xref: /linux/arch/sparc/mm/srmmu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58 
59 extern struct resource sparc_iomap;
60 
61 extern unsigned long last_valid_pfn;
62 
63 static pgd_t *srmmu_swapper_pg_dir;
64 
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67 
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70 
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END	}
76 #endif
77 
78 int flush_page_for_dma_global = 1;
79 
80 char *srmmu_name;
81 
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84 
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87 
88 static int is_hypersparc;
89 
90 static int srmmu_cache_pagetables;
91 
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95 
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98 
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101 
102 void *srmmu_nocache_pool;
103 static struct bit_map srmmu_nocache_map;
104 
105 static inline int srmmu_pmd_none(pmd_t pmd)
106 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107 
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110 {
111 	pte_t pte;
112 
113 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
114 	set_pte((pte_t *)ctxp, pte);
115 }
116 
117 void pmd_set(pmd_t *pmdp, pte_t *ptep)
118 {
119 	unsigned long ptp;	/* Physical address, shifted right by 4 */
120 	int i;
121 
122 	ptp = __nocache_pa(ptep) >> 4;
123 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
124 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
125 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
126 	}
127 }
128 
129 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
130 {
131 	unsigned long ptp;	/* Physical address, shifted right by 4 */
132 	int i;
133 
134 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
135 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
136 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
137 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
138 	}
139 }
140 
141 /* Find an entry in the third-level page table.. */
142 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
143 {
144 	void *pte;
145 
146 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
147 	return (pte_t *) pte +
148 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
149 }
150 
151 /*
152  * size: bytes to allocate in the nocache area.
153  * align: bytes, number to align at.
154  * Returns the virtual address of the allocated area.
155  */
156 static void *__srmmu_get_nocache(int size, int align)
157 {
158 	int offset;
159 	unsigned long addr;
160 
161 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
162 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
163 		       size);
164 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
165 	}
166 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
167 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
168 		       size);
169 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
170 	}
171 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
172 
173 	offset = bit_map_string_get(&srmmu_nocache_map,
174 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
175 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
176 	if (offset == -1) {
177 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
178 		       size, (int) srmmu_nocache_size,
179 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
180 		return NULL;
181 	}
182 
183 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
184 	return (void *)addr;
185 }
186 
187 void *srmmu_get_nocache(int size, int align)
188 {
189 	void *tmp;
190 
191 	tmp = __srmmu_get_nocache(size, align);
192 
193 	if (tmp)
194 		memset(tmp, 0, size);
195 
196 	return tmp;
197 }
198 
199 void srmmu_free_nocache(void *addr, int size)
200 {
201 	unsigned long vaddr;
202 	int offset;
203 
204 	vaddr = (unsigned long)addr;
205 	if (vaddr < SRMMU_NOCACHE_VADDR) {
206 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
207 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
208 		BUG();
209 	}
210 	if (vaddr + size > srmmu_nocache_end) {
211 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
212 		    vaddr, srmmu_nocache_end);
213 		BUG();
214 	}
215 	if (!is_power_of_2(size)) {
216 		printk("Size 0x%x is not a power of 2\n", size);
217 		BUG();
218 	}
219 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
220 		printk("Size 0x%x is too small\n", size);
221 		BUG();
222 	}
223 	if (vaddr & (size - 1)) {
224 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
225 		BUG();
226 	}
227 
228 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
229 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
230 
231 	bit_map_clear(&srmmu_nocache_map, offset, size);
232 }
233 
234 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
235 						 unsigned long end);
236 
237 /* Return how much physical memory we have.  */
238 static unsigned long __init probe_memory(void)
239 {
240 	unsigned long total = 0;
241 	int i;
242 
243 	for (i = 0; sp_banks[i].num_bytes; i++)
244 		total += sp_banks[i].num_bytes;
245 
246 	return total;
247 }
248 
249 /*
250  * Reserve nocache dynamically proportionally to the amount of
251  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
252  */
253 static void __init srmmu_nocache_calcsize(void)
254 {
255 	unsigned long sysmemavail = probe_memory() / 1024;
256 	int srmmu_nocache_npages;
257 
258 	srmmu_nocache_npages =
259 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
260 
261  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
262 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
263 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
264 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
265 
266 	/* anything above 1280 blows up */
267 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
268 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
269 
270 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
271 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
272 }
273 
274 static void __init srmmu_nocache_init(void)
275 {
276 	void *srmmu_nocache_bitmap;
277 	unsigned int bitmap_bits;
278 	pgd_t *pgd;
279 	pmd_t *pmd;
280 	pte_t *pte;
281 	unsigned long paddr, vaddr;
282 	unsigned long pteval;
283 
284 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
285 
286 	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
287 		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
288 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
289 
290 	srmmu_nocache_bitmap =
291 		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
292 				SMP_CACHE_BYTES, 0UL);
293 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
294 
295 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297 	init_mm.pgd = srmmu_swapper_pg_dir;
298 
299 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
300 
301 	paddr = __pa((unsigned long)srmmu_nocache_pool);
302 	vaddr = SRMMU_NOCACHE_VADDR;
303 
304 	while (vaddr < srmmu_nocache_end) {
305 		pgd = pgd_offset_k(vaddr);
306 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
307 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
308 
309 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
310 
311 		if (srmmu_cache_pagetables)
312 			pteval |= SRMMU_CACHE;
313 
314 		set_pte(__nocache_fix(pte), __pte(pteval));
315 
316 		vaddr += PAGE_SIZE;
317 		paddr += PAGE_SIZE;
318 	}
319 
320 	flush_cache_all();
321 	flush_tlb_all();
322 }
323 
324 pgd_t *get_pgd_fast(void)
325 {
326 	pgd_t *pgd = NULL;
327 
328 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
329 	if (pgd) {
330 		pgd_t *init = pgd_offset_k(0);
331 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
332 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
333 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
334 	}
335 
336 	return pgd;
337 }
338 
339 /*
340  * Hardware needs alignment to 256 only, but we align to whole page size
341  * to reduce fragmentation problems due to the buddy principle.
342  * XXX Provide actual fragmentation statistics in /proc.
343  *
344  * Alignments up to the page size are the same for physical and virtual
345  * addresses of the nocache area.
346  */
347 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
348 {
349 	unsigned long pte;
350 	struct page *page;
351 
352 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
353 		return NULL;
354 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
355 	if (!pgtable_page_ctor(page)) {
356 		__free_page(page);
357 		return NULL;
358 	}
359 	return page;
360 }
361 
362 void pte_free(struct mm_struct *mm, pgtable_t pte)
363 {
364 	unsigned long p;
365 
366 	pgtable_page_dtor(pte);
367 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
368 	if (p == 0)
369 		BUG();
370 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
371 
372 	/* free non cached virtual address*/
373 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
374 }
375 
376 /* context handling - a dynamically sized pool is used */
377 #define NO_CONTEXT	-1
378 
379 struct ctx_list {
380 	struct ctx_list *next;
381 	struct ctx_list *prev;
382 	unsigned int ctx_number;
383 	struct mm_struct *ctx_mm;
384 };
385 
386 static struct ctx_list *ctx_list_pool;
387 static struct ctx_list ctx_free;
388 static struct ctx_list ctx_used;
389 
390 /* At boot time we determine the number of contexts */
391 static int num_contexts;
392 
393 static inline void remove_from_ctx_list(struct ctx_list *entry)
394 {
395 	entry->next->prev = entry->prev;
396 	entry->prev->next = entry->next;
397 }
398 
399 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
400 {
401 	entry->next = head;
402 	(entry->prev = head->prev)->next = entry;
403 	head->prev = entry;
404 }
405 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
406 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
407 
408 
409 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
410 {
411 	struct ctx_list *ctxp;
412 
413 	ctxp = ctx_free.next;
414 	if (ctxp != &ctx_free) {
415 		remove_from_ctx_list(ctxp);
416 		add_to_used_ctxlist(ctxp);
417 		mm->context = ctxp->ctx_number;
418 		ctxp->ctx_mm = mm;
419 		return;
420 	}
421 	ctxp = ctx_used.next;
422 	if (ctxp->ctx_mm == old_mm)
423 		ctxp = ctxp->next;
424 	if (ctxp == &ctx_used)
425 		panic("out of mmu contexts");
426 	flush_cache_mm(ctxp->ctx_mm);
427 	flush_tlb_mm(ctxp->ctx_mm);
428 	remove_from_ctx_list(ctxp);
429 	add_to_used_ctxlist(ctxp);
430 	ctxp->ctx_mm->context = NO_CONTEXT;
431 	ctxp->ctx_mm = mm;
432 	mm->context = ctxp->ctx_number;
433 }
434 
435 static inline void free_context(int context)
436 {
437 	struct ctx_list *ctx_old;
438 
439 	ctx_old = ctx_list_pool + context;
440 	remove_from_ctx_list(ctx_old);
441 	add_to_free_ctxlist(ctx_old);
442 }
443 
444 static void __init sparc_context_init(int numctx)
445 {
446 	int ctx;
447 	unsigned long size;
448 
449 	size = numctx * sizeof(struct ctx_list);
450 	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
451 
452 	for (ctx = 0; ctx < numctx; ctx++) {
453 		struct ctx_list *clist;
454 
455 		clist = (ctx_list_pool + ctx);
456 		clist->ctx_number = ctx;
457 		clist->ctx_mm = NULL;
458 	}
459 	ctx_free.next = ctx_free.prev = &ctx_free;
460 	ctx_used.next = ctx_used.prev = &ctx_used;
461 	for (ctx = 0; ctx < numctx; ctx++)
462 		add_to_free_ctxlist(ctx_list_pool + ctx);
463 }
464 
465 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
466 	       struct task_struct *tsk)
467 {
468 	unsigned long flags;
469 
470 	if (mm->context == NO_CONTEXT) {
471 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
472 		alloc_context(old_mm, mm);
473 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
474 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
475 	}
476 
477 	if (sparc_cpu_model == sparc_leon)
478 		leon_switch_mm();
479 
480 	if (is_hypersparc)
481 		hyper_flush_whole_icache();
482 
483 	srmmu_set_context(mm->context);
484 }
485 
486 /* Low level IO area allocation on the SRMMU. */
487 static inline void srmmu_mapioaddr(unsigned long physaddr,
488 				   unsigned long virt_addr, int bus_type)
489 {
490 	pgd_t *pgdp;
491 	pmd_t *pmdp;
492 	pte_t *ptep;
493 	unsigned long tmp;
494 
495 	physaddr &= PAGE_MASK;
496 	pgdp = pgd_offset_k(virt_addr);
497 	pmdp = pmd_offset(pgdp, virt_addr);
498 	ptep = pte_offset_kernel(pmdp, virt_addr);
499 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
500 
501 	/* I need to test whether this is consistent over all
502 	 * sun4m's.  The bus_type represents the upper 4 bits of
503 	 * 36-bit physical address on the I/O space lines...
504 	 */
505 	tmp |= (bus_type << 28);
506 	tmp |= SRMMU_PRIV;
507 	__flush_page_to_ram(virt_addr);
508 	set_pte(ptep, __pte(tmp));
509 }
510 
511 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
512 		      unsigned long xva, unsigned int len)
513 {
514 	while (len != 0) {
515 		len -= PAGE_SIZE;
516 		srmmu_mapioaddr(xpa, xva, bus);
517 		xva += PAGE_SIZE;
518 		xpa += PAGE_SIZE;
519 	}
520 	flush_tlb_all();
521 }
522 
523 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
524 {
525 	pgd_t *pgdp;
526 	pmd_t *pmdp;
527 	pte_t *ptep;
528 
529 	pgdp = pgd_offset_k(virt_addr);
530 	pmdp = pmd_offset(pgdp, virt_addr);
531 	ptep = pte_offset_kernel(pmdp, virt_addr);
532 
533 	/* No need to flush uncacheable page. */
534 	__pte_clear(ptep);
535 }
536 
537 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
538 {
539 	while (len != 0) {
540 		len -= PAGE_SIZE;
541 		srmmu_unmapioaddr(virt_addr);
542 		virt_addr += PAGE_SIZE;
543 	}
544 	flush_tlb_all();
545 }
546 
547 /* tsunami.S */
548 extern void tsunami_flush_cache_all(void);
549 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
550 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
552 extern void tsunami_flush_page_to_ram(unsigned long page);
553 extern void tsunami_flush_page_for_dma(unsigned long page);
554 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
555 extern void tsunami_flush_tlb_all(void);
556 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
557 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
558 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
559 extern void tsunami_setup_blockops(void);
560 
561 /* swift.S */
562 extern void swift_flush_cache_all(void);
563 extern void swift_flush_cache_mm(struct mm_struct *mm);
564 extern void swift_flush_cache_range(struct vm_area_struct *vma,
565 				    unsigned long start, unsigned long end);
566 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
567 extern void swift_flush_page_to_ram(unsigned long page);
568 extern void swift_flush_page_for_dma(unsigned long page);
569 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
570 extern void swift_flush_tlb_all(void);
571 extern void swift_flush_tlb_mm(struct mm_struct *mm);
572 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
573 				  unsigned long start, unsigned long end);
574 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
575 
576 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
577 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
578 {
579 	int cctx, ctx1;
580 
581 	page &= PAGE_MASK;
582 	if ((ctx1 = vma->vm_mm->context) != -1) {
583 		cctx = srmmu_get_context();
584 /* Is context # ever different from current context? P3 */
585 		if (cctx != ctx1) {
586 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
587 			srmmu_set_context(ctx1);
588 			swift_flush_page(page);
589 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
590 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
591 			srmmu_set_context(cctx);
592 		} else {
593 			 /* Rm. prot. bits from virt. c. */
594 			/* swift_flush_cache_all(); */
595 			/* swift_flush_cache_page(vma, page); */
596 			swift_flush_page(page);
597 
598 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
599 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
600 			/* same as above: srmmu_flush_tlb_page() */
601 		}
602 	}
603 }
604 #endif
605 
606 /*
607  * The following are all MBUS based SRMMU modules, and therefore could
608  * be found in a multiprocessor configuration.  On the whole, these
609  * chips seems to be much more touchy about DVMA and page tables
610  * with respect to cache coherency.
611  */
612 
613 /* viking.S */
614 extern void viking_flush_cache_all(void);
615 extern void viking_flush_cache_mm(struct mm_struct *mm);
616 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
617 				     unsigned long end);
618 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
619 extern void viking_flush_page_to_ram(unsigned long page);
620 extern void viking_flush_page_for_dma(unsigned long page);
621 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
622 extern void viking_flush_page(unsigned long page);
623 extern void viking_mxcc_flush_page(unsigned long page);
624 extern void viking_flush_tlb_all(void);
625 extern void viking_flush_tlb_mm(struct mm_struct *mm);
626 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
627 				   unsigned long end);
628 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
629 				  unsigned long page);
630 extern void sun4dsmp_flush_tlb_all(void);
631 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
632 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
633 				   unsigned long end);
634 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
635 				  unsigned long page);
636 
637 /* hypersparc.S */
638 extern void hypersparc_flush_cache_all(void);
639 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
640 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
642 extern void hypersparc_flush_page_to_ram(unsigned long page);
643 extern void hypersparc_flush_page_for_dma(unsigned long page);
644 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
645 extern void hypersparc_flush_tlb_all(void);
646 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
647 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
648 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
649 extern void hypersparc_setup_blockops(void);
650 
651 /*
652  * NOTE: All of this startup code assumes the low 16mb (approx.) of
653  *       kernel mappings are done with one single contiguous chunk of
654  *       ram.  On small ram machines (classics mainly) we only get
655  *       around 8mb mapped for us.
656  */
657 
658 static void __init early_pgtable_allocfail(char *type)
659 {
660 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
661 	prom_halt();
662 }
663 
664 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
665 							unsigned long end)
666 {
667 	pgd_t *pgdp;
668 	pmd_t *pmdp;
669 	pte_t *ptep;
670 
671 	while (start < end) {
672 		pgdp = pgd_offset_k(start);
673 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
674 			pmdp = __srmmu_get_nocache(
675 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
676 			if (pmdp == NULL)
677 				early_pgtable_allocfail("pmd");
678 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
679 			pgd_set(__nocache_fix(pgdp), pmdp);
680 		}
681 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
682 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
683 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
684 			if (ptep == NULL)
685 				early_pgtable_allocfail("pte");
686 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
687 			pmd_set(__nocache_fix(pmdp), ptep);
688 		}
689 		if (start > (0xffffffffUL - PMD_SIZE))
690 			break;
691 		start = (start + PMD_SIZE) & PMD_MASK;
692 	}
693 }
694 
695 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
696 						  unsigned long end)
697 {
698 	pgd_t *pgdp;
699 	pmd_t *pmdp;
700 	pte_t *ptep;
701 
702 	while (start < end) {
703 		pgdp = pgd_offset_k(start);
704 		if (pgd_none(*pgdp)) {
705 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
706 			if (pmdp == NULL)
707 				early_pgtable_allocfail("pmd");
708 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
709 			pgd_set(pgdp, pmdp);
710 		}
711 		pmdp = pmd_offset(pgdp, start);
712 		if (srmmu_pmd_none(*pmdp)) {
713 			ptep = __srmmu_get_nocache(PTE_SIZE,
714 							     PTE_SIZE);
715 			if (ptep == NULL)
716 				early_pgtable_allocfail("pte");
717 			memset(ptep, 0, PTE_SIZE);
718 			pmd_set(pmdp, ptep);
719 		}
720 		if (start > (0xffffffffUL - PMD_SIZE))
721 			break;
722 		start = (start + PMD_SIZE) & PMD_MASK;
723 	}
724 }
725 
726 /* These flush types are not available on all chips... */
727 static inline unsigned long srmmu_probe(unsigned long vaddr)
728 {
729 	unsigned long retval;
730 
731 	if (sparc_cpu_model != sparc_leon) {
732 
733 		vaddr &= PAGE_MASK;
734 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
735 				     "=r" (retval) :
736 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
737 	} else {
738 		retval = leon_swprobe(vaddr, NULL);
739 	}
740 	return retval;
741 }
742 
743 /*
744  * This is much cleaner than poking around physical address space
745  * looking at the prom's page table directly which is what most
746  * other OS's do.  Yuck... this is much better.
747  */
748 static void __init srmmu_inherit_prom_mappings(unsigned long start,
749 					       unsigned long end)
750 {
751 	unsigned long probed;
752 	unsigned long addr;
753 	pgd_t *pgdp;
754 	pmd_t *pmdp;
755 	pte_t *ptep;
756 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
757 
758 	while (start <= end) {
759 		if (start == 0)
760 			break; /* probably wrap around */
761 		if (start == 0xfef00000)
762 			start = KADB_DEBUGGER_BEGVM;
763 		probed = srmmu_probe(start);
764 		if (!probed) {
765 			/* continue probing until we find an entry */
766 			start += PAGE_SIZE;
767 			continue;
768 		}
769 
770 		/* A red snapper, see what it really is. */
771 		what = 0;
772 		addr = start - PAGE_SIZE;
773 
774 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
775 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
776 				what = 1;
777 		}
778 
779 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
780 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
781 				what = 2;
782 		}
783 
784 		pgdp = pgd_offset_k(start);
785 		if (what == 2) {
786 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
787 			start += SRMMU_PGDIR_SIZE;
788 			continue;
789 		}
790 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
791 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
792 						   SRMMU_PMD_TABLE_SIZE);
793 			if (pmdp == NULL)
794 				early_pgtable_allocfail("pmd");
795 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
796 			pgd_set(__nocache_fix(pgdp), pmdp);
797 		}
798 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
799 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
800 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
801 			if (ptep == NULL)
802 				early_pgtable_allocfail("pte");
803 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
804 			pmd_set(__nocache_fix(pmdp), ptep);
805 		}
806 		if (what == 1) {
807 			/* We bend the rule where all 16 PTPs in a pmd_t point
808 			 * inside the same PTE page, and we leak a perfectly
809 			 * good hardware PTE piece. Alternatives seem worse.
810 			 */
811 			unsigned int x;	/* Index of HW PMD in soft cluster */
812 			unsigned long *val;
813 			x = (start >> PMD_SHIFT) & 15;
814 			val = &pmdp->pmdv[x];
815 			*(unsigned long *)__nocache_fix(val) = probed;
816 			start += SRMMU_REAL_PMD_SIZE;
817 			continue;
818 		}
819 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
820 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
821 		start += PAGE_SIZE;
822 	}
823 }
824 
825 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
826 
827 /* Create a third-level SRMMU 16MB page mapping. */
828 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
829 {
830 	pgd_t *pgdp = pgd_offset_k(vaddr);
831 	unsigned long big_pte;
832 
833 	big_pte = KERNEL_PTE(phys_base >> 4);
834 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
835 }
836 
837 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
838 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
839 {
840 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
841 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
842 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
843 	/* Map "low" memory only */
844 	const unsigned long min_vaddr = PAGE_OFFSET;
845 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
846 
847 	if (vstart < min_vaddr || vstart >= max_vaddr)
848 		return vstart;
849 
850 	if (vend > max_vaddr || vend < min_vaddr)
851 		vend = max_vaddr;
852 
853 	while (vstart < vend) {
854 		do_large_mapping(vstart, pstart);
855 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
856 	}
857 	return vstart;
858 }
859 
860 static void __init map_kernel(void)
861 {
862 	int i;
863 
864 	if (phys_base > 0) {
865 		do_large_mapping(PAGE_OFFSET, phys_base);
866 	}
867 
868 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
869 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
870 	}
871 }
872 
873 void (*poke_srmmu)(void) = NULL;
874 
875 void __init srmmu_paging_init(void)
876 {
877 	int i;
878 	phandle cpunode;
879 	char node_str[128];
880 	pgd_t *pgd;
881 	pmd_t *pmd;
882 	pte_t *pte;
883 	unsigned long pages_avail;
884 
885 	init_mm.context = (unsigned long) NO_CONTEXT;
886 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
887 
888 	if (sparc_cpu_model == sun4d)
889 		num_contexts = 65536; /* We know it is Viking */
890 	else {
891 		/* Find the number of contexts on the srmmu. */
892 		cpunode = prom_getchild(prom_root_node);
893 		num_contexts = 0;
894 		while (cpunode != 0) {
895 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
896 			if (!strcmp(node_str, "cpu")) {
897 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
898 				break;
899 			}
900 			cpunode = prom_getsibling(cpunode);
901 		}
902 	}
903 
904 	if (!num_contexts) {
905 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
906 		prom_halt();
907 	}
908 
909 	pages_avail = 0;
910 	last_valid_pfn = bootmem_init(&pages_avail);
911 
912 	srmmu_nocache_calcsize();
913 	srmmu_nocache_init();
914 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
915 	map_kernel();
916 
917 	/* ctx table has to be physically aligned to its size */
918 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
919 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
920 
921 	for (i = 0; i < num_contexts; i++)
922 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
923 
924 	flush_cache_all();
925 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
926 #ifdef CONFIG_SMP
927 	/* Stop from hanging here... */
928 	local_ops->tlb_all();
929 #else
930 	flush_tlb_all();
931 #endif
932 	poke_srmmu();
933 
934 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
935 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
936 
937 	srmmu_allocate_ptable_skeleton(
938 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
939 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
940 
941 	pgd = pgd_offset_k(PKMAP_BASE);
942 	pmd = pmd_offset(pgd, PKMAP_BASE);
943 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
944 	pkmap_page_table = pte;
945 
946 	flush_cache_all();
947 	flush_tlb_all();
948 
949 	sparc_context_init(num_contexts);
950 
951 	kmap_init();
952 
953 	{
954 		unsigned long zones_size[MAX_NR_ZONES];
955 		unsigned long zholes_size[MAX_NR_ZONES];
956 		unsigned long npages;
957 		int znum;
958 
959 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
960 			zones_size[znum] = zholes_size[znum] = 0;
961 
962 		npages = max_low_pfn - pfn_base;
963 
964 		zones_size[ZONE_DMA] = npages;
965 		zholes_size[ZONE_DMA] = npages - pages_avail;
966 
967 		npages = highend_pfn - max_low_pfn;
968 		zones_size[ZONE_HIGHMEM] = npages;
969 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
970 
971 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
972 	}
973 }
974 
975 void mmu_info(struct seq_file *m)
976 {
977 	seq_printf(m,
978 		   "MMU type\t: %s\n"
979 		   "contexts\t: %d\n"
980 		   "nocache total\t: %ld\n"
981 		   "nocache used\t: %d\n",
982 		   srmmu_name,
983 		   num_contexts,
984 		   srmmu_nocache_size,
985 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
986 }
987 
988 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
989 {
990 	mm->context = NO_CONTEXT;
991 	return 0;
992 }
993 
994 void destroy_context(struct mm_struct *mm)
995 {
996 	unsigned long flags;
997 
998 	if (mm->context != NO_CONTEXT) {
999 		flush_cache_mm(mm);
1000 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1001 		flush_tlb_mm(mm);
1002 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1003 		free_context(mm->context);
1004 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1005 		mm->context = NO_CONTEXT;
1006 	}
1007 }
1008 
1009 /* Init various srmmu chip types. */
1010 static void __init srmmu_is_bad(void)
1011 {
1012 	prom_printf("Could not determine SRMMU chip type.\n");
1013 	prom_halt();
1014 }
1015 
1016 static void __init init_vac_layout(void)
1017 {
1018 	phandle nd;
1019 	int cache_lines;
1020 	char node_str[128];
1021 #ifdef CONFIG_SMP
1022 	int cpu = 0;
1023 	unsigned long max_size = 0;
1024 	unsigned long min_line_size = 0x10000000;
1025 #endif
1026 
1027 	nd = prom_getchild(prom_root_node);
1028 	while ((nd = prom_getsibling(nd)) != 0) {
1029 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1030 		if (!strcmp(node_str, "cpu")) {
1031 			vac_line_size = prom_getint(nd, "cache-line-size");
1032 			if (vac_line_size == -1) {
1033 				prom_printf("can't determine cache-line-size, halting.\n");
1034 				prom_halt();
1035 			}
1036 			cache_lines = prom_getint(nd, "cache-nlines");
1037 			if (cache_lines == -1) {
1038 				prom_printf("can't determine cache-nlines, halting.\n");
1039 				prom_halt();
1040 			}
1041 
1042 			vac_cache_size = cache_lines * vac_line_size;
1043 #ifdef CONFIG_SMP
1044 			if (vac_cache_size > max_size)
1045 				max_size = vac_cache_size;
1046 			if (vac_line_size < min_line_size)
1047 				min_line_size = vac_line_size;
1048 			//FIXME: cpus not contiguous!!
1049 			cpu++;
1050 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1051 				break;
1052 #else
1053 			break;
1054 #endif
1055 		}
1056 	}
1057 	if (nd == 0) {
1058 		prom_printf("No CPU nodes found, halting.\n");
1059 		prom_halt();
1060 	}
1061 #ifdef CONFIG_SMP
1062 	vac_cache_size = max_size;
1063 	vac_line_size = min_line_size;
1064 #endif
1065 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1066 	       (int)vac_cache_size, (int)vac_line_size);
1067 }
1068 
1069 static void poke_hypersparc(void)
1070 {
1071 	volatile unsigned long clear;
1072 	unsigned long mreg = srmmu_get_mmureg();
1073 
1074 	hyper_flush_unconditional_combined();
1075 
1076 	mreg &= ~(HYPERSPARC_CWENABLE);
1077 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1078 	mreg |= (HYPERSPARC_CMODE);
1079 
1080 	srmmu_set_mmureg(mreg);
1081 
1082 #if 0 /* XXX I think this is bad news... -DaveM */
1083 	hyper_clear_all_tags();
1084 #endif
1085 
1086 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1087 	hyper_flush_whole_icache();
1088 	clear = srmmu_get_faddr();
1089 	clear = srmmu_get_fstatus();
1090 }
1091 
1092 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1093 	.cache_all	= hypersparc_flush_cache_all,
1094 	.cache_mm	= hypersparc_flush_cache_mm,
1095 	.cache_page	= hypersparc_flush_cache_page,
1096 	.cache_range	= hypersparc_flush_cache_range,
1097 	.tlb_all	= hypersparc_flush_tlb_all,
1098 	.tlb_mm		= hypersparc_flush_tlb_mm,
1099 	.tlb_page	= hypersparc_flush_tlb_page,
1100 	.tlb_range	= hypersparc_flush_tlb_range,
1101 	.page_to_ram	= hypersparc_flush_page_to_ram,
1102 	.sig_insns	= hypersparc_flush_sig_insns,
1103 	.page_for_dma	= hypersparc_flush_page_for_dma,
1104 };
1105 
1106 static void __init init_hypersparc(void)
1107 {
1108 	srmmu_name = "ROSS HyperSparc";
1109 	srmmu_modtype = HyperSparc;
1110 
1111 	init_vac_layout();
1112 
1113 	is_hypersparc = 1;
1114 	sparc32_cachetlb_ops = &hypersparc_ops;
1115 
1116 	poke_srmmu = poke_hypersparc;
1117 
1118 	hypersparc_setup_blockops();
1119 }
1120 
1121 static void poke_swift(void)
1122 {
1123 	unsigned long mreg;
1124 
1125 	/* Clear any crap from the cache or else... */
1126 	swift_flush_cache_all();
1127 
1128 	/* Enable I & D caches */
1129 	mreg = srmmu_get_mmureg();
1130 	mreg |= (SWIFT_IE | SWIFT_DE);
1131 	/*
1132 	 * The Swift branch folding logic is completely broken.  At
1133 	 * trap time, if things are just right, if can mistakenly
1134 	 * think that a trap is coming from kernel mode when in fact
1135 	 * it is coming from user mode (it mis-executes the branch in
1136 	 * the trap code).  So you see things like crashme completely
1137 	 * hosing your machine which is completely unacceptable.  Turn
1138 	 * this shit off... nice job Fujitsu.
1139 	 */
1140 	mreg &= ~(SWIFT_BF);
1141 	srmmu_set_mmureg(mreg);
1142 }
1143 
1144 static const struct sparc32_cachetlb_ops swift_ops = {
1145 	.cache_all	= swift_flush_cache_all,
1146 	.cache_mm	= swift_flush_cache_mm,
1147 	.cache_page	= swift_flush_cache_page,
1148 	.cache_range	= swift_flush_cache_range,
1149 	.tlb_all	= swift_flush_tlb_all,
1150 	.tlb_mm		= swift_flush_tlb_mm,
1151 	.tlb_page	= swift_flush_tlb_page,
1152 	.tlb_range	= swift_flush_tlb_range,
1153 	.page_to_ram	= swift_flush_page_to_ram,
1154 	.sig_insns	= swift_flush_sig_insns,
1155 	.page_for_dma	= swift_flush_page_for_dma,
1156 };
1157 
1158 #define SWIFT_MASKID_ADDR  0x10003018
1159 static void __init init_swift(void)
1160 {
1161 	unsigned long swift_rev;
1162 
1163 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1164 			     "srl %0, 0x18, %0\n\t" :
1165 			     "=r" (swift_rev) :
1166 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1167 	srmmu_name = "Fujitsu Swift";
1168 	switch (swift_rev) {
1169 	case 0x11:
1170 	case 0x20:
1171 	case 0x23:
1172 	case 0x30:
1173 		srmmu_modtype = Swift_lots_o_bugs;
1174 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1175 		/*
1176 		 * Gee george, I wonder why Sun is so hush hush about
1177 		 * this hardware bug... really braindamage stuff going
1178 		 * on here.  However I think we can find a way to avoid
1179 		 * all of the workaround overhead under Linux.  Basically,
1180 		 * any page fault can cause kernel pages to become user
1181 		 * accessible (the mmu gets confused and clears some of
1182 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1183 		 * horrible eh?  But wait, after extensive testing it appears
1184 		 * that if you use pgd_t level large kernel pte's (like the
1185 		 * 4MB pages on the Pentium) the bug does not get tripped
1186 		 * at all.  This avoids almost all of the major overhead.
1187 		 * Welcome to a world where your vendor tells you to,
1188 		 * "apply this kernel patch" instead of "sorry for the
1189 		 * broken hardware, send it back and we'll give you
1190 		 * properly functioning parts"
1191 		 */
1192 		break;
1193 	case 0x25:
1194 	case 0x31:
1195 		srmmu_modtype = Swift_bad_c;
1196 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1197 		/*
1198 		 * You see Sun allude to this hardware bug but never
1199 		 * admit things directly, they'll say things like,
1200 		 * "the Swift chip cache problems" or similar.
1201 		 */
1202 		break;
1203 	default:
1204 		srmmu_modtype = Swift_ok;
1205 		break;
1206 	}
1207 
1208 	sparc32_cachetlb_ops = &swift_ops;
1209 	flush_page_for_dma_global = 0;
1210 
1211 	/*
1212 	 * Are you now convinced that the Swift is one of the
1213 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1214 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1215 	 * you examined the microcode of the Swift you'd find
1216 	 * XXX's all over the place.
1217 	 */
1218 	poke_srmmu = poke_swift;
1219 }
1220 
1221 static void turbosparc_flush_cache_all(void)
1222 {
1223 	flush_user_windows();
1224 	turbosparc_idflash_clear();
1225 }
1226 
1227 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1228 {
1229 	FLUSH_BEGIN(mm)
1230 	flush_user_windows();
1231 	turbosparc_idflash_clear();
1232 	FLUSH_END
1233 }
1234 
1235 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1236 {
1237 	FLUSH_BEGIN(vma->vm_mm)
1238 	flush_user_windows();
1239 	turbosparc_idflash_clear();
1240 	FLUSH_END
1241 }
1242 
1243 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1244 {
1245 	FLUSH_BEGIN(vma->vm_mm)
1246 	flush_user_windows();
1247 	if (vma->vm_flags & VM_EXEC)
1248 		turbosparc_flush_icache();
1249 	turbosparc_flush_dcache();
1250 	FLUSH_END
1251 }
1252 
1253 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1254 static void turbosparc_flush_page_to_ram(unsigned long page)
1255 {
1256 #ifdef TURBOSPARC_WRITEBACK
1257 	volatile unsigned long clear;
1258 
1259 	if (srmmu_probe(page))
1260 		turbosparc_flush_page_cache(page);
1261 	clear = srmmu_get_fstatus();
1262 #endif
1263 }
1264 
1265 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1266 {
1267 }
1268 
1269 static void turbosparc_flush_page_for_dma(unsigned long page)
1270 {
1271 	turbosparc_flush_dcache();
1272 }
1273 
1274 static void turbosparc_flush_tlb_all(void)
1275 {
1276 	srmmu_flush_whole_tlb();
1277 }
1278 
1279 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1280 {
1281 	FLUSH_BEGIN(mm)
1282 	srmmu_flush_whole_tlb();
1283 	FLUSH_END
1284 }
1285 
1286 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1287 {
1288 	FLUSH_BEGIN(vma->vm_mm)
1289 	srmmu_flush_whole_tlb();
1290 	FLUSH_END
1291 }
1292 
1293 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1294 {
1295 	FLUSH_BEGIN(vma->vm_mm)
1296 	srmmu_flush_whole_tlb();
1297 	FLUSH_END
1298 }
1299 
1300 
1301 static void poke_turbosparc(void)
1302 {
1303 	unsigned long mreg = srmmu_get_mmureg();
1304 	unsigned long ccreg;
1305 
1306 	/* Clear any crap from the cache or else... */
1307 	turbosparc_flush_cache_all();
1308 	/* Temporarily disable I & D caches */
1309 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1310 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1311 	srmmu_set_mmureg(mreg);
1312 
1313 	ccreg = turbosparc_get_ccreg();
1314 
1315 #ifdef TURBOSPARC_WRITEBACK
1316 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1317 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1318 			/* Write-back D-cache, emulate VLSI
1319 			 * abortion number three, not number one */
1320 #else
1321 	/* For now let's play safe, optimize later */
1322 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1323 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1324 	ccreg &= ~(TURBOSPARC_uS2);
1325 			/* Emulate VLSI abortion number three, not number one */
1326 #endif
1327 
1328 	switch (ccreg & 7) {
1329 	case 0: /* No SE cache */
1330 	case 7: /* Test mode */
1331 		break;
1332 	default:
1333 		ccreg |= (TURBOSPARC_SCENABLE);
1334 	}
1335 	turbosparc_set_ccreg(ccreg);
1336 
1337 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1338 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1339 	srmmu_set_mmureg(mreg);
1340 }
1341 
1342 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1343 	.cache_all	= turbosparc_flush_cache_all,
1344 	.cache_mm	= turbosparc_flush_cache_mm,
1345 	.cache_page	= turbosparc_flush_cache_page,
1346 	.cache_range	= turbosparc_flush_cache_range,
1347 	.tlb_all	= turbosparc_flush_tlb_all,
1348 	.tlb_mm		= turbosparc_flush_tlb_mm,
1349 	.tlb_page	= turbosparc_flush_tlb_page,
1350 	.tlb_range	= turbosparc_flush_tlb_range,
1351 	.page_to_ram	= turbosparc_flush_page_to_ram,
1352 	.sig_insns	= turbosparc_flush_sig_insns,
1353 	.page_for_dma	= turbosparc_flush_page_for_dma,
1354 };
1355 
1356 static void __init init_turbosparc(void)
1357 {
1358 	srmmu_name = "Fujitsu TurboSparc";
1359 	srmmu_modtype = TurboSparc;
1360 	sparc32_cachetlb_ops = &turbosparc_ops;
1361 	poke_srmmu = poke_turbosparc;
1362 }
1363 
1364 static void poke_tsunami(void)
1365 {
1366 	unsigned long mreg = srmmu_get_mmureg();
1367 
1368 	tsunami_flush_icache();
1369 	tsunami_flush_dcache();
1370 	mreg &= ~TSUNAMI_ITD;
1371 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1372 	srmmu_set_mmureg(mreg);
1373 }
1374 
1375 static const struct sparc32_cachetlb_ops tsunami_ops = {
1376 	.cache_all	= tsunami_flush_cache_all,
1377 	.cache_mm	= tsunami_flush_cache_mm,
1378 	.cache_page	= tsunami_flush_cache_page,
1379 	.cache_range	= tsunami_flush_cache_range,
1380 	.tlb_all	= tsunami_flush_tlb_all,
1381 	.tlb_mm		= tsunami_flush_tlb_mm,
1382 	.tlb_page	= tsunami_flush_tlb_page,
1383 	.tlb_range	= tsunami_flush_tlb_range,
1384 	.page_to_ram	= tsunami_flush_page_to_ram,
1385 	.sig_insns	= tsunami_flush_sig_insns,
1386 	.page_for_dma	= tsunami_flush_page_for_dma,
1387 };
1388 
1389 static void __init init_tsunami(void)
1390 {
1391 	/*
1392 	 * Tsunami's pretty sane, Sun and TI actually got it
1393 	 * somewhat right this time.  Fujitsu should have
1394 	 * taken some lessons from them.
1395 	 */
1396 
1397 	srmmu_name = "TI Tsunami";
1398 	srmmu_modtype = Tsunami;
1399 	sparc32_cachetlb_ops = &tsunami_ops;
1400 	poke_srmmu = poke_tsunami;
1401 
1402 	tsunami_setup_blockops();
1403 }
1404 
1405 static void poke_viking(void)
1406 {
1407 	unsigned long mreg = srmmu_get_mmureg();
1408 	static int smp_catch;
1409 
1410 	if (viking_mxcc_present) {
1411 		unsigned long mxcc_control = mxcc_get_creg();
1412 
1413 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1414 		mxcc_control &= ~(MXCC_CTL_RRC);
1415 		mxcc_set_creg(mxcc_control);
1416 
1417 		/*
1418 		 * We don't need memory parity checks.
1419 		 * XXX This is a mess, have to dig out later. ecd.
1420 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1421 		 */
1422 
1423 		/* We do cache ptables on MXCC. */
1424 		mreg |= VIKING_TCENABLE;
1425 	} else {
1426 		unsigned long bpreg;
1427 
1428 		mreg &= ~(VIKING_TCENABLE);
1429 		if (smp_catch++) {
1430 			/* Must disable mixed-cmd mode here for other cpu's. */
1431 			bpreg = viking_get_bpreg();
1432 			bpreg &= ~(VIKING_ACTION_MIX);
1433 			viking_set_bpreg(bpreg);
1434 
1435 			/* Just in case PROM does something funny. */
1436 			msi_set_sync();
1437 		}
1438 	}
1439 
1440 	mreg |= VIKING_SPENABLE;
1441 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1442 	mreg |= VIKING_SBENABLE;
1443 	mreg &= ~(VIKING_ACENABLE);
1444 	srmmu_set_mmureg(mreg);
1445 }
1446 
1447 static struct sparc32_cachetlb_ops viking_ops = {
1448 	.cache_all	= viking_flush_cache_all,
1449 	.cache_mm	= viking_flush_cache_mm,
1450 	.cache_page	= viking_flush_cache_page,
1451 	.cache_range	= viking_flush_cache_range,
1452 	.tlb_all	= viking_flush_tlb_all,
1453 	.tlb_mm		= viking_flush_tlb_mm,
1454 	.tlb_page	= viking_flush_tlb_page,
1455 	.tlb_range	= viking_flush_tlb_range,
1456 	.page_to_ram	= viking_flush_page_to_ram,
1457 	.sig_insns	= viking_flush_sig_insns,
1458 	.page_for_dma	= viking_flush_page_for_dma,
1459 };
1460 
1461 #ifdef CONFIG_SMP
1462 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1463  * perform the local TLB flush and all the other cpus will see it.
1464  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1465  * that requires that we add some synchronization to these flushes.
1466  *
1467  * The bug is that the fifo which keeps track of all the pending TLB
1468  * broadcasts in the system is an entry or two too small, so if we
1469  * have too many going at once we'll overflow that fifo and lose a TLB
1470  * flush resulting in corruption.
1471  *
1472  * Our workaround is to take a global spinlock around the TLB flushes,
1473  * which guarentees we won't ever have too many pending.  It's a big
1474  * hammer, but a semaphore like system to make sure we only have N TLB
1475  * flushes going at once will require SMP locking anyways so there's
1476  * no real value in trying any harder than this.
1477  */
1478 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1479 	.cache_all	= viking_flush_cache_all,
1480 	.cache_mm	= viking_flush_cache_mm,
1481 	.cache_page	= viking_flush_cache_page,
1482 	.cache_range	= viking_flush_cache_range,
1483 	.tlb_all	= sun4dsmp_flush_tlb_all,
1484 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1485 	.tlb_page	= sun4dsmp_flush_tlb_page,
1486 	.tlb_range	= sun4dsmp_flush_tlb_range,
1487 	.page_to_ram	= viking_flush_page_to_ram,
1488 	.sig_insns	= viking_flush_sig_insns,
1489 	.page_for_dma	= viking_flush_page_for_dma,
1490 };
1491 #endif
1492 
1493 static void __init init_viking(void)
1494 {
1495 	unsigned long mreg = srmmu_get_mmureg();
1496 
1497 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1498 	if (mreg & VIKING_MMODE) {
1499 		srmmu_name = "TI Viking";
1500 		viking_mxcc_present = 0;
1501 		msi_set_sync();
1502 
1503 		/*
1504 		 * We need this to make sure old viking takes no hits
1505 		 * on it's cache for dma snoops to workaround the
1506 		 * "load from non-cacheable memory" interrupt bug.
1507 		 * This is only necessary because of the new way in
1508 		 * which we use the IOMMU.
1509 		 */
1510 		viking_ops.page_for_dma = viking_flush_page;
1511 #ifdef CONFIG_SMP
1512 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1513 #endif
1514 		flush_page_for_dma_global = 0;
1515 	} else {
1516 		srmmu_name = "TI Viking/MXCC";
1517 		viking_mxcc_present = 1;
1518 		srmmu_cache_pagetables = 1;
1519 	}
1520 
1521 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1522 		&viking_ops;
1523 #ifdef CONFIG_SMP
1524 	if (sparc_cpu_model == sun4d)
1525 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1526 			&viking_sun4d_smp_ops;
1527 #endif
1528 
1529 	poke_srmmu = poke_viking;
1530 }
1531 
1532 /* Probe for the srmmu chip version. */
1533 static void __init get_srmmu_type(void)
1534 {
1535 	unsigned long mreg, psr;
1536 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1537 
1538 	srmmu_modtype = SRMMU_INVAL_MOD;
1539 	hwbug_bitmask = 0;
1540 
1541 	mreg = srmmu_get_mmureg(); psr = get_psr();
1542 	mod_typ = (mreg & 0xf0000000) >> 28;
1543 	mod_rev = (mreg & 0x0f000000) >> 24;
1544 	psr_typ = (psr >> 28) & 0xf;
1545 	psr_vers = (psr >> 24) & 0xf;
1546 
1547 	/* First, check for sparc-leon. */
1548 	if (sparc_cpu_model == sparc_leon) {
1549 		init_leon();
1550 		return;
1551 	}
1552 
1553 	/* Second, check for HyperSparc or Cypress. */
1554 	if (mod_typ == 1) {
1555 		switch (mod_rev) {
1556 		case 7:
1557 			/* UP or MP Hypersparc */
1558 			init_hypersparc();
1559 			break;
1560 		case 0:
1561 		case 2:
1562 		case 10:
1563 		case 11:
1564 		case 12:
1565 		case 13:
1566 		case 14:
1567 		case 15:
1568 		default:
1569 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1570 			prom_halt();
1571 			break;
1572 		}
1573 		return;
1574 	}
1575 
1576 	/* Now Fujitsu TurboSparc. It might happen that it is
1577 	 * in Swift emulation mode, so we will check later...
1578 	 */
1579 	if (psr_typ == 0 && psr_vers == 5) {
1580 		init_turbosparc();
1581 		return;
1582 	}
1583 
1584 	/* Next check for Fujitsu Swift. */
1585 	if (psr_typ == 0 && psr_vers == 4) {
1586 		phandle cpunode;
1587 		char node_str[128];
1588 
1589 		/* Look if it is not a TurboSparc emulating Swift... */
1590 		cpunode = prom_getchild(prom_root_node);
1591 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1592 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1593 			if (!strcmp(node_str, "cpu")) {
1594 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1595 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1596 					init_turbosparc();
1597 					return;
1598 				}
1599 				break;
1600 			}
1601 		}
1602 
1603 		init_swift();
1604 		return;
1605 	}
1606 
1607 	/* Now the Viking family of srmmu. */
1608 	if (psr_typ == 4 &&
1609 	   ((psr_vers == 0) ||
1610 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1611 		init_viking();
1612 		return;
1613 	}
1614 
1615 	/* Finally the Tsunami. */
1616 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1617 		init_tsunami();
1618 		return;
1619 	}
1620 
1621 	/* Oh well */
1622 	srmmu_is_bad();
1623 }
1624 
1625 #ifdef CONFIG_SMP
1626 /* Local cross-calls. */
1627 static void smp_flush_page_for_dma(unsigned long page)
1628 {
1629 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1630 	local_ops->page_for_dma(page);
1631 }
1632 
1633 static void smp_flush_cache_all(void)
1634 {
1635 	xc0((smpfunc_t) local_ops->cache_all);
1636 	local_ops->cache_all();
1637 }
1638 
1639 static void smp_flush_tlb_all(void)
1640 {
1641 	xc0((smpfunc_t) local_ops->tlb_all);
1642 	local_ops->tlb_all();
1643 }
1644 
1645 static void smp_flush_cache_mm(struct mm_struct *mm)
1646 {
1647 	if (mm->context != NO_CONTEXT) {
1648 		cpumask_t cpu_mask;
1649 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1650 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1651 		if (!cpumask_empty(&cpu_mask))
1652 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1653 		local_ops->cache_mm(mm);
1654 	}
1655 }
1656 
1657 static void smp_flush_tlb_mm(struct mm_struct *mm)
1658 {
1659 	if (mm->context != NO_CONTEXT) {
1660 		cpumask_t cpu_mask;
1661 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1662 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1663 		if (!cpumask_empty(&cpu_mask)) {
1664 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1665 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1666 				cpumask_copy(mm_cpumask(mm),
1667 					     cpumask_of(smp_processor_id()));
1668 		}
1669 		local_ops->tlb_mm(mm);
1670 	}
1671 }
1672 
1673 static void smp_flush_cache_range(struct vm_area_struct *vma,
1674 				  unsigned long start,
1675 				  unsigned long end)
1676 {
1677 	struct mm_struct *mm = vma->vm_mm;
1678 
1679 	if (mm->context != NO_CONTEXT) {
1680 		cpumask_t cpu_mask;
1681 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683 		if (!cpumask_empty(&cpu_mask))
1684 			xc3((smpfunc_t) local_ops->cache_range,
1685 			    (unsigned long) vma, start, end);
1686 		local_ops->cache_range(vma, start, end);
1687 	}
1688 }
1689 
1690 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1691 				unsigned long start,
1692 				unsigned long end)
1693 {
1694 	struct mm_struct *mm = vma->vm_mm;
1695 
1696 	if (mm->context != NO_CONTEXT) {
1697 		cpumask_t cpu_mask;
1698 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1699 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1700 		if (!cpumask_empty(&cpu_mask))
1701 			xc3((smpfunc_t) local_ops->tlb_range,
1702 			    (unsigned long) vma, start, end);
1703 		local_ops->tlb_range(vma, start, end);
1704 	}
1705 }
1706 
1707 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1708 {
1709 	struct mm_struct *mm = vma->vm_mm;
1710 
1711 	if (mm->context != NO_CONTEXT) {
1712 		cpumask_t cpu_mask;
1713 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1714 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1715 		if (!cpumask_empty(&cpu_mask))
1716 			xc2((smpfunc_t) local_ops->cache_page,
1717 			    (unsigned long) vma, page);
1718 		local_ops->cache_page(vma, page);
1719 	}
1720 }
1721 
1722 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1723 {
1724 	struct mm_struct *mm = vma->vm_mm;
1725 
1726 	if (mm->context != NO_CONTEXT) {
1727 		cpumask_t cpu_mask;
1728 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1729 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1730 		if (!cpumask_empty(&cpu_mask))
1731 			xc2((smpfunc_t) local_ops->tlb_page,
1732 			    (unsigned long) vma, page);
1733 		local_ops->tlb_page(vma, page);
1734 	}
1735 }
1736 
1737 static void smp_flush_page_to_ram(unsigned long page)
1738 {
1739 	/* Current theory is that those who call this are the one's
1740 	 * who have just dirtied their cache with the pages contents
1741 	 * in kernel space, therefore we only run this on local cpu.
1742 	 *
1743 	 * XXX This experiment failed, research further... -DaveM
1744 	 */
1745 #if 1
1746 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1747 #endif
1748 	local_ops->page_to_ram(page);
1749 }
1750 
1751 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1752 {
1753 	cpumask_t cpu_mask;
1754 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1755 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1756 	if (!cpumask_empty(&cpu_mask))
1757 		xc2((smpfunc_t) local_ops->sig_insns,
1758 		    (unsigned long) mm, insn_addr);
1759 	local_ops->sig_insns(mm, insn_addr);
1760 }
1761 
1762 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1763 	.cache_all	= smp_flush_cache_all,
1764 	.cache_mm	= smp_flush_cache_mm,
1765 	.cache_page	= smp_flush_cache_page,
1766 	.cache_range	= smp_flush_cache_range,
1767 	.tlb_all	= smp_flush_tlb_all,
1768 	.tlb_mm		= smp_flush_tlb_mm,
1769 	.tlb_page	= smp_flush_tlb_page,
1770 	.tlb_range	= smp_flush_tlb_range,
1771 	.page_to_ram	= smp_flush_page_to_ram,
1772 	.sig_insns	= smp_flush_sig_insns,
1773 	.page_for_dma	= smp_flush_page_for_dma,
1774 };
1775 #endif
1776 
1777 /* Load up routines and constants for sun4m and sun4d mmu */
1778 void __init load_mmu(void)
1779 {
1780 	/* Functions */
1781 	get_srmmu_type();
1782 
1783 #ifdef CONFIG_SMP
1784 	/* El switcheroo... */
1785 	local_ops = sparc32_cachetlb_ops;
1786 
1787 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1788 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1789 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1790 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1791 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1792 	}
1793 
1794 	if (poke_srmmu == poke_viking) {
1795 		/* Avoid unnecessary cross calls. */
1796 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1797 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1798 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1799 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1800 
1801 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1802 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1803 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1804 	}
1805 
1806 	/* It really is const after this point. */
1807 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1808 		&smp_cachetlb_ops;
1809 #endif
1810 
1811 	if (sparc_cpu_model == sun4d)
1812 		ld_mmu_iounit();
1813 	else
1814 		ld_mmu_iommu();
1815 #ifdef CONFIG_SMP
1816 	if (sparc_cpu_model == sun4d)
1817 		sun4d_init_smp();
1818 	else if (sparc_cpu_model == sparc_leon)
1819 		leon_init_smp();
1820 	else
1821 		sun4m_init_smp();
1822 #endif
1823 }
1824