1 /* arch/sparc64/mm/tlb.c 2 * 3 * Copyright (C) 2004 David S. Miller <davem@redhat.com> 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/percpu.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/preempt.h> 11 12 #include <asm/pgtable.h> 13 #include <asm/pgalloc.h> 14 #include <asm/tlbflush.h> 15 #include <asm/cacheflush.h> 16 #include <asm/mmu_context.h> 17 #include <asm/tlb.h> 18 19 /* Heavily inspired by the ppc64 code. */ 20 21 static DEFINE_PER_CPU(struct tlb_batch, tlb_batch); 22 23 void flush_tlb_pending(void) 24 { 25 struct tlb_batch *tb = &get_cpu_var(tlb_batch); 26 struct mm_struct *mm = tb->mm; 27 28 if (!tb->tlb_nr) 29 goto out; 30 31 flush_tsb_user(tb); 32 33 if (CTX_VALID(mm->context)) { 34 if (tb->tlb_nr == 1) { 35 global_flush_tlb_page(mm, tb->vaddrs[0]); 36 } else { 37 #ifdef CONFIG_SMP 38 smp_flush_tlb_pending(tb->mm, tb->tlb_nr, 39 &tb->vaddrs[0]); 40 #else 41 __flush_tlb_pending(CTX_HWBITS(tb->mm->context), 42 tb->tlb_nr, &tb->vaddrs[0]); 43 #endif 44 } 45 } 46 47 tb->tlb_nr = 0; 48 49 out: 50 put_cpu_var(tlb_batch); 51 } 52 53 void arch_enter_lazy_mmu_mode(void) 54 { 55 struct tlb_batch *tb = this_cpu_ptr(&tlb_batch); 56 57 tb->active = 1; 58 } 59 60 void arch_leave_lazy_mmu_mode(void) 61 { 62 struct tlb_batch *tb = this_cpu_ptr(&tlb_batch); 63 64 if (tb->tlb_nr) 65 flush_tlb_pending(); 66 tb->active = 0; 67 } 68 69 static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr, 70 bool exec, bool huge) 71 { 72 struct tlb_batch *tb = &get_cpu_var(tlb_batch); 73 unsigned long nr; 74 75 vaddr &= PAGE_MASK; 76 if (exec) 77 vaddr |= 0x1UL; 78 79 nr = tb->tlb_nr; 80 81 if (unlikely(nr != 0 && mm != tb->mm)) { 82 flush_tlb_pending(); 83 nr = 0; 84 } 85 86 if (!tb->active) { 87 flush_tsb_user_page(mm, vaddr, huge); 88 global_flush_tlb_page(mm, vaddr); 89 goto out; 90 } 91 92 if (nr == 0) { 93 tb->mm = mm; 94 tb->huge = huge; 95 } 96 97 if (tb->huge != huge) { 98 flush_tlb_pending(); 99 tb->huge = huge; 100 nr = 0; 101 } 102 103 tb->vaddrs[nr] = vaddr; 104 tb->tlb_nr = ++nr; 105 if (nr >= TLB_BATCH_NR) 106 flush_tlb_pending(); 107 108 out: 109 put_cpu_var(tlb_batch); 110 } 111 112 void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, 113 pte_t *ptep, pte_t orig, int fullmm) 114 { 115 bool huge = is_hugetlb_pte(orig); 116 117 if (tlb_type != hypervisor && 118 pte_dirty(orig)) { 119 unsigned long paddr, pfn = pte_pfn(orig); 120 struct address_space *mapping; 121 struct page *page; 122 123 if (!pfn_valid(pfn)) 124 goto no_cache_flush; 125 126 page = pfn_to_page(pfn); 127 if (PageReserved(page)) 128 goto no_cache_flush; 129 130 /* A real file page? */ 131 mapping = page_mapping(page); 132 if (!mapping) 133 goto no_cache_flush; 134 135 paddr = (unsigned long) page_address(page); 136 if ((paddr ^ vaddr) & (1 << 13)) 137 flush_dcache_page_all(mm, page); 138 } 139 140 no_cache_flush: 141 if (!fullmm) 142 tlb_batch_add_one(mm, vaddr, pte_exec(orig), huge); 143 } 144 145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 146 static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr, 147 pmd_t pmd) 148 { 149 unsigned long end; 150 pte_t *pte; 151 152 pte = pte_offset_map(&pmd, vaddr); 153 end = vaddr + HPAGE_SIZE; 154 while (vaddr < end) { 155 if (pte_val(*pte) & _PAGE_VALID) { 156 bool exec = pte_exec(*pte); 157 158 tlb_batch_add_one(mm, vaddr, exec, false); 159 } 160 pte++; 161 vaddr += PAGE_SIZE; 162 } 163 pte_unmap(pte); 164 } 165 166 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 167 pmd_t *pmdp, pmd_t pmd) 168 { 169 pmd_t orig = *pmdp; 170 171 *pmdp = pmd; 172 173 if (mm == &init_mm) 174 return; 175 176 if ((pmd_val(pmd) ^ pmd_val(orig)) & _PAGE_PMD_HUGE) { 177 if (pmd_val(pmd) & _PAGE_PMD_HUGE) 178 mm->context.huge_pte_count++; 179 else 180 mm->context.huge_pte_count--; 181 182 /* Do not try to allocate the TSB hash table if we 183 * don't have one already. We have various locks held 184 * and thus we'll end up doing a GFP_KERNEL allocation 185 * in an atomic context. 186 * 187 * Instead, we let the first TLB miss on a hugepage 188 * take care of this. 189 */ 190 } 191 192 if (!pmd_none(orig)) { 193 addr &= HPAGE_MASK; 194 if (pmd_trans_huge(orig)) { 195 pte_t orig_pte = __pte(pmd_val(orig)); 196 bool exec = pte_exec(orig_pte); 197 198 tlb_batch_add_one(mm, addr, exec, true); 199 tlb_batch_add_one(mm, addr + REAL_HPAGE_SIZE, exec, 200 true); 201 } else { 202 tlb_batch_pmd_scan(mm, addr, orig); 203 } 204 } 205 } 206 207 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 208 pmd_t *pmdp) 209 { 210 pmd_t entry = *pmdp; 211 212 pmd_val(entry) &= ~_PAGE_VALID; 213 214 set_pmd_at(vma->vm_mm, address, pmdp, entry); 215 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 216 } 217 218 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 219 pgtable_t pgtable) 220 { 221 struct list_head *lh = (struct list_head *) pgtable; 222 223 assert_spin_locked(&mm->page_table_lock); 224 225 /* FIFO */ 226 if (!pmd_huge_pte(mm, pmdp)) 227 INIT_LIST_HEAD(lh); 228 else 229 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 230 pmd_huge_pte(mm, pmdp) = pgtable; 231 } 232 233 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 234 { 235 struct list_head *lh; 236 pgtable_t pgtable; 237 238 assert_spin_locked(&mm->page_table_lock); 239 240 /* FIFO */ 241 pgtable = pmd_huge_pte(mm, pmdp); 242 lh = (struct list_head *) pgtable; 243 if (list_empty(lh)) 244 pmd_huge_pte(mm, pmdp) = NULL; 245 else { 246 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 247 list_del(lh); 248 } 249 pte_val(pgtable[0]) = 0; 250 pte_val(pgtable[1]) = 0; 251 252 return pgtable; 253 } 254 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 255