xref: /linux/arch/um/drivers/chan_kern.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{linux.intel,addtoit}.com)
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/tty.h>
8 #include <linux/tty_flip.h>
9 #include "chan.h"
10 #include <os.h>
11 #include <irq_kern.h>
12 
13 #ifdef CONFIG_NOCONFIG_CHAN
14 static void *not_configged_init(char *str, int device,
15 				const struct chan_opts *opts)
16 {
17 	printk(KERN_ERR "Using a channel type which is configured out of "
18 	       "UML\n");
19 	return NULL;
20 }
21 
22 static int not_configged_open(int input, int output, int primary, void *data,
23 			      char **dev_out)
24 {
25 	printk(KERN_ERR "Using a channel type which is configured out of "
26 	       "UML\n");
27 	return -ENODEV;
28 }
29 
30 static void not_configged_close(int fd, void *data)
31 {
32 	printk(KERN_ERR "Using a channel type which is configured out of "
33 	       "UML\n");
34 }
35 
36 static int not_configged_read(int fd, u8 *c_out, void *data)
37 {
38 	printk(KERN_ERR "Using a channel type which is configured out of "
39 	       "UML\n");
40 	return -EIO;
41 }
42 
43 static int not_configged_write(int fd, const u8 *buf, size_t len, void *data)
44 {
45 	printk(KERN_ERR "Using a channel type which is configured out of "
46 	       "UML\n");
47 	return -EIO;
48 }
49 
50 static int not_configged_console_write(int fd, const char *buf, int len)
51 {
52 	printk(KERN_ERR "Using a channel type which is configured out of "
53 	       "UML\n");
54 	return -EIO;
55 }
56 
57 static int not_configged_window_size(int fd, void *data, unsigned short *rows,
58 				     unsigned short *cols)
59 {
60 	printk(KERN_ERR "Using a channel type which is configured out of "
61 	       "UML\n");
62 	return -ENODEV;
63 }
64 
65 static void not_configged_free(void *data)
66 {
67 	printk(KERN_ERR "Using a channel type which is configured out of "
68 	       "UML\n");
69 }
70 
71 static const struct chan_ops not_configged_ops = {
72 	.init		= not_configged_init,
73 	.open		= not_configged_open,
74 	.close		= not_configged_close,
75 	.read		= not_configged_read,
76 	.write		= not_configged_write,
77 	.console_write	= not_configged_console_write,
78 	.window_size	= not_configged_window_size,
79 	.free		= not_configged_free,
80 	.winch		= 0,
81 };
82 #endif /* CONFIG_NOCONFIG_CHAN */
83 
84 static int open_one_chan(struct chan *chan)
85 {
86 	int fd, err;
87 
88 	if (chan->opened)
89 		return 0;
90 
91 	if (chan->ops->open == NULL)
92 		fd = 0;
93 	else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
94 				     chan->data, &chan->dev);
95 	if (fd < 0)
96 		return fd;
97 
98 	err = os_set_fd_block(fd, 0);
99 	if (err) {
100 		(*chan->ops->close)(fd, chan->data);
101 		return err;
102 	}
103 
104 	chan->fd = fd;
105 
106 	chan->opened = 1;
107 	return 0;
108 }
109 
110 static int open_chan(struct list_head *chans)
111 {
112 	struct list_head *ele;
113 	struct chan *chan;
114 	int ret, err = 0;
115 
116 	list_for_each(ele, chans) {
117 		chan = list_entry(ele, struct chan, list);
118 		ret = open_one_chan(chan);
119 		if (chan->primary)
120 			err = ret;
121 	}
122 	return err;
123 }
124 
125 void chan_enable_winch(struct chan *chan, struct tty_port *port)
126 {
127 	if (chan && chan->primary && chan->ops->winch)
128 		register_winch(chan->fd, port);
129 }
130 
131 static void line_timer_cb(struct work_struct *work)
132 {
133 	struct line *line = container_of(work, struct line, task.work);
134 
135 	if (!line->throttled)
136 		chan_interrupt(line, line->read_irq);
137 }
138 
139 int enable_chan(struct line *line)
140 {
141 	struct list_head *ele;
142 	struct chan *chan;
143 	int err;
144 
145 	INIT_DELAYED_WORK(&line->task, line_timer_cb);
146 
147 	list_for_each(ele, &line->chan_list) {
148 		chan = list_entry(ele, struct chan, list);
149 		err = open_one_chan(chan);
150 		if (err) {
151 			if (chan->primary)
152 				goto out_close;
153 
154 			continue;
155 		}
156 
157 		if (chan->enabled)
158 			continue;
159 		err = line_setup_irq(chan->fd, chan->input, chan->output, line,
160 				     chan);
161 		if (err)
162 			goto out_close;
163 
164 		chan->enabled = 1;
165 	}
166 
167 	return 0;
168 
169  out_close:
170 	close_chan(line);
171 	return err;
172 }
173 
174 /* Items are added in IRQ context, when free_irq can't be called, and
175  * removed in process context, when it can.
176  * This handles interrupt sources which disappear, and which need to
177  * be permanently disabled.  This is discovered in IRQ context, but
178  * the freeing of the IRQ must be done later.
179  */
180 static DEFINE_SPINLOCK(irqs_to_free_lock);
181 static LIST_HEAD(irqs_to_free);
182 
183 void free_irqs(void)
184 {
185 	struct chan *chan;
186 	LIST_HEAD(list);
187 	struct list_head *ele;
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&irqs_to_free_lock, flags);
191 	list_splice_init(&irqs_to_free, &list);
192 	spin_unlock_irqrestore(&irqs_to_free_lock, flags);
193 
194 	list_for_each(ele, &list) {
195 		chan = list_entry(ele, struct chan, free_list);
196 
197 		if (chan->input && chan->enabled)
198 			um_free_irq(chan->line->read_irq, chan);
199 		if (chan->output && chan->enabled)
200 			um_free_irq(chan->line->write_irq, chan);
201 		chan->enabled = 0;
202 	}
203 }
204 
205 static void close_one_chan(struct chan *chan, int delay_free_irq)
206 {
207 	unsigned long flags;
208 
209 	if (!chan->opened)
210 		return;
211 
212 	if (delay_free_irq) {
213 		spin_lock_irqsave(&irqs_to_free_lock, flags);
214 		list_add(&chan->free_list, &irqs_to_free);
215 		spin_unlock_irqrestore(&irqs_to_free_lock, flags);
216 	} else {
217 		if (chan->input && chan->enabled)
218 			um_free_irq(chan->line->read_irq, chan);
219 		if (chan->output && chan->enabled)
220 			um_free_irq(chan->line->write_irq, chan);
221 		chan->enabled = 0;
222 	}
223 	if (chan->ops->close != NULL)
224 		(*chan->ops->close)(chan->fd, chan->data);
225 
226 	chan->opened = 0;
227 	chan->fd = -1;
228 }
229 
230 void close_chan(struct line *line)
231 {
232 	struct chan *chan;
233 
234 	/* Close in reverse order as open in case more than one of them
235 	 * refers to the same device and they save and restore that device's
236 	 * state.  Then, the first one opened will have the original state,
237 	 * so it must be the last closed.
238 	 */
239 	list_for_each_entry_reverse(chan, &line->chan_list, list) {
240 		close_one_chan(chan, 0);
241 	}
242 }
243 
244 void deactivate_chan(struct chan *chan, int irq)
245 {
246 	if (chan && chan->enabled)
247 		deactivate_fd(chan->fd, irq);
248 }
249 
250 int write_chan(struct chan *chan, const u8 *buf, size_t len, int write_irq)
251 {
252 	int n, ret = 0;
253 
254 	if (len == 0 || !chan || !chan->ops->write)
255 		return 0;
256 
257 	n = chan->ops->write(chan->fd, buf, len, chan->data);
258 	if (chan->primary) {
259 		ret = n;
260 	}
261 	return ret;
262 }
263 
264 int console_write_chan(struct chan *chan, const char *buf, int len)
265 {
266 	int n, ret = 0;
267 
268 	if (!chan || !chan->ops->console_write)
269 		return 0;
270 
271 	n = chan->ops->console_write(chan->fd, buf, len);
272 	if (chan->primary)
273 		ret = n;
274 	return ret;
275 }
276 
277 int console_open_chan(struct line *line, struct console *co)
278 {
279 	int err;
280 
281 	err = open_chan(&line->chan_list);
282 	if (err)
283 		return err;
284 
285 	printk(KERN_INFO "Console initialized on /dev/%s%d\n", co->name,
286 	       co->index);
287 	return 0;
288 }
289 
290 int chan_window_size(struct line *line, unsigned short *rows_out,
291 		      unsigned short *cols_out)
292 {
293 	struct chan *chan;
294 
295 	chan = line->chan_in;
296 	if (chan && chan->primary) {
297 		if (chan->ops->window_size == NULL)
298 			return 0;
299 		return chan->ops->window_size(chan->fd, chan->data,
300 					      rows_out, cols_out);
301 	}
302 	chan = line->chan_out;
303 	if (chan && chan->primary) {
304 		if (chan->ops->window_size == NULL)
305 			return 0;
306 		return chan->ops->window_size(chan->fd, chan->data,
307 					      rows_out, cols_out);
308 	}
309 	return 0;
310 }
311 
312 static void free_one_chan(struct chan *chan)
313 {
314 	list_del(&chan->list);
315 
316 	close_one_chan(chan, 0);
317 
318 	if (chan->ops->free != NULL)
319 		(*chan->ops->free)(chan->data);
320 
321 	if (chan->primary && chan->output)
322 		ignore_sigio_fd(chan->fd);
323 	kfree(chan);
324 }
325 
326 static void free_chan(struct list_head *chans)
327 {
328 	struct list_head *ele, *next;
329 	struct chan *chan;
330 
331 	list_for_each_safe(ele, next, chans) {
332 		chan = list_entry(ele, struct chan, list);
333 		free_one_chan(chan);
334 	}
335 }
336 
337 static int one_chan_config_string(struct chan *chan, char *str, int size,
338 				  char **error_out)
339 {
340 	int n = 0;
341 
342 	if (chan == NULL) {
343 		CONFIG_CHUNK(str, size, n, "none", 1);
344 		return n;
345 	}
346 
347 	CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
348 
349 	if (chan->dev == NULL) {
350 		CONFIG_CHUNK(str, size, n, "", 1);
351 		return n;
352 	}
353 
354 	CONFIG_CHUNK(str, size, n, ":", 0);
355 	CONFIG_CHUNK(str, size, n, chan->dev, 0);
356 
357 	return n;
358 }
359 
360 static int chan_pair_config_string(struct chan *in, struct chan *out,
361 				   char *str, int size, char **error_out)
362 {
363 	int n;
364 
365 	n = one_chan_config_string(in, str, size, error_out);
366 	str += n;
367 	size -= n;
368 
369 	if (in == out) {
370 		CONFIG_CHUNK(str, size, n, "", 1);
371 		return n;
372 	}
373 
374 	CONFIG_CHUNK(str, size, n, ",", 1);
375 	n = one_chan_config_string(out, str, size, error_out);
376 	str += n;
377 	size -= n;
378 	CONFIG_CHUNK(str, size, n, "", 1);
379 
380 	return n;
381 }
382 
383 int chan_config_string(struct line *line, char *str, int size,
384 		       char **error_out)
385 {
386 	struct chan *in = line->chan_in, *out = line->chan_out;
387 
388 	if (in && !in->primary)
389 		in = NULL;
390 	if (out && !out->primary)
391 		out = NULL;
392 
393 	return chan_pair_config_string(in, out, str, size, error_out);
394 }
395 
396 struct chan_type {
397 	char *key;
398 	const struct chan_ops *ops;
399 };
400 
401 static const struct chan_type chan_table[] = {
402 	{ "fd", &fd_ops },
403 
404 #ifdef CONFIG_NULL_CHAN
405 	{ "null", &null_ops },
406 #else
407 	{ "null", &not_configged_ops },
408 #endif
409 
410 #ifdef CONFIG_PORT_CHAN
411 	{ "port", &port_ops },
412 #else
413 	{ "port", &not_configged_ops },
414 #endif
415 
416 #ifdef CONFIG_PTY_CHAN
417 	{ "pty", &pty_ops },
418 	{ "pts", &pts_ops },
419 #else
420 	{ "pty", &not_configged_ops },
421 	{ "pts", &not_configged_ops },
422 #endif
423 
424 #ifdef CONFIG_TTY_CHAN
425 	{ "tty", &tty_ops },
426 #else
427 	{ "tty", &not_configged_ops },
428 #endif
429 
430 #ifdef CONFIG_XTERM_CHAN
431 	{ "xterm", &xterm_ops },
432 #else
433 	{ "xterm", &not_configged_ops },
434 #endif
435 };
436 
437 static struct chan *parse_chan(struct line *line, char *str, int device,
438 			       const struct chan_opts *opts, char **error_out)
439 {
440 	const struct chan_type *entry;
441 	const struct chan_ops *ops;
442 	struct chan *chan;
443 	void *data;
444 	int i;
445 
446 	ops = NULL;
447 	data = NULL;
448 	for(i = 0; i < ARRAY_SIZE(chan_table); i++) {
449 		entry = &chan_table[i];
450 		if (!strncmp(str, entry->key, strlen(entry->key))) {
451 			ops = entry->ops;
452 			str += strlen(entry->key);
453 			break;
454 		}
455 	}
456 	if (ops == NULL) {
457 		*error_out = "No match for configured backends";
458 		return NULL;
459 	}
460 
461 	data = (*ops->init)(str, device, opts);
462 	if (data == NULL) {
463 		*error_out = "Configuration failed";
464 		return NULL;
465 	}
466 
467 	chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
468 	if (chan == NULL) {
469 		*error_out = "Memory allocation failed";
470 		return NULL;
471 	}
472 	*chan = ((struct chan) { .list	 	= LIST_HEAD_INIT(chan->list),
473 				 .free_list 	=
474 				 	LIST_HEAD_INIT(chan->free_list),
475 				 .line		= line,
476 				 .primary	= 1,
477 				 .input		= 0,
478 				 .output 	= 0,
479 				 .opened  	= 0,
480 				 .enabled  	= 0,
481 				 .fd 		= -1,
482 				 .ops 		= ops,
483 				 .data 		= data });
484 	return chan;
485 }
486 
487 int parse_chan_pair(char *str, struct line *line, int device,
488 		    const struct chan_opts *opts, char **error_out)
489 {
490 	struct list_head *chans = &line->chan_list;
491 	struct chan *new;
492 	char *in, *out;
493 
494 	if (!list_empty(chans)) {
495 		line->chan_in = line->chan_out = NULL;
496 		free_chan(chans);
497 		INIT_LIST_HEAD(chans);
498 	}
499 
500 	if (!str)
501 		return 0;
502 
503 	out = strchr(str, ',');
504 	if (out != NULL) {
505 		in = str;
506 		*out = '\0';
507 		out++;
508 		new = parse_chan(line, in, device, opts, error_out);
509 		if (new == NULL)
510 			return -1;
511 
512 		new->input = 1;
513 		list_add(&new->list, chans);
514 		line->chan_in = new;
515 
516 		new = parse_chan(line, out, device, opts, error_out);
517 		if (new == NULL)
518 			return -1;
519 
520 		list_add(&new->list, chans);
521 		new->output = 1;
522 		line->chan_out = new;
523 	}
524 	else {
525 		new = parse_chan(line, str, device, opts, error_out);
526 		if (new == NULL)
527 			return -1;
528 
529 		list_add(&new->list, chans);
530 		new->input = 1;
531 		new->output = 1;
532 		line->chan_in = line->chan_out = new;
533 	}
534 	return 0;
535 }
536 
537 void chan_interrupt(struct line *line, int irq)
538 {
539 	struct tty_port *port = &line->port;
540 	struct chan *chan = line->chan_in;
541 	int err;
542 	u8 c;
543 
544 	if (!chan || !chan->ops->read)
545 		goto out;
546 
547 	do {
548 		if (!tty_buffer_request_room(port, 1)) {
549 			schedule_delayed_work(&line->task, 1);
550 			goto out;
551 		}
552 		err = chan->ops->read(chan->fd, &c, chan->data);
553 		if (err > 0)
554 			tty_insert_flip_char(port, c, TTY_NORMAL);
555 	} while (err > 0);
556 
557 	if (err == -EIO) {
558 		if (chan->primary) {
559 			tty_port_tty_hangup(&line->port, false);
560 			if (line->chan_out != chan)
561 				close_one_chan(line->chan_out, 1);
562 		}
563 		close_one_chan(chan, 1);
564 		if (chan->primary)
565 			return;
566 	}
567  out:
568 	tty_flip_buffer_push(port);
569 }
570