xref: /linux/arch/um/drivers/chan_kern.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{linux.intel,addtoit}.com)
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/tty.h>
8 #include <linux/tty_flip.h>
9 #include "chan.h"
10 #include <os.h>
11 #include <irq_kern.h>
12 
13 #ifdef CONFIG_NOCONFIG_CHAN
14 static void *not_configged_init(char *str, int device,
15 				const struct chan_opts *opts)
16 {
17 	printk(KERN_ERR "Using a channel type which is configured out of "
18 	       "UML\n");
19 	return NULL;
20 }
21 
22 static int not_configged_open(int input, int output, int primary, void *data,
23 			      char **dev_out)
24 {
25 	printk(KERN_ERR "Using a channel type which is configured out of "
26 	       "UML\n");
27 	return -ENODEV;
28 }
29 
30 static void not_configged_close(int fd, void *data)
31 {
32 	printk(KERN_ERR "Using a channel type which is configured out of "
33 	       "UML\n");
34 }
35 
36 static int not_configged_read(int fd, u8 *c_out, void *data)
37 {
38 	printk(KERN_ERR "Using a channel type which is configured out of "
39 	       "UML\n");
40 	return -EIO;
41 }
42 
43 static int not_configged_write(int fd, const u8 *buf, size_t len, void *data)
44 {
45 	printk(KERN_ERR "Using a channel type which is configured out of "
46 	       "UML\n");
47 	return -EIO;
48 }
49 
50 static int not_configged_console_write(int fd, const char *buf, int len)
51 {
52 	printk(KERN_ERR "Using a channel type which is configured out of "
53 	       "UML\n");
54 	return -EIO;
55 }
56 
57 static int not_configged_window_size(int fd, void *data, unsigned short *rows,
58 				     unsigned short *cols)
59 {
60 	printk(KERN_ERR "Using a channel type which is configured out of "
61 	       "UML\n");
62 	return -ENODEV;
63 }
64 
65 static void not_configged_free(void *data)
66 {
67 	printk(KERN_ERR "Using a channel type which is configured out of "
68 	       "UML\n");
69 }
70 
71 static const struct chan_ops not_configged_ops = {
72 	.init		= not_configged_init,
73 	.open		= not_configged_open,
74 	.close		= not_configged_close,
75 	.read		= not_configged_read,
76 	.write		= not_configged_write,
77 	.console_write	= not_configged_console_write,
78 	.window_size	= not_configged_window_size,
79 	.free		= not_configged_free,
80 	.winch		= 0,
81 };
82 #endif /* CONFIG_NOCONFIG_CHAN */
83 
84 static inline bool need_output_blocking(void)
85 {
86 	return time_travel_mode == TT_MODE_INFCPU ||
87 	       time_travel_mode == TT_MODE_EXTERNAL;
88 }
89 
90 static int open_one_chan(struct chan *chan)
91 {
92 	int fd, err;
93 
94 	if (chan->opened)
95 		return 0;
96 
97 	if (chan->ops->open == NULL)
98 		fd = 0;
99 	else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
100 				     chan->data, &chan->dev);
101 	if (fd < 0)
102 		return fd;
103 
104 	err = os_set_fd_block(fd, 0);
105 	if (err)
106 		goto out_close;
107 
108 	chan->fd_in = fd;
109 	chan->fd_out = fd;
110 
111 	/*
112 	 * In time-travel modes infinite-CPU and external we need to guarantee
113 	 * that any writes to the output succeed immdiately from the point of
114 	 * the VM. The best way to do this is to put the FD in blocking mode
115 	 * and simply wait/retry until everything is written.
116 	 * As every write is guaranteed to complete, we also do not need to
117 	 * request an IRQ for the output.
118 	 *
119 	 * Note that input cannot happen in a time synchronized way. We permit
120 	 * it, but time passes very quickly if anything waits for a read.
121 	 */
122 	if (chan->output && need_output_blocking()) {
123 		err = os_dup_file(chan->fd_out);
124 		if (err < 0)
125 			goto out_close;
126 
127 		chan->fd_out = err;
128 
129 		err = os_set_fd_block(chan->fd_out, 1);
130 		if (err) {
131 			os_close_file(chan->fd_out);
132 			goto out_close;
133 		}
134 	}
135 
136 	chan->opened = 1;
137 	return 0;
138 
139 out_close:
140 	(*chan->ops->close)(fd, chan->data);
141 	return err;
142 }
143 
144 static int open_chan(struct list_head *chans)
145 {
146 	struct list_head *ele;
147 	struct chan *chan;
148 	int ret, err = 0;
149 
150 	list_for_each(ele, chans) {
151 		chan = list_entry(ele, struct chan, list);
152 		ret = open_one_chan(chan);
153 		if (chan->primary)
154 			err = ret;
155 	}
156 	return err;
157 }
158 
159 void chan_enable_winch(struct chan *chan, struct tty_port *port)
160 {
161 	if (chan && chan->primary && chan->ops->winch)
162 		register_winch(chan->fd_in, port);
163 }
164 
165 static void line_timer_cb(struct work_struct *work)
166 {
167 	struct line *line = container_of(work, struct line, task.work);
168 
169 	if (!line->throttled)
170 		chan_interrupt(line, line->read_irq);
171 }
172 
173 int enable_chan(struct line *line)
174 {
175 	struct list_head *ele;
176 	struct chan *chan;
177 	int err;
178 
179 	INIT_DELAYED_WORK(&line->task, line_timer_cb);
180 
181 	list_for_each(ele, &line->chan_list) {
182 		chan = list_entry(ele, struct chan, list);
183 		err = open_one_chan(chan);
184 		if (err) {
185 			if (chan->primary)
186 				goto out_close;
187 
188 			continue;
189 		}
190 
191 		if (chan->enabled)
192 			continue;
193 		err = line_setup_irq(chan->fd_in, chan->input,
194 				     chan->output && !need_output_blocking(),
195 				     line, chan);
196 		if (err)
197 			goto out_close;
198 
199 		chan->enabled = 1;
200 	}
201 
202 	return 0;
203 
204  out_close:
205 	close_chan(line);
206 	return err;
207 }
208 
209 /* Items are added in IRQ context, when free_irq can't be called, and
210  * removed in process context, when it can.
211  * This handles interrupt sources which disappear, and which need to
212  * be permanently disabled.  This is discovered in IRQ context, but
213  * the freeing of the IRQ must be done later.
214  */
215 static DEFINE_SPINLOCK(irqs_to_free_lock);
216 static LIST_HEAD(irqs_to_free);
217 
218 void free_irqs(void)
219 {
220 	struct chan *chan;
221 	LIST_HEAD(list);
222 	struct list_head *ele;
223 	unsigned long flags;
224 
225 	spin_lock_irqsave(&irqs_to_free_lock, flags);
226 	list_splice_init(&irqs_to_free, &list);
227 	spin_unlock_irqrestore(&irqs_to_free_lock, flags);
228 
229 	list_for_each(ele, &list) {
230 		chan = list_entry(ele, struct chan, free_list);
231 
232 		if (chan->input && chan->enabled)
233 			um_free_irq(chan->line->read_irq, chan);
234 		if (chan->output && chan->enabled &&
235 		    !need_output_blocking())
236 			um_free_irq(chan->line->write_irq, chan);
237 		chan->enabled = 0;
238 	}
239 }
240 
241 static void close_one_chan(struct chan *chan, int delay_free_irq)
242 {
243 	unsigned long flags;
244 
245 	if (!chan->opened)
246 		return;
247 
248 	if (delay_free_irq) {
249 		spin_lock_irqsave(&irqs_to_free_lock, flags);
250 		list_add(&chan->free_list, &irqs_to_free);
251 		spin_unlock_irqrestore(&irqs_to_free_lock, flags);
252 	} else {
253 		if (chan->input && chan->enabled)
254 			um_free_irq(chan->line->read_irq, chan);
255 		if (chan->output && chan->enabled &&
256 		    !need_output_blocking())
257 			um_free_irq(chan->line->write_irq, chan);
258 		chan->enabled = 0;
259 	}
260 	if (chan->fd_out != chan->fd_in)
261 		os_close_file(chan->fd_out);
262 	if (chan->ops->close != NULL)
263 		(*chan->ops->close)(chan->fd_in, chan->data);
264 
265 	chan->opened = 0;
266 	chan->fd_in = -1;
267 	chan->fd_out = -1;
268 }
269 
270 void close_chan(struct line *line)
271 {
272 	struct chan *chan;
273 
274 	/* Close in reverse order as open in case more than one of them
275 	 * refers to the same device and they save and restore that device's
276 	 * state.  Then, the first one opened will have the original state,
277 	 * so it must be the last closed.
278 	 */
279 	list_for_each_entry_reverse(chan, &line->chan_list, list) {
280 		close_one_chan(chan, 0);
281 	}
282 }
283 
284 void deactivate_chan(struct chan *chan, int irq)
285 {
286 	if (chan && chan->enabled)
287 		deactivate_fd(chan->fd_in, irq);
288 }
289 
290 int write_chan(struct chan *chan, const u8 *buf, size_t len, int write_irq)
291 {
292 	int n, ret = 0;
293 
294 	if (len == 0 || !chan || !chan->ops->write)
295 		return 0;
296 
297 	n = chan->ops->write(chan->fd_out, buf, len, chan->data);
298 	if (chan->primary) {
299 		ret = n;
300 	}
301 	return ret;
302 }
303 
304 int console_write_chan(struct chan *chan, const char *buf, int len)
305 {
306 	int n, ret = 0;
307 
308 	if (!chan || !chan->ops->console_write)
309 		return 0;
310 
311 	n = chan->ops->console_write(chan->fd_out, buf, len);
312 	if (chan->primary)
313 		ret = n;
314 	return ret;
315 }
316 
317 int console_open_chan(struct line *line, struct console *co)
318 {
319 	int err;
320 
321 	err = open_chan(&line->chan_list);
322 	if (err)
323 		return err;
324 
325 	printk(KERN_INFO "Console initialized on /dev/%s%d\n", co->name,
326 	       co->index);
327 	return 0;
328 }
329 
330 int chan_window_size(struct line *line, unsigned short *rows_out,
331 		      unsigned short *cols_out)
332 {
333 	struct chan *chan;
334 
335 	chan = line->chan_in;
336 	if (chan && chan->primary) {
337 		if (chan->ops->window_size == NULL)
338 			return 0;
339 		return chan->ops->window_size(chan->fd_in, chan->data,
340 					      rows_out, cols_out);
341 	}
342 	chan = line->chan_out;
343 	if (chan && chan->primary) {
344 		if (chan->ops->window_size == NULL)
345 			return 0;
346 		return chan->ops->window_size(chan->fd_in, chan->data,
347 					      rows_out, cols_out);
348 	}
349 	return 0;
350 }
351 
352 static void free_one_chan(struct chan *chan)
353 {
354 	list_del(&chan->list);
355 
356 	close_one_chan(chan, 0);
357 
358 	if (chan->ops->free != NULL)
359 		(*chan->ops->free)(chan->data);
360 
361 	if (chan->primary && chan->output)
362 		ignore_sigio_fd(chan->fd_in);
363 	kfree(chan);
364 }
365 
366 static void free_chan(struct list_head *chans)
367 {
368 	struct list_head *ele, *next;
369 	struct chan *chan;
370 
371 	list_for_each_safe(ele, next, chans) {
372 		chan = list_entry(ele, struct chan, list);
373 		free_one_chan(chan);
374 	}
375 }
376 
377 static int one_chan_config_string(struct chan *chan, char *str, int size,
378 				  char **error_out)
379 {
380 	int n = 0;
381 
382 	if (chan == NULL) {
383 		CONFIG_CHUNK(str, size, n, "none", 1);
384 		return n;
385 	}
386 
387 	CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
388 
389 	if (chan->dev == NULL) {
390 		CONFIG_CHUNK(str, size, n, "", 1);
391 		return n;
392 	}
393 
394 	CONFIG_CHUNK(str, size, n, ":", 0);
395 	CONFIG_CHUNK(str, size, n, chan->dev, 0);
396 
397 	return n;
398 }
399 
400 static int chan_pair_config_string(struct chan *in, struct chan *out,
401 				   char *str, int size, char **error_out)
402 {
403 	int n;
404 
405 	n = one_chan_config_string(in, str, size, error_out);
406 	str += n;
407 	size -= n;
408 
409 	if (in == out) {
410 		CONFIG_CHUNK(str, size, n, "", 1);
411 		return n;
412 	}
413 
414 	CONFIG_CHUNK(str, size, n, ",", 1);
415 	n = one_chan_config_string(out, str, size, error_out);
416 	str += n;
417 	size -= n;
418 	CONFIG_CHUNK(str, size, n, "", 1);
419 
420 	return n;
421 }
422 
423 int chan_config_string(struct line *line, char *str, int size,
424 		       char **error_out)
425 {
426 	struct chan *in = line->chan_in, *out = line->chan_out;
427 
428 	if (in && !in->primary)
429 		in = NULL;
430 	if (out && !out->primary)
431 		out = NULL;
432 
433 	return chan_pair_config_string(in, out, str, size, error_out);
434 }
435 
436 struct chan_type {
437 	char *key;
438 	const struct chan_ops *ops;
439 };
440 
441 static const struct chan_type chan_table[] = {
442 	{ "fd", &fd_ops },
443 
444 #ifdef CONFIG_NULL_CHAN
445 	{ "null", &null_ops },
446 #else
447 	{ "null", &not_configged_ops },
448 #endif
449 
450 #ifdef CONFIG_PORT_CHAN
451 	{ "port", &port_ops },
452 #else
453 	{ "port", &not_configged_ops },
454 #endif
455 
456 #ifdef CONFIG_PTY_CHAN
457 	{ "pty", &pty_ops },
458 	{ "pts", &pts_ops },
459 #else
460 	{ "pty", &not_configged_ops },
461 	{ "pts", &not_configged_ops },
462 #endif
463 
464 #ifdef CONFIG_TTY_CHAN
465 	{ "tty", &tty_ops },
466 #else
467 	{ "tty", &not_configged_ops },
468 #endif
469 
470 #ifdef CONFIG_XTERM_CHAN
471 	{ "xterm", &xterm_ops },
472 #else
473 	{ "xterm", &not_configged_ops },
474 #endif
475 };
476 
477 static struct chan *parse_chan(struct line *line, char *str, int device,
478 			       const struct chan_opts *opts, char **error_out)
479 {
480 	const struct chan_type *entry;
481 	const struct chan_ops *ops;
482 	struct chan *chan;
483 	void *data;
484 	int i;
485 
486 	ops = NULL;
487 	data = NULL;
488 	for(i = 0; i < ARRAY_SIZE(chan_table); i++) {
489 		entry = &chan_table[i];
490 		if (!strncmp(str, entry->key, strlen(entry->key))) {
491 			ops = entry->ops;
492 			str += strlen(entry->key);
493 			break;
494 		}
495 	}
496 	if (ops == NULL) {
497 		*error_out = "No match for configured backends";
498 		return NULL;
499 	}
500 
501 	data = (*ops->init)(str, device, opts);
502 	if (data == NULL) {
503 		*error_out = "Configuration failed";
504 		return NULL;
505 	}
506 
507 	chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
508 	if (chan == NULL) {
509 		*error_out = "Memory allocation failed";
510 		return NULL;
511 	}
512 	*chan = ((struct chan) { .list	 	= LIST_HEAD_INIT(chan->list),
513 				 .free_list 	=
514 				 	LIST_HEAD_INIT(chan->free_list),
515 				 .line		= line,
516 				 .primary	= 1,
517 				 .input		= 0,
518 				 .output 	= 0,
519 				 .opened  	= 0,
520 				 .enabled  	= 0,
521 				 .fd_in		= -1,
522 				 .fd_out	= -1,
523 				 .ops 		= ops,
524 				 .data 		= data });
525 	return chan;
526 }
527 
528 int parse_chan_pair(char *str, struct line *line, int device,
529 		    const struct chan_opts *opts, char **error_out)
530 {
531 	struct list_head *chans = &line->chan_list;
532 	struct chan *new;
533 	char *in, *out;
534 
535 	if (!list_empty(chans)) {
536 		line->chan_in = line->chan_out = NULL;
537 		free_chan(chans);
538 		INIT_LIST_HEAD(chans);
539 	}
540 
541 	if (!str)
542 		return 0;
543 
544 	out = strchr(str, ',');
545 	if (out != NULL) {
546 		in = str;
547 		*out = '\0';
548 		out++;
549 		new = parse_chan(line, in, device, opts, error_out);
550 		if (new == NULL)
551 			return -1;
552 
553 		new->input = 1;
554 		list_add(&new->list, chans);
555 		line->chan_in = new;
556 
557 		new = parse_chan(line, out, device, opts, error_out);
558 		if (new == NULL)
559 			return -1;
560 
561 		list_add(&new->list, chans);
562 		new->output = 1;
563 		line->chan_out = new;
564 	}
565 	else {
566 		new = parse_chan(line, str, device, opts, error_out);
567 		if (new == NULL)
568 			return -1;
569 
570 		list_add(&new->list, chans);
571 		new->input = 1;
572 		new->output = 1;
573 		line->chan_in = line->chan_out = new;
574 	}
575 	return 0;
576 }
577 
578 void chan_interrupt(struct line *line, int irq)
579 {
580 	struct tty_port *port = &line->port;
581 	struct chan *chan = line->chan_in;
582 	int err;
583 	u8 c;
584 
585 	if (!chan || !chan->ops->read)
586 		goto out;
587 
588 	do {
589 		if (!tty_buffer_request_room(port, 1)) {
590 			schedule_delayed_work(&line->task, 1);
591 			goto out;
592 		}
593 		err = chan->ops->read(chan->fd_in, &c, chan->data);
594 		if (err > 0)
595 			tty_insert_flip_char(port, c, TTY_NORMAL);
596 	} while (err > 0);
597 
598 	if (err == -EIO) {
599 		if (chan->primary) {
600 			tty_port_tty_hangup(&line->port, false);
601 			if (line->chan_out != chan)
602 				close_one_chan(line->chan_out, 1);
603 		}
604 		close_one_chan(chan, 1);
605 		if (chan->primary)
606 			return;
607 	}
608  out:
609 	tty_flip_buffer_push(port);
610 }
611