xref: /linux/arch/sparc/mm/srmmu.c (revision d2a4a07190f42e4f82805daf58e708400b703f1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp = __nocache_pa(ptep) >> 4;
140 	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
141 }
142 
143 /*
144  * size: bytes to allocate in the nocache area.
145  * align: bytes, number to align at.
146  * Returns the virtual address of the allocated area.
147  */
148 static void *__srmmu_get_nocache(int size, int align)
149 {
150 	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
151 	unsigned long addr;
152 
153 	if (size < minsz) {
154 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
155 		       size);
156 		size = minsz;
157 	}
158 	if (size & (minsz - 1)) {
159 		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
160 		       size);
161 		size += minsz - 1;
162 	}
163 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
164 
165 	offset = bit_map_string_get(&srmmu_nocache_map,
166 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
168 	if (offset == -1) {
169 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170 		       size, (int) srmmu_nocache_size,
171 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
172 		return NULL;
173 	}
174 
175 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
176 	return (void *)addr;
177 }
178 
179 void *srmmu_get_nocache(int size, int align)
180 {
181 	void *tmp;
182 
183 	tmp = __srmmu_get_nocache(size, align);
184 
185 	if (tmp)
186 		memset(tmp, 0, size);
187 
188 	return tmp;
189 }
190 
191 void srmmu_free_nocache(void *addr, int size)
192 {
193 	unsigned long vaddr;
194 	int offset;
195 
196 	vaddr = (unsigned long)addr;
197 	if (vaddr < SRMMU_NOCACHE_VADDR) {
198 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 		BUG();
201 	}
202 	if (vaddr + size > srmmu_nocache_end) {
203 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 		    vaddr, srmmu_nocache_end);
205 		BUG();
206 	}
207 	if (!is_power_of_2(size)) {
208 		printk("Size 0x%x is not a power of 2\n", size);
209 		BUG();
210 	}
211 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 		printk("Size 0x%x is too small\n", size);
213 		BUG();
214 	}
215 	if (vaddr & (size - 1)) {
216 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 		BUG();
218 	}
219 
220 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222 
223 	bit_map_clear(&srmmu_nocache_map, offset, size);
224 }
225 
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 						 unsigned long end);
228 
229 /* Return how much physical memory we have.  */
230 static unsigned long __init probe_memory(void)
231 {
232 	unsigned long total = 0;
233 	int i;
234 
235 	for (i = 0; sp_banks[i].num_bytes; i++)
236 		total += sp_banks[i].num_bytes;
237 
238 	return total;
239 }
240 
241 /*
242  * Reserve nocache dynamically proportionally to the amount of
243  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
244  */
245 static void __init srmmu_nocache_calcsize(void)
246 {
247 	unsigned long sysmemavail = probe_memory() / 1024;
248 	int srmmu_nocache_npages;
249 
250 	srmmu_nocache_npages =
251 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
252 
253  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
257 
258 	/* anything above 1280 blows up */
259 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
261 
262 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
264 }
265 
266 static void __init srmmu_nocache_init(void)
267 {
268 	void *srmmu_nocache_bitmap;
269 	unsigned int bitmap_bits;
270 	pgd_t *pgd;
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *pte;
275 	unsigned long paddr, vaddr;
276 	unsigned long pteval;
277 
278 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279 
280 	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
281 					    SRMMU_NOCACHE_ALIGN_MAX);
282 	if (!srmmu_nocache_pool)
283 		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
284 		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
285 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
286 
287 	srmmu_nocache_bitmap =
288 		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
289 			       SMP_CACHE_BYTES);
290 	if (!srmmu_nocache_bitmap)
291 		panic("%s: Failed to allocate %zu bytes\n", __func__,
292 		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
293 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
294 
295 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297 	init_mm.pgd = srmmu_swapper_pg_dir;
298 
299 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
300 
301 	paddr = __pa((unsigned long)srmmu_nocache_pool);
302 	vaddr = SRMMU_NOCACHE_VADDR;
303 
304 	while (vaddr < srmmu_nocache_end) {
305 		pgd = pgd_offset_k(vaddr);
306 		p4d = p4d_offset(pgd, vaddr);
307 		pud = pud_offset(p4d, vaddr);
308 		pmd = pmd_offset(__nocache_fix(pud), vaddr);
309 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310 
311 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312 
313 		if (srmmu_cache_pagetables)
314 			pteval |= SRMMU_CACHE;
315 
316 		set_pte(__nocache_fix(pte), __pte(pteval));
317 
318 		vaddr += PAGE_SIZE;
319 		paddr += PAGE_SIZE;
320 	}
321 
322 	flush_cache_all();
323 	flush_tlb_all();
324 }
325 
326 pgd_t *get_pgd_fast(void)
327 {
328 	pgd_t *pgd = NULL;
329 
330 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 	if (pgd) {
332 		pgd_t *init = pgd_offset_k(0);
333 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 	}
337 
338 	return pgd;
339 }
340 
341 /*
342  * Hardware needs alignment to 256 only, but we align to whole page size
343  * to reduce fragmentation problems due to the buddy principle.
344  * XXX Provide actual fragmentation statistics in /proc.
345  *
346  * Alignments up to the page size are the same for physical and virtual
347  * addresses of the nocache area.
348  */
349 pgtable_t pte_alloc_one(struct mm_struct *mm)
350 {
351 	pte_t *ptep;
352 	struct page *page;
353 
354 	if (!(ptep = pte_alloc_one_kernel(mm)))
355 		return NULL;
356 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
357 	spin_lock(&mm->page_table_lock);
358 	if (page_ref_inc_return(page) == 2 &&
359 			!pagetable_pte_ctor(page_ptdesc(page))) {
360 		page_ref_dec(page);
361 		ptep = NULL;
362 	}
363 	spin_unlock(&mm->page_table_lock);
364 
365 	return ptep;
366 }
367 
368 void pte_free(struct mm_struct *mm, pgtable_t ptep)
369 {
370 	struct page *page;
371 
372 	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
373 	spin_lock(&mm->page_table_lock);
374 	if (page_ref_dec_return(page) == 1)
375 		pagetable_pte_dtor(page_ptdesc(page));
376 	spin_unlock(&mm->page_table_lock);
377 
378 	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
379 }
380 
381 /* context handling - a dynamically sized pool is used */
382 #define NO_CONTEXT	-1
383 
384 struct ctx_list {
385 	struct ctx_list *next;
386 	struct ctx_list *prev;
387 	unsigned int ctx_number;
388 	struct mm_struct *ctx_mm;
389 };
390 
391 static struct ctx_list *ctx_list_pool;
392 static struct ctx_list ctx_free;
393 static struct ctx_list ctx_used;
394 
395 /* At boot time we determine the number of contexts */
396 static int num_contexts;
397 
398 static inline void remove_from_ctx_list(struct ctx_list *entry)
399 {
400 	entry->next->prev = entry->prev;
401 	entry->prev->next = entry->next;
402 }
403 
404 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
405 {
406 	entry->next = head;
407 	(entry->prev = head->prev)->next = entry;
408 	head->prev = entry;
409 }
410 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
411 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
412 
413 
414 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
415 {
416 	struct ctx_list *ctxp;
417 
418 	ctxp = ctx_free.next;
419 	if (ctxp != &ctx_free) {
420 		remove_from_ctx_list(ctxp);
421 		add_to_used_ctxlist(ctxp);
422 		mm->context = ctxp->ctx_number;
423 		ctxp->ctx_mm = mm;
424 		return;
425 	}
426 	ctxp = ctx_used.next;
427 	if (ctxp->ctx_mm == old_mm)
428 		ctxp = ctxp->next;
429 	if (ctxp == &ctx_used)
430 		panic("out of mmu contexts");
431 	flush_cache_mm(ctxp->ctx_mm);
432 	flush_tlb_mm(ctxp->ctx_mm);
433 	remove_from_ctx_list(ctxp);
434 	add_to_used_ctxlist(ctxp);
435 	ctxp->ctx_mm->context = NO_CONTEXT;
436 	ctxp->ctx_mm = mm;
437 	mm->context = ctxp->ctx_number;
438 }
439 
440 static inline void free_context(int context)
441 {
442 	struct ctx_list *ctx_old;
443 
444 	ctx_old = ctx_list_pool + context;
445 	remove_from_ctx_list(ctx_old);
446 	add_to_free_ctxlist(ctx_old);
447 }
448 
449 static void __init sparc_context_init(int numctx)
450 {
451 	int ctx;
452 	unsigned long size;
453 
454 	size = numctx * sizeof(struct ctx_list);
455 	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
456 	if (!ctx_list_pool)
457 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
458 
459 	for (ctx = 0; ctx < numctx; ctx++) {
460 		struct ctx_list *clist;
461 
462 		clist = (ctx_list_pool + ctx);
463 		clist->ctx_number = ctx;
464 		clist->ctx_mm = NULL;
465 	}
466 	ctx_free.next = ctx_free.prev = &ctx_free;
467 	ctx_used.next = ctx_used.prev = &ctx_used;
468 	for (ctx = 0; ctx < numctx; ctx++)
469 		add_to_free_ctxlist(ctx_list_pool + ctx);
470 }
471 
472 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
473 	       struct task_struct *tsk)
474 {
475 	unsigned long flags;
476 
477 	if (mm->context == NO_CONTEXT) {
478 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
479 		alloc_context(old_mm, mm);
480 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
481 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
482 	}
483 
484 	if (sparc_cpu_model == sparc_leon)
485 		leon_switch_mm();
486 
487 	if (is_hypersparc)
488 		hyper_flush_whole_icache();
489 
490 	srmmu_set_context(mm->context);
491 }
492 
493 /* Low level IO area allocation on the SRMMU. */
494 static inline void srmmu_mapioaddr(unsigned long physaddr,
495 				   unsigned long virt_addr, int bus_type)
496 {
497 	pgd_t *pgdp;
498 	p4d_t *p4dp;
499 	pud_t *pudp;
500 	pmd_t *pmdp;
501 	pte_t *ptep;
502 	unsigned long tmp;
503 
504 	physaddr &= PAGE_MASK;
505 	pgdp = pgd_offset_k(virt_addr);
506 	p4dp = p4d_offset(pgdp, virt_addr);
507 	pudp = pud_offset(p4dp, virt_addr);
508 	pmdp = pmd_offset(pudp, virt_addr);
509 	ptep = pte_offset_kernel(pmdp, virt_addr);
510 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
511 
512 	/* I need to test whether this is consistent over all
513 	 * sun4m's.  The bus_type represents the upper 4 bits of
514 	 * 36-bit physical address on the I/O space lines...
515 	 */
516 	tmp |= (bus_type << 28);
517 	tmp |= SRMMU_PRIV;
518 	__flush_page_to_ram(virt_addr);
519 	set_pte(ptep, __pte(tmp));
520 }
521 
522 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
523 		      unsigned long xva, unsigned int len)
524 {
525 	while (len != 0) {
526 		len -= PAGE_SIZE;
527 		srmmu_mapioaddr(xpa, xva, bus);
528 		xva += PAGE_SIZE;
529 		xpa += PAGE_SIZE;
530 	}
531 	flush_tlb_all();
532 }
533 
534 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
535 {
536 	pgd_t *pgdp;
537 	p4d_t *p4dp;
538 	pud_t *pudp;
539 	pmd_t *pmdp;
540 	pte_t *ptep;
541 
542 
543 	pgdp = pgd_offset_k(virt_addr);
544 	p4dp = p4d_offset(pgdp, virt_addr);
545 	pudp = pud_offset(p4dp, virt_addr);
546 	pmdp = pmd_offset(pudp, virt_addr);
547 	ptep = pte_offset_kernel(pmdp, virt_addr);
548 
549 	/* No need to flush uncacheable page. */
550 	__pte_clear(ptep);
551 }
552 
553 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
554 {
555 	while (len != 0) {
556 		len -= PAGE_SIZE;
557 		srmmu_unmapioaddr(virt_addr);
558 		virt_addr += PAGE_SIZE;
559 	}
560 	flush_tlb_all();
561 }
562 
563 /* tsunami.S */
564 extern void tsunami_flush_cache_all(void);
565 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
566 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
567 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
568 extern void tsunami_flush_page_to_ram(unsigned long page);
569 extern void tsunami_flush_page_for_dma(unsigned long page);
570 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
571 extern void tsunami_flush_tlb_all(void);
572 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
573 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
574 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
575 extern void tsunami_setup_blockops(void);
576 
577 /* swift.S */
578 extern void swift_flush_cache_all(void);
579 extern void swift_flush_cache_mm(struct mm_struct *mm);
580 extern void swift_flush_cache_range(struct vm_area_struct *vma,
581 				    unsigned long start, unsigned long end);
582 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
583 extern void swift_flush_page_to_ram(unsigned long page);
584 extern void swift_flush_page_for_dma(unsigned long page);
585 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
586 extern void swift_flush_tlb_all(void);
587 extern void swift_flush_tlb_mm(struct mm_struct *mm);
588 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
589 				  unsigned long start, unsigned long end);
590 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
591 
592 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
593 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
594 {
595 	int cctx, ctx1;
596 
597 	page &= PAGE_MASK;
598 	if ((ctx1 = vma->vm_mm->context) != -1) {
599 		cctx = srmmu_get_context();
600 /* Is context # ever different from current context? P3 */
601 		if (cctx != ctx1) {
602 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
603 			srmmu_set_context(ctx1);
604 			swift_flush_page(page);
605 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
606 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
607 			srmmu_set_context(cctx);
608 		} else {
609 			 /* Rm. prot. bits from virt. c. */
610 			/* swift_flush_cache_all(); */
611 			/* swift_flush_cache_page(vma, page); */
612 			swift_flush_page(page);
613 
614 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
615 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
616 			/* same as above: srmmu_flush_tlb_page() */
617 		}
618 	}
619 }
620 #endif
621 
622 /*
623  * The following are all MBUS based SRMMU modules, and therefore could
624  * be found in a multiprocessor configuration.  On the whole, these
625  * chips seems to be much more touchy about DVMA and page tables
626  * with respect to cache coherency.
627  */
628 
629 /* viking.S */
630 extern void viking_flush_cache_all(void);
631 extern void viking_flush_cache_mm(struct mm_struct *mm);
632 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
633 				     unsigned long end);
634 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635 extern void viking_flush_page_to_ram(unsigned long page);
636 extern void viking_flush_page_for_dma(unsigned long page);
637 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
638 extern void viking_flush_page(unsigned long page);
639 extern void viking_mxcc_flush_page(unsigned long page);
640 extern void viking_flush_tlb_all(void);
641 extern void viking_flush_tlb_mm(struct mm_struct *mm);
642 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
643 				   unsigned long end);
644 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
645 				  unsigned long page);
646 extern void sun4dsmp_flush_tlb_all(void);
647 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
648 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
649 				   unsigned long end);
650 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
651 				  unsigned long page);
652 
653 /* hypersparc.S */
654 extern void hypersparc_flush_cache_all(void);
655 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
656 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
657 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
658 extern void hypersparc_flush_page_to_ram(unsigned long page);
659 extern void hypersparc_flush_page_for_dma(unsigned long page);
660 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
661 extern void hypersparc_flush_tlb_all(void);
662 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
663 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
664 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
665 extern void hypersparc_setup_blockops(void);
666 
667 /*
668  * NOTE: All of this startup code assumes the low 16mb (approx.) of
669  *       kernel mappings are done with one single contiguous chunk of
670  *       ram.  On small ram machines (classics mainly) we only get
671  *       around 8mb mapped for us.
672  */
673 
674 static void __init early_pgtable_allocfail(char *type)
675 {
676 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
677 	prom_halt();
678 }
679 
680 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
681 							unsigned long end)
682 {
683 	pgd_t *pgdp;
684 	p4d_t *p4dp;
685 	pud_t *pudp;
686 	pmd_t *pmdp;
687 	pte_t *ptep;
688 
689 	while (start < end) {
690 		pgdp = pgd_offset_k(start);
691 		p4dp = p4d_offset(pgdp, start);
692 		pudp = pud_offset(p4dp, start);
693 		if (pud_none(*__nocache_fix(pudp))) {
694 			pmdp = __srmmu_get_nocache(
695 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696 			if (pmdp == NULL)
697 				early_pgtable_allocfail("pmd");
698 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699 			pud_set(__nocache_fix(pudp), pmdp);
700 		}
701 		pmdp = pmd_offset(__nocache_fix(pudp), start);
702 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
703 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704 			if (ptep == NULL)
705 				early_pgtable_allocfail("pte");
706 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
707 			pmd_set(__nocache_fix(pmdp), ptep);
708 		}
709 		if (start > (0xffffffffUL - PMD_SIZE))
710 			break;
711 		start = (start + PMD_SIZE) & PMD_MASK;
712 	}
713 }
714 
715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716 						  unsigned long end)
717 {
718 	pgd_t *pgdp;
719 	p4d_t *p4dp;
720 	pud_t *pudp;
721 	pmd_t *pmdp;
722 	pte_t *ptep;
723 
724 	while (start < end) {
725 		pgdp = pgd_offset_k(start);
726 		p4dp = p4d_offset(pgdp, start);
727 		pudp = pud_offset(p4dp, start);
728 		if (pud_none(*pudp)) {
729 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
730 			if (pmdp == NULL)
731 				early_pgtable_allocfail("pmd");
732 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
733 			pud_set((pud_t *)pgdp, pmdp);
734 		}
735 		pmdp = pmd_offset(pudp, start);
736 		if (srmmu_pmd_none(*pmdp)) {
737 			ptep = __srmmu_get_nocache(PTE_SIZE,
738 							     PTE_SIZE);
739 			if (ptep == NULL)
740 				early_pgtable_allocfail("pte");
741 			memset(ptep, 0, PTE_SIZE);
742 			pmd_set(pmdp, ptep);
743 		}
744 		if (start > (0xffffffffUL - PMD_SIZE))
745 			break;
746 		start = (start + PMD_SIZE) & PMD_MASK;
747 	}
748 }
749 
750 /* These flush types are not available on all chips... */
751 static inline unsigned long srmmu_probe(unsigned long vaddr)
752 {
753 	unsigned long retval;
754 
755 	if (sparc_cpu_model != sparc_leon) {
756 
757 		vaddr &= PAGE_MASK;
758 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
759 				     "=r" (retval) :
760 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
761 	} else {
762 		retval = leon_swprobe(vaddr, NULL);
763 	}
764 	return retval;
765 }
766 
767 /*
768  * This is much cleaner than poking around physical address space
769  * looking at the prom's page table directly which is what most
770  * other OS's do.  Yuck... this is much better.
771  */
772 static void __init srmmu_inherit_prom_mappings(unsigned long start,
773 					       unsigned long end)
774 {
775 	unsigned long probed;
776 	unsigned long addr;
777 	pgd_t *pgdp;
778 	p4d_t *p4dp;
779 	pud_t *pudp;
780 	pmd_t *pmdp;
781 	pte_t *ptep;
782 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
783 
784 	while (start <= end) {
785 		if (start == 0)
786 			break; /* probably wrap around */
787 		if (start == 0xfef00000)
788 			start = KADB_DEBUGGER_BEGVM;
789 		probed = srmmu_probe(start);
790 		if (!probed) {
791 			/* continue probing until we find an entry */
792 			start += PAGE_SIZE;
793 			continue;
794 		}
795 
796 		/* A red snapper, see what it really is. */
797 		what = 0;
798 		addr = start - PAGE_SIZE;
799 
800 		if (!(start & ~(PMD_MASK))) {
801 			if (srmmu_probe(addr + PMD_SIZE) == probed)
802 				what = 1;
803 		}
804 
805 		if (!(start & ~(PGDIR_MASK))) {
806 			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
807 				what = 2;
808 		}
809 
810 		pgdp = pgd_offset_k(start);
811 		p4dp = p4d_offset(pgdp, start);
812 		pudp = pud_offset(p4dp, start);
813 		if (what == 2) {
814 			*__nocache_fix(pgdp) = __pgd(probed);
815 			start += PGDIR_SIZE;
816 			continue;
817 		}
818 		if (pud_none(*__nocache_fix(pudp))) {
819 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 						   SRMMU_PMD_TABLE_SIZE);
821 			if (pmdp == NULL)
822 				early_pgtable_allocfail("pmd");
823 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 			pud_set(__nocache_fix(pudp), pmdp);
825 		}
826 		pmdp = pmd_offset(__nocache_fix(pudp), start);
827 		if (what == 1) {
828 			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
829 			start += PMD_SIZE;
830 			continue;
831 		}
832 		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
833 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
834 			if (ptep == NULL)
835 				early_pgtable_allocfail("pte");
836 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
837 			pmd_set(__nocache_fix(pmdp), ptep);
838 		}
839 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840 		*__nocache_fix(ptep) = __pte(probed);
841 		start += PAGE_SIZE;
842 	}
843 }
844 
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846 
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 {
850 	pgd_t *pgdp = pgd_offset_k(vaddr);
851 	unsigned long big_pte;
852 
853 	big_pte = KERNEL_PTE(phys_base >> 4);
854 	*__nocache_fix(pgdp) = __pgd(big_pte);
855 }
856 
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 {
860 	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
861 	unsigned long vstart = (vbase & PGDIR_MASK);
862 	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863 	/* Map "low" memory only */
864 	const unsigned long min_vaddr = PAGE_OFFSET;
865 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866 
867 	if (vstart < min_vaddr || vstart >= max_vaddr)
868 		return vstart;
869 
870 	if (vend > max_vaddr || vend < min_vaddr)
871 		vend = max_vaddr;
872 
873 	while (vstart < vend) {
874 		do_large_mapping(vstart, pstart);
875 		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
876 	}
877 	return vstart;
878 }
879 
880 static void __init map_kernel(void)
881 {
882 	int i;
883 
884 	if (phys_base > 0) {
885 		do_large_mapping(PAGE_OFFSET, phys_base);
886 	}
887 
888 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890 	}
891 }
892 
893 void (*poke_srmmu)(void) = NULL;
894 
895 void __init srmmu_paging_init(void)
896 {
897 	int i;
898 	phandle cpunode;
899 	char node_str[128];
900 	pgd_t *pgd;
901 	p4d_t *p4d;
902 	pud_t *pud;
903 	pmd_t *pmd;
904 	pte_t *pte;
905 	unsigned long pages_avail;
906 
907 	init_mm.context = (unsigned long) NO_CONTEXT;
908 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
909 
910 	if (sparc_cpu_model == sun4d)
911 		num_contexts = 65536; /* We know it is Viking */
912 	else {
913 		/* Find the number of contexts on the srmmu. */
914 		cpunode = prom_getchild(prom_root_node);
915 		num_contexts = 0;
916 		while (cpunode != 0) {
917 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
918 			if (!strcmp(node_str, "cpu")) {
919 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
920 				break;
921 			}
922 			cpunode = prom_getsibling(cpunode);
923 		}
924 	}
925 
926 	if (!num_contexts) {
927 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
928 		prom_halt();
929 	}
930 
931 	pages_avail = 0;
932 	last_valid_pfn = bootmem_init(&pages_avail);
933 
934 	srmmu_nocache_calcsize();
935 	srmmu_nocache_init();
936 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
937 	map_kernel();
938 
939 	/* ctx table has to be physically aligned to its size */
940 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
941 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
942 
943 	for (i = 0; i < num_contexts; i++)
944 		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
945 
946 	flush_cache_all();
947 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
948 #ifdef CONFIG_SMP
949 	/* Stop from hanging here... */
950 	local_ops->tlb_all();
951 #else
952 	flush_tlb_all();
953 #endif
954 	poke_srmmu();
955 
956 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
957 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
958 
959 	srmmu_allocate_ptable_skeleton(
960 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
961 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
962 
963 	pgd = pgd_offset_k(PKMAP_BASE);
964 	p4d = p4d_offset(pgd, PKMAP_BASE);
965 	pud = pud_offset(p4d, PKMAP_BASE);
966 	pmd = pmd_offset(pud, PKMAP_BASE);
967 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
968 	pkmap_page_table = pte;
969 
970 	flush_cache_all();
971 	flush_tlb_all();
972 
973 	sparc_context_init(num_contexts);
974 
975 	{
976 		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
977 
978 		max_zone_pfn[ZONE_DMA] = max_low_pfn;
979 		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
980 		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
981 
982 		free_area_init(max_zone_pfn);
983 	}
984 }
985 
986 void mmu_info(struct seq_file *m)
987 {
988 	seq_printf(m,
989 		   "MMU type\t: %s\n"
990 		   "contexts\t: %d\n"
991 		   "nocache total\t: %ld\n"
992 		   "nocache used\t: %d\n",
993 		   srmmu_name,
994 		   num_contexts,
995 		   srmmu_nocache_size,
996 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
997 }
998 
999 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1000 {
1001 	mm->context = NO_CONTEXT;
1002 	return 0;
1003 }
1004 
1005 void destroy_context(struct mm_struct *mm)
1006 {
1007 	unsigned long flags;
1008 
1009 	if (mm->context != NO_CONTEXT) {
1010 		flush_cache_mm(mm);
1011 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1012 		flush_tlb_mm(mm);
1013 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1014 		free_context(mm->context);
1015 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1016 		mm->context = NO_CONTEXT;
1017 	}
1018 }
1019 
1020 /* Init various srmmu chip types. */
1021 static void __init srmmu_is_bad(void)
1022 {
1023 	prom_printf("Could not determine SRMMU chip type.\n");
1024 	prom_halt();
1025 }
1026 
1027 static void __init init_vac_layout(void)
1028 {
1029 	phandle nd;
1030 	int cache_lines;
1031 	char node_str[128];
1032 #ifdef CONFIG_SMP
1033 	int cpu = 0;
1034 	unsigned long max_size = 0;
1035 	unsigned long min_line_size = 0x10000000;
1036 #endif
1037 
1038 	nd = prom_getchild(prom_root_node);
1039 	while ((nd = prom_getsibling(nd)) != 0) {
1040 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1041 		if (!strcmp(node_str, "cpu")) {
1042 			vac_line_size = prom_getint(nd, "cache-line-size");
1043 			if (vac_line_size == -1) {
1044 				prom_printf("can't determine cache-line-size, halting.\n");
1045 				prom_halt();
1046 			}
1047 			cache_lines = prom_getint(nd, "cache-nlines");
1048 			if (cache_lines == -1) {
1049 				prom_printf("can't determine cache-nlines, halting.\n");
1050 				prom_halt();
1051 			}
1052 
1053 			vac_cache_size = cache_lines * vac_line_size;
1054 #ifdef CONFIG_SMP
1055 			if (vac_cache_size > max_size)
1056 				max_size = vac_cache_size;
1057 			if (vac_line_size < min_line_size)
1058 				min_line_size = vac_line_size;
1059 			//FIXME: cpus not contiguous!!
1060 			cpu++;
1061 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1062 				break;
1063 #else
1064 			break;
1065 #endif
1066 		}
1067 	}
1068 	if (nd == 0) {
1069 		prom_printf("No CPU nodes found, halting.\n");
1070 		prom_halt();
1071 	}
1072 #ifdef CONFIG_SMP
1073 	vac_cache_size = max_size;
1074 	vac_line_size = min_line_size;
1075 #endif
1076 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1077 	       (int)vac_cache_size, (int)vac_line_size);
1078 }
1079 
1080 static void poke_hypersparc(void)
1081 {
1082 	volatile unsigned long clear;
1083 	unsigned long mreg = srmmu_get_mmureg();
1084 
1085 	hyper_flush_unconditional_combined();
1086 
1087 	mreg &= ~(HYPERSPARC_CWENABLE);
1088 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1089 	mreg |= (HYPERSPARC_CMODE);
1090 
1091 	srmmu_set_mmureg(mreg);
1092 
1093 #if 0 /* XXX I think this is bad news... -DaveM */
1094 	hyper_clear_all_tags();
1095 #endif
1096 
1097 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1098 	hyper_flush_whole_icache();
1099 	clear = srmmu_get_faddr();
1100 	clear = srmmu_get_fstatus();
1101 }
1102 
1103 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1104 	.cache_all	= hypersparc_flush_cache_all,
1105 	.cache_mm	= hypersparc_flush_cache_mm,
1106 	.cache_page	= hypersparc_flush_cache_page,
1107 	.cache_range	= hypersparc_flush_cache_range,
1108 	.tlb_all	= hypersparc_flush_tlb_all,
1109 	.tlb_mm		= hypersparc_flush_tlb_mm,
1110 	.tlb_page	= hypersparc_flush_tlb_page,
1111 	.tlb_range	= hypersparc_flush_tlb_range,
1112 	.page_to_ram	= hypersparc_flush_page_to_ram,
1113 	.sig_insns	= hypersparc_flush_sig_insns,
1114 	.page_for_dma	= hypersparc_flush_page_for_dma,
1115 };
1116 
1117 static void __init init_hypersparc(void)
1118 {
1119 	srmmu_name = "ROSS HyperSparc";
1120 	srmmu_modtype = HyperSparc;
1121 
1122 	init_vac_layout();
1123 
1124 	is_hypersparc = 1;
1125 	sparc32_cachetlb_ops = &hypersparc_ops;
1126 
1127 	poke_srmmu = poke_hypersparc;
1128 
1129 	hypersparc_setup_blockops();
1130 }
1131 
1132 static void poke_swift(void)
1133 {
1134 	unsigned long mreg;
1135 
1136 	/* Clear any crap from the cache or else... */
1137 	swift_flush_cache_all();
1138 
1139 	/* Enable I & D caches */
1140 	mreg = srmmu_get_mmureg();
1141 	mreg |= (SWIFT_IE | SWIFT_DE);
1142 	/*
1143 	 * The Swift branch folding logic is completely broken.  At
1144 	 * trap time, if things are just right, if can mistakenly
1145 	 * think that a trap is coming from kernel mode when in fact
1146 	 * it is coming from user mode (it mis-executes the branch in
1147 	 * the trap code).  So you see things like crashme completely
1148 	 * hosing your machine which is completely unacceptable.  Turn
1149 	 * this shit off... nice job Fujitsu.
1150 	 */
1151 	mreg &= ~(SWIFT_BF);
1152 	srmmu_set_mmureg(mreg);
1153 }
1154 
1155 static const struct sparc32_cachetlb_ops swift_ops = {
1156 	.cache_all	= swift_flush_cache_all,
1157 	.cache_mm	= swift_flush_cache_mm,
1158 	.cache_page	= swift_flush_cache_page,
1159 	.cache_range	= swift_flush_cache_range,
1160 	.tlb_all	= swift_flush_tlb_all,
1161 	.tlb_mm		= swift_flush_tlb_mm,
1162 	.tlb_page	= swift_flush_tlb_page,
1163 	.tlb_range	= swift_flush_tlb_range,
1164 	.page_to_ram	= swift_flush_page_to_ram,
1165 	.sig_insns	= swift_flush_sig_insns,
1166 	.page_for_dma	= swift_flush_page_for_dma,
1167 };
1168 
1169 #define SWIFT_MASKID_ADDR  0x10003018
1170 static void __init init_swift(void)
1171 {
1172 	unsigned long swift_rev;
1173 
1174 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1175 			     "srl %0, 0x18, %0\n\t" :
1176 			     "=r" (swift_rev) :
1177 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1178 	srmmu_name = "Fujitsu Swift";
1179 	switch (swift_rev) {
1180 	case 0x11:
1181 	case 0x20:
1182 	case 0x23:
1183 	case 0x30:
1184 		srmmu_modtype = Swift_lots_o_bugs;
1185 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1186 		/*
1187 		 * Gee george, I wonder why Sun is so hush hush about
1188 		 * this hardware bug... really braindamage stuff going
1189 		 * on here.  However I think we can find a way to avoid
1190 		 * all of the workaround overhead under Linux.  Basically,
1191 		 * any page fault can cause kernel pages to become user
1192 		 * accessible (the mmu gets confused and clears some of
1193 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1194 		 * horrible eh?  But wait, after extensive testing it appears
1195 		 * that if you use pgd_t level large kernel pte's (like the
1196 		 * 4MB pages on the Pentium) the bug does not get tripped
1197 		 * at all.  This avoids almost all of the major overhead.
1198 		 * Welcome to a world where your vendor tells you to,
1199 		 * "apply this kernel patch" instead of "sorry for the
1200 		 * broken hardware, send it back and we'll give you
1201 		 * properly functioning parts"
1202 		 */
1203 		break;
1204 	case 0x25:
1205 	case 0x31:
1206 		srmmu_modtype = Swift_bad_c;
1207 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1208 		/*
1209 		 * You see Sun allude to this hardware bug but never
1210 		 * admit things directly, they'll say things like,
1211 		 * "the Swift chip cache problems" or similar.
1212 		 */
1213 		break;
1214 	default:
1215 		srmmu_modtype = Swift_ok;
1216 		break;
1217 	}
1218 
1219 	sparc32_cachetlb_ops = &swift_ops;
1220 	flush_page_for_dma_global = 0;
1221 
1222 	/*
1223 	 * Are you now convinced that the Swift is one of the
1224 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1225 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1226 	 * you examined the microcode of the Swift you'd find
1227 	 * XXX's all over the place.
1228 	 */
1229 	poke_srmmu = poke_swift;
1230 }
1231 
1232 static void turbosparc_flush_cache_all(void)
1233 {
1234 	flush_user_windows();
1235 	turbosparc_idflash_clear();
1236 }
1237 
1238 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1239 {
1240 	FLUSH_BEGIN(mm)
1241 	flush_user_windows();
1242 	turbosparc_idflash_clear();
1243 	FLUSH_END
1244 }
1245 
1246 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1247 {
1248 	FLUSH_BEGIN(vma->vm_mm)
1249 	flush_user_windows();
1250 	turbosparc_idflash_clear();
1251 	FLUSH_END
1252 }
1253 
1254 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1255 {
1256 	FLUSH_BEGIN(vma->vm_mm)
1257 	flush_user_windows();
1258 	if (vma->vm_flags & VM_EXEC)
1259 		turbosparc_flush_icache();
1260 	turbosparc_flush_dcache();
1261 	FLUSH_END
1262 }
1263 
1264 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1265 static void turbosparc_flush_page_to_ram(unsigned long page)
1266 {
1267 #ifdef TURBOSPARC_WRITEBACK
1268 	volatile unsigned long clear;
1269 
1270 	if (srmmu_probe(page))
1271 		turbosparc_flush_page_cache(page);
1272 	clear = srmmu_get_fstatus();
1273 #endif
1274 }
1275 
1276 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1277 {
1278 }
1279 
1280 static void turbosparc_flush_page_for_dma(unsigned long page)
1281 {
1282 	turbosparc_flush_dcache();
1283 }
1284 
1285 static void turbosparc_flush_tlb_all(void)
1286 {
1287 	srmmu_flush_whole_tlb();
1288 }
1289 
1290 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1291 {
1292 	FLUSH_BEGIN(mm)
1293 	srmmu_flush_whole_tlb();
1294 	FLUSH_END
1295 }
1296 
1297 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1298 {
1299 	FLUSH_BEGIN(vma->vm_mm)
1300 	srmmu_flush_whole_tlb();
1301 	FLUSH_END
1302 }
1303 
1304 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1305 {
1306 	FLUSH_BEGIN(vma->vm_mm)
1307 	srmmu_flush_whole_tlb();
1308 	FLUSH_END
1309 }
1310 
1311 
1312 static void poke_turbosparc(void)
1313 {
1314 	unsigned long mreg = srmmu_get_mmureg();
1315 	unsigned long ccreg;
1316 
1317 	/* Clear any crap from the cache or else... */
1318 	turbosparc_flush_cache_all();
1319 	/* Temporarily disable I & D caches */
1320 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1321 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1322 	srmmu_set_mmureg(mreg);
1323 
1324 	ccreg = turbosparc_get_ccreg();
1325 
1326 #ifdef TURBOSPARC_WRITEBACK
1327 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1328 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1329 			/* Write-back D-cache, emulate VLSI
1330 			 * abortion number three, not number one */
1331 #else
1332 	/* For now let's play safe, optimize later */
1333 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1334 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1335 	ccreg &= ~(TURBOSPARC_uS2);
1336 			/* Emulate VLSI abortion number three, not number one */
1337 #endif
1338 
1339 	switch (ccreg & 7) {
1340 	case 0: /* No SE cache */
1341 	case 7: /* Test mode */
1342 		break;
1343 	default:
1344 		ccreg |= (TURBOSPARC_SCENABLE);
1345 	}
1346 	turbosparc_set_ccreg(ccreg);
1347 
1348 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1349 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1350 	srmmu_set_mmureg(mreg);
1351 }
1352 
1353 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1354 	.cache_all	= turbosparc_flush_cache_all,
1355 	.cache_mm	= turbosparc_flush_cache_mm,
1356 	.cache_page	= turbosparc_flush_cache_page,
1357 	.cache_range	= turbosparc_flush_cache_range,
1358 	.tlb_all	= turbosparc_flush_tlb_all,
1359 	.tlb_mm		= turbosparc_flush_tlb_mm,
1360 	.tlb_page	= turbosparc_flush_tlb_page,
1361 	.tlb_range	= turbosparc_flush_tlb_range,
1362 	.page_to_ram	= turbosparc_flush_page_to_ram,
1363 	.sig_insns	= turbosparc_flush_sig_insns,
1364 	.page_for_dma	= turbosparc_flush_page_for_dma,
1365 };
1366 
1367 static void __init init_turbosparc(void)
1368 {
1369 	srmmu_name = "Fujitsu TurboSparc";
1370 	srmmu_modtype = TurboSparc;
1371 	sparc32_cachetlb_ops = &turbosparc_ops;
1372 	poke_srmmu = poke_turbosparc;
1373 }
1374 
1375 static void poke_tsunami(void)
1376 {
1377 	unsigned long mreg = srmmu_get_mmureg();
1378 
1379 	tsunami_flush_icache();
1380 	tsunami_flush_dcache();
1381 	mreg &= ~TSUNAMI_ITD;
1382 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1383 	srmmu_set_mmureg(mreg);
1384 }
1385 
1386 static const struct sparc32_cachetlb_ops tsunami_ops = {
1387 	.cache_all	= tsunami_flush_cache_all,
1388 	.cache_mm	= tsunami_flush_cache_mm,
1389 	.cache_page	= tsunami_flush_cache_page,
1390 	.cache_range	= tsunami_flush_cache_range,
1391 	.tlb_all	= tsunami_flush_tlb_all,
1392 	.tlb_mm		= tsunami_flush_tlb_mm,
1393 	.tlb_page	= tsunami_flush_tlb_page,
1394 	.tlb_range	= tsunami_flush_tlb_range,
1395 	.page_to_ram	= tsunami_flush_page_to_ram,
1396 	.sig_insns	= tsunami_flush_sig_insns,
1397 	.page_for_dma	= tsunami_flush_page_for_dma,
1398 };
1399 
1400 static void __init init_tsunami(void)
1401 {
1402 	/*
1403 	 * Tsunami's pretty sane, Sun and TI actually got it
1404 	 * somewhat right this time.  Fujitsu should have
1405 	 * taken some lessons from them.
1406 	 */
1407 
1408 	srmmu_name = "TI Tsunami";
1409 	srmmu_modtype = Tsunami;
1410 	sparc32_cachetlb_ops = &tsunami_ops;
1411 	poke_srmmu = poke_tsunami;
1412 
1413 	tsunami_setup_blockops();
1414 }
1415 
1416 static void poke_viking(void)
1417 {
1418 	unsigned long mreg = srmmu_get_mmureg();
1419 	static int smp_catch;
1420 
1421 	if (viking_mxcc_present) {
1422 		unsigned long mxcc_control = mxcc_get_creg();
1423 
1424 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1425 		mxcc_control &= ~(MXCC_CTL_RRC);
1426 		mxcc_set_creg(mxcc_control);
1427 
1428 		/*
1429 		 * We don't need memory parity checks.
1430 		 * XXX This is a mess, have to dig out later. ecd.
1431 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1432 		 */
1433 
1434 		/* We do cache ptables on MXCC. */
1435 		mreg |= VIKING_TCENABLE;
1436 	} else {
1437 		unsigned long bpreg;
1438 
1439 		mreg &= ~(VIKING_TCENABLE);
1440 		if (smp_catch++) {
1441 			/* Must disable mixed-cmd mode here for other cpu's. */
1442 			bpreg = viking_get_bpreg();
1443 			bpreg &= ~(VIKING_ACTION_MIX);
1444 			viking_set_bpreg(bpreg);
1445 
1446 			/* Just in case PROM does something funny. */
1447 			msi_set_sync();
1448 		}
1449 	}
1450 
1451 	mreg |= VIKING_SPENABLE;
1452 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1453 	mreg |= VIKING_SBENABLE;
1454 	mreg &= ~(VIKING_ACENABLE);
1455 	srmmu_set_mmureg(mreg);
1456 }
1457 
1458 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1459 	.cache_all	= viking_flush_cache_all,
1460 	.cache_mm	= viking_flush_cache_mm,
1461 	.cache_page	= viking_flush_cache_page,
1462 	.cache_range	= viking_flush_cache_range,
1463 	.tlb_all	= viking_flush_tlb_all,
1464 	.tlb_mm		= viking_flush_tlb_mm,
1465 	.tlb_page	= viking_flush_tlb_page,
1466 	.tlb_range	= viking_flush_tlb_range,
1467 	.page_to_ram	= viking_flush_page_to_ram,
1468 	.sig_insns	= viking_flush_sig_insns,
1469 	.page_for_dma	= viking_flush_page_for_dma,
1470 };
1471 
1472 #ifdef CONFIG_SMP
1473 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1474  * perform the local TLB flush and all the other cpus will see it.
1475  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1476  * that requires that we add some synchronization to these flushes.
1477  *
1478  * The bug is that the fifo which keeps track of all the pending TLB
1479  * broadcasts in the system is an entry or two too small, so if we
1480  * have too many going at once we'll overflow that fifo and lose a TLB
1481  * flush resulting in corruption.
1482  *
1483  * Our workaround is to take a global spinlock around the TLB flushes,
1484  * which guarentees we won't ever have too many pending.  It's a big
1485  * hammer, but a semaphore like system to make sure we only have N TLB
1486  * flushes going at once will require SMP locking anyways so there's
1487  * no real value in trying any harder than this.
1488  */
1489 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1490 	.cache_all	= viking_flush_cache_all,
1491 	.cache_mm	= viking_flush_cache_mm,
1492 	.cache_page	= viking_flush_cache_page,
1493 	.cache_range	= viking_flush_cache_range,
1494 	.tlb_all	= sun4dsmp_flush_tlb_all,
1495 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1496 	.tlb_page	= sun4dsmp_flush_tlb_page,
1497 	.tlb_range	= sun4dsmp_flush_tlb_range,
1498 	.page_to_ram	= viking_flush_page_to_ram,
1499 	.sig_insns	= viking_flush_sig_insns,
1500 	.page_for_dma	= viking_flush_page_for_dma,
1501 };
1502 #endif
1503 
1504 static void __init init_viking(void)
1505 {
1506 	unsigned long mreg = srmmu_get_mmureg();
1507 
1508 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1509 	if (mreg & VIKING_MMODE) {
1510 		srmmu_name = "TI Viking";
1511 		viking_mxcc_present = 0;
1512 		msi_set_sync();
1513 
1514 		/*
1515 		 * We need this to make sure old viking takes no hits
1516 		 * on its cache for dma snoops to workaround the
1517 		 * "load from non-cacheable memory" interrupt bug.
1518 		 * This is only necessary because of the new way in
1519 		 * which we use the IOMMU.
1520 		 */
1521 		viking_ops.page_for_dma = viking_flush_page;
1522 #ifdef CONFIG_SMP
1523 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1524 #endif
1525 		flush_page_for_dma_global = 0;
1526 	} else {
1527 		srmmu_name = "TI Viking/MXCC";
1528 		viking_mxcc_present = 1;
1529 		srmmu_cache_pagetables = 1;
1530 	}
1531 
1532 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1533 		&viking_ops;
1534 #ifdef CONFIG_SMP
1535 	if (sparc_cpu_model == sun4d)
1536 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1537 			&viking_sun4d_smp_ops;
1538 #endif
1539 
1540 	poke_srmmu = poke_viking;
1541 }
1542 
1543 /* Probe for the srmmu chip version. */
1544 static void __init get_srmmu_type(void)
1545 {
1546 	unsigned long mreg, psr;
1547 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1548 
1549 	srmmu_modtype = SRMMU_INVAL_MOD;
1550 	hwbug_bitmask = 0;
1551 
1552 	mreg = srmmu_get_mmureg(); psr = get_psr();
1553 	mod_typ = (mreg & 0xf0000000) >> 28;
1554 	mod_rev = (mreg & 0x0f000000) >> 24;
1555 	psr_typ = (psr >> 28) & 0xf;
1556 	psr_vers = (psr >> 24) & 0xf;
1557 
1558 	/* First, check for sparc-leon. */
1559 	if (sparc_cpu_model == sparc_leon) {
1560 		init_leon();
1561 		return;
1562 	}
1563 
1564 	/* Second, check for HyperSparc or Cypress. */
1565 	if (mod_typ == 1) {
1566 		switch (mod_rev) {
1567 		case 7:
1568 			/* UP or MP Hypersparc */
1569 			init_hypersparc();
1570 			break;
1571 		case 0:
1572 		case 2:
1573 		case 10:
1574 		case 11:
1575 		case 12:
1576 		case 13:
1577 		case 14:
1578 		case 15:
1579 		default:
1580 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1581 			prom_halt();
1582 			break;
1583 		}
1584 		return;
1585 	}
1586 
1587 	/* Now Fujitsu TurboSparc. It might happen that it is
1588 	 * in Swift emulation mode, so we will check later...
1589 	 */
1590 	if (psr_typ == 0 && psr_vers == 5) {
1591 		init_turbosparc();
1592 		return;
1593 	}
1594 
1595 	/* Next check for Fujitsu Swift. */
1596 	if (psr_typ == 0 && psr_vers == 4) {
1597 		phandle cpunode;
1598 		char node_str[128];
1599 
1600 		/* Look if it is not a TurboSparc emulating Swift... */
1601 		cpunode = prom_getchild(prom_root_node);
1602 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1603 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1604 			if (!strcmp(node_str, "cpu")) {
1605 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1606 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1607 					init_turbosparc();
1608 					return;
1609 				}
1610 				break;
1611 			}
1612 		}
1613 
1614 		init_swift();
1615 		return;
1616 	}
1617 
1618 	/* Now the Viking family of srmmu. */
1619 	if (psr_typ == 4 &&
1620 	   ((psr_vers == 0) ||
1621 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1622 		init_viking();
1623 		return;
1624 	}
1625 
1626 	/* Finally the Tsunami. */
1627 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1628 		init_tsunami();
1629 		return;
1630 	}
1631 
1632 	/* Oh well */
1633 	srmmu_is_bad();
1634 }
1635 
1636 #ifdef CONFIG_SMP
1637 /* Local cross-calls. */
1638 static void smp_flush_page_for_dma(unsigned long page)
1639 {
1640 	xc1(local_ops->page_for_dma, page);
1641 	local_ops->page_for_dma(page);
1642 }
1643 
1644 static void smp_flush_cache_all(void)
1645 {
1646 	xc0(local_ops->cache_all);
1647 	local_ops->cache_all();
1648 }
1649 
1650 static void smp_flush_tlb_all(void)
1651 {
1652 	xc0(local_ops->tlb_all);
1653 	local_ops->tlb_all();
1654 }
1655 
1656 static bool any_other_mm_cpus(struct mm_struct *mm)
1657 {
1658 	return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids;
1659 }
1660 
1661 static void smp_flush_cache_mm(struct mm_struct *mm)
1662 {
1663 	if (mm->context != NO_CONTEXT) {
1664 		if (any_other_mm_cpus(mm))
1665 			xc1(local_ops->cache_mm, (unsigned long)mm);
1666 		local_ops->cache_mm(mm);
1667 	}
1668 }
1669 
1670 static void smp_flush_tlb_mm(struct mm_struct *mm)
1671 {
1672 	if (mm->context != NO_CONTEXT) {
1673 		if (any_other_mm_cpus(mm)) {
1674 			xc1(local_ops->tlb_mm, (unsigned long)mm);
1675 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676 				cpumask_copy(mm_cpumask(mm),
1677 					     cpumask_of(smp_processor_id()));
1678 		}
1679 		local_ops->tlb_mm(mm);
1680 	}
1681 }
1682 
1683 static void smp_flush_cache_range(struct vm_area_struct *vma,
1684 				  unsigned long start,
1685 				  unsigned long end)
1686 {
1687 	struct mm_struct *mm = vma->vm_mm;
1688 
1689 	if (mm->context != NO_CONTEXT) {
1690 		if (any_other_mm_cpus(mm))
1691 			xc3(local_ops->cache_range, (unsigned long)vma, start,
1692 			    end);
1693 		local_ops->cache_range(vma, start, end);
1694 	}
1695 }
1696 
1697 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1698 				unsigned long start,
1699 				unsigned long end)
1700 {
1701 	struct mm_struct *mm = vma->vm_mm;
1702 
1703 	if (mm->context != NO_CONTEXT) {
1704 		if (any_other_mm_cpus(mm))
1705 			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1706 			    end);
1707 		local_ops->tlb_range(vma, start, end);
1708 	}
1709 }
1710 
1711 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713 	struct mm_struct *mm = vma->vm_mm;
1714 
1715 	if (mm->context != NO_CONTEXT) {
1716 		if (any_other_mm_cpus(mm))
1717 			xc2(local_ops->cache_page, (unsigned long)vma, page);
1718 		local_ops->cache_page(vma, page);
1719 	}
1720 }
1721 
1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1723 {
1724 	struct mm_struct *mm = vma->vm_mm;
1725 
1726 	if (mm->context != NO_CONTEXT) {
1727 		if (any_other_mm_cpus(mm))
1728 			xc2(local_ops->tlb_page, (unsigned long)vma, page);
1729 		local_ops->tlb_page(vma, page);
1730 	}
1731 }
1732 
1733 static void smp_flush_page_to_ram(unsigned long page)
1734 {
1735 	/* Current theory is that those who call this are the one's
1736 	 * who have just dirtied their cache with the pages contents
1737 	 * in kernel space, therefore we only run this on local cpu.
1738 	 *
1739 	 * XXX This experiment failed, research further... -DaveM
1740 	 */
1741 #if 1
1742 	xc1(local_ops->page_to_ram, page);
1743 #endif
1744 	local_ops->page_to_ram(page);
1745 }
1746 
1747 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1748 {
1749 	if (any_other_mm_cpus(mm))
1750 		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1751 	local_ops->sig_insns(mm, insn_addr);
1752 }
1753 
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1755 	.cache_all	= smp_flush_cache_all,
1756 	.cache_mm	= smp_flush_cache_mm,
1757 	.cache_page	= smp_flush_cache_page,
1758 	.cache_range	= smp_flush_cache_range,
1759 	.tlb_all	= smp_flush_tlb_all,
1760 	.tlb_mm		= smp_flush_tlb_mm,
1761 	.tlb_page	= smp_flush_tlb_page,
1762 	.tlb_range	= smp_flush_tlb_range,
1763 	.page_to_ram	= smp_flush_page_to_ram,
1764 	.sig_insns	= smp_flush_sig_insns,
1765 	.page_for_dma	= smp_flush_page_for_dma,
1766 };
1767 #endif
1768 
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772 	/* Functions */
1773 	get_srmmu_type();
1774 
1775 #ifdef CONFIG_SMP
1776 	/* El switcheroo... */
1777 	local_ops = sparc32_cachetlb_ops;
1778 
1779 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784 	}
1785 
1786 	if (poke_srmmu == poke_viking) {
1787 		/* Avoid unnecessary cross calls. */
1788 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792 
1793 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796 	}
1797 
1798 	/* It really is const after this point. */
1799 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800 		&smp_cachetlb_ops;
1801 #endif
1802 
1803 	if (sparc_cpu_model != sun4d)
1804 		ld_mmu_iommu();
1805 #ifdef CONFIG_SMP
1806 	if (sparc_cpu_model == sun4d)
1807 		sun4d_init_smp();
1808 	else if (sparc_cpu_model == sparc_leon)
1809 		leon_init_smp();
1810 	else
1811 		sun4m_init_smp();
1812 #endif
1813 }
1814