struct netlink_ext_ack *extack)
1483 {
1484 	struct vector_private *vp = netdev_priv(netdev);
1485 
1486 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1487 	return 0;
1488 }
1489 
1490 static int vector_set_coalesce(struct net_device *netdev,
1491 			       struct ethtool_coalesce *ec,
1492 			       struct kernel_ethtool_coalesce *kernel_coal,
1493 			       struct netlink_ext_ack *extack)
1494 {
1495 	struct vector_private *vp = netdev_priv(netdev);
1496 
1497 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1498 	if (vp->coalesce == 0)
1499 		vp->coalesce = 1;
1500 	return 0;
1501 }
1502 
1503 static const struct ethtool_ops vector_net_ethtool_ops = {
1504 	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1505 	.get_drvinfo	= vector_net_get_drvinfo,
1506 	.get_link	= ethtool_op_get_link,
1507 	.get_ts_info	= ethtool_op_get_ts_info,
1508 	.get_ringparam	= vector_get_ringparam,
1509 	.get_strings	= vector_get_strings,
1510 	.get_sset_count	= vector_get_sset_count,
1511 	.get_ethtool_stats = vector_get_ethtool_stats,
1512 	.get_coalesce	= vector_get_coalesce,
1513 	.set_coalesce	= vector_set_coalesce,
1514 	.flash_device	= vector_net_load_bpf_flash,
1515 };
1516 
1517 
1518 static const struct net_device_ops vector_netdev_ops = {
1519 	.ndo_open		= vector_net_open,
1520 	.ndo_stop		= vector_net_close,
1521 	.ndo_start_xmit		= vector_net_start_xmit,
1522 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1523 	.ndo_tx_timeout		= vector_net_tx_timeout,
1524 	.ndo_set_mac_address	= eth_mac_addr,
1525 	.ndo_validate_addr	= eth_validate_addr,
1526 	.ndo_fix_features	= vector_fix_features,
1527 	.ndo_set_features	= vector_set_features,
1528 #ifdef CONFIG_NET_POLL_CONTROLLER
1529 	.ndo_poll_controller = vector_net_poll_controller,
1530 #endif
1531 };
1532 
1533 static void vector_timer_expire(struct timer_list *t)
1534 {
1535 	struct vector_private *vp = from_timer(vp, t, tl);
1536 
1537 	vp->estats.tx_kicks++;
1538 	napi_schedule(&vp->napi);
1539 }
1540 
1541 
1542 
1543 static void vector_eth_configure(
1544 		int n,
1545 		struct arglist *def
1546 	)
1547 {
1548 	struct vector_device *device;
1549 	struct net_device *dev;
1550 	struct vector_private *vp;
1551 	int err;
1552 
1553 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1554 	if (device == NULL) {
1555 		printk(KERN_ERR "eth_configure failed to allocate struct "
1556 				 "vector_device\n");
1557 		return;
1558 	}
1559 	dev = alloc_etherdev(sizeof(struct vector_private));
1560 	if (dev == NULL) {
1561 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1562 				 "net_device for vec%d\n", n);
1563 		goto out_free_device;
1564 	}
1565 
1566 	dev->mtu = get_mtu(def);
1567 
1568 	INIT_LIST_HEAD(&device->list);
1569 	device->unit = n;
1570 
1571 	/* If this name ends up conflicting with an existing registered
1572 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1573 	 * and fail.
1574 	 */
1575 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1576 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1577 	vp = netdev_priv(dev);
1578 
1579 	/* sysfs register */
1580 	if (!driver_registered) {
1581 		platform_driver_register(&uml_net_driver);
1582 		driver_registered = 1;
1583 	}
1584 	device->pdev.id = n;
1585 	device->pdev.name = DRIVER_NAME;
1586 	device->pdev.dev.release = vector_device_release;
1587 	dev_set_drvdata(&device->pdev.dev, device);
1588 	if (platform_device_register(&device->pdev))
1589 		goto out_free_netdev;
1590 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1591 
1592 	device->dev = dev;
1593 
1594 	*vp = ((struct vector_private)
1595 		{
1596 		.list			= LIST_HEAD_INIT(vp->list),
1597 		.dev			= dev,
1598 		.unit			= n,
1599 		.options		= get_transport_options(def),
1600 		.rx_irq			= 0,
1601 		.tx_irq			= 0,
1602 		.parsed			= def,
1603 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1604 		/* TODO - we need to calculate headroom so that ip header
1605 		 * is 16 byte aligned all the time
1606 		 */
1607 		.headroom		= get_headroom(def),
1608 		.form_header		= NULL,
1609 		.verify_header		= NULL,
1610 		.header_rxbuffer	= NULL,
1611 		.header_txbuffer	= NULL,
1612 		.header_size		= 0,
1613 		.rx_header_size		= 0,
1614 		.rexmit_scheduled	= false,
1615 		.opened			= false,
1616 		.transport_data		= NULL,
1617 		.in_write_poll		= false,
1618 		.coalesce		= 2,
1619 		.req_size		= get_req_size(def),
1620 		.in_error		= false,
1621 		.bpf			= NULL
1622 	});
1623 
1624 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1625 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1626 
1627 	timer_setup(&vp->tl, vector_timer_expire, 0);
1628 
1629 	/* FIXME */
1630 	dev->netdev_ops = &vector_netdev_ops;
1631 	dev->ethtool_ops = &vector_net_ethtool_ops;
1632 	dev->watchdog_timeo = (HZ >> 1);
1633 	/* primary IRQ - fixme */
1634 	dev->irq = 0; /* we will adjust this once opened */
1635 
1636 	rtnl_lock();
1637 	err = register_netdevice(dev);
1638 	rtnl_unlock();
1639 	if (err)
1640 		goto out_undo_user_init;
1641 
1642 	spin_lock(&vector_devices_lock);
1643 	list_add(&device->list, &vector_devices);
1644 	spin_unlock(&vector_devices_lock);
1645 
1646 	return;
1647 
1648 out_undo_user_init:
1649 	return;
1650 out_free_netdev:
1651 	free_netdev(dev);
1652 out_free_device:
1653 	kfree(device);
1654 }
1655 
1656 
1657 
1658 
1659 /*
1660  * Invoked late in the init
1661  */
1662 
1663 static int __init vector_init(void)
1664 {
1665 	struct list_head *ele;
1666 	struct vector_cmd_line_arg *def;
1667 	struct arglist *parsed;
1668 
1669 	list_for_each(ele, &vec_cmd_line) {
1670 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1671 		parsed = uml_parse_vector_ifspec(def->arguments);
1672 		if (parsed != NULL)
1673 			vector_eth_configure(def->unit, parsed);
1674 	}
1675 	return 0;
1676 }
1677 
1678 
1679 /* Invoked at initial argument parsing, only stores
1680  * arguments until a proper vector_init is called
1681  * later
1682  */
1683 
1684 static int __init vector_setup(char *str)
1685 {
1686 	char *error;
1687 	int n, err;
1688 	struct vector_cmd_line_arg *new;
1689 
1690 	err = vector_parse(str, &n, &str, &error);
1691 	if (err) {
1692 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1693 				 str, error);
1694 		return 1;
1695 	}
1696 	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1697 	if (!new)
1698 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1699 		      sizeof(*new));
1700 	INIT_LIST_HEAD(&new->list);
1701 	new->unit = n;
1702 	new->arguments = str;
1703 	list_add_tail(&new->list, &vec_cmd_line);
1704 	return 1;
1705 }
1706 
1707 __setup("vec", vector_setup);
1708 __uml_help(vector_setup,
1709 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1710 "	 Configure a vector io network device.\n\n"
1711 );
1712 
1713 late_initcall(vector_init);
1714 
1715 static struct mc_device vector_mc = {
1716 	.list		= LIST_HEAD_INIT(vector_mc.list),
1717 	.name		= "vec",
1718 	.config		= vector_config,
1719 	.get_config	= NULL,
1720 	.id		= vector_id,
1721 	.remove		= vector_remove,
1722 };
1723 
1724 #ifdef CONFIG_INET
1725 static int vector_inetaddr_event(
1726 	struct notifier_block *this,
1727 	unsigned long event,
1728 	void *ptr)
1729 {
1730 	return NOTIFY_DONE;
1731 }
1732 
1733 static struct notifier_block vector_inetaddr_notifier = {
1734 	.notifier_call		= vector_inetaddr_event,
1735 };
1736 
1737 static void inet_register(void)
1738 {
1739 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1740 }
1741 #else
1742 static inline void inet_register(void)
1743 {
1744 }
1745 #endif
1746 
1747 static int vector_net_init(void)
1748 {
1749 	mconsole_register_dev(&vector_mc);
1750 	inet_register();
1751 	return 0;
1752 }
1753 
1754 __initcall(vector_net_init);
1755 
1756 
1757 
1758