1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #include <linux/version.h> 12 #include <linux/memblock.h> 13 #include <linux/etherdevice.h> 14 #include <linux/ethtool.h> 15 #include <linux/inetdevice.h> 16 #include <linux/init.h> 17 #include <linux/list.h> 18 #include <linux/netdevice.h> 19 #include <linux/platform_device.h> 20 #include <linux/rtnetlink.h> 21 #include <linux/skbuff.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <linux/firmware.h> 25 #include <linux/fs.h> 26 #include <uapi/linux/filter.h> 27 #include <init.h> 28 #include <irq_kern.h> 29 #include <irq_user.h> 30 #include <net_kern.h> 31 #include <os.h> 32 #include "mconsole_kern.h" 33 #include "vector_user.h" 34 #include "vector_kern.h" 35 36 /* 37 * Adapted from network devices with the following major changes: 38 * All transports are static - simplifies the code significantly 39 * Multiple FDs/IRQs per device 40 * Vector IO optionally used for read/write, falling back to legacy 41 * based on configuration and/or availability 42 * Configuration is no longer positional - L2TPv3 and GRE require up to 43 * 10 parameters, passing this as positional is not fit for purpose. 44 * Only socket transports are supported 45 */ 46 47 48 #define DRIVER_NAME "uml-vector" 49 #define DRIVER_VERSION "01" 50 struct vector_cmd_line_arg { 51 struct list_head list; 52 int unit; 53 char *arguments; 54 }; 55 56 struct vector_device { 57 struct list_head list; 58 struct net_device *dev; 59 struct platform_device pdev; 60 int unit; 61 int opened; 62 }; 63 64 static LIST_HEAD(vec_cmd_line); 65 66 static DEFINE_SPINLOCK(vector_devices_lock); 67 static LIST_HEAD(vector_devices); 68 69 static int driver_registered; 70 71 static void vector_eth_configure(int n, struct arglist *def); 72 73 /* Argument accessors to set variables (and/or set default values) 74 * mtu, buffer sizing, default headroom, etc 75 */ 76 77 #define DEFAULT_HEADROOM 2 78 #define SAFETY_MARGIN 32 79 #define DEFAULT_VECTOR_SIZE 64 80 #define TX_SMALL_PACKET 128 81 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 82 #define MAX_ITERATIONS 64 83 84 static const struct { 85 const char string[ETH_GSTRING_LEN]; 86 } ethtool_stats_keys[] = { 87 { "rx_queue_max" }, 88 { "rx_queue_running_average" }, 89 { "tx_queue_max" }, 90 { "tx_queue_running_average" }, 91 { "rx_encaps_errors" }, 92 { "tx_timeout_count" }, 93 { "tx_restart_queue" }, 94 { "tx_kicks" }, 95 { "tx_flow_control_xon" }, 96 { "tx_flow_control_xoff" }, 97 { "rx_csum_offload_good" }, 98 { "rx_csum_offload_errors"}, 99 { "sg_ok"}, 100 { "sg_linearized"}, 101 }; 102 103 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 104 105 static void vector_reset_stats(struct vector_private *vp) 106 { 107 vp->estats.rx_queue_max = 0; 108 vp->estats.rx_queue_running_average = 0; 109 vp->estats.tx_queue_max = 0; 110 vp->estats.tx_queue_running_average = 0; 111 vp->estats.rx_encaps_errors = 0; 112 vp->estats.tx_timeout_count = 0; 113 vp->estats.tx_restart_queue = 0; 114 vp->estats.tx_kicks = 0; 115 vp->estats.tx_flow_control_xon = 0; 116 vp->estats.tx_flow_control_xoff = 0; 117 vp->estats.sg_ok = 0; 118 vp->estats.sg_linearized = 0; 119 } 120 121 static int get_mtu(struct arglist *def) 122 { 123 char *mtu = uml_vector_fetch_arg(def, "mtu"); 124 long result; 125 126 if (mtu != NULL) { 127 if (kstrtoul(mtu, 10, &result) == 0) 128 if ((result < (1 << 16) - 1) && (result >= 576)) 129 return result; 130 } 131 return ETH_MAX_PACKET; 132 } 133 134 static char *get_bpf_file(struct arglist *def) 135 { 136 return uml_vector_fetch_arg(def, "bpffile"); 137 } 138 139 static bool get_bpf_flash(struct arglist *def) 140 { 141 char *allow = uml_vector_fetch_arg(def, "bpfflash"); 142 long result; 143 144 if (allow != NULL) { 145 if (kstrtoul(allow, 10, &result) == 0) 146 return (allow > 0); 147 } 148 return false; 149 } 150 151 static int get_depth(struct arglist *def) 152 { 153 char *mtu = uml_vector_fetch_arg(def, "depth"); 154 long result; 155 156 if (mtu != NULL) { 157 if (kstrtoul(mtu, 10, &result) == 0) 158 return result; 159 } 160 return DEFAULT_VECTOR_SIZE; 161 } 162 163 static int get_headroom(struct arglist *def) 164 { 165 char *mtu = uml_vector_fetch_arg(def, "headroom"); 166 long result; 167 168 if (mtu != NULL) { 169 if (kstrtoul(mtu, 10, &result) == 0) 170 return result; 171 } 172 return DEFAULT_HEADROOM; 173 } 174 175 static int get_req_size(struct arglist *def) 176 { 177 char *gro = uml_vector_fetch_arg(def, "gro"); 178 long result; 179 180 if (gro != NULL) { 181 if (kstrtoul(gro, 10, &result) == 0) { 182 if (result > 0) 183 return 65536; 184 } 185 } 186 return get_mtu(def) + ETH_HEADER_OTHER + 187 get_headroom(def) + SAFETY_MARGIN; 188 } 189 190 191 static int get_transport_options(struct arglist *def) 192 { 193 char *transport = uml_vector_fetch_arg(def, "transport"); 194 char *vector = uml_vector_fetch_arg(def, "vec"); 195 196 int vec_rx = VECTOR_RX; 197 int vec_tx = VECTOR_TX; 198 long parsed; 199 int result = 0; 200 201 if (vector != NULL) { 202 if (kstrtoul(vector, 10, &parsed) == 0) { 203 if (parsed == 0) { 204 vec_rx = 0; 205 vec_tx = 0; 206 } 207 } 208 } 209 210 if (get_bpf_flash(def)) 211 result = VECTOR_BPF_FLASH; 212 213 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 214 return result; 215 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 216 return (result | vec_rx | VECTOR_BPF); 217 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 218 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 219 return (result | vec_rx | vec_tx); 220 } 221 222 223 /* A mini-buffer for packet drop read 224 * All of our supported transports are datagram oriented and we always 225 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 226 * than the packet size it still counts as full packet read and will 227 * clean the incoming stream to keep sigio/epoll happy 228 */ 229 230 #define DROP_BUFFER_SIZE 32 231 232 static char *drop_buffer; 233 234 /* Array backed queues optimized for bulk enqueue/dequeue and 235 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 236 * For more details and full design rationale see 237 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 238 */ 239 240 241 /* 242 * Advance the mmsg queue head by n = advance. Resets the queue to 243 * maximum enqueue/dequeue-at-once capacity if possible. Called by 244 * dequeuers. Caller must hold the head_lock! 245 */ 246 247 static int vector_advancehead(struct vector_queue *qi, int advance) 248 { 249 int queue_depth; 250 251 qi->head = 252 (qi->head + advance) 253 % qi->max_depth; 254 255 256 spin_lock(&qi->tail_lock); 257 qi->queue_depth -= advance; 258 259 /* we are at 0, use this to 260 * reset head and tail so we can use max size vectors 261 */ 262 263 if (qi->queue_depth == 0) { 264 qi->head = 0; 265 qi->tail = 0; 266 } 267 queue_depth = qi->queue_depth; 268 spin_unlock(&qi->tail_lock); 269 return queue_depth; 270 } 271 272 /* Advance the queue tail by n = advance. 273 * This is called by enqueuers which should hold the 274 * head lock already 275 */ 276 277 static int vector_advancetail(struct vector_queue *qi, int advance) 278 { 279 int queue_depth; 280 281 qi->tail = 282 (qi->tail + advance) 283 % qi->max_depth; 284 spin_lock(&qi->head_lock); 285 qi->queue_depth += advance; 286 queue_depth = qi->queue_depth; 287 spin_unlock(&qi->head_lock); 288 return queue_depth; 289 } 290 291 static int prep_msg(struct vector_private *vp, 292 struct sk_buff *skb, 293 struct iovec *iov) 294 { 295 int iov_index = 0; 296 int nr_frags, frag; 297 skb_frag_t *skb_frag; 298 299 nr_frags = skb_shinfo(skb)->nr_frags; 300 if (nr_frags > MAX_IOV_SIZE) { 301 if (skb_linearize(skb) != 0) 302 goto drop; 303 } 304 if (vp->header_size > 0) { 305 iov[iov_index].iov_len = vp->header_size; 306 vp->form_header(iov[iov_index].iov_base, skb, vp); 307 iov_index++; 308 } 309 iov[iov_index].iov_base = skb->data; 310 if (nr_frags > 0) { 311 iov[iov_index].iov_len = skb->len - skb->data_len; 312 vp->estats.sg_ok++; 313 } else 314 iov[iov_index].iov_len = skb->len; 315 iov_index++; 316 for (frag = 0; frag < nr_frags; frag++) { 317 skb_frag = &skb_shinfo(skb)->frags[frag]; 318 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 319 iov[iov_index].iov_len = skb_frag_size(skb_frag); 320 iov_index++; 321 } 322 return iov_index; 323 drop: 324 return -1; 325 } 326 /* 327 * Generic vector enqueue with support for forming headers using transport 328 * specific callback. Allows GRE, L2TPv3, RAW and other transports 329 * to use a common enqueue procedure in vector mode 330 */ 331 332 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 333 { 334 struct vector_private *vp = netdev_priv(qi->dev); 335 int queue_depth; 336 int packet_len; 337 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 338 int iov_count; 339 340 spin_lock(&qi->tail_lock); 341 spin_lock(&qi->head_lock); 342 queue_depth = qi->queue_depth; 343 spin_unlock(&qi->head_lock); 344 345 if (skb) 346 packet_len = skb->len; 347 348 if (queue_depth < qi->max_depth) { 349 350 *(qi->skbuff_vector + qi->tail) = skb; 351 mmsg_vector += qi->tail; 352 iov_count = prep_msg( 353 vp, 354 skb, 355 mmsg_vector->msg_hdr.msg_iov 356 ); 357 if (iov_count < 1) 358 goto drop; 359 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 360 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 361 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 362 queue_depth = vector_advancetail(qi, 1); 363 } else 364 goto drop; 365 spin_unlock(&qi->tail_lock); 366 return queue_depth; 367 drop: 368 qi->dev->stats.tx_dropped++; 369 if (skb != NULL) { 370 packet_len = skb->len; 371 dev_consume_skb_any(skb); 372 netdev_completed_queue(qi->dev, 1, packet_len); 373 } 374 spin_unlock(&qi->tail_lock); 375 return queue_depth; 376 } 377 378 static int consume_vector_skbs(struct vector_queue *qi, int count) 379 { 380 struct sk_buff *skb; 381 int skb_index; 382 int bytes_compl = 0; 383 384 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 385 skb = *(qi->skbuff_vector + skb_index); 386 /* mark as empty to ensure correct destruction if 387 * needed 388 */ 389 bytes_compl += skb->len; 390 *(qi->skbuff_vector + skb_index) = NULL; 391 dev_consume_skb_any(skb); 392 } 393 qi->dev->stats.tx_bytes += bytes_compl; 394 qi->dev->stats.tx_packets += count; 395 netdev_completed_queue(qi->dev, count, bytes_compl); 396 return vector_advancehead(qi, count); 397 } 398 399 /* 400 * Generic vector deque via sendmmsg with support for forming headers 401 * using transport specific callback. Allows GRE, L2TPv3, RAW and 402 * other transports to use a common dequeue procedure in vector mode 403 */ 404 405 406 static int vector_send(struct vector_queue *qi) 407 { 408 struct vector_private *vp = netdev_priv(qi->dev); 409 struct mmsghdr *send_from; 410 int result = 0, send_len, queue_depth = qi->max_depth; 411 412 if (spin_trylock(&qi->head_lock)) { 413 if (spin_trylock(&qi->tail_lock)) { 414 /* update queue_depth to current value */ 415 queue_depth = qi->queue_depth; 416 spin_unlock(&qi->tail_lock); 417 while (queue_depth > 0) { 418 /* Calculate the start of the vector */ 419 send_len = queue_depth; 420 send_from = qi->mmsg_vector; 421 send_from += qi->head; 422 /* Adjust vector size if wraparound */ 423 if (send_len + qi->head > qi->max_depth) 424 send_len = qi->max_depth - qi->head; 425 /* Try to TX as many packets as possible */ 426 if (send_len > 0) { 427 result = uml_vector_sendmmsg( 428 vp->fds->tx_fd, 429 send_from, 430 send_len, 431 0 432 ); 433 vp->in_write_poll = 434 (result != send_len); 435 } 436 /* For some of the sendmmsg error scenarios 437 * we may end being unsure in the TX success 438 * for all packets. It is safer to declare 439 * them all TX-ed and blame the network. 440 */ 441 if (result < 0) { 442 if (net_ratelimit()) 443 netdev_err(vp->dev, "sendmmsg err=%i\n", 444 result); 445 vp->in_error = true; 446 result = send_len; 447 } 448 if (result > 0) { 449 queue_depth = 450 consume_vector_skbs(qi, result); 451 /* This is equivalent to an TX IRQ. 452 * Restart the upper layers to feed us 453 * more packets. 454 */ 455 if (result > vp->estats.tx_queue_max) 456 vp->estats.tx_queue_max = result; 457 vp->estats.tx_queue_running_average = 458 (vp->estats.tx_queue_running_average + result) >> 1; 459 } 460 netif_trans_update(qi->dev); 461 netif_wake_queue(qi->dev); 462 /* if TX is busy, break out of the send loop, 463 * poll write IRQ will reschedule xmit for us 464 */ 465 if (result != send_len) { 466 vp->estats.tx_restart_queue++; 467 break; 468 } 469 } 470 } 471 spin_unlock(&qi->head_lock); 472 } else { 473 tasklet_schedule(&vp->tx_poll); 474 } 475 return queue_depth; 476 } 477 478 /* Queue destructor. Deliberately stateless so we can use 479 * it in queue cleanup if initialization fails. 480 */ 481 482 static void destroy_queue(struct vector_queue *qi) 483 { 484 int i; 485 struct iovec *iov; 486 struct vector_private *vp = netdev_priv(qi->dev); 487 struct mmsghdr *mmsg_vector; 488 489 if (qi == NULL) 490 return; 491 /* deallocate any skbuffs - we rely on any unused to be 492 * set to NULL. 493 */ 494 if (qi->skbuff_vector != NULL) { 495 for (i = 0; i < qi->max_depth; i++) { 496 if (*(qi->skbuff_vector + i) != NULL) 497 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 498 } 499 kfree(qi->skbuff_vector); 500 } 501 /* deallocate matching IOV structures including header buffs */ 502 if (qi->mmsg_vector != NULL) { 503 mmsg_vector = qi->mmsg_vector; 504 for (i = 0; i < qi->max_depth; i++) { 505 iov = mmsg_vector->msg_hdr.msg_iov; 506 if (iov != NULL) { 507 if ((vp->header_size > 0) && 508 (iov->iov_base != NULL)) 509 kfree(iov->iov_base); 510 kfree(iov); 511 } 512 mmsg_vector++; 513 } 514 kfree(qi->mmsg_vector); 515 } 516 kfree(qi); 517 } 518 519 /* 520 * Queue constructor. Create a queue with a given side. 521 */ 522 static struct vector_queue *create_queue( 523 struct vector_private *vp, 524 int max_size, 525 int header_size, 526 int num_extra_frags) 527 { 528 struct vector_queue *result; 529 int i; 530 struct iovec *iov; 531 struct mmsghdr *mmsg_vector; 532 533 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 534 if (result == NULL) 535 return NULL; 536 result->max_depth = max_size; 537 result->dev = vp->dev; 538 result->mmsg_vector = kmalloc( 539 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 540 if (result->mmsg_vector == NULL) 541 goto out_mmsg_fail; 542 result->skbuff_vector = kmalloc( 543 (sizeof(void *) * max_size), GFP_KERNEL); 544 if (result->skbuff_vector == NULL) 545 goto out_skb_fail; 546 547 /* further failures can be handled safely by destroy_queue*/ 548 549 mmsg_vector = result->mmsg_vector; 550 for (i = 0; i < max_size; i++) { 551 /* Clear all pointers - we use non-NULL as marking on 552 * what to free on destruction 553 */ 554 *(result->skbuff_vector + i) = NULL; 555 mmsg_vector->msg_hdr.msg_iov = NULL; 556 mmsg_vector++; 557 } 558 mmsg_vector = result->mmsg_vector; 559 result->max_iov_frags = num_extra_frags; 560 for (i = 0; i < max_size; i++) { 561 if (vp->header_size > 0) 562 iov = kmalloc_array(3 + num_extra_frags, 563 sizeof(struct iovec), 564 GFP_KERNEL 565 ); 566 else 567 iov = kmalloc_array(2 + num_extra_frags, 568 sizeof(struct iovec), 569 GFP_KERNEL 570 ); 571 if (iov == NULL) 572 goto out_fail; 573 mmsg_vector->msg_hdr.msg_iov = iov; 574 mmsg_vector->msg_hdr.msg_iovlen = 1; 575 mmsg_vector->msg_hdr.msg_control = NULL; 576 mmsg_vector->msg_hdr.msg_controllen = 0; 577 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 578 mmsg_vector->msg_hdr.msg_name = NULL; 579 mmsg_vector->msg_hdr.msg_namelen = 0; 580 if (vp->header_size > 0) { 581 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 582 if (iov->iov_base == NULL) 583 goto out_fail; 584 iov->iov_len = header_size; 585 mmsg_vector->msg_hdr.msg_iovlen = 2; 586 iov++; 587 } 588 iov->iov_base = NULL; 589 iov->iov_len = 0; 590 mmsg_vector++; 591 } 592 spin_lock_init(&result->head_lock); 593 spin_lock_init(&result->tail_lock); 594 result->queue_depth = 0; 595 result->head = 0; 596 result->tail = 0; 597 return result; 598 out_skb_fail: 599 kfree(result->mmsg_vector); 600 out_mmsg_fail: 601 kfree(result); 602 return NULL; 603 out_fail: 604 destroy_queue(result); 605 return NULL; 606 } 607 608 /* 609 * We do not use the RX queue as a proper wraparound queue for now 610 * This is not necessary because the consumption via netif_rx() 611 * happens in-line. While we can try using the return code of 612 * netif_rx() for flow control there are no drivers doing this today. 613 * For this RX specific use we ignore the tail/head locks and 614 * just read into a prepared queue filled with skbuffs. 615 */ 616 617 static struct sk_buff *prep_skb( 618 struct vector_private *vp, 619 struct user_msghdr *msg) 620 { 621 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 622 struct sk_buff *result; 623 int iov_index = 0, len; 624 struct iovec *iov = msg->msg_iov; 625 int err, nr_frags, frag; 626 skb_frag_t *skb_frag; 627 628 if (vp->req_size <= linear) 629 len = linear; 630 else 631 len = vp->req_size; 632 result = alloc_skb_with_frags( 633 linear, 634 len - vp->max_packet, 635 3, 636 &err, 637 GFP_ATOMIC 638 ); 639 if (vp->header_size > 0) 640 iov_index++; 641 if (result == NULL) { 642 iov[iov_index].iov_base = NULL; 643 iov[iov_index].iov_len = 0; 644 goto done; 645 } 646 skb_reserve(result, vp->headroom); 647 result->dev = vp->dev; 648 skb_put(result, vp->max_packet); 649 result->data_len = len - vp->max_packet; 650 result->len += len - vp->max_packet; 651 skb_reset_mac_header(result); 652 result->ip_summed = CHECKSUM_NONE; 653 iov[iov_index].iov_base = result->data; 654 iov[iov_index].iov_len = vp->max_packet; 655 iov_index++; 656 657 nr_frags = skb_shinfo(result)->nr_frags; 658 for (frag = 0; frag < nr_frags; frag++) { 659 skb_frag = &skb_shinfo(result)->frags[frag]; 660 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 661 if (iov[iov_index].iov_base != NULL) 662 iov[iov_index].iov_len = skb_frag_size(skb_frag); 663 else 664 iov[iov_index].iov_len = 0; 665 iov_index++; 666 } 667 done: 668 msg->msg_iovlen = iov_index; 669 return result; 670 } 671 672 673 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 674 675 static void prep_queue_for_rx(struct vector_queue *qi) 676 { 677 struct vector_private *vp = netdev_priv(qi->dev); 678 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 679 void **skbuff_vector = qi->skbuff_vector; 680 int i; 681 682 if (qi->queue_depth == 0) 683 return; 684 for (i = 0; i < qi->queue_depth; i++) { 685 /* it is OK if allocation fails - recvmmsg with NULL data in 686 * iov argument still performs an RX, just drops the packet 687 * This allows us stop faffing around with a "drop buffer" 688 */ 689 690 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 691 skbuff_vector++; 692 mmsg_vector++; 693 } 694 qi->queue_depth = 0; 695 } 696 697 static struct vector_device *find_device(int n) 698 { 699 struct vector_device *device; 700 struct list_head *ele; 701 702 spin_lock(&vector_devices_lock); 703 list_for_each(ele, &vector_devices) { 704 device = list_entry(ele, struct vector_device, list); 705 if (device->unit == n) 706 goto out; 707 } 708 device = NULL; 709 out: 710 spin_unlock(&vector_devices_lock); 711 return device; 712 } 713 714 static int vector_parse(char *str, int *index_out, char **str_out, 715 char **error_out) 716 { 717 int n, len, err; 718 char *start = str; 719 720 len = strlen(str); 721 722 while ((*str != ':') && (strlen(str) > 1)) 723 str++; 724 if (*str != ':') { 725 *error_out = "Expected ':' after device number"; 726 return -EINVAL; 727 } 728 *str = '\0'; 729 730 err = kstrtouint(start, 0, &n); 731 if (err < 0) { 732 *error_out = "Bad device number"; 733 return err; 734 } 735 736 str++; 737 if (find_device(n)) { 738 *error_out = "Device already configured"; 739 return -EINVAL; 740 } 741 742 *index_out = n; 743 *str_out = str; 744 return 0; 745 } 746 747 static int vector_config(char *str, char **error_out) 748 { 749 int err, n; 750 char *params; 751 struct arglist *parsed; 752 753 err = vector_parse(str, &n, ¶ms, error_out); 754 if (err != 0) 755 return err; 756 757 /* This string is broken up and the pieces used by the underlying 758 * driver. We should copy it to make sure things do not go wrong 759 * later. 760 */ 761 762 params = kstrdup(params, GFP_KERNEL); 763 if (params == NULL) { 764 *error_out = "vector_config failed to strdup string"; 765 return -ENOMEM; 766 } 767 768 parsed = uml_parse_vector_ifspec(params); 769 770 if (parsed == NULL) { 771 *error_out = "vector_config failed to parse parameters"; 772 return -EINVAL; 773 } 774 775 vector_eth_configure(n, parsed); 776 return 0; 777 } 778 779 static int vector_id(char **str, int *start_out, int *end_out) 780 { 781 char *end; 782 int n; 783 784 n = simple_strtoul(*str, &end, 0); 785 if ((*end != '\0') || (end == *str)) 786 return -1; 787 788 *start_out = n; 789 *end_out = n; 790 *str = end; 791 return n; 792 } 793 794 static int vector_remove(int n, char **error_out) 795 { 796 struct vector_device *vec_d; 797 struct net_device *dev; 798 struct vector_private *vp; 799 800 vec_d = find_device(n); 801 if (vec_d == NULL) 802 return -ENODEV; 803 dev = vec_d->dev; 804 vp = netdev_priv(dev); 805 if (vp->fds != NULL) 806 return -EBUSY; 807 unregister_netdev(dev); 808 platform_device_unregister(&vec_d->pdev); 809 return 0; 810 } 811 812 /* 813 * There is no shared per-transport initialization code, so 814 * we will just initialize each interface one by one and 815 * add them to a list 816 */ 817 818 static struct platform_driver uml_net_driver = { 819 .driver = { 820 .name = DRIVER_NAME, 821 }, 822 }; 823 824 825 static void vector_device_release(struct device *dev) 826 { 827 struct vector_device *device = dev_get_drvdata(dev); 828 struct net_device *netdev = device->dev; 829 830 list_del(&device->list); 831 kfree(device); 832 free_netdev(netdev); 833 } 834 835 /* Bog standard recv using recvmsg - not used normally unless the user 836 * explicitly specifies not to use recvmmsg vector RX. 837 */ 838 839 static int vector_legacy_rx(struct vector_private *vp) 840 { 841 int pkt_len; 842 struct user_msghdr hdr; 843 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 844 int iovpos = 0; 845 struct sk_buff *skb; 846 int header_check; 847 848 hdr.msg_name = NULL; 849 hdr.msg_namelen = 0; 850 hdr.msg_iov = (struct iovec *) &iov; 851 hdr.msg_control = NULL; 852 hdr.msg_controllen = 0; 853 hdr.msg_flags = 0; 854 855 if (vp->header_size > 0) { 856 iov[0].iov_base = vp->header_rxbuffer; 857 iov[0].iov_len = vp->header_size; 858 } 859 860 skb = prep_skb(vp, &hdr); 861 862 if (skb == NULL) { 863 /* Read a packet into drop_buffer and don't do 864 * anything with it. 865 */ 866 iov[iovpos].iov_base = drop_buffer; 867 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 868 hdr.msg_iovlen = 1; 869 vp->dev->stats.rx_dropped++; 870 } 871 872 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 873 if (pkt_len < 0) { 874 vp->in_error = true; 875 return pkt_len; 876 } 877 878 if (skb != NULL) { 879 if (pkt_len > vp->header_size) { 880 if (vp->header_size > 0) { 881 header_check = vp->verify_header( 882 vp->header_rxbuffer, skb, vp); 883 if (header_check < 0) { 884 dev_kfree_skb_irq(skb); 885 vp->dev->stats.rx_dropped++; 886 vp->estats.rx_encaps_errors++; 887 return 0; 888 } 889 if (header_check > 0) { 890 vp->estats.rx_csum_offload_good++; 891 skb->ip_summed = CHECKSUM_UNNECESSARY; 892 } 893 } 894 pskb_trim(skb, pkt_len - vp->rx_header_size); 895 skb->protocol = eth_type_trans(skb, skb->dev); 896 vp->dev->stats.rx_bytes += skb->len; 897 vp->dev->stats.rx_packets++; 898 netif_rx(skb); 899 } else { 900 dev_kfree_skb_irq(skb); 901 } 902 } 903 return pkt_len; 904 } 905 906 /* 907 * Packet at a time TX which falls back to vector TX if the 908 * underlying transport is busy. 909 */ 910 911 912 913 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 914 { 915 struct iovec iov[3 + MAX_IOV_SIZE]; 916 int iov_count, pkt_len = 0; 917 918 iov[0].iov_base = vp->header_txbuffer; 919 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 920 921 if (iov_count < 1) 922 goto drop; 923 924 pkt_len = uml_vector_writev( 925 vp->fds->tx_fd, 926 (struct iovec *) &iov, 927 iov_count 928 ); 929 930 if (pkt_len < 0) 931 goto drop; 932 933 netif_trans_update(vp->dev); 934 netif_wake_queue(vp->dev); 935 936 if (pkt_len > 0) { 937 vp->dev->stats.tx_bytes += skb->len; 938 vp->dev->stats.tx_packets++; 939 } else { 940 vp->dev->stats.tx_dropped++; 941 } 942 consume_skb(skb); 943 return pkt_len; 944 drop: 945 vp->dev->stats.tx_dropped++; 946 consume_skb(skb); 947 if (pkt_len < 0) 948 vp->in_error = true; 949 return pkt_len; 950 } 951 952 /* 953 * Receive as many messages as we can in one call using the special 954 * mmsg vector matched to an skb vector which we prepared earlier. 955 */ 956 957 static int vector_mmsg_rx(struct vector_private *vp) 958 { 959 int packet_count, i; 960 struct vector_queue *qi = vp->rx_queue; 961 struct sk_buff *skb; 962 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 963 void **skbuff_vector = qi->skbuff_vector; 964 int header_check; 965 966 /* Refresh the vector and make sure it is with new skbs and the 967 * iovs are updated to point to them. 968 */ 969 970 prep_queue_for_rx(qi); 971 972 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 973 974 packet_count = uml_vector_recvmmsg( 975 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 976 977 if (packet_count < 0) 978 vp->in_error = true; 979 980 if (packet_count <= 0) 981 return packet_count; 982 983 /* We treat packet processing as enqueue, buffer refresh as dequeue 984 * The queue_depth tells us how many buffers have been used and how 985 * many do we need to prep the next time prep_queue_for_rx() is called. 986 */ 987 988 qi->queue_depth = packet_count; 989 990 for (i = 0; i < packet_count; i++) { 991 skb = (*skbuff_vector); 992 if (mmsg_vector->msg_len > vp->header_size) { 993 if (vp->header_size > 0) { 994 header_check = vp->verify_header( 995 mmsg_vector->msg_hdr.msg_iov->iov_base, 996 skb, 997 vp 998 ); 999 if (header_check < 0) { 1000 /* Overlay header failed to verify - discard. 1001 * We can actually keep this skb and reuse it, 1002 * but that will make the prep logic too 1003 * complex. 1004 */ 1005 dev_kfree_skb_irq(skb); 1006 vp->estats.rx_encaps_errors++; 1007 continue; 1008 } 1009 if (header_check > 0) { 1010 vp->estats.rx_csum_offload_good++; 1011 skb->ip_summed = CHECKSUM_UNNECESSARY; 1012 } 1013 } 1014 pskb_trim(skb, 1015 mmsg_vector->msg_len - vp->rx_header_size); 1016 skb->protocol = eth_type_trans(skb, skb->dev); 1017 /* 1018 * We do not need to lock on updating stats here 1019 * The interrupt loop is non-reentrant. 1020 */ 1021 vp->dev->stats.rx_bytes += skb->len; 1022 vp->dev->stats.rx_packets++; 1023 netif_rx(skb); 1024 } else { 1025 /* Overlay header too short to do anything - discard. 1026 * We can actually keep this skb and reuse it, 1027 * but that will make the prep logic too complex. 1028 */ 1029 if (skb != NULL) 1030 dev_kfree_skb_irq(skb); 1031 } 1032 (*skbuff_vector) = NULL; 1033 /* Move to the next buffer element */ 1034 mmsg_vector++; 1035 skbuff_vector++; 1036 } 1037 if (packet_count > 0) { 1038 if (vp->estats.rx_queue_max < packet_count) 1039 vp->estats.rx_queue_max = packet_count; 1040 vp->estats.rx_queue_running_average = 1041 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1042 } 1043 return packet_count; 1044 } 1045 1046 static void vector_rx(struct vector_private *vp) 1047 { 1048 int err; 1049 int iter = 0; 1050 1051 if ((vp->options & VECTOR_RX) > 0) 1052 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1053 iter++; 1054 else 1055 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1056 iter++; 1057 if ((err != 0) && net_ratelimit()) 1058 netdev_err(vp->dev, "vector_rx: error(%d)\n", err); 1059 if (iter == MAX_ITERATIONS) 1060 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n"); 1061 } 1062 1063 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1064 { 1065 struct vector_private *vp = netdev_priv(dev); 1066 int queue_depth = 0; 1067 1068 if (vp->in_error) { 1069 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1070 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1071 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1072 return NETDEV_TX_BUSY; 1073 } 1074 1075 if ((vp->options & VECTOR_TX) == 0) { 1076 writev_tx(vp, skb); 1077 return NETDEV_TX_OK; 1078 } 1079 1080 /* We do BQL only in the vector path, no point doing it in 1081 * packet at a time mode as there is no device queue 1082 */ 1083 1084 netdev_sent_queue(vp->dev, skb->len); 1085 queue_depth = vector_enqueue(vp->tx_queue, skb); 1086 1087 /* if the device queue is full, stop the upper layers and 1088 * flush it. 1089 */ 1090 1091 if (queue_depth >= vp->tx_queue->max_depth - 1) { 1092 vp->estats.tx_kicks++; 1093 netif_stop_queue(dev); 1094 vector_send(vp->tx_queue); 1095 return NETDEV_TX_OK; 1096 } 1097 if (netdev_xmit_more()) { 1098 mod_timer(&vp->tl, vp->coalesce); 1099 return NETDEV_TX_OK; 1100 } 1101 if (skb->len < TX_SMALL_PACKET) { 1102 vp->estats.tx_kicks++; 1103 vector_send(vp->tx_queue); 1104 } else 1105 tasklet_schedule(&vp->tx_poll); 1106 return NETDEV_TX_OK; 1107 } 1108 1109 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1110 { 1111 struct net_device *dev = dev_id; 1112 struct vector_private *vp = netdev_priv(dev); 1113 1114 if (!netif_running(dev)) 1115 return IRQ_NONE; 1116 vector_rx(vp); 1117 return IRQ_HANDLED; 1118 1119 } 1120 1121 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1122 { 1123 struct net_device *dev = dev_id; 1124 struct vector_private *vp = netdev_priv(dev); 1125 1126 if (!netif_running(dev)) 1127 return IRQ_NONE; 1128 /* We need to pay attention to it only if we got 1129 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1130 * we ignore it. In the future, it may be worth 1131 * it to improve the IRQ controller a bit to make 1132 * tweaking the IRQ mask less costly 1133 */ 1134 1135 if (vp->in_write_poll) 1136 tasklet_schedule(&vp->tx_poll); 1137 return IRQ_HANDLED; 1138 1139 } 1140 1141 static int irq_rr; 1142 1143 static int vector_net_close(struct net_device *dev) 1144 { 1145 struct vector_private *vp = netdev_priv(dev); 1146 unsigned long flags; 1147 1148 netif_stop_queue(dev); 1149 del_timer(&vp->tl); 1150 1151 if (vp->fds == NULL) 1152 return 0; 1153 1154 /* Disable and free all IRQS */ 1155 if (vp->rx_irq > 0) { 1156 um_free_irq(vp->rx_irq, dev); 1157 vp->rx_irq = 0; 1158 } 1159 if (vp->tx_irq > 0) { 1160 um_free_irq(vp->tx_irq, dev); 1161 vp->tx_irq = 0; 1162 } 1163 tasklet_kill(&vp->tx_poll); 1164 if (vp->fds->rx_fd > 0) { 1165 if (vp->bpf) 1166 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1167 os_close_file(vp->fds->rx_fd); 1168 vp->fds->rx_fd = -1; 1169 } 1170 if (vp->fds->tx_fd > 0) { 1171 os_close_file(vp->fds->tx_fd); 1172 vp->fds->tx_fd = -1; 1173 } 1174 if (vp->bpf != NULL) 1175 kfree(vp->bpf->filter); 1176 kfree(vp->bpf); 1177 vp->bpf = NULL; 1178 kfree(vp->fds->remote_addr); 1179 kfree(vp->transport_data); 1180 kfree(vp->header_rxbuffer); 1181 kfree(vp->header_txbuffer); 1182 if (vp->rx_queue != NULL) 1183 destroy_queue(vp->rx_queue); 1184 if (vp->tx_queue != NULL) 1185 destroy_queue(vp->tx_queue); 1186 kfree(vp->fds); 1187 vp->fds = NULL; 1188 spin_lock_irqsave(&vp->lock, flags); 1189 vp->opened = false; 1190 vp->in_error = false; 1191 spin_unlock_irqrestore(&vp->lock, flags); 1192 return 0; 1193 } 1194 1195 /* TX tasklet */ 1196 1197 static void vector_tx_poll(unsigned long data) 1198 { 1199 struct vector_private *vp = (struct vector_private *)data; 1200 1201 vp->estats.tx_kicks++; 1202 vector_send(vp->tx_queue); 1203 } 1204 static void vector_reset_tx(struct work_struct *work) 1205 { 1206 struct vector_private *vp = 1207 container_of(work, struct vector_private, reset_tx); 1208 netdev_reset_queue(vp->dev); 1209 netif_start_queue(vp->dev); 1210 netif_wake_queue(vp->dev); 1211 } 1212 1213 static int vector_net_open(struct net_device *dev) 1214 { 1215 struct vector_private *vp = netdev_priv(dev); 1216 unsigned long flags; 1217 int err = -EINVAL; 1218 struct vector_device *vdevice; 1219 1220 spin_lock_irqsave(&vp->lock, flags); 1221 if (vp->opened) { 1222 spin_unlock_irqrestore(&vp->lock, flags); 1223 return -ENXIO; 1224 } 1225 vp->opened = true; 1226 spin_unlock_irqrestore(&vp->lock, flags); 1227 1228 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); 1229 1230 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1231 1232 if (vp->fds == NULL) 1233 goto out_close; 1234 1235 if (build_transport_data(vp) < 0) 1236 goto out_close; 1237 1238 if ((vp->options & VECTOR_RX) > 0) { 1239 vp->rx_queue = create_queue( 1240 vp, 1241 get_depth(vp->parsed), 1242 vp->rx_header_size, 1243 MAX_IOV_SIZE 1244 ); 1245 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1246 } else { 1247 vp->header_rxbuffer = kmalloc( 1248 vp->rx_header_size, 1249 GFP_KERNEL 1250 ); 1251 if (vp->header_rxbuffer == NULL) 1252 goto out_close; 1253 } 1254 if ((vp->options & VECTOR_TX) > 0) { 1255 vp->tx_queue = create_queue( 1256 vp, 1257 get_depth(vp->parsed), 1258 vp->header_size, 1259 MAX_IOV_SIZE 1260 ); 1261 } else { 1262 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1263 if (vp->header_txbuffer == NULL) 1264 goto out_close; 1265 } 1266 1267 /* READ IRQ */ 1268 err = um_request_irq( 1269 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1270 IRQ_READ, vector_rx_interrupt, 1271 IRQF_SHARED, dev->name, dev); 1272 if (err != 0) { 1273 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1274 err = -ENETUNREACH; 1275 goto out_close; 1276 } 1277 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1278 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1279 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1280 1281 /* WRITE IRQ - we need it only if we have vector TX */ 1282 if ((vp->options & VECTOR_TX) > 0) { 1283 err = um_request_irq( 1284 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1285 IRQ_WRITE, vector_tx_interrupt, 1286 IRQF_SHARED, dev->name, dev); 1287 if (err != 0) { 1288 netdev_err(dev, 1289 "vector_open: failed to get tx irq(%d)\n", err); 1290 err = -ENETUNREACH; 1291 goto out_close; 1292 } 1293 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1294 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1295 } 1296 1297 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1298 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1299 vp->options |= VECTOR_BPF; 1300 } 1301 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) 1302 vp->bpf = uml_vector_default_bpf(dev->dev_addr); 1303 1304 if (vp->bpf != NULL) 1305 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1306 1307 netif_start_queue(dev); 1308 1309 /* clear buffer - it can happen that the host side of the interface 1310 * is full when we get here. In this case, new data is never queued, 1311 * SIGIOs never arrive, and the net never works. 1312 */ 1313 1314 vector_rx(vp); 1315 1316 vector_reset_stats(vp); 1317 vdevice = find_device(vp->unit); 1318 vdevice->opened = 1; 1319 1320 if ((vp->options & VECTOR_TX) != 0) 1321 add_timer(&vp->tl); 1322 return 0; 1323 out_close: 1324 vector_net_close(dev); 1325 return err; 1326 } 1327 1328 1329 static void vector_net_set_multicast_list(struct net_device *dev) 1330 { 1331 /* TODO: - we can do some BPF games here */ 1332 return; 1333 } 1334 1335 static void vector_net_tx_timeout(struct net_device *dev) 1336 { 1337 struct vector_private *vp = netdev_priv(dev); 1338 1339 vp->estats.tx_timeout_count++; 1340 netif_trans_update(dev); 1341 schedule_work(&vp->reset_tx); 1342 } 1343 1344 static netdev_features_t vector_fix_features(struct net_device *dev, 1345 netdev_features_t features) 1346 { 1347 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1348 return features; 1349 } 1350 1351 static int vector_set_features(struct net_device *dev, 1352 netdev_features_t features) 1353 { 1354 struct vector_private *vp = netdev_priv(dev); 1355 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1356 * no way to negotiate it on raw sockets, so we can change 1357 * only our side. 1358 */ 1359 if (features & NETIF_F_GRO) 1360 /* All new frame buffers will be GRO-sized */ 1361 vp->req_size = 65536; 1362 else 1363 /* All new frame buffers will be normal sized */ 1364 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1365 return 0; 1366 } 1367 1368 #ifdef CONFIG_NET_POLL_CONTROLLER 1369 static void vector_net_poll_controller(struct net_device *dev) 1370 { 1371 disable_irq(dev->irq); 1372 vector_rx_interrupt(dev->irq, dev); 1373 enable_irq(dev->irq); 1374 } 1375 #endif 1376 1377 static void vector_net_get_drvinfo(struct net_device *dev, 1378 struct ethtool_drvinfo *info) 1379 { 1380 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1381 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1382 } 1383 1384 static int vector_net_load_bpf_flash(struct net_device *dev, 1385 struct ethtool_flash *efl) 1386 { 1387 struct vector_private *vp = netdev_priv(dev); 1388 struct vector_device *vdevice; 1389 const struct firmware *fw; 1390 int result = 0; 1391 1392 if (!(vp->options & VECTOR_BPF_FLASH)) { 1393 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); 1394 return -1; 1395 } 1396 1397 spin_lock(&vp->lock); 1398 1399 if (vp->bpf != NULL) { 1400 if (vp->opened) 1401 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1402 kfree(vp->bpf->filter); 1403 vp->bpf->filter = NULL; 1404 } else { 1405 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_KERNEL); 1406 if (vp->bpf == NULL) { 1407 netdev_err(dev, "failed to allocate memory for firmware\n"); 1408 goto flash_fail; 1409 } 1410 } 1411 1412 vdevice = find_device(vp->unit); 1413 1414 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) 1415 goto flash_fail; 1416 1417 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_KERNEL); 1418 if (!vp->bpf->filter) 1419 goto free_buffer; 1420 1421 vp->bpf->len = fw->size / sizeof(struct sock_filter); 1422 release_firmware(fw); 1423 1424 if (vp->opened) 1425 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1426 1427 spin_unlock(&vp->lock); 1428 1429 return result; 1430 1431 free_buffer: 1432 release_firmware(fw); 1433 1434 flash_fail: 1435 spin_unlock(&vp->lock); 1436 if (vp->bpf != NULL) 1437 kfree(vp->bpf->filter); 1438 kfree(vp->bpf); 1439 vp->bpf = NULL; 1440 return -1; 1441 } 1442 1443 static void vector_get_ringparam(struct net_device *netdev, 1444 struct ethtool_ringparam *ring) 1445 { 1446 struct vector_private *vp = netdev_priv(netdev); 1447 1448 ring->rx_max_pending = vp->rx_queue->max_depth; 1449 ring->tx_max_pending = vp->tx_queue->max_depth; 1450 ring->rx_pending = vp->rx_queue->max_depth; 1451 ring->tx_pending = vp->tx_queue->max_depth; 1452 } 1453 1454 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1455 { 1456 switch (stringset) { 1457 case ETH_SS_TEST: 1458 *buf = '\0'; 1459 break; 1460 case ETH_SS_STATS: 1461 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1462 break; 1463 default: 1464 WARN_ON(1); 1465 break; 1466 } 1467 } 1468 1469 static int vector_get_sset_count(struct net_device *dev, int sset) 1470 { 1471 switch (sset) { 1472 case ETH_SS_TEST: 1473 return 0; 1474 case ETH_SS_STATS: 1475 return VECTOR_NUM_STATS; 1476 default: 1477 return -EOPNOTSUPP; 1478 } 1479 } 1480 1481 static void vector_get_ethtool_stats(struct net_device *dev, 1482 struct ethtool_stats *estats, 1483 u64 *tmp_stats) 1484 { 1485 struct vector_private *vp = netdev_priv(dev); 1486 1487 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1488 } 1489 1490 static int vector_get_coalesce(struct net_device *netdev, 1491 struct ethtool_coalesce *ec) 1492 { 1493 struct vector_private *vp = netdev_priv(netdev); 1494 1495 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1496 return 0; 1497 } 1498 1499 static int vector_set_coalesce(struct net_device *netdev, 1500 struct ethtool_coalesce *ec) 1501 { 1502 struct vector_private *vp = netdev_priv(netdev); 1503 1504 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1505 if (vp->coalesce == 0) 1506 vp->coalesce = 1; 1507 return 0; 1508 } 1509 1510 static const struct ethtool_ops vector_net_ethtool_ops = { 1511 .get_drvinfo = vector_net_get_drvinfo, 1512 .get_link = ethtool_op_get_link, 1513 .get_ts_info = ethtool_op_get_ts_info, 1514 .get_ringparam = vector_get_ringparam, 1515 .get_strings = vector_get_strings, 1516 .get_sset_count = vector_get_sset_count, 1517 .get_ethtool_stats = vector_get_ethtool_stats, 1518 .get_coalesce = vector_get_coalesce, 1519 .set_coalesce = vector_set_coalesce, 1520 .flash_device = vector_net_load_bpf_flash, 1521 }; 1522 1523 1524 static const struct net_device_ops vector_netdev_ops = { 1525 .ndo_open = vector_net_open, 1526 .ndo_stop = vector_net_close, 1527 .ndo_start_xmit = vector_net_start_xmit, 1528 .ndo_set_rx_mode = vector_net_set_multicast_list, 1529 .ndo_tx_timeout = vector_net_tx_timeout, 1530 .ndo_set_mac_address = eth_mac_addr, 1531 .ndo_validate_addr = eth_validate_addr, 1532 .ndo_fix_features = vector_fix_features, 1533 .ndo_set_features = vector_set_features, 1534 #ifdef CONFIG_NET_POLL_CONTROLLER 1535 .ndo_poll_controller = vector_net_poll_controller, 1536 #endif 1537 }; 1538 1539 1540 static void vector_timer_expire(struct timer_list *t) 1541 { 1542 struct vector_private *vp = from_timer(vp, t, tl); 1543 1544 vp->estats.tx_kicks++; 1545 vector_send(vp->tx_queue); 1546 } 1547 1548 static void vector_eth_configure( 1549 int n, 1550 struct arglist *def 1551 ) 1552 { 1553 struct vector_device *device; 1554 struct net_device *dev; 1555 struct vector_private *vp; 1556 int err; 1557 1558 device = kzalloc(sizeof(*device), GFP_KERNEL); 1559 if (device == NULL) { 1560 printk(KERN_ERR "eth_configure failed to allocate struct " 1561 "vector_device\n"); 1562 return; 1563 } 1564 dev = alloc_etherdev(sizeof(struct vector_private)); 1565 if (dev == NULL) { 1566 printk(KERN_ERR "eth_configure: failed to allocate struct " 1567 "net_device for vec%d\n", n); 1568 goto out_free_device; 1569 } 1570 1571 dev->mtu = get_mtu(def); 1572 1573 INIT_LIST_HEAD(&device->list); 1574 device->unit = n; 1575 1576 /* If this name ends up conflicting with an existing registered 1577 * netdevice, that is OK, register_netdev{,ice}() will notice this 1578 * and fail. 1579 */ 1580 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1581 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1582 vp = netdev_priv(dev); 1583 1584 /* sysfs register */ 1585 if (!driver_registered) { 1586 platform_driver_register(¨_net_driver); 1587 driver_registered = 1; 1588 } 1589 device->pdev.id = n; 1590 device->pdev.name = DRIVER_NAME; 1591 device->pdev.dev.release = vector_device_release; 1592 dev_set_drvdata(&device->pdev.dev, device); 1593 if (platform_device_register(&device->pdev)) 1594 goto out_free_netdev; 1595 SET_NETDEV_DEV(dev, &device->pdev.dev); 1596 1597 device->dev = dev; 1598 1599 *vp = ((struct vector_private) 1600 { 1601 .list = LIST_HEAD_INIT(vp->list), 1602 .dev = dev, 1603 .unit = n, 1604 .options = get_transport_options(def), 1605 .rx_irq = 0, 1606 .tx_irq = 0, 1607 .parsed = def, 1608 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1609 /* TODO - we need to calculate headroom so that ip header 1610 * is 16 byte aligned all the time 1611 */ 1612 .headroom = get_headroom(def), 1613 .form_header = NULL, 1614 .verify_header = NULL, 1615 .header_rxbuffer = NULL, 1616 .header_txbuffer = NULL, 1617 .header_size = 0, 1618 .rx_header_size = 0, 1619 .rexmit_scheduled = false, 1620 .opened = false, 1621 .transport_data = NULL, 1622 .in_write_poll = false, 1623 .coalesce = 2, 1624 .req_size = get_req_size(def), 1625 .in_error = false, 1626 .bpf = NULL 1627 }); 1628 1629 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1630 tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp); 1631 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1632 1633 timer_setup(&vp->tl, vector_timer_expire, 0); 1634 spin_lock_init(&vp->lock); 1635 1636 /* FIXME */ 1637 dev->netdev_ops = &vector_netdev_ops; 1638 dev->ethtool_ops = &vector_net_ethtool_ops; 1639 dev->watchdog_timeo = (HZ >> 1); 1640 /* primary IRQ - fixme */ 1641 dev->irq = 0; /* we will adjust this once opened */ 1642 1643 rtnl_lock(); 1644 err = register_netdevice(dev); 1645 rtnl_unlock(); 1646 if (err) 1647 goto out_undo_user_init; 1648 1649 spin_lock(&vector_devices_lock); 1650 list_add(&device->list, &vector_devices); 1651 spin_unlock(&vector_devices_lock); 1652 1653 return; 1654 1655 out_undo_user_init: 1656 return; 1657 out_free_netdev: 1658 free_netdev(dev); 1659 out_free_device: 1660 kfree(device); 1661 } 1662 1663 1664 1665 1666 /* 1667 * Invoked late in the init 1668 */ 1669 1670 static int __init vector_init(void) 1671 { 1672 struct list_head *ele; 1673 struct vector_cmd_line_arg *def; 1674 struct arglist *parsed; 1675 1676 list_for_each(ele, &vec_cmd_line) { 1677 def = list_entry(ele, struct vector_cmd_line_arg, list); 1678 parsed = uml_parse_vector_ifspec(def->arguments); 1679 if (parsed != NULL) 1680 vector_eth_configure(def->unit, parsed); 1681 } 1682 return 0; 1683 } 1684 1685 1686 /* Invoked at initial argument parsing, only stores 1687 * arguments until a proper vector_init is called 1688 * later 1689 */ 1690 1691 static int __init vector_setup(char *str) 1692 { 1693 char *error; 1694 int n, err; 1695 struct vector_cmd_line_arg *new; 1696 1697 err = vector_parse(str, &n, &str, &error); 1698 if (err) { 1699 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1700 str, error); 1701 return 1; 1702 } 1703 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1704 if (!new) 1705 panic("%s: Failed to allocate %zu bytes\n", __func__, 1706 sizeof(*new)); 1707 INIT_LIST_HEAD(&new->list); 1708 new->unit = n; 1709 new->arguments = str; 1710 list_add_tail(&new->list, &vec_cmd_line); 1711 return 1; 1712 } 1713 1714 __setup("vec", vector_setup); 1715 __uml_help(vector_setup, 1716 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1717 " Configure a vector io network device.\n\n" 1718 ); 1719 1720 late_initcall(vector_init); 1721 1722 static struct mc_device vector_mc = { 1723 .list = LIST_HEAD_INIT(vector_mc.list), 1724 .name = "vec", 1725 .config = vector_config, 1726 .get_config = NULL, 1727 .id = vector_id, 1728 .remove = vector_remove, 1729 }; 1730 1731 #ifdef CONFIG_INET 1732 static int vector_inetaddr_event( 1733 struct notifier_block *this, 1734 unsigned long event, 1735 void *ptr) 1736 { 1737 return NOTIFY_DONE; 1738 } 1739 1740 static struct notifier_block vector_inetaddr_notifier = { 1741 .notifier_call = vector_inetaddr_event, 1742 }; 1743 1744 static void inet_register(void) 1745 { 1746 register_inetaddr_notifier(&vector_inetaddr_notifier); 1747 } 1748 #else 1749 static inline void inet_register(void) 1750 { 1751 } 1752 #endif 1753 1754 static int vector_net_init(void) 1755 { 1756 mconsole_register_dev(&vector_mc); 1757 inet_register(); 1758 return 0; 1759 } 1760 1761 __initcall(vector_net_init); 1762 1763 1764 1765