xref: /linux/arch/sparc/mm/srmmu.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
50 
51 #include "srmmu.h"
52 
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57 
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
61 
62 extern struct resource sparc_iomap;
63 
64 extern unsigned long last_valid_pfn;
65 
66 static pgd_t *srmmu_swapper_pg_dir;
67 
68 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69 
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
72 
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END	}
78 #endif
79 
80 int flush_page_for_dma_global = 1;
81 
82 char *srmmu_name;
83 
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86 
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 
90 static int is_hypersparc;
91 
92 static int srmmu_cache_pagetables;
93 
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
97 
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 
104 void *srmmu_nocache_pool;
105 void *srmmu_nocache_bitmap;
106 static struct bit_map srmmu_nocache_map;
107 
108 static inline int srmmu_pmd_none(pmd_t pmd)
109 { return !(pmd_val(pmd) & 0xFFFFFFF); }
110 
111 /* XXX should we hyper_flush_whole_icache here - Anton */
112 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
114 
115 void pmd_set(pmd_t *pmdp, pte_t *ptep)
116 {
117 	unsigned long ptp;	/* Physical address, shifted right by 4 */
118 	int i;
119 
120 	ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124 	}
125 }
126 
127 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
128 {
129 	unsigned long ptp;	/* Physical address, shifted right by 4 */
130 	int i;
131 
132 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
133 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136 	}
137 }
138 
139 /* Find an entry in the third-level page table.. */
140 pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
141 {
142 	void *pte;
143 
144 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 	return (pte_t *) pte +
146 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147 }
148 
149 /*
150  * size: bytes to allocate in the nocache area.
151  * align: bytes, number to align at.
152  * Returns the virtual address of the allocated area.
153  */
154 static unsigned long __srmmu_get_nocache(int size, int align)
155 {
156 	int offset;
157 
158 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 		printk("Size 0x%x too small for nocache request\n", size);
160 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
161 	}
162 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 		printk("Size 0x%x unaligned int nocache request\n", size);
164 		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
165 	}
166 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167 
168 	offset = bit_map_string_get(&srmmu_nocache_map,
169 		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 	if (offset == -1) {
172 		printk("srmmu: out of nocache %d: %d/%d\n",
173 		    size, (int) srmmu_nocache_size,
174 		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 		return 0;
176 	}
177 
178 	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
179 }
180 
181 unsigned long srmmu_get_nocache(int size, int align)
182 {
183 	unsigned long tmp;
184 
185 	tmp = __srmmu_get_nocache(size, align);
186 
187 	if (tmp)
188 		memset((void *)tmp, 0, size);
189 
190 	return tmp;
191 }
192 
193 void srmmu_free_nocache(unsigned long vaddr, int size)
194 {
195 	int offset;
196 
197 	if (vaddr < SRMMU_NOCACHE_VADDR) {
198 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 		BUG();
201 	}
202 	if (vaddr+size > srmmu_nocache_end) {
203 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 		    vaddr, srmmu_nocache_end);
205 		BUG();
206 	}
207 	if (!is_power_of_2(size)) {
208 		printk("Size 0x%x is not a power of 2\n", size);
209 		BUG();
210 	}
211 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 		printk("Size 0x%x is too small\n", size);
213 		BUG();
214 	}
215 	if (vaddr & (size-1)) {
216 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 		BUG();
218 	}
219 
220 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222 
223 	bit_map_clear(&srmmu_nocache_map, offset, size);
224 }
225 
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 						 unsigned long end);
228 
229 extern unsigned long probe_memory(void);	/* in fault.c */
230 
231 /*
232  * Reserve nocache dynamically proportionally to the amount of
233  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
234  */
235 static void srmmu_nocache_calcsize(void)
236 {
237 	unsigned long sysmemavail = probe_memory() / 1024;
238 	int srmmu_nocache_npages;
239 
240 	srmmu_nocache_npages =
241 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
242 
243  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
247 
248 	/* anything above 1280 blows up */
249 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
251 
252 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
254 }
255 
256 static void __init srmmu_nocache_init(void)
257 {
258 	unsigned int bitmap_bits;
259 	pgd_t *pgd;
260 	pmd_t *pmd;
261 	pte_t *pte;
262 	unsigned long paddr, vaddr;
263 	unsigned long pteval;
264 
265 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
266 
267 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
270 
271 	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
273 
274 	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 	init_mm.pgd = srmmu_swapper_pg_dir;
277 
278 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
279 
280 	paddr = __pa((unsigned long)srmmu_nocache_pool);
281 	vaddr = SRMMU_NOCACHE_VADDR;
282 
283 	while (vaddr < srmmu_nocache_end) {
284 		pgd = pgd_offset_k(vaddr);
285 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
287 
288 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
289 
290 		if (srmmu_cache_pagetables)
291 			pteval |= SRMMU_CACHE;
292 
293 		set_pte(__nocache_fix(pte), __pte(pteval));
294 
295 		vaddr += PAGE_SIZE;
296 		paddr += PAGE_SIZE;
297 	}
298 
299 	flush_cache_all();
300 	flush_tlb_all();
301 }
302 
303 pgd_t *get_pgd_fast(void)
304 {
305 	pgd_t *pgd = NULL;
306 
307 	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 	if (pgd) {
309 		pgd_t *init = pgd_offset_k(0);
310 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
313 	}
314 
315 	return pgd;
316 }
317 
318 /*
319  * Hardware needs alignment to 256 only, but we align to whole page size
320  * to reduce fragmentation problems due to the buddy principle.
321  * XXX Provide actual fragmentation statistics in /proc.
322  *
323  * Alignments up to the page size are the same for physical and virtual
324  * addresses of the nocache area.
325  */
326 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
327 {
328 	unsigned long pte;
329 	struct page *page;
330 
331 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332 		return NULL;
333 	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
334 	pgtable_page_ctor(page);
335 	return page;
336 }
337 
338 void pte_free(struct mm_struct *mm, pgtable_t pte)
339 {
340 	unsigned long p;
341 
342 	pgtable_page_dtor(pte);
343 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
344 	if (p == 0)
345 		BUG();
346 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
347 	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
348 	srmmu_free_nocache(p, PTE_SIZE);
349 }
350 
351 /*
352  */
353 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
354 {
355 	struct ctx_list *ctxp;
356 
357 	ctxp = ctx_free.next;
358 	if(ctxp != &ctx_free) {
359 		remove_from_ctx_list(ctxp);
360 		add_to_used_ctxlist(ctxp);
361 		mm->context = ctxp->ctx_number;
362 		ctxp->ctx_mm = mm;
363 		return;
364 	}
365 	ctxp = ctx_used.next;
366 	if(ctxp->ctx_mm == old_mm)
367 		ctxp = ctxp->next;
368 	if(ctxp == &ctx_used)
369 		panic("out of mmu contexts");
370 	flush_cache_mm(ctxp->ctx_mm);
371 	flush_tlb_mm(ctxp->ctx_mm);
372 	remove_from_ctx_list(ctxp);
373 	add_to_used_ctxlist(ctxp);
374 	ctxp->ctx_mm->context = NO_CONTEXT;
375 	ctxp->ctx_mm = mm;
376 	mm->context = ctxp->ctx_number;
377 }
378 
379 static inline void free_context(int context)
380 {
381 	struct ctx_list *ctx_old;
382 
383 	ctx_old = ctx_list_pool + context;
384 	remove_from_ctx_list(ctx_old);
385 	add_to_free_ctxlist(ctx_old);
386 }
387 
388 
389 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 	       struct task_struct *tsk)
391 {
392 	if(mm->context == NO_CONTEXT) {
393 		spin_lock(&srmmu_context_spinlock);
394 		alloc_context(old_mm, mm);
395 		spin_unlock(&srmmu_context_spinlock);
396 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
397 	}
398 
399 	if (sparc_cpu_model == sparc_leon)
400 		leon_switch_mm();
401 
402 	if (is_hypersparc)
403 		hyper_flush_whole_icache();
404 
405 	srmmu_set_context(mm->context);
406 }
407 
408 /* Low level IO area allocation on the SRMMU. */
409 static inline void srmmu_mapioaddr(unsigned long physaddr,
410     unsigned long virt_addr, int bus_type)
411 {
412 	pgd_t *pgdp;
413 	pmd_t *pmdp;
414 	pte_t *ptep;
415 	unsigned long tmp;
416 
417 	physaddr &= PAGE_MASK;
418 	pgdp = pgd_offset_k(virt_addr);
419 	pmdp = pmd_offset(pgdp, virt_addr);
420 	ptep = pte_offset_kernel(pmdp, virt_addr);
421 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
422 
423 	/*
424 	 * I need to test whether this is consistent over all
425 	 * sun4m's.  The bus_type represents the upper 4 bits of
426 	 * 36-bit physical address on the I/O space lines...
427 	 */
428 	tmp |= (bus_type << 28);
429 	tmp |= SRMMU_PRIV;
430 	__flush_page_to_ram(virt_addr);
431 	set_pte(ptep, __pte(tmp));
432 }
433 
434 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
435 		      unsigned long xva, unsigned int len)
436 {
437 	while (len != 0) {
438 		len -= PAGE_SIZE;
439 		srmmu_mapioaddr(xpa, xva, bus);
440 		xva += PAGE_SIZE;
441 		xpa += PAGE_SIZE;
442 	}
443 	flush_tlb_all();
444 }
445 
446 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
447 {
448 	pgd_t *pgdp;
449 	pmd_t *pmdp;
450 	pte_t *ptep;
451 
452 	pgdp = pgd_offset_k(virt_addr);
453 	pmdp = pmd_offset(pgdp, virt_addr);
454 	ptep = pte_offset_kernel(pmdp, virt_addr);
455 
456 	/* No need to flush uncacheable page. */
457 	__pte_clear(ptep);
458 }
459 
460 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
461 {
462 	while (len != 0) {
463 		len -= PAGE_SIZE;
464 		srmmu_unmapioaddr(virt_addr);
465 		virt_addr += PAGE_SIZE;
466 	}
467 	flush_tlb_all();
468 }
469 
470 /* tsunami.S */
471 extern void tsunami_flush_cache_all(void);
472 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
473 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
474 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
475 extern void tsunami_flush_page_to_ram(unsigned long page);
476 extern void tsunami_flush_page_for_dma(unsigned long page);
477 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
478 extern void tsunami_flush_tlb_all(void);
479 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
480 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
481 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
482 extern void tsunami_setup_blockops(void);
483 
484 /* swift.S */
485 extern void swift_flush_cache_all(void);
486 extern void swift_flush_cache_mm(struct mm_struct *mm);
487 extern void swift_flush_cache_range(struct vm_area_struct *vma,
488 				    unsigned long start, unsigned long end);
489 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
490 extern void swift_flush_page_to_ram(unsigned long page);
491 extern void swift_flush_page_for_dma(unsigned long page);
492 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
493 extern void swift_flush_tlb_all(void);
494 extern void swift_flush_tlb_mm(struct mm_struct *mm);
495 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
496 				  unsigned long start, unsigned long end);
497 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
498 
499 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
500 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
501 {
502 	int cctx, ctx1;
503 
504 	page &= PAGE_MASK;
505 	if ((ctx1 = vma->vm_mm->context) != -1) {
506 		cctx = srmmu_get_context();
507 /* Is context # ever different from current context? P3 */
508 		if (cctx != ctx1) {
509 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
510 			srmmu_set_context(ctx1);
511 			swift_flush_page(page);
512 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
513 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
514 			srmmu_set_context(cctx);
515 		} else {
516 			 /* Rm. prot. bits from virt. c. */
517 			/* swift_flush_cache_all(); */
518 			/* swift_flush_cache_page(vma, page); */
519 			swift_flush_page(page);
520 
521 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
522 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
523 			/* same as above: srmmu_flush_tlb_page() */
524 		}
525 	}
526 }
527 #endif
528 
529 /*
530  * The following are all MBUS based SRMMU modules, and therefore could
531  * be found in a multiprocessor configuration.  On the whole, these
532  * chips seems to be much more touchy about DVMA and page tables
533  * with respect to cache coherency.
534  */
535 
536 /* viking.S */
537 extern void viking_flush_cache_all(void);
538 extern void viking_flush_cache_mm(struct mm_struct *mm);
539 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
540 				     unsigned long end);
541 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
542 extern void viking_flush_page_to_ram(unsigned long page);
543 extern void viking_flush_page_for_dma(unsigned long page);
544 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
545 extern void viking_flush_page(unsigned long page);
546 extern void viking_mxcc_flush_page(unsigned long page);
547 extern void viking_flush_tlb_all(void);
548 extern void viking_flush_tlb_mm(struct mm_struct *mm);
549 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
550 				   unsigned long end);
551 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
552 				  unsigned long page);
553 extern void sun4dsmp_flush_tlb_all(void);
554 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
555 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 				   unsigned long end);
557 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
558 				  unsigned long page);
559 
560 /* hypersparc.S */
561 extern void hypersparc_flush_cache_all(void);
562 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
563 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
564 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
565 extern void hypersparc_flush_page_to_ram(unsigned long page);
566 extern void hypersparc_flush_page_for_dma(unsigned long page);
567 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
568 extern void hypersparc_flush_tlb_all(void);
569 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
570 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
572 extern void hypersparc_setup_blockops(void);
573 
574 /*
575  * NOTE: All of this startup code assumes the low 16mb (approx.) of
576  *       kernel mappings are done with one single contiguous chunk of
577  *       ram.  On small ram machines (classics mainly) we only get
578  *       around 8mb mapped for us.
579  */
580 
581 static void __init early_pgtable_allocfail(char *type)
582 {
583 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
584 	prom_halt();
585 }
586 
587 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
588 							unsigned long end)
589 {
590 	pgd_t *pgdp;
591 	pmd_t *pmdp;
592 	pte_t *ptep;
593 
594 	while(start < end) {
595 		pgdp = pgd_offset_k(start);
596 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
597 			pmdp = (pmd_t *) __srmmu_get_nocache(
598 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
599 			if (pmdp == NULL)
600 				early_pgtable_allocfail("pmd");
601 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
602 			pgd_set(__nocache_fix(pgdp), pmdp);
603 		}
604 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
605 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
606 			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
607 			if (ptep == NULL)
608 				early_pgtable_allocfail("pte");
609 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
610 			pmd_set(__nocache_fix(pmdp), ptep);
611 		}
612 		if (start > (0xffffffffUL - PMD_SIZE))
613 			break;
614 		start = (start + PMD_SIZE) & PMD_MASK;
615 	}
616 }
617 
618 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
619 						  unsigned long end)
620 {
621 	pgd_t *pgdp;
622 	pmd_t *pmdp;
623 	pte_t *ptep;
624 
625 	while(start < end) {
626 		pgdp = pgd_offset_k(start);
627 		if (pgd_none(*pgdp)) {
628 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
629 			if (pmdp == NULL)
630 				early_pgtable_allocfail("pmd");
631 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
632 			pgd_set(pgdp, pmdp);
633 		}
634 		pmdp = pmd_offset(pgdp, start);
635 		if(srmmu_pmd_none(*pmdp)) {
636 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
637 							     PTE_SIZE);
638 			if (ptep == NULL)
639 				early_pgtable_allocfail("pte");
640 			memset(ptep, 0, PTE_SIZE);
641 			pmd_set(pmdp, ptep);
642 		}
643 		if (start > (0xffffffffUL - PMD_SIZE))
644 			break;
645 		start = (start + PMD_SIZE) & PMD_MASK;
646 	}
647 }
648 
649 /* These flush types are not available on all chips... */
650 static inline unsigned long srmmu_probe(unsigned long vaddr)
651 {
652 	unsigned long retval;
653 
654 	if (sparc_cpu_model != sparc_leon) {
655 
656 		vaddr &= PAGE_MASK;
657 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
658 				     "=r" (retval) :
659 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
660 	} else {
661 		retval = leon_swprobe(vaddr, 0);
662 	}
663 	return retval;
664 }
665 
666 /*
667  * This is much cleaner than poking around physical address space
668  * looking at the prom's page table directly which is what most
669  * other OS's do.  Yuck... this is much better.
670  */
671 static void __init srmmu_inherit_prom_mappings(unsigned long start,
672 					       unsigned long end)
673 {
674 	pgd_t *pgdp;
675 	pmd_t *pmdp;
676 	pte_t *ptep;
677 	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
678 	unsigned long prompte;
679 
680 	while(start <= end) {
681 		if (start == 0)
682 			break; /* probably wrap around */
683 		if(start == 0xfef00000)
684 			start = KADB_DEBUGGER_BEGVM;
685 		if(!(prompte = srmmu_probe(start))) {
686 			start += PAGE_SIZE;
687 			continue;
688 		}
689 
690 		/* A red snapper, see what it really is. */
691 		what = 0;
692 
693 		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
694 			if(srmmu_probe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
695 				what = 1;
696 		}
697 
698 		if(!(start & ~(SRMMU_PGDIR_MASK))) {
699 			if(srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
700 			   prompte)
701 				what = 2;
702 		}
703 
704 		pgdp = pgd_offset_k(start);
705 		if(what == 2) {
706 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
707 			start += SRMMU_PGDIR_SIZE;
708 			continue;
709 		}
710 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
711 			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
712 			if (pmdp == NULL)
713 				early_pgtable_allocfail("pmd");
714 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
715 			pgd_set(__nocache_fix(pgdp), pmdp);
716 		}
717 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
718 		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
719 			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
720 							     PTE_SIZE);
721 			if (ptep == NULL)
722 				early_pgtable_allocfail("pte");
723 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
724 			pmd_set(__nocache_fix(pmdp), ptep);
725 		}
726 		if(what == 1) {
727 			/*
728 			 * We bend the rule where all 16 PTPs in a pmd_t point
729 			 * inside the same PTE page, and we leak a perfectly
730 			 * good hardware PTE piece. Alternatives seem worse.
731 			 */
732 			unsigned int x;	/* Index of HW PMD in soft cluster */
733 			x = (start >> PMD_SHIFT) & 15;
734 			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
735 			start += SRMMU_REAL_PMD_SIZE;
736 			continue;
737 		}
738 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
739 		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
740 		start += PAGE_SIZE;
741 	}
742 }
743 
744 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
745 
746 /* Create a third-level SRMMU 16MB page mapping. */
747 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
748 {
749 	pgd_t *pgdp = pgd_offset_k(vaddr);
750 	unsigned long big_pte;
751 
752 	big_pte = KERNEL_PTE(phys_base >> 4);
753 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
754 }
755 
756 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
757 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
758 {
759 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
760 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
761 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
762 	/* Map "low" memory only */
763 	const unsigned long min_vaddr = PAGE_OFFSET;
764 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
765 
766 	if (vstart < min_vaddr || vstart >= max_vaddr)
767 		return vstart;
768 
769 	if (vend > max_vaddr || vend < min_vaddr)
770 		vend = max_vaddr;
771 
772 	while(vstart < vend) {
773 		do_large_mapping(vstart, pstart);
774 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
775 	}
776 	return vstart;
777 }
778 
779 static inline void map_kernel(void)
780 {
781 	int i;
782 
783 	if (phys_base > 0) {
784 		do_large_mapping(PAGE_OFFSET, phys_base);
785 	}
786 
787 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
788 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
789 	}
790 }
791 
792 /* Paging initialization on the Sparc Reference MMU. */
793 extern void sparc_context_init(int);
794 
795 void (*poke_srmmu)(void) __cpuinitdata = NULL;
796 
797 extern unsigned long bootmem_init(unsigned long *pages_avail);
798 
799 void __init srmmu_paging_init(void)
800 {
801 	int i;
802 	phandle cpunode;
803 	char node_str[128];
804 	pgd_t *pgd;
805 	pmd_t *pmd;
806 	pte_t *pte;
807 	unsigned long pages_avail;
808 
809 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
810 
811 	if (sparc_cpu_model == sun4d)
812 		num_contexts = 65536; /* We know it is Viking */
813 	else {
814 		/* Find the number of contexts on the srmmu. */
815 		cpunode = prom_getchild(prom_root_node);
816 		num_contexts = 0;
817 		while(cpunode != 0) {
818 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
819 			if(!strcmp(node_str, "cpu")) {
820 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
821 				break;
822 			}
823 			cpunode = prom_getsibling(cpunode);
824 		}
825 	}
826 
827 	if(!num_contexts) {
828 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
829 		prom_halt();
830 	}
831 
832 	pages_avail = 0;
833 	last_valid_pfn = bootmem_init(&pages_avail);
834 
835 	srmmu_nocache_calcsize();
836 	srmmu_nocache_init();
837         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
838 	map_kernel();
839 
840 	/* ctx table has to be physically aligned to its size */
841 	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
842 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
843 
844 	for(i = 0; i < num_contexts; i++)
845 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
846 
847 	flush_cache_all();
848 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
849 #ifdef CONFIG_SMP
850 	/* Stop from hanging here... */
851 	local_ops->tlb_all();
852 #else
853 	flush_tlb_all();
854 #endif
855 	poke_srmmu();
856 
857 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
858 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
859 
860 	srmmu_allocate_ptable_skeleton(
861 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
862 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
863 
864 	pgd = pgd_offset_k(PKMAP_BASE);
865 	pmd = pmd_offset(pgd, PKMAP_BASE);
866 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
867 	pkmap_page_table = pte;
868 
869 	flush_cache_all();
870 	flush_tlb_all();
871 
872 	sparc_context_init(num_contexts);
873 
874 	kmap_init();
875 
876 	{
877 		unsigned long zones_size[MAX_NR_ZONES];
878 		unsigned long zholes_size[MAX_NR_ZONES];
879 		unsigned long npages;
880 		int znum;
881 
882 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
883 			zones_size[znum] = zholes_size[znum] = 0;
884 
885 		npages = max_low_pfn - pfn_base;
886 
887 		zones_size[ZONE_DMA] = npages;
888 		zholes_size[ZONE_DMA] = npages - pages_avail;
889 
890 		npages = highend_pfn - max_low_pfn;
891 		zones_size[ZONE_HIGHMEM] = npages;
892 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
893 
894 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
895 	}
896 }
897 
898 void mmu_info(struct seq_file *m)
899 {
900 	seq_printf(m,
901 		   "MMU type\t: %s\n"
902 		   "contexts\t: %d\n"
903 		   "nocache total\t: %ld\n"
904 		   "nocache used\t: %d\n",
905 		   srmmu_name,
906 		   num_contexts,
907 		   srmmu_nocache_size,
908 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
909 }
910 
911 void destroy_context(struct mm_struct *mm)
912 {
913 
914 	if(mm->context != NO_CONTEXT) {
915 		flush_cache_mm(mm);
916 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
917 		flush_tlb_mm(mm);
918 		spin_lock(&srmmu_context_spinlock);
919 		free_context(mm->context);
920 		spin_unlock(&srmmu_context_spinlock);
921 		mm->context = NO_CONTEXT;
922 	}
923 }
924 
925 /* Init various srmmu chip types. */
926 static void __init srmmu_is_bad(void)
927 {
928 	prom_printf("Could not determine SRMMU chip type.\n");
929 	prom_halt();
930 }
931 
932 static void __init init_vac_layout(void)
933 {
934 	phandle nd;
935 	int cache_lines;
936 	char node_str[128];
937 #ifdef CONFIG_SMP
938 	int cpu = 0;
939 	unsigned long max_size = 0;
940 	unsigned long min_line_size = 0x10000000;
941 #endif
942 
943 	nd = prom_getchild(prom_root_node);
944 	while((nd = prom_getsibling(nd)) != 0) {
945 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
946 		if(!strcmp(node_str, "cpu")) {
947 			vac_line_size = prom_getint(nd, "cache-line-size");
948 			if (vac_line_size == -1) {
949 				prom_printf("can't determine cache-line-size, "
950 					    "halting.\n");
951 				prom_halt();
952 			}
953 			cache_lines = prom_getint(nd, "cache-nlines");
954 			if (cache_lines == -1) {
955 				prom_printf("can't determine cache-nlines, halting.\n");
956 				prom_halt();
957 			}
958 
959 			vac_cache_size = cache_lines * vac_line_size;
960 #ifdef CONFIG_SMP
961 			if(vac_cache_size > max_size)
962 				max_size = vac_cache_size;
963 			if(vac_line_size < min_line_size)
964 				min_line_size = vac_line_size;
965 			//FIXME: cpus not contiguous!!
966 			cpu++;
967 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
968 				break;
969 #else
970 			break;
971 #endif
972 		}
973 	}
974 	if(nd == 0) {
975 		prom_printf("No CPU nodes found, halting.\n");
976 		prom_halt();
977 	}
978 #ifdef CONFIG_SMP
979 	vac_cache_size = max_size;
980 	vac_line_size = min_line_size;
981 #endif
982 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
983 	       (int)vac_cache_size, (int)vac_line_size);
984 }
985 
986 static void __cpuinit poke_hypersparc(void)
987 {
988 	volatile unsigned long clear;
989 	unsigned long mreg = srmmu_get_mmureg();
990 
991 	hyper_flush_unconditional_combined();
992 
993 	mreg &= ~(HYPERSPARC_CWENABLE);
994 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
995 	mreg |= (HYPERSPARC_CMODE);
996 
997 	srmmu_set_mmureg(mreg);
998 
999 #if 0 /* XXX I think this is bad news... -DaveM */
1000 	hyper_clear_all_tags();
1001 #endif
1002 
1003 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1004 	hyper_flush_whole_icache();
1005 	clear = srmmu_get_faddr();
1006 	clear = srmmu_get_fstatus();
1007 }
1008 
1009 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1010 	.cache_all	= hypersparc_flush_cache_all,
1011 	.cache_mm	= hypersparc_flush_cache_mm,
1012 	.cache_page	= hypersparc_flush_cache_page,
1013 	.cache_range	= hypersparc_flush_cache_range,
1014 	.tlb_all	= hypersparc_flush_tlb_all,
1015 	.tlb_mm		= hypersparc_flush_tlb_mm,
1016 	.tlb_page	= hypersparc_flush_tlb_page,
1017 	.tlb_range	= hypersparc_flush_tlb_range,
1018 	.page_to_ram	= hypersparc_flush_page_to_ram,
1019 	.sig_insns	= hypersparc_flush_sig_insns,
1020 	.page_for_dma	= hypersparc_flush_page_for_dma,
1021 };
1022 
1023 static void __init init_hypersparc(void)
1024 {
1025 	srmmu_name = "ROSS HyperSparc";
1026 	srmmu_modtype = HyperSparc;
1027 
1028 	init_vac_layout();
1029 
1030 	is_hypersparc = 1;
1031 	sparc32_cachetlb_ops = &hypersparc_ops;
1032 
1033 	poke_srmmu = poke_hypersparc;
1034 
1035 	hypersparc_setup_blockops();
1036 }
1037 
1038 static void __cpuinit poke_swift(void)
1039 {
1040 	unsigned long mreg;
1041 
1042 	/* Clear any crap from the cache or else... */
1043 	swift_flush_cache_all();
1044 
1045 	/* Enable I & D caches */
1046 	mreg = srmmu_get_mmureg();
1047 	mreg |= (SWIFT_IE | SWIFT_DE);
1048 	/*
1049 	 * The Swift branch folding logic is completely broken.  At
1050 	 * trap time, if things are just right, if can mistakenly
1051 	 * think that a trap is coming from kernel mode when in fact
1052 	 * it is coming from user mode (it mis-executes the branch in
1053 	 * the trap code).  So you see things like crashme completely
1054 	 * hosing your machine which is completely unacceptable.  Turn
1055 	 * this shit off... nice job Fujitsu.
1056 	 */
1057 	mreg &= ~(SWIFT_BF);
1058 	srmmu_set_mmureg(mreg);
1059 }
1060 
1061 static const struct sparc32_cachetlb_ops swift_ops = {
1062 	.cache_all	= swift_flush_cache_all,
1063 	.cache_mm	= swift_flush_cache_mm,
1064 	.cache_page	= swift_flush_cache_page,
1065 	.cache_range	= swift_flush_cache_range,
1066 	.tlb_all	= swift_flush_tlb_all,
1067 	.tlb_mm		= swift_flush_tlb_mm,
1068 	.tlb_page	= swift_flush_tlb_page,
1069 	.tlb_range	= swift_flush_tlb_range,
1070 	.page_to_ram	= swift_flush_page_to_ram,
1071 	.sig_insns	= swift_flush_sig_insns,
1072 	.page_for_dma	= swift_flush_page_for_dma,
1073 };
1074 
1075 #define SWIFT_MASKID_ADDR  0x10003018
1076 static void __init init_swift(void)
1077 {
1078 	unsigned long swift_rev;
1079 
1080 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1081 			     "srl %0, 0x18, %0\n\t" :
1082 			     "=r" (swift_rev) :
1083 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1084 	srmmu_name = "Fujitsu Swift";
1085 	switch(swift_rev) {
1086 	case 0x11:
1087 	case 0x20:
1088 	case 0x23:
1089 	case 0x30:
1090 		srmmu_modtype = Swift_lots_o_bugs;
1091 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1092 		/*
1093 		 * Gee george, I wonder why Sun is so hush hush about
1094 		 * this hardware bug... really braindamage stuff going
1095 		 * on here.  However I think we can find a way to avoid
1096 		 * all of the workaround overhead under Linux.  Basically,
1097 		 * any page fault can cause kernel pages to become user
1098 		 * accessible (the mmu gets confused and clears some of
1099 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1100 		 * horrible eh?  But wait, after extensive testing it appears
1101 		 * that if you use pgd_t level large kernel pte's (like the
1102 		 * 4MB pages on the Pentium) the bug does not get tripped
1103 		 * at all.  This avoids almost all of the major overhead.
1104 		 * Welcome to a world where your vendor tells you to,
1105 		 * "apply this kernel patch" instead of "sorry for the
1106 		 * broken hardware, send it back and we'll give you
1107 		 * properly functioning parts"
1108 		 */
1109 		break;
1110 	case 0x25:
1111 	case 0x31:
1112 		srmmu_modtype = Swift_bad_c;
1113 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1114 		/*
1115 		 * You see Sun allude to this hardware bug but never
1116 		 * admit things directly, they'll say things like,
1117 		 * "the Swift chip cache problems" or similar.
1118 		 */
1119 		break;
1120 	default:
1121 		srmmu_modtype = Swift_ok;
1122 		break;
1123 	}
1124 
1125 	sparc32_cachetlb_ops = &swift_ops;
1126 	flush_page_for_dma_global = 0;
1127 
1128 	/*
1129 	 * Are you now convinced that the Swift is one of the
1130 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1131 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1132 	 * you examined the microcode of the Swift you'd find
1133 	 * XXX's all over the place.
1134 	 */
1135 	poke_srmmu = poke_swift;
1136 }
1137 
1138 static void turbosparc_flush_cache_all(void)
1139 {
1140 	flush_user_windows();
1141 	turbosparc_idflash_clear();
1142 }
1143 
1144 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1145 {
1146 	FLUSH_BEGIN(mm)
1147 	flush_user_windows();
1148 	turbosparc_idflash_clear();
1149 	FLUSH_END
1150 }
1151 
1152 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1153 {
1154 	FLUSH_BEGIN(vma->vm_mm)
1155 	flush_user_windows();
1156 	turbosparc_idflash_clear();
1157 	FLUSH_END
1158 }
1159 
1160 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1161 {
1162 	FLUSH_BEGIN(vma->vm_mm)
1163 	flush_user_windows();
1164 	if (vma->vm_flags & VM_EXEC)
1165 		turbosparc_flush_icache();
1166 	turbosparc_flush_dcache();
1167 	FLUSH_END
1168 }
1169 
1170 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1171 static void turbosparc_flush_page_to_ram(unsigned long page)
1172 {
1173 #ifdef TURBOSPARC_WRITEBACK
1174 	volatile unsigned long clear;
1175 
1176 	if (srmmu_probe(page))
1177 		turbosparc_flush_page_cache(page);
1178 	clear = srmmu_get_fstatus();
1179 #endif
1180 }
1181 
1182 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1183 {
1184 }
1185 
1186 static void turbosparc_flush_page_for_dma(unsigned long page)
1187 {
1188 	turbosparc_flush_dcache();
1189 }
1190 
1191 static void turbosparc_flush_tlb_all(void)
1192 {
1193 	srmmu_flush_whole_tlb();
1194 }
1195 
1196 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1197 {
1198 	FLUSH_BEGIN(mm)
1199 	srmmu_flush_whole_tlb();
1200 	FLUSH_END
1201 }
1202 
1203 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1204 {
1205 	FLUSH_BEGIN(vma->vm_mm)
1206 	srmmu_flush_whole_tlb();
1207 	FLUSH_END
1208 }
1209 
1210 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1211 {
1212 	FLUSH_BEGIN(vma->vm_mm)
1213 	srmmu_flush_whole_tlb();
1214 	FLUSH_END
1215 }
1216 
1217 
1218 static void __cpuinit poke_turbosparc(void)
1219 {
1220 	unsigned long mreg = srmmu_get_mmureg();
1221 	unsigned long ccreg;
1222 
1223 	/* Clear any crap from the cache or else... */
1224 	turbosparc_flush_cache_all();
1225 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1226 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1227 	srmmu_set_mmureg(mreg);
1228 
1229 	ccreg = turbosparc_get_ccreg();
1230 
1231 #ifdef TURBOSPARC_WRITEBACK
1232 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1233 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1234 			/* Write-back D-cache, emulate VLSI
1235 			 * abortion number three, not number one */
1236 #else
1237 	/* For now let's play safe, optimize later */
1238 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1239 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1240 	ccreg &= ~(TURBOSPARC_uS2);
1241 			/* Emulate VLSI abortion number three, not number one */
1242 #endif
1243 
1244 	switch (ccreg & 7) {
1245 	case 0: /* No SE cache */
1246 	case 7: /* Test mode */
1247 		break;
1248 	default:
1249 		ccreg |= (TURBOSPARC_SCENABLE);
1250 	}
1251 	turbosparc_set_ccreg (ccreg);
1252 
1253 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1254 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1255 	srmmu_set_mmureg(mreg);
1256 }
1257 
1258 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1259 	.cache_all	= turbosparc_flush_cache_all,
1260 	.cache_mm	= turbosparc_flush_cache_mm,
1261 	.cache_page	= turbosparc_flush_cache_page,
1262 	.cache_range	= turbosparc_flush_cache_range,
1263 	.tlb_all	= turbosparc_flush_tlb_all,
1264 	.tlb_mm		= turbosparc_flush_tlb_mm,
1265 	.tlb_page	= turbosparc_flush_tlb_page,
1266 	.tlb_range	= turbosparc_flush_tlb_range,
1267 	.page_to_ram	= turbosparc_flush_page_to_ram,
1268 	.sig_insns	= turbosparc_flush_sig_insns,
1269 	.page_for_dma	= turbosparc_flush_page_for_dma,
1270 };
1271 
1272 static void __init init_turbosparc(void)
1273 {
1274 	srmmu_name = "Fujitsu TurboSparc";
1275 	srmmu_modtype = TurboSparc;
1276 	sparc32_cachetlb_ops = &turbosparc_ops;
1277 	poke_srmmu = poke_turbosparc;
1278 }
1279 
1280 static void __cpuinit poke_tsunami(void)
1281 {
1282 	unsigned long mreg = srmmu_get_mmureg();
1283 
1284 	tsunami_flush_icache();
1285 	tsunami_flush_dcache();
1286 	mreg &= ~TSUNAMI_ITD;
1287 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1288 	srmmu_set_mmureg(mreg);
1289 }
1290 
1291 static const struct sparc32_cachetlb_ops tsunami_ops = {
1292 	.cache_all	= tsunami_flush_cache_all,
1293 	.cache_mm	= tsunami_flush_cache_mm,
1294 	.cache_page	= tsunami_flush_cache_page,
1295 	.cache_range	= tsunami_flush_cache_range,
1296 	.tlb_all	= tsunami_flush_tlb_all,
1297 	.tlb_mm		= tsunami_flush_tlb_mm,
1298 	.tlb_page	= tsunami_flush_tlb_page,
1299 	.tlb_range	= tsunami_flush_tlb_range,
1300 	.page_to_ram	= tsunami_flush_page_to_ram,
1301 	.sig_insns	= tsunami_flush_sig_insns,
1302 	.page_for_dma	= tsunami_flush_page_for_dma,
1303 };
1304 
1305 static void __init init_tsunami(void)
1306 {
1307 	/*
1308 	 * Tsunami's pretty sane, Sun and TI actually got it
1309 	 * somewhat right this time.  Fujitsu should have
1310 	 * taken some lessons from them.
1311 	 */
1312 
1313 	srmmu_name = "TI Tsunami";
1314 	srmmu_modtype = Tsunami;
1315 	sparc32_cachetlb_ops = &tsunami_ops;
1316 	poke_srmmu = poke_tsunami;
1317 
1318 	tsunami_setup_blockops();
1319 }
1320 
1321 static void __cpuinit poke_viking(void)
1322 {
1323 	unsigned long mreg = srmmu_get_mmureg();
1324 	static int smp_catch;
1325 
1326 	if (viking_mxcc_present) {
1327 		unsigned long mxcc_control = mxcc_get_creg();
1328 
1329 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1330 		mxcc_control &= ~(MXCC_CTL_RRC);
1331 		mxcc_set_creg(mxcc_control);
1332 
1333 		/*
1334 		 * We don't need memory parity checks.
1335 		 * XXX This is a mess, have to dig out later. ecd.
1336 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1337 		 */
1338 
1339 		/* We do cache ptables on MXCC. */
1340 		mreg |= VIKING_TCENABLE;
1341 	} else {
1342 		unsigned long bpreg;
1343 
1344 		mreg &= ~(VIKING_TCENABLE);
1345 		if(smp_catch++) {
1346 			/* Must disable mixed-cmd mode here for other cpu's. */
1347 			bpreg = viking_get_bpreg();
1348 			bpreg &= ~(VIKING_ACTION_MIX);
1349 			viking_set_bpreg(bpreg);
1350 
1351 			/* Just in case PROM does something funny. */
1352 			msi_set_sync();
1353 		}
1354 	}
1355 
1356 	mreg |= VIKING_SPENABLE;
1357 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1358 	mreg |= VIKING_SBENABLE;
1359 	mreg &= ~(VIKING_ACENABLE);
1360 	srmmu_set_mmureg(mreg);
1361 }
1362 
1363 static struct sparc32_cachetlb_ops viking_ops = {
1364 	.cache_all	= viking_flush_cache_all,
1365 	.cache_mm	= viking_flush_cache_mm,
1366 	.cache_page	= viking_flush_cache_page,
1367 	.cache_range	= viking_flush_cache_range,
1368 	.tlb_all	= viking_flush_tlb_all,
1369 	.tlb_mm		= viking_flush_tlb_mm,
1370 	.tlb_page	= viking_flush_tlb_page,
1371 	.tlb_range	= viking_flush_tlb_range,
1372 	.page_to_ram	= viking_flush_page_to_ram,
1373 	.sig_insns	= viking_flush_sig_insns,
1374 	.page_for_dma	= viking_flush_page_for_dma,
1375 };
1376 
1377 #ifdef CONFIG_SMP
1378 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1379  * perform the local TLB flush and all the other cpus will see it.
1380  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1381  * that requires that we add some synchronization to these flushes.
1382  *
1383  * The bug is that the fifo which keeps track of all the pending TLB
1384  * broadcasts in the system is an entry or two too small, so if we
1385  * have too many going at once we'll overflow that fifo and lose a TLB
1386  * flush resulting in corruption.
1387  *
1388  * Our workaround is to take a global spinlock around the TLB flushes,
1389  * which guarentees we won't ever have too many pending.  It's a big
1390  * hammer, but a semaphore like system to make sure we only have N TLB
1391  * flushes going at once will require SMP locking anyways so there's
1392  * no real value in trying any harder than this.
1393  */
1394 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1395 	.cache_all	= viking_flush_cache_all,
1396 	.cache_mm	= viking_flush_cache_mm,
1397 	.cache_page	= viking_flush_cache_page,
1398 	.cache_range	= viking_flush_cache_range,
1399 	.tlb_all	= sun4dsmp_flush_tlb_all,
1400 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1401 	.tlb_page	= sun4dsmp_flush_tlb_page,
1402 	.tlb_range	= sun4dsmp_flush_tlb_range,
1403 	.page_to_ram	= viking_flush_page_to_ram,
1404 	.sig_insns	= viking_flush_sig_insns,
1405 	.page_for_dma	= viking_flush_page_for_dma,
1406 };
1407 #endif
1408 
1409 static void __init init_viking(void)
1410 {
1411 	unsigned long mreg = srmmu_get_mmureg();
1412 
1413 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1414 	if(mreg & VIKING_MMODE) {
1415 		srmmu_name = "TI Viking";
1416 		viking_mxcc_present = 0;
1417 		msi_set_sync();
1418 
1419 		/*
1420 		 * We need this to make sure old viking takes no hits
1421 		 * on it's cache for dma snoops to workaround the
1422 		 * "load from non-cacheable memory" interrupt bug.
1423 		 * This is only necessary because of the new way in
1424 		 * which we use the IOMMU.
1425 		 */
1426 		viking_ops.page_for_dma = viking_flush_page;
1427 #ifdef CONFIG_SMP
1428 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1429 #endif
1430 		flush_page_for_dma_global = 0;
1431 	} else {
1432 		srmmu_name = "TI Viking/MXCC";
1433 		viking_mxcc_present = 1;
1434 		srmmu_cache_pagetables = 1;
1435 	}
1436 
1437 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1438 		&viking_ops;
1439 #ifdef CONFIG_SMP
1440 	if (sparc_cpu_model == sun4d)
1441 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1442 			&viking_sun4d_smp_ops;
1443 #endif
1444 
1445 	poke_srmmu = poke_viking;
1446 }
1447 
1448 /* Probe for the srmmu chip version. */
1449 static void __init get_srmmu_type(void)
1450 {
1451 	unsigned long mreg, psr;
1452 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1453 
1454 	srmmu_modtype = SRMMU_INVAL_MOD;
1455 	hwbug_bitmask = 0;
1456 
1457 	mreg = srmmu_get_mmureg(); psr = get_psr();
1458 	mod_typ = (mreg & 0xf0000000) >> 28;
1459 	mod_rev = (mreg & 0x0f000000) >> 24;
1460 	psr_typ = (psr >> 28) & 0xf;
1461 	psr_vers = (psr >> 24) & 0xf;
1462 
1463 	/* First, check for sparc-leon. */
1464 	if (sparc_cpu_model == sparc_leon) {
1465 		init_leon();
1466 		return;
1467 	}
1468 
1469 	/* Second, check for HyperSparc or Cypress. */
1470 	if(mod_typ == 1) {
1471 		switch(mod_rev) {
1472 		case 7:
1473 			/* UP or MP Hypersparc */
1474 			init_hypersparc();
1475 			break;
1476 		case 0:
1477 		case 2:
1478 		case 10:
1479 		case 11:
1480 		case 12:
1481 		case 13:
1482 		case 14:
1483 		case 15:
1484 		default:
1485 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1486 			prom_halt();
1487 			break;
1488 		}
1489 		return;
1490 	}
1491 
1492 	/*
1493 	 * Now Fujitsu TurboSparc. It might happen that it is
1494 	 * in Swift emulation mode, so we will check later...
1495 	 */
1496 	if (psr_typ == 0 && psr_vers == 5) {
1497 		init_turbosparc();
1498 		return;
1499 	}
1500 
1501 	/* Next check for Fujitsu Swift. */
1502 	if(psr_typ == 0 && psr_vers == 4) {
1503 		phandle cpunode;
1504 		char node_str[128];
1505 
1506 		/* Look if it is not a TurboSparc emulating Swift... */
1507 		cpunode = prom_getchild(prom_root_node);
1508 		while((cpunode = prom_getsibling(cpunode)) != 0) {
1509 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1510 			if(!strcmp(node_str, "cpu")) {
1511 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1512 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1513 					init_turbosparc();
1514 					return;
1515 				}
1516 				break;
1517 			}
1518 		}
1519 
1520 		init_swift();
1521 		return;
1522 	}
1523 
1524 	/* Now the Viking family of srmmu. */
1525 	if(psr_typ == 4 &&
1526 	   ((psr_vers == 0) ||
1527 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1528 		init_viking();
1529 		return;
1530 	}
1531 
1532 	/* Finally the Tsunami. */
1533 	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1534 		init_tsunami();
1535 		return;
1536 	}
1537 
1538 	/* Oh well */
1539 	srmmu_is_bad();
1540 }
1541 
1542 #ifdef CONFIG_SMP
1543 /* Local cross-calls. */
1544 static void smp_flush_page_for_dma(unsigned long page)
1545 {
1546 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1547 	local_ops->page_for_dma(page);
1548 }
1549 
1550 static void smp_flush_cache_all(void)
1551 {
1552 	xc0((smpfunc_t) local_ops->cache_all);
1553 	local_ops->cache_all();
1554 }
1555 
1556 static void smp_flush_tlb_all(void)
1557 {
1558 	xc0((smpfunc_t) local_ops->tlb_all);
1559 	local_ops->tlb_all();
1560 }
1561 
1562 static void smp_flush_cache_mm(struct mm_struct *mm)
1563 {
1564 	if (mm->context != NO_CONTEXT) {
1565 		cpumask_t cpu_mask;
1566 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1567 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1568 		if (!cpumask_empty(&cpu_mask))
1569 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1570 		local_ops->cache_mm(mm);
1571 	}
1572 }
1573 
1574 static void smp_flush_tlb_mm(struct mm_struct *mm)
1575 {
1576 	if (mm->context != NO_CONTEXT) {
1577 		cpumask_t cpu_mask;
1578 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1579 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1580 		if (!cpumask_empty(&cpu_mask)) {
1581 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1582 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1583 				cpumask_copy(mm_cpumask(mm),
1584 					     cpumask_of(smp_processor_id()));
1585 		}
1586 		local_ops->tlb_mm(mm);
1587 	}
1588 }
1589 
1590 static void smp_flush_cache_range(struct vm_area_struct *vma,
1591 				  unsigned long start,
1592 				  unsigned long end)
1593 {
1594 	struct mm_struct *mm = vma->vm_mm;
1595 
1596 	if (mm->context != NO_CONTEXT) {
1597 		cpumask_t cpu_mask;
1598 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600 		if (!cpumask_empty(&cpu_mask))
1601 			xc3((smpfunc_t) local_ops->cache_range,
1602 			    (unsigned long) vma, start, end);
1603 		local_ops->cache_range(vma, start, end);
1604 	}
1605 }
1606 
1607 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1608 				unsigned long start,
1609 				unsigned long end)
1610 {
1611 	struct mm_struct *mm = vma->vm_mm;
1612 
1613 	if (mm->context != NO_CONTEXT) {
1614 		cpumask_t cpu_mask;
1615 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1616 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1617 		if (!cpumask_empty(&cpu_mask))
1618 			xc3((smpfunc_t) local_ops->tlb_range,
1619 			    (unsigned long) vma, start, end);
1620 		local_ops->tlb_range(vma, start, end);
1621 	}
1622 }
1623 
1624 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1625 {
1626 	struct mm_struct *mm = vma->vm_mm;
1627 
1628 	if (mm->context != NO_CONTEXT) {
1629 		cpumask_t cpu_mask;
1630 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1631 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1632 		if (!cpumask_empty(&cpu_mask))
1633 			xc2((smpfunc_t) local_ops->cache_page,
1634 			    (unsigned long) vma, page);
1635 		local_ops->cache_page(vma, page);
1636 	}
1637 }
1638 
1639 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1640 {
1641 	struct mm_struct *mm = vma->vm_mm;
1642 
1643 	if (mm->context != NO_CONTEXT) {
1644 		cpumask_t cpu_mask;
1645 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1646 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1647 		if (!cpumask_empty(&cpu_mask))
1648 			xc2((smpfunc_t) local_ops->tlb_page,
1649 			    (unsigned long) vma, page);
1650 		local_ops->tlb_page(vma, page);
1651 	}
1652 }
1653 
1654 static void smp_flush_page_to_ram(unsigned long page)
1655 {
1656 	/* Current theory is that those who call this are the one's
1657 	 * who have just dirtied their cache with the pages contents
1658 	 * in kernel space, therefore we only run this on local cpu.
1659 	 *
1660 	 * XXX This experiment failed, research further... -DaveM
1661 	 */
1662 #if 1
1663 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1664 #endif
1665 	local_ops->page_to_ram(page);
1666 }
1667 
1668 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1669 {
1670 	cpumask_t cpu_mask;
1671 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673 	if (!cpumask_empty(&cpu_mask))
1674 		xc2((smpfunc_t) local_ops->sig_insns,
1675 		    (unsigned long) mm, insn_addr);
1676 	local_ops->sig_insns(mm, insn_addr);
1677 }
1678 
1679 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1680 	.cache_all	= smp_flush_cache_all,
1681 	.cache_mm	= smp_flush_cache_mm,
1682 	.cache_page	= smp_flush_cache_page,
1683 	.cache_range	= smp_flush_cache_range,
1684 	.tlb_all	= smp_flush_tlb_all,
1685 	.tlb_mm		= smp_flush_tlb_mm,
1686 	.tlb_page	= smp_flush_tlb_page,
1687 	.tlb_range	= smp_flush_tlb_range,
1688 	.page_to_ram	= smp_flush_page_to_ram,
1689 	.sig_insns	= smp_flush_sig_insns,
1690 	.page_for_dma	= smp_flush_page_for_dma,
1691 };
1692 #endif
1693 
1694 /* Load up routines and constants for sun4m and sun4d mmu */
1695 void __init load_mmu(void)
1696 {
1697 	extern void ld_mmu_iommu(void);
1698 	extern void ld_mmu_iounit(void);
1699 
1700 	/* Functions */
1701 	get_srmmu_type();
1702 
1703 #ifdef CONFIG_SMP
1704 	/* El switcheroo... */
1705 	local_ops = sparc32_cachetlb_ops;
1706 
1707 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1708 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1709 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1710 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1711 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1712 	}
1713 
1714 	if (poke_srmmu == poke_viking) {
1715 		/* Avoid unnecessary cross calls. */
1716 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1717 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1718 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1719 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1720 
1721 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1722 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1723 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1724 	}
1725 
1726 	/* It really is const after this point. */
1727 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1728 		&smp_cachetlb_ops;
1729 #endif
1730 
1731 	if (sparc_cpu_model == sun4d)
1732 		ld_mmu_iounit();
1733 	else
1734 		ld_mmu_iommu();
1735 #ifdef CONFIG_SMP
1736 	if (sparc_cpu_model == sun4d)
1737 		sun4d_init_smp();
1738 	else if (sparc_cpu_model == sparc_leon)
1739 		leon_init_smp();
1740 	else
1741 		sun4m_init_smp();
1742 #endif
1743 }
1744