xref: /linux/arch/sparc/mm/init_64.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51 
52 #include "init_64.h"
53 
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55 
56 /* A bitmap, two bits for every 256MB of physical memory.  These two
57  * bits determine what page size we use for kernel linear
58  * translations.  They form an index into kern_linear_pte_xor[].  The
59  * value in the indexed slot is XOR'd with the TLB miss virtual
60  * address to form the resulting TTE.  The mapping is:
61  *
62  *	0	==>	4MB
63  *	1	==>	256MB
64  *	2	==>	2GB
65  *	3	==>	16GB
66  *
67  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
68  * support 2GB pages, and hopefully future cpus will support the 16GB
69  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
70  * if these larger page sizes are not supported by the cpu.
71  *
72  * It would be nice to determine this from the machine description
73  * 'cpu' properties, but we need to have this table setup before the
74  * MDESC is initialized.
75  */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77 
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80  * Space is allocated for this right after the trap table in
81  * arch/sparc64/kernel/head.S
82  */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85 
86 static unsigned long cpu_pgsz_mask;
87 
88 #define MAX_BANKS	32
89 
90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents;
92 
93 static int cmp_p64(const void *a, const void *b)
94 {
95 	const struct linux_prom64_registers *x = a, *y = b;
96 
97 	if (x->phys_addr > y->phys_addr)
98 		return 1;
99 	if (x->phys_addr < y->phys_addr)
100 		return -1;
101 	return 0;
102 }
103 
104 static void __init read_obp_memory(const char *property,
105 				   struct linux_prom64_registers *regs,
106 				   int *num_ents)
107 {
108 	phandle node = prom_finddevice("/memory");
109 	int prop_size = prom_getproplen(node, property);
110 	int ents, ret, i;
111 
112 	ents = prop_size / sizeof(struct linux_prom64_registers);
113 	if (ents > MAX_BANKS) {
114 		prom_printf("The machine has more %s property entries than "
115 			    "this kernel can support (%d).\n",
116 			    property, MAX_BANKS);
117 		prom_halt();
118 	}
119 
120 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 	if (ret == -1) {
122 		prom_printf("Couldn't get %s property from /memory.\n",
123 				property);
124 		prom_halt();
125 	}
126 
127 	/* Sanitize what we got from the firmware, by page aligning
128 	 * everything.
129 	 */
130 	for (i = 0; i < ents; i++) {
131 		unsigned long base, size;
132 
133 		base = regs[i].phys_addr;
134 		size = regs[i].reg_size;
135 
136 		size &= PAGE_MASK;
137 		if (base & ~PAGE_MASK) {
138 			unsigned long new_base = PAGE_ALIGN(base);
139 
140 			size -= new_base - base;
141 			if ((long) size < 0L)
142 				size = 0UL;
143 			base = new_base;
144 		}
145 		if (size == 0UL) {
146 			/* If it is empty, simply get rid of it.
147 			 * This simplifies the logic of the other
148 			 * functions that process these arrays.
149 			 */
150 			memmove(&regs[i], &regs[i + 1],
151 				(ents - i - 1) * sizeof(regs[0]));
152 			i--;
153 			ents--;
154 			continue;
155 		}
156 		regs[i].phys_addr = base;
157 		regs[i].reg_size = size;
158 	}
159 
160 	*num_ents = ents;
161 
162 	sort(regs, ents, sizeof(struct linux_prom64_registers),
163 	     cmp_p64, NULL);
164 }
165 
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 					sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169 
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173 
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178 
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181 
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183 
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187 
188 int num_kernel_image_mappings;
189 
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196 
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 	BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 	atomic_inc(&dcpage_flushes);
202 #endif
203 
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 	__flush_dcache_page(page_address(page),
206 			    ((tlb_type == spitfire) &&
207 			     page_mapping(page) != NULL));
208 #else
209 	if (page_mapping(page) != NULL &&
210 	    tlb_type == spitfire)
211 		__flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214 
215 #define PG_dcache_dirty		PG_arch_1
216 #define PG_dcache_cpu_shift	32UL
217 #define PG_dcache_cpu_mask	\
218 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 
220 #define dcache_dirty_cpu(page) \
221 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 	unsigned long mask = this_cpu;
226 	unsigned long non_cpu_bits;
227 
228 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 
231 	__asm__ __volatile__("1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "and	%%g7, %1, %%g1\n\t"
234 			     "or	%%g1, %0, %%g1\n\t"
235 			     "casx	[%2], %%g7, %%g1\n\t"
236 			     "cmp	%%g7, %%g1\n\t"
237 			     "bne,pn	%%xcc, 1b\n\t"
238 			     " nop"
239 			     : /* no outputs */
240 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 			     : "g1", "g7");
242 }
243 
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 	unsigned long mask = (1UL << PG_dcache_dirty);
247 
248 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 			     "1:\n\t"
250 			     "ldx	[%2], %%g7\n\t"
251 			     "srlx	%%g7, %4, %%g1\n\t"
252 			     "and	%%g1, %3, %%g1\n\t"
253 			     "cmp	%%g1, %0\n\t"
254 			     "bne,pn	%%icc, 2f\n\t"
255 			     " andn	%%g7, %1, %%g1\n\t"
256 			     "casx	[%2], %%g7, %%g1\n\t"
257 			     "cmp	%%g7, %%g1\n\t"
258 			     "bne,pn	%%xcc, 1b\n\t"
259 			     " nop\n"
260 			     "2:"
261 			     : /* no outputs */
262 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
263 			       "i" (PG_dcache_cpu_mask),
264 			       "i" (PG_dcache_cpu_shift)
265 			     : "g1", "g7");
266 }
267 
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 	unsigned long tsb_addr = (unsigned long) ent;
271 
272 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 		tsb_addr = __pa(tsb_addr);
274 
275 	__tsb_insert(tsb_addr, tag, pte);
276 }
277 
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 
280 static void flush_dcache(unsigned long pfn)
281 {
282 	struct page *page;
283 
284 	page = pfn_to_page(pfn);
285 	if (page) {
286 		unsigned long pg_flags;
287 
288 		pg_flags = page->flags;
289 		if (pg_flags & (1UL << PG_dcache_dirty)) {
290 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 				   PG_dcache_cpu_mask);
292 			int this_cpu = get_cpu();
293 
294 			/* This is just to optimize away some function calls
295 			 * in the SMP case.
296 			 */
297 			if (cpu == this_cpu)
298 				flush_dcache_page_impl(page);
299 			else
300 				smp_flush_dcache_page_impl(page, cpu);
301 
302 			clear_dcache_dirty_cpu(page, cpu);
303 
304 			put_cpu();
305 		}
306 	}
307 }
308 
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 				    unsigned long tsb_hash_shift, unsigned long address,
312 				    unsigned long tte)
313 {
314 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 	unsigned long tag;
316 
317 	if (unlikely(!tsb))
318 		return;
319 
320 	tsb += ((address >> tsb_hash_shift) &
321 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 	tag = (address >> 22UL);
323 	tsb_insert(tsb, tag, tte);
324 }
325 
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte)
328 {
329 	if ((tlb_type == hypervisor &&
330 	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 	    (tlb_type != hypervisor &&
332 	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 		return true;
334 	return false;
335 }
336 #endif
337 
338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339 {
340 	struct mm_struct *mm;
341 	unsigned long flags;
342 	pte_t pte = *ptep;
343 
344 	if (tlb_type != hypervisor) {
345 		unsigned long pfn = pte_pfn(pte);
346 
347 		if (pfn_valid(pfn))
348 			flush_dcache(pfn);
349 	}
350 
351 	mm = vma->vm_mm;
352 
353 	spin_lock_irqsave(&mm->context.lock, flags);
354 
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
358 					address, pte_val(pte));
359 	else
360 #endif
361 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 					address, pte_val(pte));
363 
364 	spin_unlock_irqrestore(&mm->context.lock, flags);
365 }
366 
367 void flush_dcache_page(struct page *page)
368 {
369 	struct address_space *mapping;
370 	int this_cpu;
371 
372 	if (tlb_type == hypervisor)
373 		return;
374 
375 	/* Do not bother with the expensive D-cache flush if it
376 	 * is merely the zero page.  The 'bigcore' testcase in GDB
377 	 * causes this case to run millions of times.
378 	 */
379 	if (page == ZERO_PAGE(0))
380 		return;
381 
382 	this_cpu = get_cpu();
383 
384 	mapping = page_mapping(page);
385 	if (mapping && !mapping_mapped(mapping)) {
386 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 		if (dirty) {
388 			int dirty_cpu = dcache_dirty_cpu(page);
389 
390 			if (dirty_cpu == this_cpu)
391 				goto out;
392 			smp_flush_dcache_page_impl(page, dirty_cpu);
393 		}
394 		set_dcache_dirty(page, this_cpu);
395 	} else {
396 		/* We could delay the flush for the !page_mapping
397 		 * case too.  But that case is for exec env/arg
398 		 * pages and those are %99 certainly going to get
399 		 * faulted into the tlb (and thus flushed) anyways.
400 		 */
401 		flush_dcache_page_impl(page);
402 	}
403 
404 out:
405 	put_cpu();
406 }
407 EXPORT_SYMBOL(flush_dcache_page);
408 
409 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
410 {
411 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 	if (tlb_type == spitfire) {
413 		unsigned long kaddr;
414 
415 		/* This code only runs on Spitfire cpus so this is
416 		 * why we can assume _PAGE_PADDR_4U.
417 		 */
418 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 			unsigned long paddr, mask = _PAGE_PADDR_4U;
420 
421 			if (kaddr >= PAGE_OFFSET)
422 				paddr = kaddr & mask;
423 			else {
424 				pgd_t *pgdp = pgd_offset_k(kaddr);
425 				pud_t *pudp = pud_offset(pgdp, kaddr);
426 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
428 
429 				paddr = pte_val(*ptep) & mask;
430 			}
431 			__flush_icache_page(paddr);
432 		}
433 	}
434 }
435 EXPORT_SYMBOL(flush_icache_range);
436 
437 void mmu_info(struct seq_file *m)
438 {
439 	static const char *pgsz_strings[] = {
440 		"8K", "64K", "512K", "4MB", "32MB",
441 		"256MB", "2GB", "16GB",
442 	};
443 	int i, printed;
444 
445 	if (tlb_type == cheetah)
446 		seq_printf(m, "MMU Type\t: Cheetah\n");
447 	else if (tlb_type == cheetah_plus)
448 		seq_printf(m, "MMU Type\t: Cheetah+\n");
449 	else if (tlb_type == spitfire)
450 		seq_printf(m, "MMU Type\t: Spitfire\n");
451 	else if (tlb_type == hypervisor)
452 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 	else
454 		seq_printf(m, "MMU Type\t: ???\n");
455 
456 	seq_printf(m, "MMU PGSZs\t: ");
457 	printed = 0;
458 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 		if (cpu_pgsz_mask & (1UL << i)) {
460 			seq_printf(m, "%s%s",
461 				   printed ? "," : "", pgsz_strings[i]);
462 			printed++;
463 		}
464 	}
465 	seq_putc(m, '\n');
466 
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 	seq_printf(m, "DCPageFlushes\t: %d\n",
469 		   atomic_read(&dcpage_flushes));
470 #ifdef CONFIG_SMP
471 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 		   atomic_read(&dcpage_flushes_xcall));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
475 }
476 
477 struct linux_prom_translation prom_trans[512] __read_mostly;
478 unsigned int prom_trans_ents __read_mostly;
479 
480 unsigned long kern_locked_tte_data;
481 
482 /* The obp translations are saved based on 8k pagesize, since obp can
483  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484  * HI_OBP_ADDRESS range are handled in ktlb.S.
485  */
486 static inline int in_obp_range(unsigned long vaddr)
487 {
488 	return (vaddr >= LOW_OBP_ADDRESS &&
489 		vaddr < HI_OBP_ADDRESS);
490 }
491 
492 static int cmp_ptrans(const void *a, const void *b)
493 {
494 	const struct linux_prom_translation *x = a, *y = b;
495 
496 	if (x->virt > y->virt)
497 		return 1;
498 	if (x->virt < y->virt)
499 		return -1;
500 	return 0;
501 }
502 
503 /* Read OBP translations property into 'prom_trans[]'.  */
504 static void __init read_obp_translations(void)
505 {
506 	int n, node, ents, first, last, i;
507 
508 	node = prom_finddevice("/virtual-memory");
509 	n = prom_getproplen(node, "translations");
510 	if (unlikely(n == 0 || n == -1)) {
511 		prom_printf("prom_mappings: Couldn't get size.\n");
512 		prom_halt();
513 	}
514 	if (unlikely(n > sizeof(prom_trans))) {
515 		prom_printf("prom_mappings: Size %d is too big.\n", n);
516 		prom_halt();
517 	}
518 
519 	if ((n = prom_getproperty(node, "translations",
520 				  (char *)&prom_trans[0],
521 				  sizeof(prom_trans))) == -1) {
522 		prom_printf("prom_mappings: Couldn't get property.\n");
523 		prom_halt();
524 	}
525 
526 	n = n / sizeof(struct linux_prom_translation);
527 
528 	ents = n;
529 
530 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 	     cmp_ptrans, NULL);
532 
533 	/* Now kick out all the non-OBP entries.  */
534 	for (i = 0; i < ents; i++) {
535 		if (in_obp_range(prom_trans[i].virt))
536 			break;
537 	}
538 	first = i;
539 	for (; i < ents; i++) {
540 		if (!in_obp_range(prom_trans[i].virt))
541 			break;
542 	}
543 	last = i;
544 
545 	for (i = 0; i < (last - first); i++) {
546 		struct linux_prom_translation *src = &prom_trans[i + first];
547 		struct linux_prom_translation *dest = &prom_trans[i];
548 
549 		*dest = *src;
550 	}
551 	for (; i < ents; i++) {
552 		struct linux_prom_translation *dest = &prom_trans[i];
553 		dest->virt = dest->size = dest->data = 0x0UL;
554 	}
555 
556 	prom_trans_ents = last - first;
557 
558 	if (tlb_type == spitfire) {
559 		/* Clear diag TTE bits. */
560 		for (i = 0; i < prom_trans_ents; i++)
561 			prom_trans[i].data &= ~0x0003fe0000000000UL;
562 	}
563 
564 	/* Force execute bit on.  */
565 	for (i = 0; i < prom_trans_ents; i++)
566 		prom_trans[i].data |= (tlb_type == hypervisor ?
567 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
568 }
569 
570 static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 				       unsigned long pte,
572 				       unsigned long mmu)
573 {
574 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
575 
576 	if (ret != 0) {
577 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 		prom_halt();
580 	}
581 }
582 
583 static unsigned long kern_large_tte(unsigned long paddr);
584 
585 static void __init remap_kernel(void)
586 {
587 	unsigned long phys_page, tte_vaddr, tte_data;
588 	int i, tlb_ent = sparc64_highest_locked_tlbent();
589 
590 	tte_vaddr = (unsigned long) KERNBASE;
591 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
592 	tte_data = kern_large_tte(phys_page);
593 
594 	kern_locked_tte_data = tte_data;
595 
596 	/* Now lock us into the TLBs via Hypervisor or OBP. */
597 	if (tlb_type == hypervisor) {
598 		for (i = 0; i < num_kernel_image_mappings; i++) {
599 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 			tte_vaddr += 0x400000;
602 			tte_data += 0x400000;
603 		}
604 	} else {
605 		for (i = 0; i < num_kernel_image_mappings; i++) {
606 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 			tte_vaddr += 0x400000;
609 			tte_data += 0x400000;
610 		}
611 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
612 	}
613 	if (tlb_type == cheetah_plus) {
614 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 					    CTX_CHEETAH_PLUS_NUC);
616 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
618 	}
619 }
620 
621 
622 static void __init inherit_prom_mappings(void)
623 {
624 	/* Now fixup OBP's idea about where we really are mapped. */
625 	printk("Remapping the kernel... ");
626 	remap_kernel();
627 	printk("done.\n");
628 }
629 
630 void prom_world(int enter)
631 {
632 	if (!enter)
633 		set_fs(get_fs());
634 
635 	__asm__ __volatile__("flushw");
636 }
637 
638 void __flush_dcache_range(unsigned long start, unsigned long end)
639 {
640 	unsigned long va;
641 
642 	if (tlb_type == spitfire) {
643 		int n = 0;
644 
645 		for (va = start; va < end; va += 32) {
646 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 			if (++n >= 512)
648 				break;
649 		}
650 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 		start = __pa(start);
652 		end = __pa(end);
653 		for (va = start; va < end; va += 32)
654 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 					     "membar #Sync"
656 					     : /* no outputs */
657 					     : "r" (va),
658 					       "i" (ASI_DCACHE_INVALIDATE));
659 	}
660 }
661 EXPORT_SYMBOL(__flush_dcache_range);
662 
663 /* get_new_mmu_context() uses "cache + 1".  */
664 DEFINE_SPINLOCK(ctx_alloc_lock);
665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
669 
670 /* Caller does TLB context flushing on local CPU if necessary.
671  * The caller also ensures that CTX_VALID(mm->context) is false.
672  *
673  * We must be careful about boundary cases so that we never
674  * let the user have CTX 0 (nucleus) or we ever use a CTX
675  * version of zero (and thus NO_CONTEXT would not be caught
676  * by version mis-match tests in mmu_context.h).
677  *
678  * Always invoked with interrupts disabled.
679  */
680 void get_new_mmu_context(struct mm_struct *mm)
681 {
682 	unsigned long ctx, new_ctx;
683 	unsigned long orig_pgsz_bits;
684 	int new_version;
685 
686 	spin_lock(&ctx_alloc_lock);
687 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
688 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
689 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
690 	new_version = 0;
691 	if (new_ctx >= (1 << CTX_NR_BITS)) {
692 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
693 		if (new_ctx >= ctx) {
694 			int i;
695 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
696 				CTX_FIRST_VERSION;
697 			if (new_ctx == 1)
698 				new_ctx = CTX_FIRST_VERSION;
699 
700 			/* Don't call memset, for 16 entries that's just
701 			 * plain silly...
702 			 */
703 			mmu_context_bmap[0] = 3;
704 			mmu_context_bmap[1] = 0;
705 			mmu_context_bmap[2] = 0;
706 			mmu_context_bmap[3] = 0;
707 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
708 				mmu_context_bmap[i + 0] = 0;
709 				mmu_context_bmap[i + 1] = 0;
710 				mmu_context_bmap[i + 2] = 0;
711 				mmu_context_bmap[i + 3] = 0;
712 			}
713 			new_version = 1;
714 			goto out;
715 		}
716 	}
717 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
718 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
719 out:
720 	tlb_context_cache = new_ctx;
721 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
722 	spin_unlock(&ctx_alloc_lock);
723 
724 	if (unlikely(new_version))
725 		smp_new_mmu_context_version();
726 }
727 
728 static int numa_enabled = 1;
729 static int numa_debug;
730 
731 static int __init early_numa(char *p)
732 {
733 	if (!p)
734 		return 0;
735 
736 	if (strstr(p, "off"))
737 		numa_enabled = 0;
738 
739 	if (strstr(p, "debug"))
740 		numa_debug = 1;
741 
742 	return 0;
743 }
744 early_param("numa", early_numa);
745 
746 #define numadbg(f, a...) \
747 do {	if (numa_debug) \
748 		printk(KERN_INFO f, ## a); \
749 } while (0)
750 
751 static void __init find_ramdisk(unsigned long phys_base)
752 {
753 #ifdef CONFIG_BLK_DEV_INITRD
754 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
755 		unsigned long ramdisk_image;
756 
757 		/* Older versions of the bootloader only supported a
758 		 * 32-bit physical address for the ramdisk image
759 		 * location, stored at sparc_ramdisk_image.  Newer
760 		 * SILO versions set sparc_ramdisk_image to zero and
761 		 * provide a full 64-bit physical address at
762 		 * sparc_ramdisk_image64.
763 		 */
764 		ramdisk_image = sparc_ramdisk_image;
765 		if (!ramdisk_image)
766 			ramdisk_image = sparc_ramdisk_image64;
767 
768 		/* Another bootloader quirk.  The bootloader normalizes
769 		 * the physical address to KERNBASE, so we have to
770 		 * factor that back out and add in the lowest valid
771 		 * physical page address to get the true physical address.
772 		 */
773 		ramdisk_image -= KERNBASE;
774 		ramdisk_image += phys_base;
775 
776 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 			ramdisk_image, sparc_ramdisk_size);
778 
779 		initrd_start = ramdisk_image;
780 		initrd_end = ramdisk_image + sparc_ramdisk_size;
781 
782 		memblock_reserve(initrd_start, sparc_ramdisk_size);
783 
784 		initrd_start += PAGE_OFFSET;
785 		initrd_end += PAGE_OFFSET;
786 	}
787 #endif
788 }
789 
790 struct node_mem_mask {
791 	unsigned long mask;
792 	unsigned long val;
793 };
794 static struct node_mem_mask node_masks[MAX_NUMNODES];
795 static int num_node_masks;
796 
797 int numa_cpu_lookup_table[NR_CPUS];
798 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
799 
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
801 
802 struct mdesc_mblock {
803 	u64	base;
804 	u64	size;
805 	u64	offset; /* RA-to-PA */
806 };
807 static struct mdesc_mblock *mblocks;
808 static int num_mblocks;
809 
810 static unsigned long ra_to_pa(unsigned long addr)
811 {
812 	int i;
813 
814 	for (i = 0; i < num_mblocks; i++) {
815 		struct mdesc_mblock *m = &mblocks[i];
816 
817 		if (addr >= m->base &&
818 		    addr < (m->base + m->size)) {
819 			addr += m->offset;
820 			break;
821 		}
822 	}
823 	return addr;
824 }
825 
826 static int find_node(unsigned long addr)
827 {
828 	int i;
829 
830 	addr = ra_to_pa(addr);
831 	for (i = 0; i < num_node_masks; i++) {
832 		struct node_mem_mask *p = &node_masks[i];
833 
834 		if ((addr & p->mask) == p->val)
835 			return i;
836 	}
837 	return -1;
838 }
839 
840 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
841 {
842 	*nid = find_node(start);
843 	start += PAGE_SIZE;
844 	while (start < end) {
845 		int n = find_node(start);
846 
847 		if (n != *nid)
848 			break;
849 		start += PAGE_SIZE;
850 	}
851 
852 	if (start > end)
853 		start = end;
854 
855 	return start;
856 }
857 #endif
858 
859 /* This must be invoked after performing all of the necessary
860  * memblock_set_node() calls for 'nid'.  We need to be able to get
861  * correct data from get_pfn_range_for_nid().
862  */
863 static void __init allocate_node_data(int nid)
864 {
865 	struct pglist_data *p;
866 	unsigned long start_pfn, end_pfn;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES
868 	unsigned long paddr;
869 
870 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
871 	if (!paddr) {
872 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
873 		prom_halt();
874 	}
875 	NODE_DATA(nid) = __va(paddr);
876 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
877 
878 	NODE_DATA(nid)->node_id = nid;
879 #endif
880 
881 	p = NODE_DATA(nid);
882 
883 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
884 	p->node_start_pfn = start_pfn;
885 	p->node_spanned_pages = end_pfn - start_pfn;
886 }
887 
888 static void init_node_masks_nonnuma(void)
889 {
890 	int i;
891 
892 	numadbg("Initializing tables for non-numa.\n");
893 
894 	node_masks[0].mask = node_masks[0].val = 0;
895 	num_node_masks = 1;
896 
897 	for (i = 0; i < NR_CPUS; i++)
898 		numa_cpu_lookup_table[i] = 0;
899 
900 	cpumask_setall(&numa_cpumask_lookup_table[0]);
901 }
902 
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES];
905 
906 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data);
909 
910 struct mdesc_mlgroup {
911 	u64	node;
912 	u64	latency;
913 	u64	match;
914 	u64	mask;
915 };
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
918 
919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 				   u32 cfg_handle)
921 {
922 	u64 arc;
923 
924 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 		u64 target = mdesc_arc_target(md, arc);
926 		const u64 *val;
927 
928 		val = mdesc_get_property(md, target,
929 					 "cfg-handle", NULL);
930 		if (val && *val == cfg_handle)
931 			return 0;
932 	}
933 	return -ENODEV;
934 }
935 
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 				    u32 cfg_handle)
938 {
939 	u64 arc, candidate, best_latency = ~(u64)0;
940 
941 	candidate = MDESC_NODE_NULL;
942 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 		u64 target = mdesc_arc_target(md, arc);
944 		const char *name = mdesc_node_name(md, target);
945 		const u64 *val;
946 
947 		if (strcmp(name, "pio-latency-group"))
948 			continue;
949 
950 		val = mdesc_get_property(md, target, "latency", NULL);
951 		if (!val)
952 			continue;
953 
954 		if (*val < best_latency) {
955 			candidate = target;
956 			best_latency = *val;
957 		}
958 	}
959 
960 	if (candidate == MDESC_NODE_NULL)
961 		return -ENODEV;
962 
963 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964 }
965 
966 int of_node_to_nid(struct device_node *dp)
967 {
968 	const struct linux_prom64_registers *regs;
969 	struct mdesc_handle *md;
970 	u32 cfg_handle;
971 	int count, nid;
972 	u64 grp;
973 
974 	/* This is the right thing to do on currently supported
975 	 * SUN4U NUMA platforms as well, as the PCI controller does
976 	 * not sit behind any particular memory controller.
977 	 */
978 	if (!mlgroups)
979 		return -1;
980 
981 	regs = of_get_property(dp, "reg", NULL);
982 	if (!regs)
983 		return -1;
984 
985 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986 
987 	md = mdesc_grab();
988 
989 	count = 0;
990 	nid = -1;
991 	mdesc_for_each_node_by_name(md, grp, "group") {
992 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 			nid = count;
994 			break;
995 		}
996 		count++;
997 	}
998 
999 	mdesc_release(md);
1000 
1001 	return nid;
1002 }
1003 
1004 static void __init add_node_ranges(void)
1005 {
1006 	struct memblock_region *reg;
1007 
1008 	for_each_memblock(memory, reg) {
1009 		unsigned long size = reg->size;
1010 		unsigned long start, end;
1011 
1012 		start = reg->base;
1013 		end = start + size;
1014 		while (start < end) {
1015 			unsigned long this_end;
1016 			int nid;
1017 
1018 			this_end = memblock_nid_range(start, end, &nid);
1019 
1020 			numadbg("Setting memblock NUMA node nid[%d] "
1021 				"start[%lx] end[%lx]\n",
1022 				nid, start, this_end);
1023 
1024 			memblock_set_node(start, this_end - start, nid);
1025 			start = this_end;
1026 		}
1027 	}
1028 }
1029 
1030 static int __init grab_mlgroups(struct mdesc_handle *md)
1031 {
1032 	unsigned long paddr;
1033 	int count = 0;
1034 	u64 node;
1035 
1036 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1037 		count++;
1038 	if (!count)
1039 		return -ENOENT;
1040 
1041 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1042 			  SMP_CACHE_BYTES);
1043 	if (!paddr)
1044 		return -ENOMEM;
1045 
1046 	mlgroups = __va(paddr);
1047 	num_mlgroups = count;
1048 
1049 	count = 0;
1050 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1051 		struct mdesc_mlgroup *m = &mlgroups[count++];
1052 		const u64 *val;
1053 
1054 		m->node = node;
1055 
1056 		val = mdesc_get_property(md, node, "latency", NULL);
1057 		m->latency = *val;
1058 		val = mdesc_get_property(md, node, "address-match", NULL);
1059 		m->match = *val;
1060 		val = mdesc_get_property(md, node, "address-mask", NULL);
1061 		m->mask = *val;
1062 
1063 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1064 			"match[%llx] mask[%llx]\n",
1065 			count - 1, m->node, m->latency, m->match, m->mask);
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int __init grab_mblocks(struct mdesc_handle *md)
1072 {
1073 	unsigned long paddr;
1074 	int count = 0;
1075 	u64 node;
1076 
1077 	mdesc_for_each_node_by_name(md, node, "mblock")
1078 		count++;
1079 	if (!count)
1080 		return -ENOENT;
1081 
1082 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1083 			  SMP_CACHE_BYTES);
1084 	if (!paddr)
1085 		return -ENOMEM;
1086 
1087 	mblocks = __va(paddr);
1088 	num_mblocks = count;
1089 
1090 	count = 0;
1091 	mdesc_for_each_node_by_name(md, node, "mblock") {
1092 		struct mdesc_mblock *m = &mblocks[count++];
1093 		const u64 *val;
1094 
1095 		val = mdesc_get_property(md, node, "base", NULL);
1096 		m->base = *val;
1097 		val = mdesc_get_property(md, node, "size", NULL);
1098 		m->size = *val;
1099 		val = mdesc_get_property(md, node,
1100 					 "address-congruence-offset", NULL);
1101 		m->offset = *val;
1102 
1103 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1104 			count - 1, m->base, m->size, m->offset);
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1111 					       u64 grp, cpumask_t *mask)
1112 {
1113 	u64 arc;
1114 
1115 	cpumask_clear(mask);
1116 
1117 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1118 		u64 target = mdesc_arc_target(md, arc);
1119 		const char *name = mdesc_node_name(md, target);
1120 		const u64 *id;
1121 
1122 		if (strcmp(name, "cpu"))
1123 			continue;
1124 		id = mdesc_get_property(md, target, "id", NULL);
1125 		if (*id < nr_cpu_ids)
1126 			cpumask_set_cpu(*id, mask);
1127 	}
1128 }
1129 
1130 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < num_mlgroups; i++) {
1135 		struct mdesc_mlgroup *m = &mlgroups[i];
1136 		if (m->node == node)
1137 			return m;
1138 	}
1139 	return NULL;
1140 }
1141 
1142 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1143 				      int index)
1144 {
1145 	struct mdesc_mlgroup *candidate = NULL;
1146 	u64 arc, best_latency = ~(u64)0;
1147 	struct node_mem_mask *n;
1148 
1149 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1150 		u64 target = mdesc_arc_target(md, arc);
1151 		struct mdesc_mlgroup *m = find_mlgroup(target);
1152 		if (!m)
1153 			continue;
1154 		if (m->latency < best_latency) {
1155 			candidate = m;
1156 			best_latency = m->latency;
1157 		}
1158 	}
1159 	if (!candidate)
1160 		return -ENOENT;
1161 
1162 	if (num_node_masks != index) {
1163 		printk(KERN_ERR "Inconsistent NUMA state, "
1164 		       "index[%d] != num_node_masks[%d]\n",
1165 		       index, num_node_masks);
1166 		return -EINVAL;
1167 	}
1168 
1169 	n = &node_masks[num_node_masks++];
1170 
1171 	n->mask = candidate->mask;
1172 	n->val = candidate->match;
1173 
1174 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1175 		index, n->mask, n->val, candidate->latency);
1176 
1177 	return 0;
1178 }
1179 
1180 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1181 					 int index)
1182 {
1183 	cpumask_t mask;
1184 	int cpu;
1185 
1186 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1187 
1188 	for_each_cpu(cpu, &mask)
1189 		numa_cpu_lookup_table[cpu] = index;
1190 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1191 
1192 	if (numa_debug) {
1193 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1194 		for_each_cpu(cpu, &mask)
1195 			printk("%d ", cpu);
1196 		printk("]\n");
1197 	}
1198 
1199 	return numa_attach_mlgroup(md, grp, index);
1200 }
1201 
1202 static int __init numa_parse_mdesc(void)
1203 {
1204 	struct mdesc_handle *md = mdesc_grab();
1205 	int i, err, count;
1206 	u64 node;
1207 
1208 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1209 	if (node == MDESC_NODE_NULL) {
1210 		mdesc_release(md);
1211 		return -ENOENT;
1212 	}
1213 
1214 	err = grab_mblocks(md);
1215 	if (err < 0)
1216 		goto out;
1217 
1218 	err = grab_mlgroups(md);
1219 	if (err < 0)
1220 		goto out;
1221 
1222 	count = 0;
1223 	mdesc_for_each_node_by_name(md, node, "group") {
1224 		err = numa_parse_mdesc_group(md, node, count);
1225 		if (err < 0)
1226 			break;
1227 		count++;
1228 	}
1229 
1230 	add_node_ranges();
1231 
1232 	for (i = 0; i < num_node_masks; i++) {
1233 		allocate_node_data(i);
1234 		node_set_online(i);
1235 	}
1236 
1237 	err = 0;
1238 out:
1239 	mdesc_release(md);
1240 	return err;
1241 }
1242 
1243 static int __init numa_parse_jbus(void)
1244 {
1245 	unsigned long cpu, index;
1246 
1247 	/* NUMA node id is encoded in bits 36 and higher, and there is
1248 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1249 	 */
1250 	index = 0;
1251 	for_each_present_cpu(cpu) {
1252 		numa_cpu_lookup_table[cpu] = index;
1253 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1254 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1255 		node_masks[index].val = cpu << 36UL;
1256 
1257 		index++;
1258 	}
1259 	num_node_masks = index;
1260 
1261 	add_node_ranges();
1262 
1263 	for (index = 0; index < num_node_masks; index++) {
1264 		allocate_node_data(index);
1265 		node_set_online(index);
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static int __init numa_parse_sun4u(void)
1272 {
1273 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1274 		unsigned long ver;
1275 
1276 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1277 		if ((ver >> 32UL) == __JALAPENO_ID ||
1278 		    (ver >> 32UL) == __SERRANO_ID)
1279 			return numa_parse_jbus();
1280 	}
1281 	return -1;
1282 }
1283 
1284 static int __init bootmem_init_numa(void)
1285 {
1286 	int err = -1;
1287 
1288 	numadbg("bootmem_init_numa()\n");
1289 
1290 	if (numa_enabled) {
1291 		if (tlb_type == hypervisor)
1292 			err = numa_parse_mdesc();
1293 		else
1294 			err = numa_parse_sun4u();
1295 	}
1296 	return err;
1297 }
1298 
1299 #else
1300 
1301 static int bootmem_init_numa(void)
1302 {
1303 	return -1;
1304 }
1305 
1306 #endif
1307 
1308 static void __init bootmem_init_nonnuma(void)
1309 {
1310 	unsigned long top_of_ram = memblock_end_of_DRAM();
1311 	unsigned long total_ram = memblock_phys_mem_size();
1312 
1313 	numadbg("bootmem_init_nonnuma()\n");
1314 
1315 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1316 	       top_of_ram, total_ram);
1317 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1318 	       (top_of_ram - total_ram) >> 20);
1319 
1320 	init_node_masks_nonnuma();
1321 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1322 	allocate_node_data(0);
1323 	node_set_online(0);
1324 }
1325 
1326 static unsigned long __init bootmem_init(unsigned long phys_base)
1327 {
1328 	unsigned long end_pfn;
1329 
1330 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1331 	max_pfn = max_low_pfn = end_pfn;
1332 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1333 
1334 	if (bootmem_init_numa() < 0)
1335 		bootmem_init_nonnuma();
1336 
1337 	/* Dump memblock with node info. */
1338 	memblock_dump_all();
1339 
1340 	/* XXX cpu notifier XXX */
1341 
1342 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1343 	sparse_init();
1344 
1345 	return end_pfn;
1346 }
1347 
1348 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1349 static int pall_ents __initdata;
1350 
1351 #ifdef CONFIG_DEBUG_PAGEALLOC
1352 static unsigned long __ref kernel_map_range(unsigned long pstart,
1353 					    unsigned long pend, pgprot_t prot)
1354 {
1355 	unsigned long vstart = PAGE_OFFSET + pstart;
1356 	unsigned long vend = PAGE_OFFSET + pend;
1357 	unsigned long alloc_bytes = 0UL;
1358 
1359 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1360 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1361 			    vstart, vend);
1362 		prom_halt();
1363 	}
1364 
1365 	while (vstart < vend) {
1366 		unsigned long this_end, paddr = __pa(vstart);
1367 		pgd_t *pgd = pgd_offset_k(vstart);
1368 		pud_t *pud;
1369 		pmd_t *pmd;
1370 		pte_t *pte;
1371 
1372 		pud = pud_offset(pgd, vstart);
1373 		if (pud_none(*pud)) {
1374 			pmd_t *new;
1375 
1376 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1377 			alloc_bytes += PAGE_SIZE;
1378 			pud_populate(&init_mm, pud, new);
1379 		}
1380 
1381 		pmd = pmd_offset(pud, vstart);
1382 		if (!pmd_present(*pmd)) {
1383 			pte_t *new;
1384 
1385 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1386 			alloc_bytes += PAGE_SIZE;
1387 			pmd_populate_kernel(&init_mm, pmd, new);
1388 		}
1389 
1390 		pte = pte_offset_kernel(pmd, vstart);
1391 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1392 		if (this_end > vend)
1393 			this_end = vend;
1394 
1395 		while (vstart < this_end) {
1396 			pte_val(*pte) = (paddr | pgprot_val(prot));
1397 
1398 			vstart += PAGE_SIZE;
1399 			paddr += PAGE_SIZE;
1400 			pte++;
1401 		}
1402 	}
1403 
1404 	return alloc_bytes;
1405 }
1406 
1407 extern unsigned int kvmap_linear_patch[1];
1408 #endif /* CONFIG_DEBUG_PAGEALLOC */
1409 
1410 static void __init kpte_set_val(unsigned long index, unsigned long val)
1411 {
1412 	unsigned long *ptr = kpte_linear_bitmap;
1413 
1414 	val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1415 	ptr += (index / (BITS_PER_LONG / 2));
1416 
1417 	*ptr |= val;
1418 }
1419 
1420 static const unsigned long kpte_shift_min = 28; /* 256MB */
1421 static const unsigned long kpte_shift_max = 34; /* 16GB */
1422 static const unsigned long kpte_shift_incr = 3;
1423 
1424 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1425 					   unsigned long shift)
1426 {
1427 	unsigned long size = (1UL << shift);
1428 	unsigned long mask = (size - 1UL);
1429 	unsigned long remains = end - start;
1430 	unsigned long val;
1431 
1432 	if (remains < size || (start & mask))
1433 		return start;
1434 
1435 	/* VAL maps:
1436 	 *
1437 	 *	shift 28 --> kern_linear_pte_xor index 1
1438 	 *	shift 31 --> kern_linear_pte_xor index 2
1439 	 *	shift 34 --> kern_linear_pte_xor index 3
1440 	 */
1441 	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1442 
1443 	remains &= ~mask;
1444 	if (shift != kpte_shift_max)
1445 		remains = size;
1446 
1447 	while (remains) {
1448 		unsigned long index = start >> kpte_shift_min;
1449 
1450 		kpte_set_val(index, val);
1451 
1452 		start += 1UL << kpte_shift_min;
1453 		remains -= 1UL << kpte_shift_min;
1454 	}
1455 
1456 	return start;
1457 }
1458 
1459 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1460 {
1461 	unsigned long smallest_size, smallest_mask;
1462 	unsigned long s;
1463 
1464 	smallest_size = (1UL << kpte_shift_min);
1465 	smallest_mask = (smallest_size - 1UL);
1466 
1467 	while (start < end) {
1468 		unsigned long orig_start = start;
1469 
1470 		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1471 			start = kpte_mark_using_shift(start, end, s);
1472 
1473 			if (start != orig_start)
1474 				break;
1475 		}
1476 
1477 		if (start == orig_start)
1478 			start = (start + smallest_size) & ~smallest_mask;
1479 	}
1480 }
1481 
1482 static void __init init_kpte_bitmap(void)
1483 {
1484 	unsigned long i;
1485 
1486 	for (i = 0; i < pall_ents; i++) {
1487 		unsigned long phys_start, phys_end;
1488 
1489 		phys_start = pall[i].phys_addr;
1490 		phys_end = phys_start + pall[i].reg_size;
1491 
1492 		mark_kpte_bitmap(phys_start, phys_end);
1493 	}
1494 }
1495 
1496 static void __init kernel_physical_mapping_init(void)
1497 {
1498 #ifdef CONFIG_DEBUG_PAGEALLOC
1499 	unsigned long i, mem_alloced = 0UL;
1500 
1501 	for (i = 0; i < pall_ents; i++) {
1502 		unsigned long phys_start, phys_end;
1503 
1504 		phys_start = pall[i].phys_addr;
1505 		phys_end = phys_start + pall[i].reg_size;
1506 
1507 		mem_alloced += kernel_map_range(phys_start, phys_end,
1508 						PAGE_KERNEL);
1509 	}
1510 
1511 	printk("Allocated %ld bytes for kernel page tables.\n",
1512 	       mem_alloced);
1513 
1514 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1515 	flushi(&kvmap_linear_patch[0]);
1516 
1517 	__flush_tlb_all();
1518 #endif
1519 }
1520 
1521 #ifdef CONFIG_DEBUG_PAGEALLOC
1522 void kernel_map_pages(struct page *page, int numpages, int enable)
1523 {
1524 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1525 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1526 
1527 	kernel_map_range(phys_start, phys_end,
1528 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1529 
1530 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1531 			       PAGE_OFFSET + phys_end);
1532 
1533 	/* we should perform an IPI and flush all tlbs,
1534 	 * but that can deadlock->flush only current cpu.
1535 	 */
1536 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1537 				 PAGE_OFFSET + phys_end);
1538 }
1539 #endif
1540 
1541 unsigned long __init find_ecache_flush_span(unsigned long size)
1542 {
1543 	int i;
1544 
1545 	for (i = 0; i < pavail_ents; i++) {
1546 		if (pavail[i].reg_size >= size)
1547 			return pavail[i].phys_addr;
1548 	}
1549 
1550 	return ~0UL;
1551 }
1552 
1553 static void __init tsb_phys_patch(void)
1554 {
1555 	struct tsb_ldquad_phys_patch_entry *pquad;
1556 	struct tsb_phys_patch_entry *p;
1557 
1558 	pquad = &__tsb_ldquad_phys_patch;
1559 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1560 		unsigned long addr = pquad->addr;
1561 
1562 		if (tlb_type == hypervisor)
1563 			*(unsigned int *) addr = pquad->sun4v_insn;
1564 		else
1565 			*(unsigned int *) addr = pquad->sun4u_insn;
1566 		wmb();
1567 		__asm__ __volatile__("flush	%0"
1568 				     : /* no outputs */
1569 				     : "r" (addr));
1570 
1571 		pquad++;
1572 	}
1573 
1574 	p = &__tsb_phys_patch;
1575 	while (p < &__tsb_phys_patch_end) {
1576 		unsigned long addr = p->addr;
1577 
1578 		*(unsigned int *) addr = p->insn;
1579 		wmb();
1580 		__asm__ __volatile__("flush	%0"
1581 				     : /* no outputs */
1582 				     : "r" (addr));
1583 
1584 		p++;
1585 	}
1586 }
1587 
1588 /* Don't mark as init, we give this to the Hypervisor.  */
1589 #ifndef CONFIG_DEBUG_PAGEALLOC
1590 #define NUM_KTSB_DESCR	2
1591 #else
1592 #define NUM_KTSB_DESCR	1
1593 #endif
1594 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1595 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1596 
1597 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1598 {
1599 	pa >>= KTSB_PHYS_SHIFT;
1600 
1601 	while (start < end) {
1602 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1603 
1604 		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1605 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1606 
1607 		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1608 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1609 
1610 		start++;
1611 	}
1612 }
1613 
1614 static void ktsb_phys_patch(void)
1615 {
1616 	extern unsigned int __swapper_tsb_phys_patch;
1617 	extern unsigned int __swapper_tsb_phys_patch_end;
1618 	unsigned long ktsb_pa;
1619 
1620 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1621 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1622 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1623 #ifndef CONFIG_DEBUG_PAGEALLOC
1624 	{
1625 	extern unsigned int __swapper_4m_tsb_phys_patch;
1626 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1627 	ktsb_pa = (kern_base +
1628 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1629 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1630 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1631 	}
1632 #endif
1633 }
1634 
1635 static void __init sun4v_ktsb_init(void)
1636 {
1637 	unsigned long ktsb_pa;
1638 
1639 	/* First KTSB for PAGE_SIZE mappings.  */
1640 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1641 
1642 	switch (PAGE_SIZE) {
1643 	case 8 * 1024:
1644 	default:
1645 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1646 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1647 		break;
1648 
1649 	case 64 * 1024:
1650 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1651 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1652 		break;
1653 
1654 	case 512 * 1024:
1655 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1656 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1657 		break;
1658 
1659 	case 4 * 1024 * 1024:
1660 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1661 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1662 		break;
1663 	}
1664 
1665 	ktsb_descr[0].assoc = 1;
1666 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1667 	ktsb_descr[0].ctx_idx = 0;
1668 	ktsb_descr[0].tsb_base = ktsb_pa;
1669 	ktsb_descr[0].resv = 0;
1670 
1671 #ifndef CONFIG_DEBUG_PAGEALLOC
1672 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1673 	ktsb_pa = (kern_base +
1674 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1675 
1676 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1677 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1678 				    HV_PGSZ_MASK_256MB |
1679 				    HV_PGSZ_MASK_2GB |
1680 				    HV_PGSZ_MASK_16GB) &
1681 				   cpu_pgsz_mask);
1682 	ktsb_descr[1].assoc = 1;
1683 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1684 	ktsb_descr[1].ctx_idx = 0;
1685 	ktsb_descr[1].tsb_base = ktsb_pa;
1686 	ktsb_descr[1].resv = 0;
1687 #endif
1688 }
1689 
1690 void __cpuinit sun4v_ktsb_register(void)
1691 {
1692 	unsigned long pa, ret;
1693 
1694 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1695 
1696 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1697 	if (ret != 0) {
1698 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1699 			    "errors with %lx\n", pa, ret);
1700 		prom_halt();
1701 	}
1702 }
1703 
1704 static void __init sun4u_linear_pte_xor_finalize(void)
1705 {
1706 #ifndef CONFIG_DEBUG_PAGEALLOC
1707 	/* This is where we would add Panther support for
1708 	 * 32MB and 256MB pages.
1709 	 */
1710 #endif
1711 }
1712 
1713 static void __init sun4v_linear_pte_xor_finalize(void)
1714 {
1715 #ifndef CONFIG_DEBUG_PAGEALLOC
1716 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1717 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1718 			0xfffff80000000000UL;
1719 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1720 					   _PAGE_P_4V | _PAGE_W_4V);
1721 	} else {
1722 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1723 	}
1724 
1725 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1726 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1727 			0xfffff80000000000UL;
1728 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1729 					   _PAGE_P_4V | _PAGE_W_4V);
1730 	} else {
1731 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1732 	}
1733 
1734 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1735 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1736 			0xfffff80000000000UL;
1737 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1738 					   _PAGE_P_4V | _PAGE_W_4V);
1739 	} else {
1740 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1741 	}
1742 #endif
1743 }
1744 
1745 /* paging_init() sets up the page tables */
1746 
1747 static unsigned long last_valid_pfn;
1748 pgd_t swapper_pg_dir[2048];
1749 
1750 static void sun4u_pgprot_init(void);
1751 static void sun4v_pgprot_init(void);
1752 
1753 void __init paging_init(void)
1754 {
1755 	unsigned long end_pfn, shift, phys_base;
1756 	unsigned long real_end, i;
1757 	int node;
1758 
1759 	/* These build time checkes make sure that the dcache_dirty_cpu()
1760 	 * page->flags usage will work.
1761 	 *
1762 	 * When a page gets marked as dcache-dirty, we store the
1763 	 * cpu number starting at bit 32 in the page->flags.  Also,
1764 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1765 	 * in 13-bit signed-immediate instruction fields.
1766 	 */
1767 
1768 	/*
1769 	 * Page flags must not reach into upper 32 bits that are used
1770 	 * for the cpu number
1771 	 */
1772 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1773 
1774 	/*
1775 	 * The bit fields placed in the high range must not reach below
1776 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1777 	 * at the 32 bit boundary.
1778 	 */
1779 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1780 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1781 
1782 	BUILD_BUG_ON(NR_CPUS > 4096);
1783 
1784 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1785 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1786 
1787 	/* Invalidate both kernel TSBs.  */
1788 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1789 #ifndef CONFIG_DEBUG_PAGEALLOC
1790 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1791 #endif
1792 
1793 	if (tlb_type == hypervisor)
1794 		sun4v_pgprot_init();
1795 	else
1796 		sun4u_pgprot_init();
1797 
1798 	if (tlb_type == cheetah_plus ||
1799 	    tlb_type == hypervisor) {
1800 		tsb_phys_patch();
1801 		ktsb_phys_patch();
1802 	}
1803 
1804 	if (tlb_type == hypervisor)
1805 		sun4v_patch_tlb_handlers();
1806 
1807 	/* Find available physical memory...
1808 	 *
1809 	 * Read it twice in order to work around a bug in openfirmware.
1810 	 * The call to grab this table itself can cause openfirmware to
1811 	 * allocate memory, which in turn can take away some space from
1812 	 * the list of available memory.  Reading it twice makes sure
1813 	 * we really do get the final value.
1814 	 */
1815 	read_obp_translations();
1816 	read_obp_memory("reg", &pall[0], &pall_ents);
1817 	read_obp_memory("available", &pavail[0], &pavail_ents);
1818 	read_obp_memory("available", &pavail[0], &pavail_ents);
1819 
1820 	phys_base = 0xffffffffffffffffUL;
1821 	for (i = 0; i < pavail_ents; i++) {
1822 		phys_base = min(phys_base, pavail[i].phys_addr);
1823 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1824 	}
1825 
1826 	memblock_reserve(kern_base, kern_size);
1827 
1828 	find_ramdisk(phys_base);
1829 
1830 	memblock_enforce_memory_limit(cmdline_memory_size);
1831 
1832 	memblock_allow_resize();
1833 	memblock_dump_all();
1834 
1835 	set_bit(0, mmu_context_bmap);
1836 
1837 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1838 
1839 	real_end = (unsigned long)_end;
1840 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1841 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1842 	       num_kernel_image_mappings);
1843 
1844 	/* Set kernel pgd to upper alias so physical page computations
1845 	 * work.
1846 	 */
1847 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1848 
1849 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1850 
1851 	/* Now can init the kernel/bad page tables. */
1852 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1853 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1854 
1855 	inherit_prom_mappings();
1856 
1857 	init_kpte_bitmap();
1858 
1859 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1860 	setup_tba();
1861 
1862 	__flush_tlb_all();
1863 
1864 	prom_build_devicetree();
1865 	of_populate_present_mask();
1866 #ifndef CONFIG_SMP
1867 	of_fill_in_cpu_data();
1868 #endif
1869 
1870 	if (tlb_type == hypervisor) {
1871 		sun4v_mdesc_init();
1872 		mdesc_populate_present_mask(cpu_all_mask);
1873 #ifndef CONFIG_SMP
1874 		mdesc_fill_in_cpu_data(cpu_all_mask);
1875 #endif
1876 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1877 
1878 		sun4v_linear_pte_xor_finalize();
1879 
1880 		sun4v_ktsb_init();
1881 		sun4v_ktsb_register();
1882 	} else {
1883 		unsigned long impl, ver;
1884 
1885 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1886 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1887 
1888 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1889 		impl = ((ver >> 32) & 0xffff);
1890 		if (impl == PANTHER_IMPL)
1891 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1892 					  HV_PGSZ_MASK_256MB);
1893 
1894 		sun4u_linear_pte_xor_finalize();
1895 	}
1896 
1897 	/* Flush the TLBs and the 4M TSB so that the updated linear
1898 	 * pte XOR settings are realized for all mappings.
1899 	 */
1900 	__flush_tlb_all();
1901 #ifndef CONFIG_DEBUG_PAGEALLOC
1902 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1903 #endif
1904 	__flush_tlb_all();
1905 
1906 	/* Setup bootmem... */
1907 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1908 
1909 	/* Once the OF device tree and MDESC have been setup, we know
1910 	 * the list of possible cpus.  Therefore we can allocate the
1911 	 * IRQ stacks.
1912 	 */
1913 	for_each_possible_cpu(i) {
1914 		node = cpu_to_node(i);
1915 
1916 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1917 							THREAD_SIZE,
1918 							THREAD_SIZE, 0);
1919 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1920 							THREAD_SIZE,
1921 							THREAD_SIZE, 0);
1922 	}
1923 
1924 	kernel_physical_mapping_init();
1925 
1926 	{
1927 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1928 
1929 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1930 
1931 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1932 
1933 		free_area_init_nodes(max_zone_pfns);
1934 	}
1935 
1936 	printk("Booting Linux...\n");
1937 }
1938 
1939 int page_in_phys_avail(unsigned long paddr)
1940 {
1941 	int i;
1942 
1943 	paddr &= PAGE_MASK;
1944 
1945 	for (i = 0; i < pavail_ents; i++) {
1946 		unsigned long start, end;
1947 
1948 		start = pavail[i].phys_addr;
1949 		end = start + pavail[i].reg_size;
1950 
1951 		if (paddr >= start && paddr < end)
1952 			return 1;
1953 	}
1954 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1955 		return 1;
1956 #ifdef CONFIG_BLK_DEV_INITRD
1957 	if (paddr >= __pa(initrd_start) &&
1958 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1959 		return 1;
1960 #endif
1961 
1962 	return 0;
1963 }
1964 
1965 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1966 static int pavail_rescan_ents __initdata;
1967 
1968 /* Certain OBP calls, such as fetching "available" properties, can
1969  * claim physical memory.  So, along with initializing the valid
1970  * address bitmap, what we do here is refetch the physical available
1971  * memory list again, and make sure it provides at least as much
1972  * memory as 'pavail' does.
1973  */
1974 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1975 {
1976 	int i;
1977 
1978 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1979 
1980 	for (i = 0; i < pavail_ents; i++) {
1981 		unsigned long old_start, old_end;
1982 
1983 		old_start = pavail[i].phys_addr;
1984 		old_end = old_start + pavail[i].reg_size;
1985 		while (old_start < old_end) {
1986 			int n;
1987 
1988 			for (n = 0; n < pavail_rescan_ents; n++) {
1989 				unsigned long new_start, new_end;
1990 
1991 				new_start = pavail_rescan[n].phys_addr;
1992 				new_end = new_start +
1993 					pavail_rescan[n].reg_size;
1994 
1995 				if (new_start <= old_start &&
1996 				    new_end >= (old_start + PAGE_SIZE)) {
1997 					set_bit(old_start >> 22, bitmap);
1998 					goto do_next_page;
1999 				}
2000 			}
2001 
2002 			prom_printf("mem_init: Lost memory in pavail\n");
2003 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2004 				    pavail[i].phys_addr,
2005 				    pavail[i].reg_size);
2006 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2007 				    pavail_rescan[i].phys_addr,
2008 				    pavail_rescan[i].reg_size);
2009 			prom_printf("mem_init: Cannot continue, aborting.\n");
2010 			prom_halt();
2011 
2012 		do_next_page:
2013 			old_start += PAGE_SIZE;
2014 		}
2015 	}
2016 }
2017 
2018 static void __init patch_tlb_miss_handler_bitmap(void)
2019 {
2020 	extern unsigned int valid_addr_bitmap_insn[];
2021 	extern unsigned int valid_addr_bitmap_patch[];
2022 
2023 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2024 	mb();
2025 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2026 	flushi(&valid_addr_bitmap_insn[0]);
2027 }
2028 
2029 static void __init register_page_bootmem_info(void)
2030 {
2031 #ifdef CONFIG_NEED_MULTIPLE_NODES
2032 	int i;
2033 
2034 	for_each_online_node(i)
2035 		if (NODE_DATA(i)->node_spanned_pages)
2036 			register_page_bootmem_info_node(NODE_DATA(i));
2037 #endif
2038 }
2039 void __init mem_init(void)
2040 {
2041 	unsigned long codepages, datapages, initpages;
2042 	unsigned long addr, last;
2043 
2044 	addr = PAGE_OFFSET + kern_base;
2045 	last = PAGE_ALIGN(kern_size) + addr;
2046 	while (addr < last) {
2047 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2048 		addr += PAGE_SIZE;
2049 	}
2050 
2051 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2052 	patch_tlb_miss_handler_bitmap();
2053 
2054 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2055 
2056 	register_page_bootmem_info();
2057 	totalram_pages = free_all_bootmem();
2058 
2059 	/* We subtract one to account for the mem_map_zero page
2060 	 * allocated below.
2061 	 */
2062 	num_physpages = totalram_pages - 1;
2063 
2064 	/*
2065 	 * Set up the zero page, mark it reserved, so that page count
2066 	 * is not manipulated when freeing the page from user ptes.
2067 	 */
2068 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2069 	if (mem_map_zero == NULL) {
2070 		prom_printf("paging_init: Cannot alloc zero page.\n");
2071 		prom_halt();
2072 	}
2073 	mark_page_reserved(mem_map_zero);
2074 
2075 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2076 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2077 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2078 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2079 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2080 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2081 
2082 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2083 	       nr_free_pages() << (PAGE_SHIFT-10),
2084 	       codepages << (PAGE_SHIFT-10),
2085 	       datapages << (PAGE_SHIFT-10),
2086 	       initpages << (PAGE_SHIFT-10),
2087 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2088 
2089 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2090 		cheetah_ecache_flush_init();
2091 }
2092 
2093 void free_initmem(void)
2094 {
2095 	unsigned long addr, initend;
2096 	int do_free = 1;
2097 
2098 	/* If the physical memory maps were trimmed by kernel command
2099 	 * line options, don't even try freeing this initmem stuff up.
2100 	 * The kernel image could have been in the trimmed out region
2101 	 * and if so the freeing below will free invalid page structs.
2102 	 */
2103 	if (cmdline_memory_size)
2104 		do_free = 0;
2105 
2106 	/*
2107 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2108 	 */
2109 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2110 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2111 	for (; addr < initend; addr += PAGE_SIZE) {
2112 		unsigned long page;
2113 
2114 		page = (addr +
2115 			((unsigned long) __va(kern_base)) -
2116 			((unsigned long) KERNBASE));
2117 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2118 
2119 		if (do_free)
2120 			free_reserved_page(virt_to_page(page));
2121 	}
2122 }
2123 
2124 #ifdef CONFIG_BLK_DEV_INITRD
2125 void free_initrd_mem(unsigned long start, unsigned long end)
2126 {
2127 	num_physpages += free_reserved_area(start, end, POISON_FREE_INITMEM,
2128 					    "initrd");
2129 }
2130 #endif
2131 
2132 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2133 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2134 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2135 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2136 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2137 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2138 
2139 pgprot_t PAGE_KERNEL __read_mostly;
2140 EXPORT_SYMBOL(PAGE_KERNEL);
2141 
2142 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2143 pgprot_t PAGE_COPY __read_mostly;
2144 
2145 pgprot_t PAGE_SHARED __read_mostly;
2146 EXPORT_SYMBOL(PAGE_SHARED);
2147 
2148 unsigned long pg_iobits __read_mostly;
2149 
2150 unsigned long _PAGE_IE __read_mostly;
2151 EXPORT_SYMBOL(_PAGE_IE);
2152 
2153 unsigned long _PAGE_E __read_mostly;
2154 EXPORT_SYMBOL(_PAGE_E);
2155 
2156 unsigned long _PAGE_CACHE __read_mostly;
2157 EXPORT_SYMBOL(_PAGE_CACHE);
2158 
2159 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2160 unsigned long vmemmap_table[VMEMMAP_SIZE];
2161 
2162 static long __meminitdata addr_start, addr_end;
2163 static int __meminitdata node_start;
2164 
2165 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2166 			       int node)
2167 {
2168 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2169 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2170 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2171 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2172 	unsigned long pte_base;
2173 
2174 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2175 		    _PAGE_CP_4U | _PAGE_CV_4U |
2176 		    _PAGE_P_4U | _PAGE_W_4U);
2177 	if (tlb_type == hypervisor)
2178 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2179 			    _PAGE_CP_4V | _PAGE_CV_4V |
2180 			    _PAGE_P_4V | _PAGE_W_4V);
2181 
2182 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2183 		unsigned long *vmem_pp =
2184 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2185 		void *block;
2186 
2187 		if (!(*vmem_pp & _PAGE_VALID)) {
2188 			block = vmemmap_alloc_block(1UL << 22, node);
2189 			if (!block)
2190 				return -ENOMEM;
2191 
2192 			*vmem_pp = pte_base | __pa(block);
2193 
2194 			/* check to see if we have contiguous blocks */
2195 			if (addr_end != addr || node_start != node) {
2196 				if (addr_start)
2197 					printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2198 					       addr_start, addr_end-1, node_start);
2199 				addr_start = addr;
2200 				node_start = node;
2201 			}
2202 			addr_end = addr + VMEMMAP_CHUNK;
2203 		}
2204 	}
2205 	return 0;
2206 }
2207 
2208 void __meminit vmemmap_populate_print_last(void)
2209 {
2210 	if (addr_start) {
2211 		printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2212 		       addr_start, addr_end-1, node_start);
2213 		addr_start = 0;
2214 		addr_end = 0;
2215 		node_start = 0;
2216 	}
2217 }
2218 
2219 void vmemmap_free(unsigned long start, unsigned long end)
2220 {
2221 }
2222 
2223 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2224 
2225 static void prot_init_common(unsigned long page_none,
2226 			     unsigned long page_shared,
2227 			     unsigned long page_copy,
2228 			     unsigned long page_readonly,
2229 			     unsigned long page_exec_bit)
2230 {
2231 	PAGE_COPY = __pgprot(page_copy);
2232 	PAGE_SHARED = __pgprot(page_shared);
2233 
2234 	protection_map[0x0] = __pgprot(page_none);
2235 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2236 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2237 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2238 	protection_map[0x4] = __pgprot(page_readonly);
2239 	protection_map[0x5] = __pgprot(page_readonly);
2240 	protection_map[0x6] = __pgprot(page_copy);
2241 	protection_map[0x7] = __pgprot(page_copy);
2242 	protection_map[0x8] = __pgprot(page_none);
2243 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2244 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2245 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2246 	protection_map[0xc] = __pgprot(page_readonly);
2247 	protection_map[0xd] = __pgprot(page_readonly);
2248 	protection_map[0xe] = __pgprot(page_shared);
2249 	protection_map[0xf] = __pgprot(page_shared);
2250 }
2251 
2252 static void __init sun4u_pgprot_init(void)
2253 {
2254 	unsigned long page_none, page_shared, page_copy, page_readonly;
2255 	unsigned long page_exec_bit;
2256 	int i;
2257 
2258 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2259 				_PAGE_CACHE_4U | _PAGE_P_4U |
2260 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2261 				_PAGE_EXEC_4U);
2262 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2263 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2264 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2265 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2266 
2267 	_PAGE_IE = _PAGE_IE_4U;
2268 	_PAGE_E = _PAGE_E_4U;
2269 	_PAGE_CACHE = _PAGE_CACHE_4U;
2270 
2271 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2272 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2273 
2274 #ifdef CONFIG_DEBUG_PAGEALLOC
2275 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2276 #else
2277 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2278 		0xfffff80000000000UL;
2279 #endif
2280 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2281 				   _PAGE_P_4U | _PAGE_W_4U);
2282 
2283 	for (i = 1; i < 4; i++)
2284 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2285 
2286 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2287 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2288 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2289 
2290 
2291 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2292 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2293 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2294 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2295 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2296 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2297 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2298 
2299 	page_exec_bit = _PAGE_EXEC_4U;
2300 
2301 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2302 			 page_exec_bit);
2303 }
2304 
2305 static void __init sun4v_pgprot_init(void)
2306 {
2307 	unsigned long page_none, page_shared, page_copy, page_readonly;
2308 	unsigned long page_exec_bit;
2309 	int i;
2310 
2311 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2312 				_PAGE_CACHE_4V | _PAGE_P_4V |
2313 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2314 				_PAGE_EXEC_4V);
2315 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2316 
2317 	_PAGE_IE = _PAGE_IE_4V;
2318 	_PAGE_E = _PAGE_E_4V;
2319 	_PAGE_CACHE = _PAGE_CACHE_4V;
2320 
2321 #ifdef CONFIG_DEBUG_PAGEALLOC
2322 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2323 #else
2324 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2325 		0xfffff80000000000UL;
2326 #endif
2327 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2328 				   _PAGE_P_4V | _PAGE_W_4V);
2329 
2330 	for (i = 1; i < 4; i++)
2331 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2332 
2333 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2334 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2335 
2336 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2337 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2338 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2339 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2340 
2341 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2342 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2343 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2344 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2345 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2346 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2347 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2348 
2349 	page_exec_bit = _PAGE_EXEC_4V;
2350 
2351 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2352 			 page_exec_bit);
2353 }
2354 
2355 unsigned long pte_sz_bits(unsigned long sz)
2356 {
2357 	if (tlb_type == hypervisor) {
2358 		switch (sz) {
2359 		case 8 * 1024:
2360 		default:
2361 			return _PAGE_SZ8K_4V;
2362 		case 64 * 1024:
2363 			return _PAGE_SZ64K_4V;
2364 		case 512 * 1024:
2365 			return _PAGE_SZ512K_4V;
2366 		case 4 * 1024 * 1024:
2367 			return _PAGE_SZ4MB_4V;
2368 		}
2369 	} else {
2370 		switch (sz) {
2371 		case 8 * 1024:
2372 		default:
2373 			return _PAGE_SZ8K_4U;
2374 		case 64 * 1024:
2375 			return _PAGE_SZ64K_4U;
2376 		case 512 * 1024:
2377 			return _PAGE_SZ512K_4U;
2378 		case 4 * 1024 * 1024:
2379 			return _PAGE_SZ4MB_4U;
2380 		}
2381 	}
2382 }
2383 
2384 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2385 {
2386 	pte_t pte;
2387 
2388 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2389 	pte_val(pte) |= (((unsigned long)space) << 32);
2390 	pte_val(pte) |= pte_sz_bits(page_size);
2391 
2392 	return pte;
2393 }
2394 
2395 static unsigned long kern_large_tte(unsigned long paddr)
2396 {
2397 	unsigned long val;
2398 
2399 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2400 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2401 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2402 	if (tlb_type == hypervisor)
2403 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2404 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2405 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2406 
2407 	return val | paddr;
2408 }
2409 
2410 /* If not locked, zap it. */
2411 void __flush_tlb_all(void)
2412 {
2413 	unsigned long pstate;
2414 	int i;
2415 
2416 	__asm__ __volatile__("flushw\n\t"
2417 			     "rdpr	%%pstate, %0\n\t"
2418 			     "wrpr	%0, %1, %%pstate"
2419 			     : "=r" (pstate)
2420 			     : "i" (PSTATE_IE));
2421 	if (tlb_type == hypervisor) {
2422 		sun4v_mmu_demap_all();
2423 	} else if (tlb_type == spitfire) {
2424 		for (i = 0; i < 64; i++) {
2425 			/* Spitfire Errata #32 workaround */
2426 			/* NOTE: Always runs on spitfire, so no
2427 			 *       cheetah+ page size encodings.
2428 			 */
2429 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2430 					     "flush	%%g6"
2431 					     : /* No outputs */
2432 					     : "r" (0),
2433 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2434 
2435 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2436 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2437 						     "membar #Sync"
2438 						     : /* no outputs */
2439 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2440 				spitfire_put_dtlb_data(i, 0x0UL);
2441 			}
2442 
2443 			/* Spitfire Errata #32 workaround */
2444 			/* NOTE: Always runs on spitfire, so no
2445 			 *       cheetah+ page size encodings.
2446 			 */
2447 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2448 					     "flush	%%g6"
2449 					     : /* No outputs */
2450 					     : "r" (0),
2451 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2452 
2453 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2454 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2455 						     "membar #Sync"
2456 						     : /* no outputs */
2457 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2458 				spitfire_put_itlb_data(i, 0x0UL);
2459 			}
2460 		}
2461 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2462 		cheetah_flush_dtlb_all();
2463 		cheetah_flush_itlb_all();
2464 	}
2465 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2466 			     : : "r" (pstate));
2467 }
2468 
2469 static pte_t *get_from_cache(struct mm_struct *mm)
2470 {
2471 	struct page *page;
2472 	pte_t *ret;
2473 
2474 	spin_lock(&mm->page_table_lock);
2475 	page = mm->context.pgtable_page;
2476 	ret = NULL;
2477 	if (page) {
2478 		void *p = page_address(page);
2479 
2480 		mm->context.pgtable_page = NULL;
2481 
2482 		ret = (pte_t *) (p + (PAGE_SIZE / 2));
2483 	}
2484 	spin_unlock(&mm->page_table_lock);
2485 
2486 	return ret;
2487 }
2488 
2489 static struct page *__alloc_for_cache(struct mm_struct *mm)
2490 {
2491 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2492 				       __GFP_REPEAT | __GFP_ZERO);
2493 
2494 	if (page) {
2495 		spin_lock(&mm->page_table_lock);
2496 		if (!mm->context.pgtable_page) {
2497 			atomic_set(&page->_count, 2);
2498 			mm->context.pgtable_page = page;
2499 		}
2500 		spin_unlock(&mm->page_table_lock);
2501 	}
2502 	return page;
2503 }
2504 
2505 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2506 			    unsigned long address)
2507 {
2508 	struct page *page;
2509 	pte_t *pte;
2510 
2511 	pte = get_from_cache(mm);
2512 	if (pte)
2513 		return pte;
2514 
2515 	page = __alloc_for_cache(mm);
2516 	if (page)
2517 		pte = (pte_t *) page_address(page);
2518 
2519 	return pte;
2520 }
2521 
2522 pgtable_t pte_alloc_one(struct mm_struct *mm,
2523 			unsigned long address)
2524 {
2525 	struct page *page;
2526 	pte_t *pte;
2527 
2528 	pte = get_from_cache(mm);
2529 	if (pte)
2530 		return pte;
2531 
2532 	page = __alloc_for_cache(mm);
2533 	if (page) {
2534 		pgtable_page_ctor(page);
2535 		pte = (pte_t *) page_address(page);
2536 	}
2537 
2538 	return pte;
2539 }
2540 
2541 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2542 {
2543 	struct page *page = virt_to_page(pte);
2544 	if (put_page_testzero(page))
2545 		free_hot_cold_page(page, 0);
2546 }
2547 
2548 static void __pte_free(pgtable_t pte)
2549 {
2550 	struct page *page = virt_to_page(pte);
2551 	if (put_page_testzero(page)) {
2552 		pgtable_page_dtor(page);
2553 		free_hot_cold_page(page, 0);
2554 	}
2555 }
2556 
2557 void pte_free(struct mm_struct *mm, pgtable_t pte)
2558 {
2559 	__pte_free(pte);
2560 }
2561 
2562 void pgtable_free(void *table, bool is_page)
2563 {
2564 	if (is_page)
2565 		__pte_free(table);
2566 	else
2567 		kmem_cache_free(pgtable_cache, table);
2568 }
2569 
2570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2571 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2572 {
2573 	if (pgprot_val(pgprot) & _PAGE_VALID)
2574 		pmd_val(pmd) |= PMD_HUGE_PRESENT;
2575 	if (tlb_type == hypervisor) {
2576 		if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2577 			pmd_val(pmd) |= PMD_HUGE_WRITE;
2578 		if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2579 			pmd_val(pmd) |= PMD_HUGE_EXEC;
2580 
2581 		if (!for_modify) {
2582 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2583 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2584 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2585 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
2586 		}
2587 	} else {
2588 		if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2589 			pmd_val(pmd) |= PMD_HUGE_WRITE;
2590 		if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2591 			pmd_val(pmd) |= PMD_HUGE_EXEC;
2592 
2593 		if (!for_modify) {
2594 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2595 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2596 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2597 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
2598 		}
2599 	}
2600 
2601 	return pmd;
2602 }
2603 
2604 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2605 {
2606 	pmd_t pmd;
2607 
2608 	pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2609 	pmd_val(pmd) |= PMD_ISHUGE;
2610 	pmd = pmd_set_protbits(pmd, pgprot, false);
2611 	return pmd;
2612 }
2613 
2614 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2615 {
2616 	pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2617 			  PMD_HUGE_WRITE |
2618 			  PMD_HUGE_EXEC);
2619 	pmd = pmd_set_protbits(pmd, newprot, true);
2620 	return pmd;
2621 }
2622 
2623 pgprot_t pmd_pgprot(pmd_t entry)
2624 {
2625 	unsigned long pte = 0;
2626 
2627 	if (pmd_val(entry) & PMD_HUGE_PRESENT)
2628 		pte |= _PAGE_VALID;
2629 
2630 	if (tlb_type == hypervisor) {
2631 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
2632 			pte |= _PAGE_PRESENT_4V;
2633 		if (pmd_val(entry) & PMD_HUGE_EXEC)
2634 			pte |= _PAGE_EXEC_4V;
2635 		if (pmd_val(entry) & PMD_HUGE_WRITE)
2636 			pte |= _PAGE_W_4V;
2637 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2638 			pte |= _PAGE_ACCESSED_4V;
2639 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
2640 			pte |= _PAGE_MODIFIED_4V;
2641 		pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2642 	} else {
2643 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
2644 			pte |= _PAGE_PRESENT_4U;
2645 		if (pmd_val(entry) & PMD_HUGE_EXEC)
2646 			pte |= _PAGE_EXEC_4U;
2647 		if (pmd_val(entry) & PMD_HUGE_WRITE)
2648 			pte |= _PAGE_W_4U;
2649 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2650 			pte |= _PAGE_ACCESSED_4U;
2651 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
2652 			pte |= _PAGE_MODIFIED_4U;
2653 		pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2654 	}
2655 
2656 	return __pgprot(pte);
2657 }
2658 
2659 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2660 			  pmd_t *pmd)
2661 {
2662 	unsigned long pte, flags;
2663 	struct mm_struct *mm;
2664 	pmd_t entry = *pmd;
2665 	pgprot_t prot;
2666 
2667 	if (!pmd_large(entry) || !pmd_young(entry))
2668 		return;
2669 
2670 	pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2671 	pte <<= PMD_PADDR_SHIFT;
2672 	pte |= _PAGE_VALID;
2673 
2674 	prot = pmd_pgprot(entry);
2675 
2676 	if (tlb_type == hypervisor)
2677 		pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2678 	else
2679 		pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2680 
2681 	pte |= pgprot_val(prot);
2682 
2683 	mm = vma->vm_mm;
2684 
2685 	spin_lock_irqsave(&mm->context.lock, flags);
2686 
2687 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2688 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2689 					addr, pte);
2690 
2691 	spin_unlock_irqrestore(&mm->context.lock, flags);
2692 }
2693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2694 
2695 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2696 static void context_reload(void *__data)
2697 {
2698 	struct mm_struct *mm = __data;
2699 
2700 	if (mm == current->mm)
2701 		load_secondary_context(mm);
2702 }
2703 
2704 void hugetlb_setup(struct pt_regs *regs)
2705 {
2706 	struct mm_struct *mm = current->mm;
2707 	struct tsb_config *tp;
2708 
2709 	if (in_atomic() || !mm) {
2710 		const struct exception_table_entry *entry;
2711 
2712 		entry = search_exception_tables(regs->tpc);
2713 		if (entry) {
2714 			regs->tpc = entry->fixup;
2715 			regs->tnpc = regs->tpc + 4;
2716 			return;
2717 		}
2718 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2719 		die_if_kernel("HugeTSB in atomic", regs);
2720 	}
2721 
2722 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2723 	if (likely(tp->tsb == NULL))
2724 		tsb_grow(mm, MM_TSB_HUGE, 0);
2725 
2726 	tsb_context_switch(mm);
2727 	smp_tsb_sync(mm);
2728 
2729 	/* On UltraSPARC-III+ and later, configure the second half of
2730 	 * the Data-TLB for huge pages.
2731 	 */
2732 	if (tlb_type == cheetah_plus) {
2733 		unsigned long ctx;
2734 
2735 		spin_lock(&ctx_alloc_lock);
2736 		ctx = mm->context.sparc64_ctx_val;
2737 		ctx &= ~CTX_PGSZ_MASK;
2738 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2739 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2740 
2741 		if (ctx != mm->context.sparc64_ctx_val) {
2742 			/* When changing the page size fields, we
2743 			 * must perform a context flush so that no
2744 			 * stale entries match.  This flush must
2745 			 * occur with the original context register
2746 			 * settings.
2747 			 */
2748 			do_flush_tlb_mm(mm);
2749 
2750 			/* Reload the context register of all processors
2751 			 * also executing in this address space.
2752 			 */
2753 			mm->context.sparc64_ctx_val = ctx;
2754 			on_each_cpu(context_reload, mm, 0);
2755 		}
2756 		spin_unlock(&ctx_alloc_lock);
2757 	}
2758 }
2759 #endif
2760