xref: /linux/arch/sparc/mm/tlb.c (revision 83bce9c2baa51e439480a713119a73d3c8b61083)
1 /* arch/sparc64/mm/tlb.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@redhat.com>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/percpu.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/preempt.h>
11 
12 #include <asm/pgtable.h>
13 #include <asm/pgalloc.h>
14 #include <asm/tlbflush.h>
15 #include <asm/cacheflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/tlb.h>
18 
19 /* Heavily inspired by the ppc64 code.  */
20 
21 static DEFINE_PER_CPU(struct tlb_batch, tlb_batch);
22 
23 void flush_tlb_pending(void)
24 {
25 	struct tlb_batch *tb = &get_cpu_var(tlb_batch);
26 	struct mm_struct *mm = tb->mm;
27 
28 	if (!tb->tlb_nr)
29 		goto out;
30 
31 	flush_tsb_user(tb);
32 
33 	if (CTX_VALID(mm->context)) {
34 		if (tb->tlb_nr == 1) {
35 			global_flush_tlb_page(mm, tb->vaddrs[0]);
36 		} else {
37 #ifdef CONFIG_SMP
38 			smp_flush_tlb_pending(tb->mm, tb->tlb_nr,
39 					      &tb->vaddrs[0]);
40 #else
41 			__flush_tlb_pending(CTX_HWBITS(tb->mm->context),
42 					    tb->tlb_nr, &tb->vaddrs[0]);
43 #endif
44 		}
45 	}
46 
47 	tb->tlb_nr = 0;
48 
49 out:
50 	put_cpu_var(tlb_batch);
51 }
52 
53 void arch_enter_lazy_mmu_mode(void)
54 {
55 	struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
56 
57 	tb->active = 1;
58 }
59 
60 void arch_leave_lazy_mmu_mode(void)
61 {
62 	struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
63 
64 	if (tb->tlb_nr)
65 		flush_tlb_pending();
66 	tb->active = 0;
67 }
68 
69 static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr,
70 			      bool exec, unsigned int hugepage_shift)
71 {
72 	struct tlb_batch *tb = &get_cpu_var(tlb_batch);
73 	unsigned long nr;
74 
75 	vaddr &= PAGE_MASK;
76 	if (exec)
77 		vaddr |= 0x1UL;
78 
79 	nr = tb->tlb_nr;
80 
81 	if (unlikely(nr != 0 && mm != tb->mm)) {
82 		flush_tlb_pending();
83 		nr = 0;
84 	}
85 
86 	if (!tb->active) {
87 		flush_tsb_user_page(mm, vaddr, hugepage_shift);
88 		global_flush_tlb_page(mm, vaddr);
89 		goto out;
90 	}
91 
92 	if (nr == 0) {
93 		tb->mm = mm;
94 		tb->hugepage_shift = hugepage_shift;
95 	}
96 
97 	if (tb->hugepage_shift != hugepage_shift) {
98 		flush_tlb_pending();
99 		tb->hugepage_shift = hugepage_shift;
100 		nr = 0;
101 	}
102 
103 	tb->vaddrs[nr] = vaddr;
104 	tb->tlb_nr = ++nr;
105 	if (nr >= TLB_BATCH_NR)
106 		flush_tlb_pending();
107 
108 out:
109 	put_cpu_var(tlb_batch);
110 }
111 
112 void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
113 		   pte_t *ptep, pte_t orig, int fullmm,
114 		   unsigned int hugepage_shift)
115 {
116 	if (tlb_type != hypervisor &&
117 	    pte_dirty(orig)) {
118 		unsigned long paddr, pfn = pte_pfn(orig);
119 		struct address_space *mapping;
120 		struct page *page;
121 
122 		if (!pfn_valid(pfn))
123 			goto no_cache_flush;
124 
125 		page = pfn_to_page(pfn);
126 		if (PageReserved(page))
127 			goto no_cache_flush;
128 
129 		/* A real file page? */
130 		mapping = page_mapping(page);
131 		if (!mapping)
132 			goto no_cache_flush;
133 
134 		paddr = (unsigned long) page_address(page);
135 		if ((paddr ^ vaddr) & (1 << 13))
136 			flush_dcache_page_all(mm, page);
137 	}
138 
139 no_cache_flush:
140 	if (!fullmm)
141 		tlb_batch_add_one(mm, vaddr, pte_exec(orig), hugepage_shift);
142 }
143 
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr,
146 			       pmd_t pmd)
147 {
148 	unsigned long end;
149 	pte_t *pte;
150 
151 	pte = pte_offset_map(&pmd, vaddr);
152 	end = vaddr + HPAGE_SIZE;
153 	while (vaddr < end) {
154 		if (pte_val(*pte) & _PAGE_VALID) {
155 			bool exec = pte_exec(*pte);
156 
157 			tlb_batch_add_one(mm, vaddr, exec, false);
158 		}
159 		pte++;
160 		vaddr += PAGE_SIZE;
161 	}
162 	pte_unmap(pte);
163 }
164 
165 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
166 		pmd_t *pmdp, pmd_t pmd)
167 {
168 	pmd_t orig = *pmdp;
169 
170 	*pmdp = pmd;
171 
172 	if (mm == &init_mm)
173 		return;
174 
175 	if ((pmd_val(pmd) ^ pmd_val(orig)) & _PAGE_PMD_HUGE) {
176 		/*
177 		 * Note that this routine only sets pmds for THP pages.
178 		 * Hugetlb pages are handled elsewhere.  We need to check
179 		 * for huge zero page.  Huge zero pages are like hugetlb
180 		 * pages in that there is no RSS, but there is the need
181 		 * for TSB entries.  So, huge zero page counts go into
182 		 * hugetlb_pte_count.
183 		 */
184 		if (pmd_val(pmd) & _PAGE_PMD_HUGE) {
185 			if (is_huge_zero_page(pmd_page(pmd)))
186 				mm->context.hugetlb_pte_count++;
187 			else
188 				mm->context.thp_pte_count++;
189 		} else {
190 			if (is_huge_zero_page(pmd_page(orig)))
191 				mm->context.hugetlb_pte_count--;
192 			else
193 				mm->context.thp_pte_count--;
194 		}
195 
196 		/* Do not try to allocate the TSB hash table if we
197 		 * don't have one already.  We have various locks held
198 		 * and thus we'll end up doing a GFP_KERNEL allocation
199 		 * in an atomic context.
200 		 *
201 		 * Instead, we let the first TLB miss on a hugepage
202 		 * take care of this.
203 		 */
204 	}
205 
206 	if (!pmd_none(orig)) {
207 		addr &= HPAGE_MASK;
208 		if (pmd_trans_huge(orig)) {
209 			pte_t orig_pte = __pte(pmd_val(orig));
210 			bool exec = pte_exec(orig_pte);
211 
212 			tlb_batch_add_one(mm, addr, exec, true);
213 			tlb_batch_add_one(mm, addr + REAL_HPAGE_SIZE, exec,
214 					true);
215 		} else {
216 			tlb_batch_pmd_scan(mm, addr, orig);
217 		}
218 	}
219 }
220 
221 /*
222  * This routine is only called when splitting a THP
223  */
224 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
225 		     pmd_t *pmdp)
226 {
227 	pmd_t entry = *pmdp;
228 
229 	pmd_val(entry) &= ~_PAGE_VALID;
230 
231 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
232 	flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
233 
234 	/*
235 	 * set_pmd_at() will not be called in a way to decrement
236 	 * thp_pte_count when splitting a THP, so do it now.
237 	 * Sanity check pmd before doing the actual decrement.
238 	 */
239 	if ((pmd_val(entry) & _PAGE_PMD_HUGE) &&
240 	    !is_huge_zero_page(pmd_page(entry)))
241 		(vma->vm_mm)->context.thp_pte_count--;
242 }
243 
244 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
245 				pgtable_t pgtable)
246 {
247 	struct list_head *lh = (struct list_head *) pgtable;
248 
249 	assert_spin_locked(&mm->page_table_lock);
250 
251 	/* FIFO */
252 	if (!pmd_huge_pte(mm, pmdp))
253 		INIT_LIST_HEAD(lh);
254 	else
255 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
256 	pmd_huge_pte(mm, pmdp) = pgtable;
257 }
258 
259 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
260 {
261 	struct list_head *lh;
262 	pgtable_t pgtable;
263 
264 	assert_spin_locked(&mm->page_table_lock);
265 
266 	/* FIFO */
267 	pgtable = pmd_huge_pte(mm, pmdp);
268 	lh = (struct list_head *) pgtable;
269 	if (list_empty(lh))
270 		pmd_huge_pte(mm, pmdp) = NULL;
271 	else {
272 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
273 		list_del(lh);
274 	}
275 	pte_val(pgtable[0]) = 0;
276 	pte_val(pgtable[1]) = 0;
277 
278 	return pgtable;
279 }
280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
281