1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * srmmu.c: SRMMU specific routines for memory management. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 10 */ 11 12 #include <linux/seq_file.h> 13 #include <linux/spinlock.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/kdebug.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/log2.h> 22 #include <linux/gfp.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 26 #include <asm/mmu_context.h> 27 #include <asm/cacheflush.h> 28 #include <asm/tlbflush.h> 29 #include <asm/io-unit.h> 30 #include <asm/pgalloc.h> 31 #include <asm/pgtable.h> 32 #include <asm/bitext.h> 33 #include <asm/vaddrs.h> 34 #include <asm/cache.h> 35 #include <asm/traps.h> 36 #include <asm/oplib.h> 37 #include <asm/mbus.h> 38 #include <asm/page.h> 39 #include <asm/asi.h> 40 #include <asm/smp.h> 41 #include <asm/io.h> 42 43 /* Now the cpu specific definitions. */ 44 #include <asm/turbosparc.h> 45 #include <asm/tsunami.h> 46 #include <asm/viking.h> 47 #include <asm/swift.h> 48 #include <asm/leon.h> 49 #include <asm/mxcc.h> 50 #include <asm/ross.h> 51 52 #include "mm_32.h" 53 54 enum mbus_module srmmu_modtype; 55 static unsigned int hwbug_bitmask; 56 int vac_cache_size; 57 EXPORT_SYMBOL(vac_cache_size); 58 int vac_line_size; 59 60 extern struct resource sparc_iomap; 61 62 extern unsigned long last_valid_pfn; 63 64 static pgd_t *srmmu_swapper_pg_dir; 65 66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 67 EXPORT_SYMBOL(sparc32_cachetlb_ops); 68 69 #ifdef CONFIG_SMP 70 const struct sparc32_cachetlb_ops *local_ops; 71 72 #define FLUSH_BEGIN(mm) 73 #define FLUSH_END 74 #else 75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 76 #define FLUSH_END } 77 #endif 78 79 int flush_page_for_dma_global = 1; 80 81 char *srmmu_name; 82 83 ctxd_t *srmmu_ctx_table_phys; 84 static ctxd_t *srmmu_context_table; 85 86 int viking_mxcc_present; 87 static DEFINE_SPINLOCK(srmmu_context_spinlock); 88 89 static int is_hypersparc; 90 91 static int srmmu_cache_pagetables; 92 93 /* these will be initialized in srmmu_nocache_calcsize() */ 94 static unsigned long srmmu_nocache_size; 95 static unsigned long srmmu_nocache_end; 96 97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 99 100 /* The context table is a nocache user with the biggest alignment needs. */ 101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 102 103 void *srmmu_nocache_pool; 104 static struct bit_map srmmu_nocache_map; 105 106 static inline int srmmu_pmd_none(pmd_t pmd) 107 { return !(pmd_val(pmd) & 0xFFFFFFF); } 108 109 /* XXX should we hyper_flush_whole_icache here - Anton */ 110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 111 { 112 pte_t pte; 113 114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); 115 set_pte((pte_t *)ctxp, pte); 116 } 117 118 /* 119 * Locations of MSI Registers. 120 */ 121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ 122 123 /* 124 * Useful bits in the MSI Registers. 125 */ 126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ 127 128 static void msi_set_sync(void) 129 { 130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" 131 "andn %%g3, %2, %%g3\n\t" 132 "sta %%g3, [%0] %1\n\t" : : 133 "r" (MSI_MBUS_ARBEN), 134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); 135 } 136 137 void pmd_set(pmd_t *pmdp, pte_t *ptep) 138 { 139 unsigned long ptp = __nocache_pa(ptep) >> 4; 140 set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); 141 } 142 143 /* 144 * size: bytes to allocate in the nocache area. 145 * align: bytes, number to align at. 146 * Returns the virtual address of the allocated area. 147 */ 148 static void *__srmmu_get_nocache(int size, int align) 149 { 150 int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; 151 unsigned long addr; 152 153 if (size < minsz) { 154 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 155 size); 156 size = minsz; 157 } 158 if (size & (minsz - 1)) { 159 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", 160 size); 161 size += minsz - 1; 162 } 163 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 164 165 offset = bit_map_string_get(&srmmu_nocache_map, 166 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 167 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 168 if (offset == -1) { 169 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 170 size, (int) srmmu_nocache_size, 171 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 172 return NULL; 173 } 174 175 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 176 return (void *)addr; 177 } 178 179 void *srmmu_get_nocache(int size, int align) 180 { 181 void *tmp; 182 183 tmp = __srmmu_get_nocache(size, align); 184 185 if (tmp) 186 memset(tmp, 0, size); 187 188 return tmp; 189 } 190 191 void srmmu_free_nocache(void *addr, int size) 192 { 193 unsigned long vaddr; 194 int offset; 195 196 vaddr = (unsigned long)addr; 197 if (vaddr < SRMMU_NOCACHE_VADDR) { 198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 200 BUG(); 201 } 202 if (vaddr + size > srmmu_nocache_end) { 203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 204 vaddr, srmmu_nocache_end); 205 BUG(); 206 } 207 if (!is_power_of_2(size)) { 208 printk("Size 0x%x is not a power of 2\n", size); 209 BUG(); 210 } 211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 212 printk("Size 0x%x is too small\n", size); 213 BUG(); 214 } 215 if (vaddr & (size - 1)) { 216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 217 BUG(); 218 } 219 220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 222 223 bit_map_clear(&srmmu_nocache_map, offset, size); 224 } 225 226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 227 unsigned long end); 228 229 /* Return how much physical memory we have. */ 230 static unsigned long __init probe_memory(void) 231 { 232 unsigned long total = 0; 233 int i; 234 235 for (i = 0; sp_banks[i].num_bytes; i++) 236 total += sp_banks[i].num_bytes; 237 238 return total; 239 } 240 241 /* 242 * Reserve nocache dynamically proportionally to the amount of 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 244 */ 245 static void __init srmmu_nocache_calcsize(void) 246 { 247 unsigned long sysmemavail = probe_memory() / 1024; 248 int srmmu_nocache_npages; 249 250 srmmu_nocache_npages = 251 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 252 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 254 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 255 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 256 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 257 258 /* anything above 1280 blows up */ 259 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 260 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 261 262 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 263 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 264 } 265 266 static void __init srmmu_nocache_init(void) 267 { 268 void *srmmu_nocache_bitmap; 269 unsigned int bitmap_bits; 270 pgd_t *pgd; 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *pte; 275 unsigned long paddr, vaddr; 276 unsigned long pteval; 277 278 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 279 280 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size, 281 SRMMU_NOCACHE_ALIGN_MAX); 282 if (!srmmu_nocache_pool) 283 panic("%s: Failed to allocate %lu bytes align=0x%x\n", 284 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); 285 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 286 287 srmmu_nocache_bitmap = 288 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 289 SMP_CACHE_BYTES); 290 if (!srmmu_nocache_bitmap) 291 panic("%s: Failed to allocate %zu bytes\n", __func__, 292 BITS_TO_LONGS(bitmap_bits) * sizeof(long)); 293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 294 295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 297 init_mm.pgd = srmmu_swapper_pg_dir; 298 299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 300 301 paddr = __pa((unsigned long)srmmu_nocache_pool); 302 vaddr = SRMMU_NOCACHE_VADDR; 303 304 while (vaddr < srmmu_nocache_end) { 305 pgd = pgd_offset_k(vaddr); 306 p4d = p4d_offset(pgd, vaddr); 307 pud = pud_offset(p4d, vaddr); 308 pmd = pmd_offset(__nocache_fix(pud), vaddr); 309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 310 311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 312 313 if (srmmu_cache_pagetables) 314 pteval |= SRMMU_CACHE; 315 316 set_pte(__nocache_fix(pte), __pte(pteval)); 317 318 vaddr += PAGE_SIZE; 319 paddr += PAGE_SIZE; 320 } 321 322 flush_cache_all(); 323 flush_tlb_all(); 324 } 325 326 pgd_t *get_pgd_fast(void) 327 { 328 pgd_t *pgd = NULL; 329 330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 331 if (pgd) { 332 pgd_t *init = pgd_offset_k(0); 333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 336 } 337 338 return pgd; 339 } 340 341 /* 342 * Hardware needs alignment to 256 only, but we align to whole page size 343 * to reduce fragmentation problems due to the buddy principle. 344 * XXX Provide actual fragmentation statistics in /proc. 345 * 346 * Alignments up to the page size are the same for physical and virtual 347 * addresses of the nocache area. 348 */ 349 pgtable_t pte_alloc_one(struct mm_struct *mm) 350 { 351 pte_t *ptep; 352 struct page *page; 353 354 if (!(ptep = pte_alloc_one_kernel(mm))) 355 return NULL; 356 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); 357 spin_lock(&mm->page_table_lock); 358 if (page_ref_inc_return(page) == 2 && 359 !pagetable_pte_ctor(page_ptdesc(page))) { 360 page_ref_dec(page); 361 ptep = NULL; 362 } 363 spin_unlock(&mm->page_table_lock); 364 365 return ptep; 366 } 367 368 void pte_free(struct mm_struct *mm, pgtable_t ptep) 369 { 370 struct page *page; 371 372 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); 373 spin_lock(&mm->page_table_lock); 374 if (page_ref_dec_return(page) == 1) 375 pagetable_pte_dtor(page_ptdesc(page)); 376 spin_unlock(&mm->page_table_lock); 377 378 srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); 379 } 380 381 /* context handling - a dynamically sized pool is used */ 382 #define NO_CONTEXT -1 383 384 struct ctx_list { 385 struct ctx_list *next; 386 struct ctx_list *prev; 387 unsigned int ctx_number; 388 struct mm_struct *ctx_mm; 389 }; 390 391 static struct ctx_list *ctx_list_pool; 392 static struct ctx_list ctx_free; 393 static struct ctx_list ctx_used; 394 395 /* At boot time we determine the number of contexts */ 396 static int num_contexts; 397 398 static inline void remove_from_ctx_list(struct ctx_list *entry) 399 { 400 entry->next->prev = entry->prev; 401 entry->prev->next = entry->next; 402 } 403 404 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 405 { 406 entry->next = head; 407 (entry->prev = head->prev)->next = entry; 408 head->prev = entry; 409 } 410 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 411 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 412 413 414 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 415 { 416 struct ctx_list *ctxp; 417 418 ctxp = ctx_free.next; 419 if (ctxp != &ctx_free) { 420 remove_from_ctx_list(ctxp); 421 add_to_used_ctxlist(ctxp); 422 mm->context = ctxp->ctx_number; 423 ctxp->ctx_mm = mm; 424 return; 425 } 426 ctxp = ctx_used.next; 427 if (ctxp->ctx_mm == old_mm) 428 ctxp = ctxp->next; 429 if (ctxp == &ctx_used) 430 panic("out of mmu contexts"); 431 flush_cache_mm(ctxp->ctx_mm); 432 flush_tlb_mm(ctxp->ctx_mm); 433 remove_from_ctx_list(ctxp); 434 add_to_used_ctxlist(ctxp); 435 ctxp->ctx_mm->context = NO_CONTEXT; 436 ctxp->ctx_mm = mm; 437 mm->context = ctxp->ctx_number; 438 } 439 440 static inline void free_context(int context) 441 { 442 struct ctx_list *ctx_old; 443 444 ctx_old = ctx_list_pool + context; 445 remove_from_ctx_list(ctx_old); 446 add_to_free_ctxlist(ctx_old); 447 } 448 449 static void __init sparc_context_init(int numctx) 450 { 451 int ctx; 452 unsigned long size; 453 454 size = numctx * sizeof(struct ctx_list); 455 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES); 456 if (!ctx_list_pool) 457 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 458 459 for (ctx = 0; ctx < numctx; ctx++) { 460 struct ctx_list *clist; 461 462 clist = (ctx_list_pool + ctx); 463 clist->ctx_number = ctx; 464 clist->ctx_mm = NULL; 465 } 466 ctx_free.next = ctx_free.prev = &ctx_free; 467 ctx_used.next = ctx_used.prev = &ctx_used; 468 for (ctx = 0; ctx < numctx; ctx++) 469 add_to_free_ctxlist(ctx_list_pool + ctx); 470 } 471 472 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 473 struct task_struct *tsk) 474 { 475 unsigned long flags; 476 477 if (mm->context == NO_CONTEXT) { 478 spin_lock_irqsave(&srmmu_context_spinlock, flags); 479 alloc_context(old_mm, mm); 480 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 481 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 482 } 483 484 if (sparc_cpu_model == sparc_leon) 485 leon_switch_mm(); 486 487 if (is_hypersparc) 488 hyper_flush_whole_icache(); 489 490 srmmu_set_context(mm->context); 491 } 492 493 /* Low level IO area allocation on the SRMMU. */ 494 static inline void srmmu_mapioaddr(unsigned long physaddr, 495 unsigned long virt_addr, int bus_type) 496 { 497 pgd_t *pgdp; 498 p4d_t *p4dp; 499 pud_t *pudp; 500 pmd_t *pmdp; 501 pte_t *ptep; 502 unsigned long tmp; 503 504 physaddr &= PAGE_MASK; 505 pgdp = pgd_offset_k(virt_addr); 506 p4dp = p4d_offset(pgdp, virt_addr); 507 pudp = pud_offset(p4dp, virt_addr); 508 pmdp = pmd_offset(pudp, virt_addr); 509 ptep = pte_offset_kernel(pmdp, virt_addr); 510 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 511 512 /* I need to test whether this is consistent over all 513 * sun4m's. The bus_type represents the upper 4 bits of 514 * 36-bit physical address on the I/O space lines... 515 */ 516 tmp |= (bus_type << 28); 517 tmp |= SRMMU_PRIV; 518 __flush_page_to_ram(virt_addr); 519 set_pte(ptep, __pte(tmp)); 520 } 521 522 void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 523 unsigned long xva, unsigned int len) 524 { 525 while (len != 0) { 526 len -= PAGE_SIZE; 527 srmmu_mapioaddr(xpa, xva, bus); 528 xva += PAGE_SIZE; 529 xpa += PAGE_SIZE; 530 } 531 flush_tlb_all(); 532 } 533 534 static inline void srmmu_unmapioaddr(unsigned long virt_addr) 535 { 536 pgd_t *pgdp; 537 p4d_t *p4dp; 538 pud_t *pudp; 539 pmd_t *pmdp; 540 pte_t *ptep; 541 542 543 pgdp = pgd_offset_k(virt_addr); 544 p4dp = p4d_offset(pgdp, virt_addr); 545 pudp = pud_offset(p4dp, virt_addr); 546 pmdp = pmd_offset(pudp, virt_addr); 547 ptep = pte_offset_kernel(pmdp, virt_addr); 548 549 /* No need to flush uncacheable page. */ 550 __pte_clear(ptep); 551 } 552 553 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 554 { 555 while (len != 0) { 556 len -= PAGE_SIZE; 557 srmmu_unmapioaddr(virt_addr); 558 virt_addr += PAGE_SIZE; 559 } 560 flush_tlb_all(); 561 } 562 563 /* tsunami.S */ 564 extern void tsunami_flush_cache_all(void); 565 extern void tsunami_flush_cache_mm(struct mm_struct *mm); 566 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 567 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 568 extern void tsunami_flush_page_to_ram(unsigned long page); 569 extern void tsunami_flush_page_for_dma(unsigned long page); 570 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 571 extern void tsunami_flush_tlb_all(void); 572 extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 573 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 574 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 575 extern void tsunami_setup_blockops(void); 576 577 /* swift.S */ 578 extern void swift_flush_cache_all(void); 579 extern void swift_flush_cache_mm(struct mm_struct *mm); 580 extern void swift_flush_cache_range(struct vm_area_struct *vma, 581 unsigned long start, unsigned long end); 582 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 583 extern void swift_flush_page_to_ram(unsigned long page); 584 extern void swift_flush_page_for_dma(unsigned long page); 585 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 586 extern void swift_flush_tlb_all(void); 587 extern void swift_flush_tlb_mm(struct mm_struct *mm); 588 extern void swift_flush_tlb_range(struct vm_area_struct *vma, 589 unsigned long start, unsigned long end); 590 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 591 592 #if 0 /* P3: deadwood to debug precise flushes on Swift. */ 593 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 594 { 595 int cctx, ctx1; 596 597 page &= PAGE_MASK; 598 if ((ctx1 = vma->vm_mm->context) != -1) { 599 cctx = srmmu_get_context(); 600 /* Is context # ever different from current context? P3 */ 601 if (cctx != ctx1) { 602 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 603 srmmu_set_context(ctx1); 604 swift_flush_page(page); 605 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 606 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 607 srmmu_set_context(cctx); 608 } else { 609 /* Rm. prot. bits from virt. c. */ 610 /* swift_flush_cache_all(); */ 611 /* swift_flush_cache_page(vma, page); */ 612 swift_flush_page(page); 613 614 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 615 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 616 /* same as above: srmmu_flush_tlb_page() */ 617 } 618 } 619 } 620 #endif 621 622 /* 623 * The following are all MBUS based SRMMU modules, and therefore could 624 * be found in a multiprocessor configuration. On the whole, these 625 * chips seems to be much more touchy about DVMA and page tables 626 * with respect to cache coherency. 627 */ 628 629 /* viking.S */ 630 extern void viking_flush_cache_all(void); 631 extern void viking_flush_cache_mm(struct mm_struct *mm); 632 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 633 unsigned long end); 634 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 635 extern void viking_flush_page_to_ram(unsigned long page); 636 extern void viking_flush_page_for_dma(unsigned long page); 637 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 638 extern void viking_flush_page(unsigned long page); 639 extern void viking_mxcc_flush_page(unsigned long page); 640 extern void viking_flush_tlb_all(void); 641 extern void viking_flush_tlb_mm(struct mm_struct *mm); 642 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 643 unsigned long end); 644 extern void viking_flush_tlb_page(struct vm_area_struct *vma, 645 unsigned long page); 646 extern void sun4dsmp_flush_tlb_all(void); 647 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 648 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 649 unsigned long end); 650 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 651 unsigned long page); 652 653 /* hypersparc.S */ 654 extern void hypersparc_flush_cache_all(void); 655 extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 656 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 657 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 658 extern void hypersparc_flush_page_to_ram(unsigned long page); 659 extern void hypersparc_flush_page_for_dma(unsigned long page); 660 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 661 extern void hypersparc_flush_tlb_all(void); 662 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 663 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 664 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 665 extern void hypersparc_setup_blockops(void); 666 667 /* 668 * NOTE: All of this startup code assumes the low 16mb (approx.) of 669 * kernel mappings are done with one single contiguous chunk of 670 * ram. On small ram machines (classics mainly) we only get 671 * around 8mb mapped for us. 672 */ 673 674 static void __init early_pgtable_allocfail(char *type) 675 { 676 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 677 prom_halt(); 678 } 679 680 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 681 unsigned long end) 682 { 683 pgd_t *pgdp; 684 p4d_t *p4dp; 685 pud_t *pudp; 686 pmd_t *pmdp; 687 pte_t *ptep; 688 689 while (start < end) { 690 pgdp = pgd_offset_k(start); 691 p4dp = p4d_offset(pgdp, start); 692 pudp = pud_offset(p4dp, start); 693 if (pud_none(*__nocache_fix(pudp))) { 694 pmdp = __srmmu_get_nocache( 695 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 696 if (pmdp == NULL) 697 early_pgtable_allocfail("pmd"); 698 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 699 pud_set(__nocache_fix(pudp), pmdp); 700 } 701 pmdp = pmd_offset(__nocache_fix(pudp), start); 702 if (srmmu_pmd_none(*__nocache_fix(pmdp))) { 703 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 704 if (ptep == NULL) 705 early_pgtable_allocfail("pte"); 706 memset(__nocache_fix(ptep), 0, PTE_SIZE); 707 pmd_set(__nocache_fix(pmdp), ptep); 708 } 709 if (start > (0xffffffffUL - PMD_SIZE)) 710 break; 711 start = (start + PMD_SIZE) & PMD_MASK; 712 } 713 } 714 715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 716 unsigned long end) 717 { 718 pgd_t *pgdp; 719 p4d_t *p4dp; 720 pud_t *pudp; 721 pmd_t *pmdp; 722 pte_t *ptep; 723 724 while (start < end) { 725 pgdp = pgd_offset_k(start); 726 p4dp = p4d_offset(pgdp, start); 727 pudp = pud_offset(p4dp, start); 728 if (pud_none(*pudp)) { 729 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 730 if (pmdp == NULL) 731 early_pgtable_allocfail("pmd"); 732 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 733 pud_set((pud_t *)pgdp, pmdp); 734 } 735 pmdp = pmd_offset(pudp, start); 736 if (srmmu_pmd_none(*pmdp)) { 737 ptep = __srmmu_get_nocache(PTE_SIZE, 738 PTE_SIZE); 739 if (ptep == NULL) 740 early_pgtable_allocfail("pte"); 741 memset(ptep, 0, PTE_SIZE); 742 pmd_set(pmdp, ptep); 743 } 744 if (start > (0xffffffffUL - PMD_SIZE)) 745 break; 746 start = (start + PMD_SIZE) & PMD_MASK; 747 } 748 } 749 750 /* These flush types are not available on all chips... */ 751 static inline unsigned long srmmu_probe(unsigned long vaddr) 752 { 753 unsigned long retval; 754 755 if (sparc_cpu_model != sparc_leon) { 756 757 vaddr &= PAGE_MASK; 758 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 759 "=r" (retval) : 760 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 761 } else { 762 retval = leon_swprobe(vaddr, NULL); 763 } 764 return retval; 765 } 766 767 /* 768 * This is much cleaner than poking around physical address space 769 * looking at the prom's page table directly which is what most 770 * other OS's do. Yuck... this is much better. 771 */ 772 static void __init srmmu_inherit_prom_mappings(unsigned long start, 773 unsigned long end) 774 { 775 unsigned long probed; 776 unsigned long addr; 777 pgd_t *pgdp; 778 p4d_t *p4dp; 779 pud_t *pudp; 780 pmd_t *pmdp; 781 pte_t *ptep; 782 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 783 784 while (start <= end) { 785 if (start == 0) 786 break; /* probably wrap around */ 787 if (start == 0xfef00000) 788 start = KADB_DEBUGGER_BEGVM; 789 probed = srmmu_probe(start); 790 if (!probed) { 791 /* continue probing until we find an entry */ 792 start += PAGE_SIZE; 793 continue; 794 } 795 796 /* A red snapper, see what it really is. */ 797 what = 0; 798 addr = start - PAGE_SIZE; 799 800 if (!(start & ~(PMD_MASK))) { 801 if (srmmu_probe(addr + PMD_SIZE) == probed) 802 what = 1; 803 } 804 805 if (!(start & ~(PGDIR_MASK))) { 806 if (srmmu_probe(addr + PGDIR_SIZE) == probed) 807 what = 2; 808 } 809 810 pgdp = pgd_offset_k(start); 811 p4dp = p4d_offset(pgdp, start); 812 pudp = pud_offset(p4dp, start); 813 if (what == 2) { 814 *__nocache_fix(pgdp) = __pgd(probed); 815 start += PGDIR_SIZE; 816 continue; 817 } 818 if (pud_none(*__nocache_fix(pudp))) { 819 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 820 SRMMU_PMD_TABLE_SIZE); 821 if (pmdp == NULL) 822 early_pgtable_allocfail("pmd"); 823 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 824 pud_set(__nocache_fix(pudp), pmdp); 825 } 826 pmdp = pmd_offset(__nocache_fix(pudp), start); 827 if (what == 1) { 828 *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); 829 start += PMD_SIZE; 830 continue; 831 } 832 if (srmmu_pmd_none(*__nocache_fix(pmdp))) { 833 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 834 if (ptep == NULL) 835 early_pgtable_allocfail("pte"); 836 memset(__nocache_fix(ptep), 0, PTE_SIZE); 837 pmd_set(__nocache_fix(pmdp), ptep); 838 } 839 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 840 *__nocache_fix(ptep) = __pte(probed); 841 start += PAGE_SIZE; 842 } 843 } 844 845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 846 847 /* Create a third-level SRMMU 16MB page mapping. */ 848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 849 { 850 pgd_t *pgdp = pgd_offset_k(vaddr); 851 unsigned long big_pte; 852 853 big_pte = KERNEL_PTE(phys_base >> 4); 854 *__nocache_fix(pgdp) = __pgd(big_pte); 855 } 856 857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 859 { 860 unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); 861 unsigned long vstart = (vbase & PGDIR_MASK); 862 unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 863 /* Map "low" memory only */ 864 const unsigned long min_vaddr = PAGE_OFFSET; 865 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 866 867 if (vstart < min_vaddr || vstart >= max_vaddr) 868 return vstart; 869 870 if (vend > max_vaddr || vend < min_vaddr) 871 vend = max_vaddr; 872 873 while (vstart < vend) { 874 do_large_mapping(vstart, pstart); 875 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; 876 } 877 return vstart; 878 } 879 880 static void __init map_kernel(void) 881 { 882 int i; 883 884 if (phys_base > 0) { 885 do_large_mapping(PAGE_OFFSET, phys_base); 886 } 887 888 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 889 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 890 } 891 } 892 893 void (*poke_srmmu)(void) = NULL; 894 895 void __init srmmu_paging_init(void) 896 { 897 int i; 898 phandle cpunode; 899 char node_str[128]; 900 pgd_t *pgd; 901 p4d_t *p4d; 902 pud_t *pud; 903 pmd_t *pmd; 904 pte_t *pte; 905 unsigned long pages_avail; 906 907 init_mm.context = (unsigned long) NO_CONTEXT; 908 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 909 910 if (sparc_cpu_model == sun4d) 911 num_contexts = 65536; /* We know it is Viking */ 912 else { 913 /* Find the number of contexts on the srmmu. */ 914 cpunode = prom_getchild(prom_root_node); 915 num_contexts = 0; 916 while (cpunode != 0) { 917 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 918 if (!strcmp(node_str, "cpu")) { 919 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 920 break; 921 } 922 cpunode = prom_getsibling(cpunode); 923 } 924 } 925 926 if (!num_contexts) { 927 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 928 prom_halt(); 929 } 930 931 pages_avail = 0; 932 last_valid_pfn = bootmem_init(&pages_avail); 933 934 srmmu_nocache_calcsize(); 935 srmmu_nocache_init(); 936 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 937 map_kernel(); 938 939 /* ctx table has to be physically aligned to its size */ 940 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 941 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); 942 943 for (i = 0; i < num_contexts; i++) 944 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 945 946 flush_cache_all(); 947 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 948 #ifdef CONFIG_SMP 949 /* Stop from hanging here... */ 950 local_ops->tlb_all(); 951 #else 952 flush_tlb_all(); 953 #endif 954 poke_srmmu(); 955 956 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 957 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 958 959 srmmu_allocate_ptable_skeleton( 960 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 961 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 962 963 pgd = pgd_offset_k(PKMAP_BASE); 964 p4d = p4d_offset(pgd, PKMAP_BASE); 965 pud = pud_offset(p4d, PKMAP_BASE); 966 pmd = pmd_offset(pud, PKMAP_BASE); 967 pte = pte_offset_kernel(pmd, PKMAP_BASE); 968 pkmap_page_table = pte; 969 970 flush_cache_all(); 971 flush_tlb_all(); 972 973 sparc_context_init(num_contexts); 974 975 { 976 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; 977 978 max_zone_pfn[ZONE_DMA] = max_low_pfn; 979 max_zone_pfn[ZONE_NORMAL] = max_low_pfn; 980 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; 981 982 free_area_init(max_zone_pfn); 983 } 984 } 985 986 void mmu_info(struct seq_file *m) 987 { 988 seq_printf(m, 989 "MMU type\t: %s\n" 990 "contexts\t: %d\n" 991 "nocache total\t: %ld\n" 992 "nocache used\t: %d\n", 993 srmmu_name, 994 num_contexts, 995 srmmu_nocache_size, 996 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 997 } 998 999 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 1000 { 1001 mm->context = NO_CONTEXT; 1002 return 0; 1003 } 1004 1005 void destroy_context(struct mm_struct *mm) 1006 { 1007 unsigned long flags; 1008 1009 if (mm->context != NO_CONTEXT) { 1010 flush_cache_mm(mm); 1011 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1012 flush_tlb_mm(mm); 1013 spin_lock_irqsave(&srmmu_context_spinlock, flags); 1014 free_context(mm->context); 1015 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 1016 mm->context = NO_CONTEXT; 1017 } 1018 } 1019 1020 /* Init various srmmu chip types. */ 1021 static void __init srmmu_is_bad(void) 1022 { 1023 prom_printf("Could not determine SRMMU chip type.\n"); 1024 prom_halt(); 1025 } 1026 1027 static void __init init_vac_layout(void) 1028 { 1029 phandle nd; 1030 int cache_lines; 1031 char node_str[128]; 1032 #ifdef CONFIG_SMP 1033 int cpu = 0; 1034 unsigned long max_size = 0; 1035 unsigned long min_line_size = 0x10000000; 1036 #endif 1037 1038 nd = prom_getchild(prom_root_node); 1039 while ((nd = prom_getsibling(nd)) != 0) { 1040 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1041 if (!strcmp(node_str, "cpu")) { 1042 vac_line_size = prom_getint(nd, "cache-line-size"); 1043 if (vac_line_size == -1) { 1044 prom_printf("can't determine cache-line-size, halting.\n"); 1045 prom_halt(); 1046 } 1047 cache_lines = prom_getint(nd, "cache-nlines"); 1048 if (cache_lines == -1) { 1049 prom_printf("can't determine cache-nlines, halting.\n"); 1050 prom_halt(); 1051 } 1052 1053 vac_cache_size = cache_lines * vac_line_size; 1054 #ifdef CONFIG_SMP 1055 if (vac_cache_size > max_size) 1056 max_size = vac_cache_size; 1057 if (vac_line_size < min_line_size) 1058 min_line_size = vac_line_size; 1059 //FIXME: cpus not contiguous!! 1060 cpu++; 1061 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1062 break; 1063 #else 1064 break; 1065 #endif 1066 } 1067 } 1068 if (nd == 0) { 1069 prom_printf("No CPU nodes found, halting.\n"); 1070 prom_halt(); 1071 } 1072 #ifdef CONFIG_SMP 1073 vac_cache_size = max_size; 1074 vac_line_size = min_line_size; 1075 #endif 1076 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1077 (int)vac_cache_size, (int)vac_line_size); 1078 } 1079 1080 static void poke_hypersparc(void) 1081 { 1082 volatile unsigned long clear; 1083 unsigned long mreg = srmmu_get_mmureg(); 1084 1085 hyper_flush_unconditional_combined(); 1086 1087 mreg &= ~(HYPERSPARC_CWENABLE); 1088 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1089 mreg |= (HYPERSPARC_CMODE); 1090 1091 srmmu_set_mmureg(mreg); 1092 1093 #if 0 /* XXX I think this is bad news... -DaveM */ 1094 hyper_clear_all_tags(); 1095 #endif 1096 1097 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1098 hyper_flush_whole_icache(); 1099 clear = srmmu_get_faddr(); 1100 clear = srmmu_get_fstatus(); 1101 } 1102 1103 static const struct sparc32_cachetlb_ops hypersparc_ops = { 1104 .cache_all = hypersparc_flush_cache_all, 1105 .cache_mm = hypersparc_flush_cache_mm, 1106 .cache_page = hypersparc_flush_cache_page, 1107 .cache_range = hypersparc_flush_cache_range, 1108 .tlb_all = hypersparc_flush_tlb_all, 1109 .tlb_mm = hypersparc_flush_tlb_mm, 1110 .tlb_page = hypersparc_flush_tlb_page, 1111 .tlb_range = hypersparc_flush_tlb_range, 1112 .page_to_ram = hypersparc_flush_page_to_ram, 1113 .sig_insns = hypersparc_flush_sig_insns, 1114 .page_for_dma = hypersparc_flush_page_for_dma, 1115 }; 1116 1117 static void __init init_hypersparc(void) 1118 { 1119 srmmu_name = "ROSS HyperSparc"; 1120 srmmu_modtype = HyperSparc; 1121 1122 init_vac_layout(); 1123 1124 is_hypersparc = 1; 1125 sparc32_cachetlb_ops = &hypersparc_ops; 1126 1127 poke_srmmu = poke_hypersparc; 1128 1129 hypersparc_setup_blockops(); 1130 } 1131 1132 static void poke_swift(void) 1133 { 1134 unsigned long mreg; 1135 1136 /* Clear any crap from the cache or else... */ 1137 swift_flush_cache_all(); 1138 1139 /* Enable I & D caches */ 1140 mreg = srmmu_get_mmureg(); 1141 mreg |= (SWIFT_IE | SWIFT_DE); 1142 /* 1143 * The Swift branch folding logic is completely broken. At 1144 * trap time, if things are just right, if can mistakenly 1145 * think that a trap is coming from kernel mode when in fact 1146 * it is coming from user mode (it mis-executes the branch in 1147 * the trap code). So you see things like crashme completely 1148 * hosing your machine which is completely unacceptable. Turn 1149 * this shit off... nice job Fujitsu. 1150 */ 1151 mreg &= ~(SWIFT_BF); 1152 srmmu_set_mmureg(mreg); 1153 } 1154 1155 static const struct sparc32_cachetlb_ops swift_ops = { 1156 .cache_all = swift_flush_cache_all, 1157 .cache_mm = swift_flush_cache_mm, 1158 .cache_page = swift_flush_cache_page, 1159 .cache_range = swift_flush_cache_range, 1160 .tlb_all = swift_flush_tlb_all, 1161 .tlb_mm = swift_flush_tlb_mm, 1162 .tlb_page = swift_flush_tlb_page, 1163 .tlb_range = swift_flush_tlb_range, 1164 .page_to_ram = swift_flush_page_to_ram, 1165 .sig_insns = swift_flush_sig_insns, 1166 .page_for_dma = swift_flush_page_for_dma, 1167 }; 1168 1169 #define SWIFT_MASKID_ADDR 0x10003018 1170 static void __init init_swift(void) 1171 { 1172 unsigned long swift_rev; 1173 1174 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1175 "srl %0, 0x18, %0\n\t" : 1176 "=r" (swift_rev) : 1177 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1178 srmmu_name = "Fujitsu Swift"; 1179 switch (swift_rev) { 1180 case 0x11: 1181 case 0x20: 1182 case 0x23: 1183 case 0x30: 1184 srmmu_modtype = Swift_lots_o_bugs; 1185 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1186 /* 1187 * Gee george, I wonder why Sun is so hush hush about 1188 * this hardware bug... really braindamage stuff going 1189 * on here. However I think we can find a way to avoid 1190 * all of the workaround overhead under Linux. Basically, 1191 * any page fault can cause kernel pages to become user 1192 * accessible (the mmu gets confused and clears some of 1193 * the ACC bits in kernel ptes). Aha, sounds pretty 1194 * horrible eh? But wait, after extensive testing it appears 1195 * that if you use pgd_t level large kernel pte's (like the 1196 * 4MB pages on the Pentium) the bug does not get tripped 1197 * at all. This avoids almost all of the major overhead. 1198 * Welcome to a world where your vendor tells you to, 1199 * "apply this kernel patch" instead of "sorry for the 1200 * broken hardware, send it back and we'll give you 1201 * properly functioning parts" 1202 */ 1203 break; 1204 case 0x25: 1205 case 0x31: 1206 srmmu_modtype = Swift_bad_c; 1207 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1208 /* 1209 * You see Sun allude to this hardware bug but never 1210 * admit things directly, they'll say things like, 1211 * "the Swift chip cache problems" or similar. 1212 */ 1213 break; 1214 default: 1215 srmmu_modtype = Swift_ok; 1216 break; 1217 } 1218 1219 sparc32_cachetlb_ops = &swift_ops; 1220 flush_page_for_dma_global = 0; 1221 1222 /* 1223 * Are you now convinced that the Swift is one of the 1224 * biggest VLSI abortions of all time? Bravo Fujitsu! 1225 * Fujitsu, the !#?!%$'d up processor people. I bet if 1226 * you examined the microcode of the Swift you'd find 1227 * XXX's all over the place. 1228 */ 1229 poke_srmmu = poke_swift; 1230 } 1231 1232 static void turbosparc_flush_cache_all(void) 1233 { 1234 flush_user_windows(); 1235 turbosparc_idflash_clear(); 1236 } 1237 1238 static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1239 { 1240 FLUSH_BEGIN(mm) 1241 flush_user_windows(); 1242 turbosparc_idflash_clear(); 1243 FLUSH_END 1244 } 1245 1246 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1247 { 1248 FLUSH_BEGIN(vma->vm_mm) 1249 flush_user_windows(); 1250 turbosparc_idflash_clear(); 1251 FLUSH_END 1252 } 1253 1254 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1255 { 1256 FLUSH_BEGIN(vma->vm_mm) 1257 flush_user_windows(); 1258 if (vma->vm_flags & VM_EXEC) 1259 turbosparc_flush_icache(); 1260 turbosparc_flush_dcache(); 1261 FLUSH_END 1262 } 1263 1264 /* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1265 static void turbosparc_flush_page_to_ram(unsigned long page) 1266 { 1267 #ifdef TURBOSPARC_WRITEBACK 1268 volatile unsigned long clear; 1269 1270 if (srmmu_probe(page)) 1271 turbosparc_flush_page_cache(page); 1272 clear = srmmu_get_fstatus(); 1273 #endif 1274 } 1275 1276 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1277 { 1278 } 1279 1280 static void turbosparc_flush_page_for_dma(unsigned long page) 1281 { 1282 turbosparc_flush_dcache(); 1283 } 1284 1285 static void turbosparc_flush_tlb_all(void) 1286 { 1287 srmmu_flush_whole_tlb(); 1288 } 1289 1290 static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1291 { 1292 FLUSH_BEGIN(mm) 1293 srmmu_flush_whole_tlb(); 1294 FLUSH_END 1295 } 1296 1297 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1298 { 1299 FLUSH_BEGIN(vma->vm_mm) 1300 srmmu_flush_whole_tlb(); 1301 FLUSH_END 1302 } 1303 1304 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1305 { 1306 FLUSH_BEGIN(vma->vm_mm) 1307 srmmu_flush_whole_tlb(); 1308 FLUSH_END 1309 } 1310 1311 1312 static void poke_turbosparc(void) 1313 { 1314 unsigned long mreg = srmmu_get_mmureg(); 1315 unsigned long ccreg; 1316 1317 /* Clear any crap from the cache or else... */ 1318 turbosparc_flush_cache_all(); 1319 /* Temporarily disable I & D caches */ 1320 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1321 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1322 srmmu_set_mmureg(mreg); 1323 1324 ccreg = turbosparc_get_ccreg(); 1325 1326 #ifdef TURBOSPARC_WRITEBACK 1327 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1328 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1329 /* Write-back D-cache, emulate VLSI 1330 * abortion number three, not number one */ 1331 #else 1332 /* For now let's play safe, optimize later */ 1333 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1334 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1335 ccreg &= ~(TURBOSPARC_uS2); 1336 /* Emulate VLSI abortion number three, not number one */ 1337 #endif 1338 1339 switch (ccreg & 7) { 1340 case 0: /* No SE cache */ 1341 case 7: /* Test mode */ 1342 break; 1343 default: 1344 ccreg |= (TURBOSPARC_SCENABLE); 1345 } 1346 turbosparc_set_ccreg(ccreg); 1347 1348 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1349 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1350 srmmu_set_mmureg(mreg); 1351 } 1352 1353 static const struct sparc32_cachetlb_ops turbosparc_ops = { 1354 .cache_all = turbosparc_flush_cache_all, 1355 .cache_mm = turbosparc_flush_cache_mm, 1356 .cache_page = turbosparc_flush_cache_page, 1357 .cache_range = turbosparc_flush_cache_range, 1358 .tlb_all = turbosparc_flush_tlb_all, 1359 .tlb_mm = turbosparc_flush_tlb_mm, 1360 .tlb_page = turbosparc_flush_tlb_page, 1361 .tlb_range = turbosparc_flush_tlb_range, 1362 .page_to_ram = turbosparc_flush_page_to_ram, 1363 .sig_insns = turbosparc_flush_sig_insns, 1364 .page_for_dma = turbosparc_flush_page_for_dma, 1365 }; 1366 1367 static void __init init_turbosparc(void) 1368 { 1369 srmmu_name = "Fujitsu TurboSparc"; 1370 srmmu_modtype = TurboSparc; 1371 sparc32_cachetlb_ops = &turbosparc_ops; 1372 poke_srmmu = poke_turbosparc; 1373 } 1374 1375 static void poke_tsunami(void) 1376 { 1377 unsigned long mreg = srmmu_get_mmureg(); 1378 1379 tsunami_flush_icache(); 1380 tsunami_flush_dcache(); 1381 mreg &= ~TSUNAMI_ITD; 1382 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1383 srmmu_set_mmureg(mreg); 1384 } 1385 1386 static const struct sparc32_cachetlb_ops tsunami_ops = { 1387 .cache_all = tsunami_flush_cache_all, 1388 .cache_mm = tsunami_flush_cache_mm, 1389 .cache_page = tsunami_flush_cache_page, 1390 .cache_range = tsunami_flush_cache_range, 1391 .tlb_all = tsunami_flush_tlb_all, 1392 .tlb_mm = tsunami_flush_tlb_mm, 1393 .tlb_page = tsunami_flush_tlb_page, 1394 .tlb_range = tsunami_flush_tlb_range, 1395 .page_to_ram = tsunami_flush_page_to_ram, 1396 .sig_insns = tsunami_flush_sig_insns, 1397 .page_for_dma = tsunami_flush_page_for_dma, 1398 }; 1399 1400 static void __init init_tsunami(void) 1401 { 1402 /* 1403 * Tsunami's pretty sane, Sun and TI actually got it 1404 * somewhat right this time. Fujitsu should have 1405 * taken some lessons from them. 1406 */ 1407 1408 srmmu_name = "TI Tsunami"; 1409 srmmu_modtype = Tsunami; 1410 sparc32_cachetlb_ops = &tsunami_ops; 1411 poke_srmmu = poke_tsunami; 1412 1413 tsunami_setup_blockops(); 1414 } 1415 1416 static void poke_viking(void) 1417 { 1418 unsigned long mreg = srmmu_get_mmureg(); 1419 static int smp_catch; 1420 1421 if (viking_mxcc_present) { 1422 unsigned long mxcc_control = mxcc_get_creg(); 1423 1424 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1425 mxcc_control &= ~(MXCC_CTL_RRC); 1426 mxcc_set_creg(mxcc_control); 1427 1428 /* 1429 * We don't need memory parity checks. 1430 * XXX This is a mess, have to dig out later. ecd. 1431 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1432 */ 1433 1434 /* We do cache ptables on MXCC. */ 1435 mreg |= VIKING_TCENABLE; 1436 } else { 1437 unsigned long bpreg; 1438 1439 mreg &= ~(VIKING_TCENABLE); 1440 if (smp_catch++) { 1441 /* Must disable mixed-cmd mode here for other cpu's. */ 1442 bpreg = viking_get_bpreg(); 1443 bpreg &= ~(VIKING_ACTION_MIX); 1444 viking_set_bpreg(bpreg); 1445 1446 /* Just in case PROM does something funny. */ 1447 msi_set_sync(); 1448 } 1449 } 1450 1451 mreg |= VIKING_SPENABLE; 1452 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1453 mreg |= VIKING_SBENABLE; 1454 mreg &= ~(VIKING_ACENABLE); 1455 srmmu_set_mmureg(mreg); 1456 } 1457 1458 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { 1459 .cache_all = viking_flush_cache_all, 1460 .cache_mm = viking_flush_cache_mm, 1461 .cache_page = viking_flush_cache_page, 1462 .cache_range = viking_flush_cache_range, 1463 .tlb_all = viking_flush_tlb_all, 1464 .tlb_mm = viking_flush_tlb_mm, 1465 .tlb_page = viking_flush_tlb_page, 1466 .tlb_range = viking_flush_tlb_range, 1467 .page_to_ram = viking_flush_page_to_ram, 1468 .sig_insns = viking_flush_sig_insns, 1469 .page_for_dma = viking_flush_page_for_dma, 1470 }; 1471 1472 #ifdef CONFIG_SMP 1473 /* On sun4d the cpu broadcasts local TLB flushes, so we can just 1474 * perform the local TLB flush and all the other cpus will see it. 1475 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1476 * that requires that we add some synchronization to these flushes. 1477 * 1478 * The bug is that the fifo which keeps track of all the pending TLB 1479 * broadcasts in the system is an entry or two too small, so if we 1480 * have too many going at once we'll overflow that fifo and lose a TLB 1481 * flush resulting in corruption. 1482 * 1483 * Our workaround is to take a global spinlock around the TLB flushes, 1484 * which guarentees we won't ever have too many pending. It's a big 1485 * hammer, but a semaphore like system to make sure we only have N TLB 1486 * flushes going at once will require SMP locking anyways so there's 1487 * no real value in trying any harder than this. 1488 */ 1489 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { 1490 .cache_all = viking_flush_cache_all, 1491 .cache_mm = viking_flush_cache_mm, 1492 .cache_page = viking_flush_cache_page, 1493 .cache_range = viking_flush_cache_range, 1494 .tlb_all = sun4dsmp_flush_tlb_all, 1495 .tlb_mm = sun4dsmp_flush_tlb_mm, 1496 .tlb_page = sun4dsmp_flush_tlb_page, 1497 .tlb_range = sun4dsmp_flush_tlb_range, 1498 .page_to_ram = viking_flush_page_to_ram, 1499 .sig_insns = viking_flush_sig_insns, 1500 .page_for_dma = viking_flush_page_for_dma, 1501 }; 1502 #endif 1503 1504 static void __init init_viking(void) 1505 { 1506 unsigned long mreg = srmmu_get_mmureg(); 1507 1508 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1509 if (mreg & VIKING_MMODE) { 1510 srmmu_name = "TI Viking"; 1511 viking_mxcc_present = 0; 1512 msi_set_sync(); 1513 1514 /* 1515 * We need this to make sure old viking takes no hits 1516 * on its cache for dma snoops to workaround the 1517 * "load from non-cacheable memory" interrupt bug. 1518 * This is only necessary because of the new way in 1519 * which we use the IOMMU. 1520 */ 1521 viking_ops.page_for_dma = viking_flush_page; 1522 #ifdef CONFIG_SMP 1523 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1524 #endif 1525 flush_page_for_dma_global = 0; 1526 } else { 1527 srmmu_name = "TI Viking/MXCC"; 1528 viking_mxcc_present = 1; 1529 srmmu_cache_pagetables = 1; 1530 } 1531 1532 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1533 &viking_ops; 1534 #ifdef CONFIG_SMP 1535 if (sparc_cpu_model == sun4d) 1536 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1537 &viking_sun4d_smp_ops; 1538 #endif 1539 1540 poke_srmmu = poke_viking; 1541 } 1542 1543 /* Probe for the srmmu chip version. */ 1544 static void __init get_srmmu_type(void) 1545 { 1546 unsigned long mreg, psr; 1547 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1548 1549 srmmu_modtype = SRMMU_INVAL_MOD; 1550 hwbug_bitmask = 0; 1551 1552 mreg = srmmu_get_mmureg(); psr = get_psr(); 1553 mod_typ = (mreg & 0xf0000000) >> 28; 1554 mod_rev = (mreg & 0x0f000000) >> 24; 1555 psr_typ = (psr >> 28) & 0xf; 1556 psr_vers = (psr >> 24) & 0xf; 1557 1558 /* First, check for sparc-leon. */ 1559 if (sparc_cpu_model == sparc_leon) { 1560 init_leon(); 1561 return; 1562 } 1563 1564 /* Second, check for HyperSparc or Cypress. */ 1565 if (mod_typ == 1) { 1566 switch (mod_rev) { 1567 case 7: 1568 /* UP or MP Hypersparc */ 1569 init_hypersparc(); 1570 break; 1571 case 0: 1572 case 2: 1573 case 10: 1574 case 11: 1575 case 12: 1576 case 13: 1577 case 14: 1578 case 15: 1579 default: 1580 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1581 prom_halt(); 1582 break; 1583 } 1584 return; 1585 } 1586 1587 /* Now Fujitsu TurboSparc. It might happen that it is 1588 * in Swift emulation mode, so we will check later... 1589 */ 1590 if (psr_typ == 0 && psr_vers == 5) { 1591 init_turbosparc(); 1592 return; 1593 } 1594 1595 /* Next check for Fujitsu Swift. */ 1596 if (psr_typ == 0 && psr_vers == 4) { 1597 phandle cpunode; 1598 char node_str[128]; 1599 1600 /* Look if it is not a TurboSparc emulating Swift... */ 1601 cpunode = prom_getchild(prom_root_node); 1602 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1603 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1604 if (!strcmp(node_str, "cpu")) { 1605 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1606 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1607 init_turbosparc(); 1608 return; 1609 } 1610 break; 1611 } 1612 } 1613 1614 init_swift(); 1615 return; 1616 } 1617 1618 /* Now the Viking family of srmmu. */ 1619 if (psr_typ == 4 && 1620 ((psr_vers == 0) || 1621 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1622 init_viking(); 1623 return; 1624 } 1625 1626 /* Finally the Tsunami. */ 1627 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1628 init_tsunami(); 1629 return; 1630 } 1631 1632 /* Oh well */ 1633 srmmu_is_bad(); 1634 } 1635 1636 #ifdef CONFIG_SMP 1637 /* Local cross-calls. */ 1638 static void smp_flush_page_for_dma(unsigned long page) 1639 { 1640 xc1(local_ops->page_for_dma, page); 1641 local_ops->page_for_dma(page); 1642 } 1643 1644 static void smp_flush_cache_all(void) 1645 { 1646 xc0(local_ops->cache_all); 1647 local_ops->cache_all(); 1648 } 1649 1650 static void smp_flush_tlb_all(void) 1651 { 1652 xc0(local_ops->tlb_all); 1653 local_ops->tlb_all(); 1654 } 1655 1656 static bool any_other_mm_cpus(struct mm_struct *mm) 1657 { 1658 return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids; 1659 } 1660 1661 static void smp_flush_cache_mm(struct mm_struct *mm) 1662 { 1663 if (mm->context != NO_CONTEXT) { 1664 if (any_other_mm_cpus(mm)) 1665 xc1(local_ops->cache_mm, (unsigned long)mm); 1666 local_ops->cache_mm(mm); 1667 } 1668 } 1669 1670 static void smp_flush_tlb_mm(struct mm_struct *mm) 1671 { 1672 if (mm->context != NO_CONTEXT) { 1673 if (any_other_mm_cpus(mm)) { 1674 xc1(local_ops->tlb_mm, (unsigned long)mm); 1675 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1676 cpumask_copy(mm_cpumask(mm), 1677 cpumask_of(smp_processor_id())); 1678 } 1679 local_ops->tlb_mm(mm); 1680 } 1681 } 1682 1683 static void smp_flush_cache_range(struct vm_area_struct *vma, 1684 unsigned long start, 1685 unsigned long end) 1686 { 1687 struct mm_struct *mm = vma->vm_mm; 1688 1689 if (mm->context != NO_CONTEXT) { 1690 if (any_other_mm_cpus(mm)) 1691 xc3(local_ops->cache_range, (unsigned long)vma, start, 1692 end); 1693 local_ops->cache_range(vma, start, end); 1694 } 1695 } 1696 1697 static void smp_flush_tlb_range(struct vm_area_struct *vma, 1698 unsigned long start, 1699 unsigned long end) 1700 { 1701 struct mm_struct *mm = vma->vm_mm; 1702 1703 if (mm->context != NO_CONTEXT) { 1704 if (any_other_mm_cpus(mm)) 1705 xc3(local_ops->tlb_range, (unsigned long)vma, start, 1706 end); 1707 local_ops->tlb_range(vma, start, end); 1708 } 1709 } 1710 1711 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1712 { 1713 struct mm_struct *mm = vma->vm_mm; 1714 1715 if (mm->context != NO_CONTEXT) { 1716 if (any_other_mm_cpus(mm)) 1717 xc2(local_ops->cache_page, (unsigned long)vma, page); 1718 local_ops->cache_page(vma, page); 1719 } 1720 } 1721 1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1723 { 1724 struct mm_struct *mm = vma->vm_mm; 1725 1726 if (mm->context != NO_CONTEXT) { 1727 if (any_other_mm_cpus(mm)) 1728 xc2(local_ops->tlb_page, (unsigned long)vma, page); 1729 local_ops->tlb_page(vma, page); 1730 } 1731 } 1732 1733 static void smp_flush_page_to_ram(unsigned long page) 1734 { 1735 /* Current theory is that those who call this are the one's 1736 * who have just dirtied their cache with the pages contents 1737 * in kernel space, therefore we only run this on local cpu. 1738 * 1739 * XXX This experiment failed, research further... -DaveM 1740 */ 1741 #if 1 1742 xc1(local_ops->page_to_ram, page); 1743 #endif 1744 local_ops->page_to_ram(page); 1745 } 1746 1747 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1748 { 1749 if (any_other_mm_cpus(mm)) 1750 xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr); 1751 local_ops->sig_insns(mm, insn_addr); 1752 } 1753 1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { 1755 .cache_all = smp_flush_cache_all, 1756 .cache_mm = smp_flush_cache_mm, 1757 .cache_page = smp_flush_cache_page, 1758 .cache_range = smp_flush_cache_range, 1759 .tlb_all = smp_flush_tlb_all, 1760 .tlb_mm = smp_flush_tlb_mm, 1761 .tlb_page = smp_flush_tlb_page, 1762 .tlb_range = smp_flush_tlb_range, 1763 .page_to_ram = smp_flush_page_to_ram, 1764 .sig_insns = smp_flush_sig_insns, 1765 .page_for_dma = smp_flush_page_for_dma, 1766 }; 1767 #endif 1768 1769 /* Load up routines and constants for sun4m and sun4d mmu */ 1770 void __init load_mmu(void) 1771 { 1772 /* Functions */ 1773 get_srmmu_type(); 1774 1775 #ifdef CONFIG_SMP 1776 /* El switcheroo... */ 1777 local_ops = sparc32_cachetlb_ops; 1778 1779 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1780 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1781 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1782 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1783 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1784 } 1785 1786 if (poke_srmmu == poke_viking) { 1787 /* Avoid unnecessary cross calls. */ 1788 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1789 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1790 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1791 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1792 1793 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1794 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1795 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1796 } 1797 1798 /* It really is const after this point. */ 1799 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1800 &smp_cachetlb_ops; 1801 #endif 1802 1803 if (sparc_cpu_model != sun4d) 1804 ld_mmu_iommu(); 1805 #ifdef CONFIG_SMP 1806 if (sparc_cpu_model == sun4d) 1807 sun4d_init_smp(); 1808 else if (sparc_cpu_model == sparc_leon) 1809 leon_init_smp(); 1810 else 1811 sun4m_init_smp(); 1812 #endif 1813 } 1814