xref: /linux/arch/sparc/mm/srmmu.c (revision d19e470b6605c900db21fc7b34c66b6891a79983)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp;	/* Physical address, shifted right by 4 */
140 	int i;
141 
142 	ptp = __nocache_pa(ptep) >> 4;
143 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 	}
147 }
148 
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 	unsigned long ptp;	/* Physical address, shifted right by 4 */
152 	int i;
153 
154 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
155 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 	}
159 }
160 
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 	void *pte;
165 
166 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 	return (pte_t *) pte +
168 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170 
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 	int offset;
179 	unsigned long addr;
180 
181 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 		       size);
184 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 	}
186 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 		       size);
189 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 	}
191 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192 
193 	offset = bit_map_string_get(&srmmu_nocache_map,
194 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 	if (offset == -1) {
197 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 		       size, (int) srmmu_nocache_size,
199 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 		return NULL;
201 	}
202 
203 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 	return (void *)addr;
205 }
206 
207 void *srmmu_get_nocache(int size, int align)
208 {
209 	void *tmp;
210 
211 	tmp = __srmmu_get_nocache(size, align);
212 
213 	if (tmp)
214 		memset(tmp, 0, size);
215 
216 	return tmp;
217 }
218 
219 void srmmu_free_nocache(void *addr, int size)
220 {
221 	unsigned long vaddr;
222 	int offset;
223 
224 	vaddr = (unsigned long)addr;
225 	if (vaddr < SRMMU_NOCACHE_VADDR) {
226 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 		BUG();
229 	}
230 	if (vaddr + size > srmmu_nocache_end) {
231 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 		    vaddr, srmmu_nocache_end);
233 		BUG();
234 	}
235 	if (!is_power_of_2(size)) {
236 		printk("Size 0x%x is not a power of 2\n", size);
237 		BUG();
238 	}
239 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 		printk("Size 0x%x is too small\n", size);
241 		BUG();
242 	}
243 	if (vaddr & (size - 1)) {
244 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 		BUG();
246 	}
247 
248 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250 
251 	bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253 
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 						 unsigned long end);
256 
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260 	unsigned long total = 0;
261 	int i;
262 
263 	for (i = 0; sp_banks[i].num_bytes; i++)
264 		total += sp_banks[i].num_bytes;
265 
266 	return total;
267 }
268 
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275 	unsigned long sysmemavail = probe_memory() / 1024;
276 	int srmmu_nocache_npages;
277 
278 	srmmu_nocache_npages =
279 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280 
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285 
286 	/* anything above 1280 blows up */
287 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289 
290 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293 
294 static void __init srmmu_nocache_init(void)
295 {
296 	void *srmmu_nocache_bitmap;
297 	unsigned int bitmap_bits;
298 	pgd_t *pgd;
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 	unsigned long paddr, vaddr;
304 	unsigned long pteval;
305 
306 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
307 
308 	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
309 					    SRMMU_NOCACHE_ALIGN_MAX);
310 	if (!srmmu_nocache_pool)
311 		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
312 		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
313 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
314 
315 	srmmu_nocache_bitmap =
316 		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
317 			       SMP_CACHE_BYTES);
318 	if (!srmmu_nocache_bitmap)
319 		panic("%s: Failed to allocate %zu bytes\n", __func__,
320 		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
321 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
322 
323 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
325 	init_mm.pgd = srmmu_swapper_pg_dir;
326 
327 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
328 
329 	paddr = __pa((unsigned long)srmmu_nocache_pool);
330 	vaddr = SRMMU_NOCACHE_VADDR;
331 
332 	while (vaddr < srmmu_nocache_end) {
333 		pgd = pgd_offset_k(vaddr);
334 		p4d = p4d_offset(__nocache_fix(pgd), vaddr);
335 		pud = pud_offset(__nocache_fix(p4d), vaddr);
336 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
337 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
338 
339 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
340 
341 		if (srmmu_cache_pagetables)
342 			pteval |= SRMMU_CACHE;
343 
344 		set_pte(__nocache_fix(pte), __pte(pteval));
345 
346 		vaddr += PAGE_SIZE;
347 		paddr += PAGE_SIZE;
348 	}
349 
350 	flush_cache_all();
351 	flush_tlb_all();
352 }
353 
354 pgd_t *get_pgd_fast(void)
355 {
356 	pgd_t *pgd = NULL;
357 
358 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
359 	if (pgd) {
360 		pgd_t *init = pgd_offset_k(0);
361 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
362 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
363 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
364 	}
365 
366 	return pgd;
367 }
368 
369 /*
370  * Hardware needs alignment to 256 only, but we align to whole page size
371  * to reduce fragmentation problems due to the buddy principle.
372  * XXX Provide actual fragmentation statistics in /proc.
373  *
374  * Alignments up to the page size are the same for physical and virtual
375  * addresses of the nocache area.
376  */
377 pgtable_t pte_alloc_one(struct mm_struct *mm)
378 {
379 	unsigned long pte;
380 	struct page *page;
381 
382 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
383 		return NULL;
384 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
385 	if (!pgtable_pte_page_ctor(page)) {
386 		__free_page(page);
387 		return NULL;
388 	}
389 	return page;
390 }
391 
392 void pte_free(struct mm_struct *mm, pgtable_t pte)
393 {
394 	unsigned long p;
395 
396 	pgtable_pte_page_dtor(pte);
397 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
398 	if (p == 0)
399 		BUG();
400 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
401 
402 	/* free non cached virtual address*/
403 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
404 }
405 
406 /* context handling - a dynamically sized pool is used */
407 #define NO_CONTEXT	-1
408 
409 struct ctx_list {
410 	struct ctx_list *next;
411 	struct ctx_list *prev;
412 	unsigned int ctx_number;
413 	struct mm_struct *ctx_mm;
414 };
415 
416 static struct ctx_list *ctx_list_pool;
417 static struct ctx_list ctx_free;
418 static struct ctx_list ctx_used;
419 
420 /* At boot time we determine the number of contexts */
421 static int num_contexts;
422 
423 static inline void remove_from_ctx_list(struct ctx_list *entry)
424 {
425 	entry->next->prev = entry->prev;
426 	entry->prev->next = entry->next;
427 }
428 
429 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
430 {
431 	entry->next = head;
432 	(entry->prev = head->prev)->next = entry;
433 	head->prev = entry;
434 }
435 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
436 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
437 
438 
439 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
440 {
441 	struct ctx_list *ctxp;
442 
443 	ctxp = ctx_free.next;
444 	if (ctxp != &ctx_free) {
445 		remove_from_ctx_list(ctxp);
446 		add_to_used_ctxlist(ctxp);
447 		mm->context = ctxp->ctx_number;
448 		ctxp->ctx_mm = mm;
449 		return;
450 	}
451 	ctxp = ctx_used.next;
452 	if (ctxp->ctx_mm == old_mm)
453 		ctxp = ctxp->next;
454 	if (ctxp == &ctx_used)
455 		panic("out of mmu contexts");
456 	flush_cache_mm(ctxp->ctx_mm);
457 	flush_tlb_mm(ctxp->ctx_mm);
458 	remove_from_ctx_list(ctxp);
459 	add_to_used_ctxlist(ctxp);
460 	ctxp->ctx_mm->context = NO_CONTEXT;
461 	ctxp->ctx_mm = mm;
462 	mm->context = ctxp->ctx_number;
463 }
464 
465 static inline void free_context(int context)
466 {
467 	struct ctx_list *ctx_old;
468 
469 	ctx_old = ctx_list_pool + context;
470 	remove_from_ctx_list(ctx_old);
471 	add_to_free_ctxlist(ctx_old);
472 }
473 
474 static void __init sparc_context_init(int numctx)
475 {
476 	int ctx;
477 	unsigned long size;
478 
479 	size = numctx * sizeof(struct ctx_list);
480 	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
481 	if (!ctx_list_pool)
482 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
483 
484 	for (ctx = 0; ctx < numctx; ctx++) {
485 		struct ctx_list *clist;
486 
487 		clist = (ctx_list_pool + ctx);
488 		clist->ctx_number = ctx;
489 		clist->ctx_mm = NULL;
490 	}
491 	ctx_free.next = ctx_free.prev = &ctx_free;
492 	ctx_used.next = ctx_used.prev = &ctx_used;
493 	for (ctx = 0; ctx < numctx; ctx++)
494 		add_to_free_ctxlist(ctx_list_pool + ctx);
495 }
496 
497 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
498 	       struct task_struct *tsk)
499 {
500 	unsigned long flags;
501 
502 	if (mm->context == NO_CONTEXT) {
503 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
504 		alloc_context(old_mm, mm);
505 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
506 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
507 	}
508 
509 	if (sparc_cpu_model == sparc_leon)
510 		leon_switch_mm();
511 
512 	if (is_hypersparc)
513 		hyper_flush_whole_icache();
514 
515 	srmmu_set_context(mm->context);
516 }
517 
518 /* Low level IO area allocation on the SRMMU. */
519 static inline void srmmu_mapioaddr(unsigned long physaddr,
520 				   unsigned long virt_addr, int bus_type)
521 {
522 	pgd_t *pgdp;
523 	p4d_t *p4dp;
524 	pud_t *pudp;
525 	pmd_t *pmdp;
526 	pte_t *ptep;
527 	unsigned long tmp;
528 
529 	physaddr &= PAGE_MASK;
530 	pgdp = pgd_offset_k(virt_addr);
531 	p4dp = p4d_offset(pgdp, virt_addr);
532 	pudp = pud_offset(p4dp, virt_addr);
533 	pmdp = pmd_offset(pudp, virt_addr);
534 	ptep = pte_offset_kernel(pmdp, virt_addr);
535 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
536 
537 	/* I need to test whether this is consistent over all
538 	 * sun4m's.  The bus_type represents the upper 4 bits of
539 	 * 36-bit physical address on the I/O space lines...
540 	 */
541 	tmp |= (bus_type << 28);
542 	tmp |= SRMMU_PRIV;
543 	__flush_page_to_ram(virt_addr);
544 	set_pte(ptep, __pte(tmp));
545 }
546 
547 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
548 		      unsigned long xva, unsigned int len)
549 {
550 	while (len != 0) {
551 		len -= PAGE_SIZE;
552 		srmmu_mapioaddr(xpa, xva, bus);
553 		xva += PAGE_SIZE;
554 		xpa += PAGE_SIZE;
555 	}
556 	flush_tlb_all();
557 }
558 
559 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
560 {
561 	pgd_t *pgdp;
562 	p4d_t *p4dp;
563 	pud_t *pudp;
564 	pmd_t *pmdp;
565 	pte_t *ptep;
566 
567 
568 	pgdp = pgd_offset_k(virt_addr);
569 	p4dp = p4d_offset(pgdp, virt_addr);
570 	pudp = pud_offset(p4dp, virt_addr);
571 	pmdp = pmd_offset(pudp, virt_addr);
572 	ptep = pte_offset_kernel(pmdp, virt_addr);
573 
574 	/* No need to flush uncacheable page. */
575 	__pte_clear(ptep);
576 }
577 
578 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
579 {
580 	while (len != 0) {
581 		len -= PAGE_SIZE;
582 		srmmu_unmapioaddr(virt_addr);
583 		virt_addr += PAGE_SIZE;
584 	}
585 	flush_tlb_all();
586 }
587 
588 /* tsunami.S */
589 extern void tsunami_flush_cache_all(void);
590 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
591 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
592 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
593 extern void tsunami_flush_page_to_ram(unsigned long page);
594 extern void tsunami_flush_page_for_dma(unsigned long page);
595 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
596 extern void tsunami_flush_tlb_all(void);
597 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
598 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
599 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
600 extern void tsunami_setup_blockops(void);
601 
602 /* swift.S */
603 extern void swift_flush_cache_all(void);
604 extern void swift_flush_cache_mm(struct mm_struct *mm);
605 extern void swift_flush_cache_range(struct vm_area_struct *vma,
606 				    unsigned long start, unsigned long end);
607 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
608 extern void swift_flush_page_to_ram(unsigned long page);
609 extern void swift_flush_page_for_dma(unsigned long page);
610 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
611 extern void swift_flush_tlb_all(void);
612 extern void swift_flush_tlb_mm(struct mm_struct *mm);
613 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
614 				  unsigned long start, unsigned long end);
615 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
616 
617 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
618 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
619 {
620 	int cctx, ctx1;
621 
622 	page &= PAGE_MASK;
623 	if ((ctx1 = vma->vm_mm->context) != -1) {
624 		cctx = srmmu_get_context();
625 /* Is context # ever different from current context? P3 */
626 		if (cctx != ctx1) {
627 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
628 			srmmu_set_context(ctx1);
629 			swift_flush_page(page);
630 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
631 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
632 			srmmu_set_context(cctx);
633 		} else {
634 			 /* Rm. prot. bits from virt. c. */
635 			/* swift_flush_cache_all(); */
636 			/* swift_flush_cache_page(vma, page); */
637 			swift_flush_page(page);
638 
639 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
640 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
641 			/* same as above: srmmu_flush_tlb_page() */
642 		}
643 	}
644 }
645 #endif
646 
647 /*
648  * The following are all MBUS based SRMMU modules, and therefore could
649  * be found in a multiprocessor configuration.  On the whole, these
650  * chips seems to be much more touchy about DVMA and page tables
651  * with respect to cache coherency.
652  */
653 
654 /* viking.S */
655 extern void viking_flush_cache_all(void);
656 extern void viking_flush_cache_mm(struct mm_struct *mm);
657 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
658 				     unsigned long end);
659 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
660 extern void viking_flush_page_to_ram(unsigned long page);
661 extern void viking_flush_page_for_dma(unsigned long page);
662 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
663 extern void viking_flush_page(unsigned long page);
664 extern void viking_mxcc_flush_page(unsigned long page);
665 extern void viking_flush_tlb_all(void);
666 extern void viking_flush_tlb_mm(struct mm_struct *mm);
667 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
668 				   unsigned long end);
669 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
670 				  unsigned long page);
671 extern void sun4dsmp_flush_tlb_all(void);
672 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
673 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
674 				   unsigned long end);
675 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
676 				  unsigned long page);
677 
678 /* hypersparc.S */
679 extern void hypersparc_flush_cache_all(void);
680 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
681 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
682 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
683 extern void hypersparc_flush_page_to_ram(unsigned long page);
684 extern void hypersparc_flush_page_for_dma(unsigned long page);
685 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
686 extern void hypersparc_flush_tlb_all(void);
687 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
688 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
689 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
690 extern void hypersparc_setup_blockops(void);
691 
692 /*
693  * NOTE: All of this startup code assumes the low 16mb (approx.) of
694  *       kernel mappings are done with one single contiguous chunk of
695  *       ram.  On small ram machines (classics mainly) we only get
696  *       around 8mb mapped for us.
697  */
698 
699 static void __init early_pgtable_allocfail(char *type)
700 {
701 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
702 	prom_halt();
703 }
704 
705 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
706 							unsigned long end)
707 {
708 	pgd_t *pgdp;
709 	p4d_t *p4dp;
710 	pud_t *pudp;
711 	pmd_t *pmdp;
712 	pte_t *ptep;
713 
714 	while (start < end) {
715 		pgdp = pgd_offset_k(start);
716 		p4dp = p4d_offset(pgdp, start);
717 		pudp = pud_offset(p4dp, start);
718 		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
719 			pmdp = __srmmu_get_nocache(
720 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
721 			if (pmdp == NULL)
722 				early_pgtable_allocfail("pmd");
723 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
724 			pud_set(__nocache_fix(pudp), pmdp);
725 		}
726 		pmdp = pmd_offset(__nocache_fix(pudp), start);
727 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
728 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
729 			if (ptep == NULL)
730 				early_pgtable_allocfail("pte");
731 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
732 			pmd_set(__nocache_fix(pmdp), ptep);
733 		}
734 		if (start > (0xffffffffUL - PMD_SIZE))
735 			break;
736 		start = (start + PMD_SIZE) & PMD_MASK;
737 	}
738 }
739 
740 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
741 						  unsigned long end)
742 {
743 	pgd_t *pgdp;
744 	p4d_t *p4dp;
745 	pud_t *pudp;
746 	pmd_t *pmdp;
747 	pte_t *ptep;
748 
749 	while (start < end) {
750 		pgdp = pgd_offset_k(start);
751 		p4dp = p4d_offset(pgdp, start);
752 		pudp = pud_offset(p4dp, start);
753 		if (pud_none(*pudp)) {
754 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
755 			if (pmdp == NULL)
756 				early_pgtable_allocfail("pmd");
757 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
758 			pud_set((pud_t *)pgdp, pmdp);
759 		}
760 		pmdp = pmd_offset(pudp, start);
761 		if (srmmu_pmd_none(*pmdp)) {
762 			ptep = __srmmu_get_nocache(PTE_SIZE,
763 							     PTE_SIZE);
764 			if (ptep == NULL)
765 				early_pgtable_allocfail("pte");
766 			memset(ptep, 0, PTE_SIZE);
767 			pmd_set(pmdp, ptep);
768 		}
769 		if (start > (0xffffffffUL - PMD_SIZE))
770 			break;
771 		start = (start + PMD_SIZE) & PMD_MASK;
772 	}
773 }
774 
775 /* These flush types are not available on all chips... */
776 static inline unsigned long srmmu_probe(unsigned long vaddr)
777 {
778 	unsigned long retval;
779 
780 	if (sparc_cpu_model != sparc_leon) {
781 
782 		vaddr &= PAGE_MASK;
783 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
784 				     "=r" (retval) :
785 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
786 	} else {
787 		retval = leon_swprobe(vaddr, NULL);
788 	}
789 	return retval;
790 }
791 
792 /*
793  * This is much cleaner than poking around physical address space
794  * looking at the prom's page table directly which is what most
795  * other OS's do.  Yuck... this is much better.
796  */
797 static void __init srmmu_inherit_prom_mappings(unsigned long start,
798 					       unsigned long end)
799 {
800 	unsigned long probed;
801 	unsigned long addr;
802 	pgd_t *pgdp;
803 	p4d_t *p4dp;
804 	pud_t *pudp;
805 	pmd_t *pmdp;
806 	pte_t *ptep;
807 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
808 
809 	while (start <= end) {
810 		if (start == 0)
811 			break; /* probably wrap around */
812 		if (start == 0xfef00000)
813 			start = KADB_DEBUGGER_BEGVM;
814 		probed = srmmu_probe(start);
815 		if (!probed) {
816 			/* continue probing until we find an entry */
817 			start += PAGE_SIZE;
818 			continue;
819 		}
820 
821 		/* A red snapper, see what it really is. */
822 		what = 0;
823 		addr = start - PAGE_SIZE;
824 
825 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
826 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
827 				what = 1;
828 		}
829 
830 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
831 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
832 				what = 2;
833 		}
834 
835 		pgdp = pgd_offset_k(start);
836 		p4dp = p4d_offset(pgdp, start);
837 		pudp = pud_offset(p4dp, start);
838 		if (what == 2) {
839 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
840 			start += SRMMU_PGDIR_SIZE;
841 			continue;
842 		}
843 		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
844 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
845 						   SRMMU_PMD_TABLE_SIZE);
846 			if (pmdp == NULL)
847 				early_pgtable_allocfail("pmd");
848 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
849 			pud_set(__nocache_fix(pudp), pmdp);
850 		}
851 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
852 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
853 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
854 			if (ptep == NULL)
855 				early_pgtable_allocfail("pte");
856 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
857 			pmd_set(__nocache_fix(pmdp), ptep);
858 		}
859 		if (what == 1) {
860 			/* We bend the rule where all 16 PTPs in a pmd_t point
861 			 * inside the same PTE page, and we leak a perfectly
862 			 * good hardware PTE piece. Alternatives seem worse.
863 			 */
864 			unsigned int x;	/* Index of HW PMD in soft cluster */
865 			unsigned long *val;
866 			x = (start >> PMD_SHIFT) & 15;
867 			val = &pmdp->pmdv[x];
868 			*(unsigned long *)__nocache_fix(val) = probed;
869 			start += SRMMU_REAL_PMD_SIZE;
870 			continue;
871 		}
872 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
873 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
874 		start += PAGE_SIZE;
875 	}
876 }
877 
878 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
879 
880 /* Create a third-level SRMMU 16MB page mapping. */
881 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
882 {
883 	pgd_t *pgdp = pgd_offset_k(vaddr);
884 	unsigned long big_pte;
885 
886 	big_pte = KERNEL_PTE(phys_base >> 4);
887 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
888 }
889 
890 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
891 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
892 {
893 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
894 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
895 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
896 	/* Map "low" memory only */
897 	const unsigned long min_vaddr = PAGE_OFFSET;
898 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
899 
900 	if (vstart < min_vaddr || vstart >= max_vaddr)
901 		return vstart;
902 
903 	if (vend > max_vaddr || vend < min_vaddr)
904 		vend = max_vaddr;
905 
906 	while (vstart < vend) {
907 		do_large_mapping(vstart, pstart);
908 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
909 	}
910 	return vstart;
911 }
912 
913 static void __init map_kernel(void)
914 {
915 	int i;
916 
917 	if (phys_base > 0) {
918 		do_large_mapping(PAGE_OFFSET, phys_base);
919 	}
920 
921 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
922 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
923 	}
924 }
925 
926 void (*poke_srmmu)(void) = NULL;
927 
928 void __init srmmu_paging_init(void)
929 {
930 	int i;
931 	phandle cpunode;
932 	char node_str[128];
933 	pgd_t *pgd;
934 	p4d_t *p4d;
935 	pud_t *pud;
936 	pmd_t *pmd;
937 	pte_t *pte;
938 	unsigned long pages_avail;
939 
940 	init_mm.context = (unsigned long) NO_CONTEXT;
941 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
942 
943 	if (sparc_cpu_model == sun4d)
944 		num_contexts = 65536; /* We know it is Viking */
945 	else {
946 		/* Find the number of contexts on the srmmu. */
947 		cpunode = prom_getchild(prom_root_node);
948 		num_contexts = 0;
949 		while (cpunode != 0) {
950 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
951 			if (!strcmp(node_str, "cpu")) {
952 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
953 				break;
954 			}
955 			cpunode = prom_getsibling(cpunode);
956 		}
957 	}
958 
959 	if (!num_contexts) {
960 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
961 		prom_halt();
962 	}
963 
964 	pages_avail = 0;
965 	last_valid_pfn = bootmem_init(&pages_avail);
966 
967 	srmmu_nocache_calcsize();
968 	srmmu_nocache_init();
969 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
970 	map_kernel();
971 
972 	/* ctx table has to be physically aligned to its size */
973 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
974 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
975 
976 	for (i = 0; i < num_contexts; i++)
977 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
978 
979 	flush_cache_all();
980 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
981 #ifdef CONFIG_SMP
982 	/* Stop from hanging here... */
983 	local_ops->tlb_all();
984 #else
985 	flush_tlb_all();
986 #endif
987 	poke_srmmu();
988 
989 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
990 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
991 
992 	srmmu_allocate_ptable_skeleton(
993 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
994 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
995 
996 	pgd = pgd_offset_k(PKMAP_BASE);
997 	p4d = p4d_offset(pgd, PKMAP_BASE);
998 	pud = pud_offset(p4d, PKMAP_BASE);
999 	pmd = pmd_offset(pud, PKMAP_BASE);
1000 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
1001 	pkmap_page_table = pte;
1002 
1003 	flush_cache_all();
1004 	flush_tlb_all();
1005 
1006 	sparc_context_init(num_contexts);
1007 
1008 	kmap_init();
1009 
1010 	{
1011 		unsigned long zones_size[MAX_NR_ZONES];
1012 		unsigned long zholes_size[MAX_NR_ZONES];
1013 		unsigned long npages;
1014 		int znum;
1015 
1016 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1017 			zones_size[znum] = zholes_size[znum] = 0;
1018 
1019 		npages = max_low_pfn - pfn_base;
1020 
1021 		zones_size[ZONE_DMA] = npages;
1022 		zholes_size[ZONE_DMA] = npages - pages_avail;
1023 
1024 		npages = highend_pfn - max_low_pfn;
1025 		zones_size[ZONE_HIGHMEM] = npages;
1026 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1027 
1028 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1029 	}
1030 }
1031 
1032 void mmu_info(struct seq_file *m)
1033 {
1034 	seq_printf(m,
1035 		   "MMU type\t: %s\n"
1036 		   "contexts\t: %d\n"
1037 		   "nocache total\t: %ld\n"
1038 		   "nocache used\t: %d\n",
1039 		   srmmu_name,
1040 		   num_contexts,
1041 		   srmmu_nocache_size,
1042 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1043 }
1044 
1045 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1046 {
1047 	mm->context = NO_CONTEXT;
1048 	return 0;
1049 }
1050 
1051 void destroy_context(struct mm_struct *mm)
1052 {
1053 	unsigned long flags;
1054 
1055 	if (mm->context != NO_CONTEXT) {
1056 		flush_cache_mm(mm);
1057 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1058 		flush_tlb_mm(mm);
1059 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1060 		free_context(mm->context);
1061 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1062 		mm->context = NO_CONTEXT;
1063 	}
1064 }
1065 
1066 /* Init various srmmu chip types. */
1067 static void __init srmmu_is_bad(void)
1068 {
1069 	prom_printf("Could not determine SRMMU chip type.\n");
1070 	prom_halt();
1071 }
1072 
1073 static void __init init_vac_layout(void)
1074 {
1075 	phandle nd;
1076 	int cache_lines;
1077 	char node_str[128];
1078 #ifdef CONFIG_SMP
1079 	int cpu = 0;
1080 	unsigned long max_size = 0;
1081 	unsigned long min_line_size = 0x10000000;
1082 #endif
1083 
1084 	nd = prom_getchild(prom_root_node);
1085 	while ((nd = prom_getsibling(nd)) != 0) {
1086 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1087 		if (!strcmp(node_str, "cpu")) {
1088 			vac_line_size = prom_getint(nd, "cache-line-size");
1089 			if (vac_line_size == -1) {
1090 				prom_printf("can't determine cache-line-size, halting.\n");
1091 				prom_halt();
1092 			}
1093 			cache_lines = prom_getint(nd, "cache-nlines");
1094 			if (cache_lines == -1) {
1095 				prom_printf("can't determine cache-nlines, halting.\n");
1096 				prom_halt();
1097 			}
1098 
1099 			vac_cache_size = cache_lines * vac_line_size;
1100 #ifdef CONFIG_SMP
1101 			if (vac_cache_size > max_size)
1102 				max_size = vac_cache_size;
1103 			if (vac_line_size < min_line_size)
1104 				min_line_size = vac_line_size;
1105 			//FIXME: cpus not contiguous!!
1106 			cpu++;
1107 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1108 				break;
1109 #else
1110 			break;
1111 #endif
1112 		}
1113 	}
1114 	if (nd == 0) {
1115 		prom_printf("No CPU nodes found, halting.\n");
1116 		prom_halt();
1117 	}
1118 #ifdef CONFIG_SMP
1119 	vac_cache_size = max_size;
1120 	vac_line_size = min_line_size;
1121 #endif
1122 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1123 	       (int)vac_cache_size, (int)vac_line_size);
1124 }
1125 
1126 static void poke_hypersparc(void)
1127 {
1128 	volatile unsigned long clear;
1129 	unsigned long mreg = srmmu_get_mmureg();
1130 
1131 	hyper_flush_unconditional_combined();
1132 
1133 	mreg &= ~(HYPERSPARC_CWENABLE);
1134 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1135 	mreg |= (HYPERSPARC_CMODE);
1136 
1137 	srmmu_set_mmureg(mreg);
1138 
1139 #if 0 /* XXX I think this is bad news... -DaveM */
1140 	hyper_clear_all_tags();
1141 #endif
1142 
1143 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1144 	hyper_flush_whole_icache();
1145 	clear = srmmu_get_faddr();
1146 	clear = srmmu_get_fstatus();
1147 }
1148 
1149 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1150 	.cache_all	= hypersparc_flush_cache_all,
1151 	.cache_mm	= hypersparc_flush_cache_mm,
1152 	.cache_page	= hypersparc_flush_cache_page,
1153 	.cache_range	= hypersparc_flush_cache_range,
1154 	.tlb_all	= hypersparc_flush_tlb_all,
1155 	.tlb_mm		= hypersparc_flush_tlb_mm,
1156 	.tlb_page	= hypersparc_flush_tlb_page,
1157 	.tlb_range	= hypersparc_flush_tlb_range,
1158 	.page_to_ram	= hypersparc_flush_page_to_ram,
1159 	.sig_insns	= hypersparc_flush_sig_insns,
1160 	.page_for_dma	= hypersparc_flush_page_for_dma,
1161 };
1162 
1163 static void __init init_hypersparc(void)
1164 {
1165 	srmmu_name = "ROSS HyperSparc";
1166 	srmmu_modtype = HyperSparc;
1167 
1168 	init_vac_layout();
1169 
1170 	is_hypersparc = 1;
1171 	sparc32_cachetlb_ops = &hypersparc_ops;
1172 
1173 	poke_srmmu = poke_hypersparc;
1174 
1175 	hypersparc_setup_blockops();
1176 }
1177 
1178 static void poke_swift(void)
1179 {
1180 	unsigned long mreg;
1181 
1182 	/* Clear any crap from the cache or else... */
1183 	swift_flush_cache_all();
1184 
1185 	/* Enable I & D caches */
1186 	mreg = srmmu_get_mmureg();
1187 	mreg |= (SWIFT_IE | SWIFT_DE);
1188 	/*
1189 	 * The Swift branch folding logic is completely broken.  At
1190 	 * trap time, if things are just right, if can mistakenly
1191 	 * think that a trap is coming from kernel mode when in fact
1192 	 * it is coming from user mode (it mis-executes the branch in
1193 	 * the trap code).  So you see things like crashme completely
1194 	 * hosing your machine which is completely unacceptable.  Turn
1195 	 * this shit off... nice job Fujitsu.
1196 	 */
1197 	mreg &= ~(SWIFT_BF);
1198 	srmmu_set_mmureg(mreg);
1199 }
1200 
1201 static const struct sparc32_cachetlb_ops swift_ops = {
1202 	.cache_all	= swift_flush_cache_all,
1203 	.cache_mm	= swift_flush_cache_mm,
1204 	.cache_page	= swift_flush_cache_page,
1205 	.cache_range	= swift_flush_cache_range,
1206 	.tlb_all	= swift_flush_tlb_all,
1207 	.tlb_mm		= swift_flush_tlb_mm,
1208 	.tlb_page	= swift_flush_tlb_page,
1209 	.tlb_range	= swift_flush_tlb_range,
1210 	.page_to_ram	= swift_flush_page_to_ram,
1211 	.sig_insns	= swift_flush_sig_insns,
1212 	.page_for_dma	= swift_flush_page_for_dma,
1213 };
1214 
1215 #define SWIFT_MASKID_ADDR  0x10003018
1216 static void __init init_swift(void)
1217 {
1218 	unsigned long swift_rev;
1219 
1220 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1221 			     "srl %0, 0x18, %0\n\t" :
1222 			     "=r" (swift_rev) :
1223 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1224 	srmmu_name = "Fujitsu Swift";
1225 	switch (swift_rev) {
1226 	case 0x11:
1227 	case 0x20:
1228 	case 0x23:
1229 	case 0x30:
1230 		srmmu_modtype = Swift_lots_o_bugs;
1231 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1232 		/*
1233 		 * Gee george, I wonder why Sun is so hush hush about
1234 		 * this hardware bug... really braindamage stuff going
1235 		 * on here.  However I think we can find a way to avoid
1236 		 * all of the workaround overhead under Linux.  Basically,
1237 		 * any page fault can cause kernel pages to become user
1238 		 * accessible (the mmu gets confused and clears some of
1239 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1240 		 * horrible eh?  But wait, after extensive testing it appears
1241 		 * that if you use pgd_t level large kernel pte's (like the
1242 		 * 4MB pages on the Pentium) the bug does not get tripped
1243 		 * at all.  This avoids almost all of the major overhead.
1244 		 * Welcome to a world where your vendor tells you to,
1245 		 * "apply this kernel patch" instead of "sorry for the
1246 		 * broken hardware, send it back and we'll give you
1247 		 * properly functioning parts"
1248 		 */
1249 		break;
1250 	case 0x25:
1251 	case 0x31:
1252 		srmmu_modtype = Swift_bad_c;
1253 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1254 		/*
1255 		 * You see Sun allude to this hardware bug but never
1256 		 * admit things directly, they'll say things like,
1257 		 * "the Swift chip cache problems" or similar.
1258 		 */
1259 		break;
1260 	default:
1261 		srmmu_modtype = Swift_ok;
1262 		break;
1263 	}
1264 
1265 	sparc32_cachetlb_ops = &swift_ops;
1266 	flush_page_for_dma_global = 0;
1267 
1268 	/*
1269 	 * Are you now convinced that the Swift is one of the
1270 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1271 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1272 	 * you examined the microcode of the Swift you'd find
1273 	 * XXX's all over the place.
1274 	 */
1275 	poke_srmmu = poke_swift;
1276 }
1277 
1278 static void turbosparc_flush_cache_all(void)
1279 {
1280 	flush_user_windows();
1281 	turbosparc_idflash_clear();
1282 }
1283 
1284 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1285 {
1286 	FLUSH_BEGIN(mm)
1287 	flush_user_windows();
1288 	turbosparc_idflash_clear();
1289 	FLUSH_END
1290 }
1291 
1292 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1293 {
1294 	FLUSH_BEGIN(vma->vm_mm)
1295 	flush_user_windows();
1296 	turbosparc_idflash_clear();
1297 	FLUSH_END
1298 }
1299 
1300 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1301 {
1302 	FLUSH_BEGIN(vma->vm_mm)
1303 	flush_user_windows();
1304 	if (vma->vm_flags & VM_EXEC)
1305 		turbosparc_flush_icache();
1306 	turbosparc_flush_dcache();
1307 	FLUSH_END
1308 }
1309 
1310 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1311 static void turbosparc_flush_page_to_ram(unsigned long page)
1312 {
1313 #ifdef TURBOSPARC_WRITEBACK
1314 	volatile unsigned long clear;
1315 
1316 	if (srmmu_probe(page))
1317 		turbosparc_flush_page_cache(page);
1318 	clear = srmmu_get_fstatus();
1319 #endif
1320 }
1321 
1322 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1323 {
1324 }
1325 
1326 static void turbosparc_flush_page_for_dma(unsigned long page)
1327 {
1328 	turbosparc_flush_dcache();
1329 }
1330 
1331 static void turbosparc_flush_tlb_all(void)
1332 {
1333 	srmmu_flush_whole_tlb();
1334 }
1335 
1336 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1337 {
1338 	FLUSH_BEGIN(mm)
1339 	srmmu_flush_whole_tlb();
1340 	FLUSH_END
1341 }
1342 
1343 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1344 {
1345 	FLUSH_BEGIN(vma->vm_mm)
1346 	srmmu_flush_whole_tlb();
1347 	FLUSH_END
1348 }
1349 
1350 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1351 {
1352 	FLUSH_BEGIN(vma->vm_mm)
1353 	srmmu_flush_whole_tlb();
1354 	FLUSH_END
1355 }
1356 
1357 
1358 static void poke_turbosparc(void)
1359 {
1360 	unsigned long mreg = srmmu_get_mmureg();
1361 	unsigned long ccreg;
1362 
1363 	/* Clear any crap from the cache or else... */
1364 	turbosparc_flush_cache_all();
1365 	/* Temporarily disable I & D caches */
1366 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1367 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1368 	srmmu_set_mmureg(mreg);
1369 
1370 	ccreg = turbosparc_get_ccreg();
1371 
1372 #ifdef TURBOSPARC_WRITEBACK
1373 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1374 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1375 			/* Write-back D-cache, emulate VLSI
1376 			 * abortion number three, not number one */
1377 #else
1378 	/* For now let's play safe, optimize later */
1379 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1380 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1381 	ccreg &= ~(TURBOSPARC_uS2);
1382 			/* Emulate VLSI abortion number three, not number one */
1383 #endif
1384 
1385 	switch (ccreg & 7) {
1386 	case 0: /* No SE cache */
1387 	case 7: /* Test mode */
1388 		break;
1389 	default:
1390 		ccreg |= (TURBOSPARC_SCENABLE);
1391 	}
1392 	turbosparc_set_ccreg(ccreg);
1393 
1394 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1395 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1396 	srmmu_set_mmureg(mreg);
1397 }
1398 
1399 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1400 	.cache_all	= turbosparc_flush_cache_all,
1401 	.cache_mm	= turbosparc_flush_cache_mm,
1402 	.cache_page	= turbosparc_flush_cache_page,
1403 	.cache_range	= turbosparc_flush_cache_range,
1404 	.tlb_all	= turbosparc_flush_tlb_all,
1405 	.tlb_mm		= turbosparc_flush_tlb_mm,
1406 	.tlb_page	= turbosparc_flush_tlb_page,
1407 	.tlb_range	= turbosparc_flush_tlb_range,
1408 	.page_to_ram	= turbosparc_flush_page_to_ram,
1409 	.sig_insns	= turbosparc_flush_sig_insns,
1410 	.page_for_dma	= turbosparc_flush_page_for_dma,
1411 };
1412 
1413 static void __init init_turbosparc(void)
1414 {
1415 	srmmu_name = "Fujitsu TurboSparc";
1416 	srmmu_modtype = TurboSparc;
1417 	sparc32_cachetlb_ops = &turbosparc_ops;
1418 	poke_srmmu = poke_turbosparc;
1419 }
1420 
1421 static void poke_tsunami(void)
1422 {
1423 	unsigned long mreg = srmmu_get_mmureg();
1424 
1425 	tsunami_flush_icache();
1426 	tsunami_flush_dcache();
1427 	mreg &= ~TSUNAMI_ITD;
1428 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1429 	srmmu_set_mmureg(mreg);
1430 }
1431 
1432 static const struct sparc32_cachetlb_ops tsunami_ops = {
1433 	.cache_all	= tsunami_flush_cache_all,
1434 	.cache_mm	= tsunami_flush_cache_mm,
1435 	.cache_page	= tsunami_flush_cache_page,
1436 	.cache_range	= tsunami_flush_cache_range,
1437 	.tlb_all	= tsunami_flush_tlb_all,
1438 	.tlb_mm		= tsunami_flush_tlb_mm,
1439 	.tlb_page	= tsunami_flush_tlb_page,
1440 	.tlb_range	= tsunami_flush_tlb_range,
1441 	.page_to_ram	= tsunami_flush_page_to_ram,
1442 	.sig_insns	= tsunami_flush_sig_insns,
1443 	.page_for_dma	= tsunami_flush_page_for_dma,
1444 };
1445 
1446 static void __init init_tsunami(void)
1447 {
1448 	/*
1449 	 * Tsunami's pretty sane, Sun and TI actually got it
1450 	 * somewhat right this time.  Fujitsu should have
1451 	 * taken some lessons from them.
1452 	 */
1453 
1454 	srmmu_name = "TI Tsunami";
1455 	srmmu_modtype = Tsunami;
1456 	sparc32_cachetlb_ops = &tsunami_ops;
1457 	poke_srmmu = poke_tsunami;
1458 
1459 	tsunami_setup_blockops();
1460 }
1461 
1462 static void poke_viking(void)
1463 {
1464 	unsigned long mreg = srmmu_get_mmureg();
1465 	static int smp_catch;
1466 
1467 	if (viking_mxcc_present) {
1468 		unsigned long mxcc_control = mxcc_get_creg();
1469 
1470 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1471 		mxcc_control &= ~(MXCC_CTL_RRC);
1472 		mxcc_set_creg(mxcc_control);
1473 
1474 		/*
1475 		 * We don't need memory parity checks.
1476 		 * XXX This is a mess, have to dig out later. ecd.
1477 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1478 		 */
1479 
1480 		/* We do cache ptables on MXCC. */
1481 		mreg |= VIKING_TCENABLE;
1482 	} else {
1483 		unsigned long bpreg;
1484 
1485 		mreg &= ~(VIKING_TCENABLE);
1486 		if (smp_catch++) {
1487 			/* Must disable mixed-cmd mode here for other cpu's. */
1488 			bpreg = viking_get_bpreg();
1489 			bpreg &= ~(VIKING_ACTION_MIX);
1490 			viking_set_bpreg(bpreg);
1491 
1492 			/* Just in case PROM does something funny. */
1493 			msi_set_sync();
1494 		}
1495 	}
1496 
1497 	mreg |= VIKING_SPENABLE;
1498 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1499 	mreg |= VIKING_SBENABLE;
1500 	mreg &= ~(VIKING_ACENABLE);
1501 	srmmu_set_mmureg(mreg);
1502 }
1503 
1504 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1505 	.cache_all	= viking_flush_cache_all,
1506 	.cache_mm	= viking_flush_cache_mm,
1507 	.cache_page	= viking_flush_cache_page,
1508 	.cache_range	= viking_flush_cache_range,
1509 	.tlb_all	= viking_flush_tlb_all,
1510 	.tlb_mm		= viking_flush_tlb_mm,
1511 	.tlb_page	= viking_flush_tlb_page,
1512 	.tlb_range	= viking_flush_tlb_range,
1513 	.page_to_ram	= viking_flush_page_to_ram,
1514 	.sig_insns	= viking_flush_sig_insns,
1515 	.page_for_dma	= viking_flush_page_for_dma,
1516 };
1517 
1518 #ifdef CONFIG_SMP
1519 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1520  * perform the local TLB flush and all the other cpus will see it.
1521  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1522  * that requires that we add some synchronization to these flushes.
1523  *
1524  * The bug is that the fifo which keeps track of all the pending TLB
1525  * broadcasts in the system is an entry or two too small, so if we
1526  * have too many going at once we'll overflow that fifo and lose a TLB
1527  * flush resulting in corruption.
1528  *
1529  * Our workaround is to take a global spinlock around the TLB flushes,
1530  * which guarentees we won't ever have too many pending.  It's a big
1531  * hammer, but a semaphore like system to make sure we only have N TLB
1532  * flushes going at once will require SMP locking anyways so there's
1533  * no real value in trying any harder than this.
1534  */
1535 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1536 	.cache_all	= viking_flush_cache_all,
1537 	.cache_mm	= viking_flush_cache_mm,
1538 	.cache_page	= viking_flush_cache_page,
1539 	.cache_range	= viking_flush_cache_range,
1540 	.tlb_all	= sun4dsmp_flush_tlb_all,
1541 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1542 	.tlb_page	= sun4dsmp_flush_tlb_page,
1543 	.tlb_range	= sun4dsmp_flush_tlb_range,
1544 	.page_to_ram	= viking_flush_page_to_ram,
1545 	.sig_insns	= viking_flush_sig_insns,
1546 	.page_for_dma	= viking_flush_page_for_dma,
1547 };
1548 #endif
1549 
1550 static void __init init_viking(void)
1551 {
1552 	unsigned long mreg = srmmu_get_mmureg();
1553 
1554 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1555 	if (mreg & VIKING_MMODE) {
1556 		srmmu_name = "TI Viking";
1557 		viking_mxcc_present = 0;
1558 		msi_set_sync();
1559 
1560 		/*
1561 		 * We need this to make sure old viking takes no hits
1562 		 * on it's cache for dma snoops to workaround the
1563 		 * "load from non-cacheable memory" interrupt bug.
1564 		 * This is only necessary because of the new way in
1565 		 * which we use the IOMMU.
1566 		 */
1567 		viking_ops.page_for_dma = viking_flush_page;
1568 #ifdef CONFIG_SMP
1569 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1570 #endif
1571 		flush_page_for_dma_global = 0;
1572 	} else {
1573 		srmmu_name = "TI Viking/MXCC";
1574 		viking_mxcc_present = 1;
1575 		srmmu_cache_pagetables = 1;
1576 	}
1577 
1578 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1579 		&viking_ops;
1580 #ifdef CONFIG_SMP
1581 	if (sparc_cpu_model == sun4d)
1582 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1583 			&viking_sun4d_smp_ops;
1584 #endif
1585 
1586 	poke_srmmu = poke_viking;
1587 }
1588 
1589 /* Probe for the srmmu chip version. */
1590 static void __init get_srmmu_type(void)
1591 {
1592 	unsigned long mreg, psr;
1593 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1594 
1595 	srmmu_modtype = SRMMU_INVAL_MOD;
1596 	hwbug_bitmask = 0;
1597 
1598 	mreg = srmmu_get_mmureg(); psr = get_psr();
1599 	mod_typ = (mreg & 0xf0000000) >> 28;
1600 	mod_rev = (mreg & 0x0f000000) >> 24;
1601 	psr_typ = (psr >> 28) & 0xf;
1602 	psr_vers = (psr >> 24) & 0xf;
1603 
1604 	/* First, check for sparc-leon. */
1605 	if (sparc_cpu_model == sparc_leon) {
1606 		init_leon();
1607 		return;
1608 	}
1609 
1610 	/* Second, check for HyperSparc or Cypress. */
1611 	if (mod_typ == 1) {
1612 		switch (mod_rev) {
1613 		case 7:
1614 			/* UP or MP Hypersparc */
1615 			init_hypersparc();
1616 			break;
1617 		case 0:
1618 		case 2:
1619 		case 10:
1620 		case 11:
1621 		case 12:
1622 		case 13:
1623 		case 14:
1624 		case 15:
1625 		default:
1626 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1627 			prom_halt();
1628 			break;
1629 		}
1630 		return;
1631 	}
1632 
1633 	/* Now Fujitsu TurboSparc. It might happen that it is
1634 	 * in Swift emulation mode, so we will check later...
1635 	 */
1636 	if (psr_typ == 0 && psr_vers == 5) {
1637 		init_turbosparc();
1638 		return;
1639 	}
1640 
1641 	/* Next check for Fujitsu Swift. */
1642 	if (psr_typ == 0 && psr_vers == 4) {
1643 		phandle cpunode;
1644 		char node_str[128];
1645 
1646 		/* Look if it is not a TurboSparc emulating Swift... */
1647 		cpunode = prom_getchild(prom_root_node);
1648 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1649 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1650 			if (!strcmp(node_str, "cpu")) {
1651 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1652 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1653 					init_turbosparc();
1654 					return;
1655 				}
1656 				break;
1657 			}
1658 		}
1659 
1660 		init_swift();
1661 		return;
1662 	}
1663 
1664 	/* Now the Viking family of srmmu. */
1665 	if (psr_typ == 4 &&
1666 	   ((psr_vers == 0) ||
1667 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1668 		init_viking();
1669 		return;
1670 	}
1671 
1672 	/* Finally the Tsunami. */
1673 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1674 		init_tsunami();
1675 		return;
1676 	}
1677 
1678 	/* Oh well */
1679 	srmmu_is_bad();
1680 }
1681 
1682 #ifdef CONFIG_SMP
1683 /* Local cross-calls. */
1684 static void smp_flush_page_for_dma(unsigned long page)
1685 {
1686 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1687 	local_ops->page_for_dma(page);
1688 }
1689 
1690 static void smp_flush_cache_all(void)
1691 {
1692 	xc0((smpfunc_t) local_ops->cache_all);
1693 	local_ops->cache_all();
1694 }
1695 
1696 static void smp_flush_tlb_all(void)
1697 {
1698 	xc0((smpfunc_t) local_ops->tlb_all);
1699 	local_ops->tlb_all();
1700 }
1701 
1702 static void smp_flush_cache_mm(struct mm_struct *mm)
1703 {
1704 	if (mm->context != NO_CONTEXT) {
1705 		cpumask_t cpu_mask;
1706 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1707 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1708 		if (!cpumask_empty(&cpu_mask))
1709 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1710 		local_ops->cache_mm(mm);
1711 	}
1712 }
1713 
1714 static void smp_flush_tlb_mm(struct mm_struct *mm)
1715 {
1716 	if (mm->context != NO_CONTEXT) {
1717 		cpumask_t cpu_mask;
1718 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1719 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1720 		if (!cpumask_empty(&cpu_mask)) {
1721 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1722 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1723 				cpumask_copy(mm_cpumask(mm),
1724 					     cpumask_of(smp_processor_id()));
1725 		}
1726 		local_ops->tlb_mm(mm);
1727 	}
1728 }
1729 
1730 static void smp_flush_cache_range(struct vm_area_struct *vma,
1731 				  unsigned long start,
1732 				  unsigned long end)
1733 {
1734 	struct mm_struct *mm = vma->vm_mm;
1735 
1736 	if (mm->context != NO_CONTEXT) {
1737 		cpumask_t cpu_mask;
1738 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740 		if (!cpumask_empty(&cpu_mask))
1741 			xc3((smpfunc_t) local_ops->cache_range,
1742 			    (unsigned long) vma, start, end);
1743 		local_ops->cache_range(vma, start, end);
1744 	}
1745 }
1746 
1747 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1748 				unsigned long start,
1749 				unsigned long end)
1750 {
1751 	struct mm_struct *mm = vma->vm_mm;
1752 
1753 	if (mm->context != NO_CONTEXT) {
1754 		cpumask_t cpu_mask;
1755 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1756 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1757 		if (!cpumask_empty(&cpu_mask))
1758 			xc3((smpfunc_t) local_ops->tlb_range,
1759 			    (unsigned long) vma, start, end);
1760 		local_ops->tlb_range(vma, start, end);
1761 	}
1762 }
1763 
1764 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1765 {
1766 	struct mm_struct *mm = vma->vm_mm;
1767 
1768 	if (mm->context != NO_CONTEXT) {
1769 		cpumask_t cpu_mask;
1770 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1771 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1772 		if (!cpumask_empty(&cpu_mask))
1773 			xc2((smpfunc_t) local_ops->cache_page,
1774 			    (unsigned long) vma, page);
1775 		local_ops->cache_page(vma, page);
1776 	}
1777 }
1778 
1779 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1780 {
1781 	struct mm_struct *mm = vma->vm_mm;
1782 
1783 	if (mm->context != NO_CONTEXT) {
1784 		cpumask_t cpu_mask;
1785 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1786 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1787 		if (!cpumask_empty(&cpu_mask))
1788 			xc2((smpfunc_t) local_ops->tlb_page,
1789 			    (unsigned long) vma, page);
1790 		local_ops->tlb_page(vma, page);
1791 	}
1792 }
1793 
1794 static void smp_flush_page_to_ram(unsigned long page)
1795 {
1796 	/* Current theory is that those who call this are the one's
1797 	 * who have just dirtied their cache with the pages contents
1798 	 * in kernel space, therefore we only run this on local cpu.
1799 	 *
1800 	 * XXX This experiment failed, research further... -DaveM
1801 	 */
1802 #if 1
1803 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1804 #endif
1805 	local_ops->page_to_ram(page);
1806 }
1807 
1808 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1809 {
1810 	cpumask_t cpu_mask;
1811 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1812 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1813 	if (!cpumask_empty(&cpu_mask))
1814 		xc2((smpfunc_t) local_ops->sig_insns,
1815 		    (unsigned long) mm, insn_addr);
1816 	local_ops->sig_insns(mm, insn_addr);
1817 }
1818 
1819 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1820 	.cache_all	= smp_flush_cache_all,
1821 	.cache_mm	= smp_flush_cache_mm,
1822 	.cache_page	= smp_flush_cache_page,
1823 	.cache_range	= smp_flush_cache_range,
1824 	.tlb_all	= smp_flush_tlb_all,
1825 	.tlb_mm		= smp_flush_tlb_mm,
1826 	.tlb_page	= smp_flush_tlb_page,
1827 	.tlb_range	= smp_flush_tlb_range,
1828 	.page_to_ram	= smp_flush_page_to_ram,
1829 	.sig_insns	= smp_flush_sig_insns,
1830 	.page_for_dma	= smp_flush_page_for_dma,
1831 };
1832 #endif
1833 
1834 /* Load up routines and constants for sun4m and sun4d mmu */
1835 void __init load_mmu(void)
1836 {
1837 	/* Functions */
1838 	get_srmmu_type();
1839 
1840 #ifdef CONFIG_SMP
1841 	/* El switcheroo... */
1842 	local_ops = sparc32_cachetlb_ops;
1843 
1844 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1845 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1846 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1847 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1848 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1849 	}
1850 
1851 	if (poke_srmmu == poke_viking) {
1852 		/* Avoid unnecessary cross calls. */
1853 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1854 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1855 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1856 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1857 
1858 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1859 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1860 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1861 	}
1862 
1863 	/* It really is const after this point. */
1864 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1865 		&smp_cachetlb_ops;
1866 #endif
1867 
1868 	if (sparc_cpu_model == sun4d)
1869 		ld_mmu_iounit();
1870 	else
1871 		ld_mmu_iommu();
1872 #ifdef CONFIG_SMP
1873 	if (sparc_cpu_model == sun4d)
1874 		sun4d_init_smp();
1875 	else if (sparc_cpu_model == sparc_leon)
1876 		leon_init_smp();
1877 	else
1878 		sun4m_init_smp();
1879 #endif
1880 }
1881