xref: /linux/arch/sparc/mm/tsb.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/setup.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16 
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18 
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21 	vaddr >>= hash_shift;
22 	return vaddr & (nentries - 1);
23 }
24 
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27 	return (tag == (vaddr >> 22));
28 }
29 
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34 
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37 	unsigned long v;
38 
39 	for (v = start; v < end; v += PAGE_SIZE) {
40 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41 					      KERNEL_TSB_NENTRIES);
42 		struct tsb *ent = &swapper_tsb[hash];
43 
44 		if (tag_compare(ent->tag, v))
45 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46 	}
47 }
48 
49 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
50 				  unsigned long hash_shift,
51 				  unsigned long nentries)
52 {
53 	unsigned long tag, ent, hash;
54 
55 	v &= ~0x1UL;
56 	hash = tsb_hash(v, hash_shift, nentries);
57 	ent = tsb + (hash * sizeof(struct tsb));
58 	tag = (v >> 22UL);
59 
60 	tsb_flush(ent, tag);
61 }
62 
63 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
64 			    unsigned long tsb, unsigned long nentries)
65 {
66 	unsigned long i;
67 
68 	for (i = 0; i < tb->tlb_nr; i++)
69 		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
70 }
71 
72 void flush_tsb_user(struct tlb_batch *tb)
73 {
74 	struct mm_struct *mm = tb->mm;
75 	unsigned long nentries, base, flags;
76 
77 	spin_lock_irqsave(&mm->context.lock, flags);
78 
79 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
80 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
81 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
82 		base = __pa(base);
83 	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
84 
85 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
86 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
87 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
88 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
89 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
90 			base = __pa(base);
91 		__flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
92 	}
93 #endif
94 	spin_unlock_irqrestore(&mm->context.lock, flags);
95 }
96 
97 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
98 {
99 	unsigned long nentries, base, flags;
100 
101 	spin_lock_irqsave(&mm->context.lock, flags);
102 
103 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
104 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
105 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
106 		base = __pa(base);
107 	__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108 
109 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
111 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
112 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
113 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
114 			base = __pa(base);
115 		__flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
116 	}
117 #endif
118 	spin_unlock_irqrestore(&mm->context.lock, flags);
119 }
120 
121 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
122 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
123 
124 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
125 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
126 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
127 #endif
128 
129 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
130 {
131 	unsigned long tsb_reg, base, tsb_paddr;
132 	unsigned long page_sz, tte;
133 
134 	mm->context.tsb_block[tsb_idx].tsb_nentries =
135 		tsb_bytes / sizeof(struct tsb);
136 
137 	switch (tsb_idx) {
138 	case MM_TSB_BASE:
139 		base = TSBMAP_8K_BASE;
140 		break;
141 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
142 	case MM_TSB_HUGE:
143 		base = TSBMAP_4M_BASE;
144 		break;
145 #endif
146 	default:
147 		BUG();
148 	}
149 
150 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
151 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
152 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
153 
154 	/* Use the smallest page size that can map the whole TSB
155 	 * in one TLB entry.
156 	 */
157 	switch (tsb_bytes) {
158 	case 8192 << 0:
159 		tsb_reg = 0x0UL;
160 #ifdef DCACHE_ALIASING_POSSIBLE
161 		base += (tsb_paddr & 8192);
162 #endif
163 		page_sz = 8192;
164 		break;
165 
166 	case 8192 << 1:
167 		tsb_reg = 0x1UL;
168 		page_sz = 64 * 1024;
169 		break;
170 
171 	case 8192 << 2:
172 		tsb_reg = 0x2UL;
173 		page_sz = 64 * 1024;
174 		break;
175 
176 	case 8192 << 3:
177 		tsb_reg = 0x3UL;
178 		page_sz = 64 * 1024;
179 		break;
180 
181 	case 8192 << 4:
182 		tsb_reg = 0x4UL;
183 		page_sz = 512 * 1024;
184 		break;
185 
186 	case 8192 << 5:
187 		tsb_reg = 0x5UL;
188 		page_sz = 512 * 1024;
189 		break;
190 
191 	case 8192 << 6:
192 		tsb_reg = 0x6UL;
193 		page_sz = 512 * 1024;
194 		break;
195 
196 	case 8192 << 7:
197 		tsb_reg = 0x7UL;
198 		page_sz = 4 * 1024 * 1024;
199 		break;
200 
201 	default:
202 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
203 		       current->comm, current->pid, tsb_bytes);
204 		do_exit(SIGSEGV);
205 	}
206 	tte |= pte_sz_bits(page_sz);
207 
208 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
209 		/* Physical mapping, no locked TLB entry for TSB.  */
210 		tsb_reg |= tsb_paddr;
211 
212 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
213 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
214 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
215 	} else {
216 		tsb_reg |= base;
217 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
218 		tte |= (tsb_paddr & ~(page_sz - 1UL));
219 
220 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
221 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
222 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
223 	}
224 
225 	/* Setup the Hypervisor TSB descriptor.  */
226 	if (tlb_type == hypervisor) {
227 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
228 
229 		switch (tsb_idx) {
230 		case MM_TSB_BASE:
231 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
232 			break;
233 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
234 		case MM_TSB_HUGE:
235 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
236 			break;
237 #endif
238 		default:
239 			BUG();
240 		}
241 		hp->assoc = 1;
242 		hp->num_ttes = tsb_bytes / 16;
243 		hp->ctx_idx = 0;
244 		switch (tsb_idx) {
245 		case MM_TSB_BASE:
246 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
247 			break;
248 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
249 		case MM_TSB_HUGE:
250 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
251 			break;
252 #endif
253 		default:
254 			BUG();
255 		}
256 		hp->tsb_base = tsb_paddr;
257 		hp->resv = 0;
258 	}
259 }
260 
261 struct kmem_cache *pgtable_cache __read_mostly;
262 
263 static struct kmem_cache *tsb_caches[8] __read_mostly;
264 
265 static const char *tsb_cache_names[8] = {
266 	"tsb_8KB",
267 	"tsb_16KB",
268 	"tsb_32KB",
269 	"tsb_64KB",
270 	"tsb_128KB",
271 	"tsb_256KB",
272 	"tsb_512KB",
273 	"tsb_1MB",
274 };
275 
276 void __init pgtable_cache_init(void)
277 {
278 	unsigned long i;
279 
280 	pgtable_cache = kmem_cache_create("pgtable_cache",
281 					  PAGE_SIZE, PAGE_SIZE,
282 					  0,
283 					  _clear_page);
284 	if (!pgtable_cache) {
285 		prom_printf("pgtable_cache_init(): Could not create!\n");
286 		prom_halt();
287 	}
288 
289 	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
290 		unsigned long size = 8192 << i;
291 		const char *name = tsb_cache_names[i];
292 
293 		tsb_caches[i] = kmem_cache_create(name,
294 						  size, size,
295 						  0, NULL);
296 		if (!tsb_caches[i]) {
297 			prom_printf("Could not create %s cache\n", name);
298 			prom_halt();
299 		}
300 	}
301 }
302 
303 int sysctl_tsb_ratio = -2;
304 
305 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
306 {
307 	unsigned long num_ents = (new_size / sizeof(struct tsb));
308 
309 	if (sysctl_tsb_ratio < 0)
310 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
311 	else
312 		return num_ents + (num_ents >> sysctl_tsb_ratio);
313 }
314 
315 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
316  * do_sparc64_fault() invokes this routine to try and grow it.
317  *
318  * When we reach the maximum TSB size supported, we stick ~0UL into
319  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
320  * will not trigger any longer.
321  *
322  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
323  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
324  * must be 512K aligned.  It also must be physically contiguous, so we
325  * cannot use vmalloc().
326  *
327  * The idea here is to grow the TSB when the RSS of the process approaches
328  * the number of entries that the current TSB can hold at once.  Currently,
329  * we trigger when the RSS hits 3/4 of the TSB capacity.
330  */
331 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
332 {
333 	unsigned long max_tsb_size = 1 * 1024 * 1024;
334 	unsigned long new_size, old_size, flags;
335 	struct tsb *old_tsb, *new_tsb;
336 	unsigned long new_cache_index, old_cache_index;
337 	unsigned long new_rss_limit;
338 	gfp_t gfp_flags;
339 
340 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
341 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
342 
343 	new_cache_index = 0;
344 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
345 		new_rss_limit = tsb_size_to_rss_limit(new_size);
346 		if (new_rss_limit > rss)
347 			break;
348 		new_cache_index++;
349 	}
350 
351 	if (new_size == max_tsb_size)
352 		new_rss_limit = ~0UL;
353 
354 retry_tsb_alloc:
355 	gfp_flags = GFP_KERNEL;
356 	if (new_size > (PAGE_SIZE * 2))
357 		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
358 
359 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
360 					gfp_flags, numa_node_id());
361 	if (unlikely(!new_tsb)) {
362 		/* Not being able to fork due to a high-order TSB
363 		 * allocation failure is very bad behavior.  Just back
364 		 * down to a 0-order allocation and force no TSB
365 		 * growing for this address space.
366 		 */
367 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
368 		    new_cache_index > 0) {
369 			new_cache_index = 0;
370 			new_size = 8192;
371 			new_rss_limit = ~0UL;
372 			goto retry_tsb_alloc;
373 		}
374 
375 		/* If we failed on a TSB grow, we are under serious
376 		 * memory pressure so don't try to grow any more.
377 		 */
378 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
379 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
380 		return;
381 	}
382 
383 	/* Mark all tags as invalid.  */
384 	tsb_init(new_tsb, new_size);
385 
386 	/* Ok, we are about to commit the changes.  If we are
387 	 * growing an existing TSB the locking is very tricky,
388 	 * so WATCH OUT!
389 	 *
390 	 * We have to hold mm->context.lock while committing to the
391 	 * new TSB, this synchronizes us with processors in
392 	 * flush_tsb_user() and switch_mm() for this address space.
393 	 *
394 	 * But even with that lock held, processors run asynchronously
395 	 * accessing the old TSB via TLB miss handling.  This is OK
396 	 * because those actions are just propagating state from the
397 	 * Linux page tables into the TSB, page table mappings are not
398 	 * being changed.  If a real fault occurs, the processor will
399 	 * synchronize with us when it hits flush_tsb_user(), this is
400 	 * also true for the case where vmscan is modifying the page
401 	 * tables.  The only thing we need to be careful with is to
402 	 * skip any locked TSB entries during copy_tsb().
403 	 *
404 	 * When we finish committing to the new TSB, we have to drop
405 	 * the lock and ask all other cpus running this address space
406 	 * to run tsb_context_switch() to see the new TSB table.
407 	 */
408 	spin_lock_irqsave(&mm->context.lock, flags);
409 
410 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
411 	old_cache_index =
412 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
413 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
414 		    sizeof(struct tsb));
415 
416 
417 	/* Handle multiple threads trying to grow the TSB at the same time.
418 	 * One will get in here first, and bump the size and the RSS limit.
419 	 * The others will get in here next and hit this check.
420 	 */
421 	if (unlikely(old_tsb &&
422 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
423 		spin_unlock_irqrestore(&mm->context.lock, flags);
424 
425 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
426 		return;
427 	}
428 
429 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
430 
431 	if (old_tsb) {
432 		extern void copy_tsb(unsigned long old_tsb_base,
433 				     unsigned long old_tsb_size,
434 				     unsigned long new_tsb_base,
435 				     unsigned long new_tsb_size);
436 		unsigned long old_tsb_base = (unsigned long) old_tsb;
437 		unsigned long new_tsb_base = (unsigned long) new_tsb;
438 
439 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
440 			old_tsb_base = __pa(old_tsb_base);
441 			new_tsb_base = __pa(new_tsb_base);
442 		}
443 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
444 	}
445 
446 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
447 	setup_tsb_params(mm, tsb_index, new_size);
448 
449 	spin_unlock_irqrestore(&mm->context.lock, flags);
450 
451 	/* If old_tsb is NULL, we're being invoked for the first time
452 	 * from init_new_context().
453 	 */
454 	if (old_tsb) {
455 		/* Reload it on the local cpu.  */
456 		tsb_context_switch(mm);
457 
458 		/* Now force other processors to do the same.  */
459 		preempt_disable();
460 		smp_tsb_sync(mm);
461 		preempt_enable();
462 
463 		/* Now it is safe to free the old tsb.  */
464 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
465 	}
466 }
467 
468 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
469 {
470 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
471 	unsigned long huge_pte_count;
472 #endif
473 	unsigned int i;
474 
475 	spin_lock_init(&mm->context.lock);
476 
477 	mm->context.sparc64_ctx_val = 0UL;
478 
479 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
480 	/* We reset it to zero because the fork() page copying
481 	 * will re-increment the counters as the parent PTEs are
482 	 * copied into the child address space.
483 	 */
484 	huge_pte_count = mm->context.huge_pte_count;
485 	mm->context.huge_pte_count = 0;
486 #endif
487 
488 	/* copy_mm() copies over the parent's mm_struct before calling
489 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
490 	 * will be confused and think there is an older TSB to free up.
491 	 */
492 	for (i = 0; i < MM_NUM_TSBS; i++)
493 		mm->context.tsb_block[i].tsb = NULL;
494 
495 	/* If this is fork, inherit the parent's TSB size.  We would
496 	 * grow it to that size on the first page fault anyways.
497 	 */
498 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
499 
500 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
501 	if (unlikely(huge_pte_count))
502 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
503 #endif
504 
505 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
506 		return -ENOMEM;
507 
508 	return 0;
509 }
510 
511 static void tsb_destroy_one(struct tsb_config *tp)
512 {
513 	unsigned long cache_index;
514 
515 	if (!tp->tsb)
516 		return;
517 	cache_index = tp->tsb_reg_val & 0x7UL;
518 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
519 	tp->tsb = NULL;
520 	tp->tsb_reg_val = 0UL;
521 }
522 
523 void destroy_context(struct mm_struct *mm)
524 {
525 	unsigned long flags, i;
526 
527 	for (i = 0; i < MM_NUM_TSBS; i++)
528 		tsb_destroy_one(&mm->context.tsb_block[i]);
529 
530 	spin_lock_irqsave(&ctx_alloc_lock, flags);
531 
532 	if (CTX_VALID(mm->context)) {
533 		unsigned long nr = CTX_NRBITS(mm->context);
534 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
535 	}
536 
537 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
538 }
539