xref: /linux/arch/sparc/mm/init_64.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52 
53 #include "init_64.h"
54 
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70 
71 #define MAX_BANKS	32
72 
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75 
76 static int cmp_p64(const void *a, const void *b)
77 {
78 	const struct linux_prom64_registers *x = a, *y = b;
79 
80 	if (x->phys_addr > y->phys_addr)
81 		return 1;
82 	if (x->phys_addr < y->phys_addr)
83 		return -1;
84 	return 0;
85 }
86 
87 static void __init read_obp_memory(const char *property,
88 				   struct linux_prom64_registers *regs,
89 				   int *num_ents)
90 {
91 	phandle node = prom_finddevice("/memory");
92 	int prop_size = prom_getproplen(node, property);
93 	int ents, ret, i;
94 
95 	ents = prop_size / sizeof(struct linux_prom64_registers);
96 	if (ents > MAX_BANKS) {
97 		prom_printf("The machine has more %s property entries than "
98 			    "this kernel can support (%d).\n",
99 			    property, MAX_BANKS);
100 		prom_halt();
101 	}
102 
103 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 	if (ret == -1) {
105 		prom_printf("Couldn't get %s property from /memory.\n");
106 		prom_halt();
107 	}
108 
109 	/* Sanitize what we got from the firmware, by page aligning
110 	 * everything.
111 	 */
112 	for (i = 0; i < ents; i++) {
113 		unsigned long base, size;
114 
115 		base = regs[i].phys_addr;
116 		size = regs[i].reg_size;
117 
118 		size &= PAGE_MASK;
119 		if (base & ~PAGE_MASK) {
120 			unsigned long new_base = PAGE_ALIGN(base);
121 
122 			size -= new_base - base;
123 			if ((long) size < 0L)
124 				size = 0UL;
125 			base = new_base;
126 		}
127 		if (size == 0UL) {
128 			/* If it is empty, simply get rid of it.
129 			 * This simplifies the logic of the other
130 			 * functions that process these arrays.
131 			 */
132 			memmove(&regs[i], &regs[i + 1],
133 				(ents - i - 1) * sizeof(regs[0]));
134 			i--;
135 			ents--;
136 			continue;
137 		}
138 		regs[i].phys_addr = base;
139 		regs[i].reg_size = size;
140 	}
141 
142 	*num_ents = ents;
143 
144 	sort(regs, ents, sizeof(struct linux_prom64_registers),
145 	     cmp_p64, NULL);
146 }
147 
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 					sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151 
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155 
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160 
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163 
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165 
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169 
170 int num_kernel_image_mappings;
171 
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178 
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181 	BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 	atomic_inc(&dcpage_flushes);
184 #endif
185 
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 	__flush_dcache_page(page_address(page),
188 			    ((tlb_type == spitfire) &&
189 			     page_mapping(page) != NULL));
190 #else
191 	if (page_mapping(page) != NULL &&
192 	    tlb_type == spitfire)
193 		__flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196 
197 #define PG_dcache_dirty		PG_arch_1
198 #define PG_dcache_cpu_shift	32UL
199 #define PG_dcache_cpu_mask	\
200 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 
202 #define dcache_dirty_cpu(page) \
203 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207 	unsigned long mask = this_cpu;
208 	unsigned long non_cpu_bits;
209 
210 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212 
213 	__asm__ __volatile__("1:\n\t"
214 			     "ldx	[%2], %%g7\n\t"
215 			     "and	%%g7, %1, %%g1\n\t"
216 			     "or	%%g1, %0, %%g1\n\t"
217 			     "casx	[%2], %%g7, %%g1\n\t"
218 			     "cmp	%%g7, %%g1\n\t"
219 			     "bne,pn	%%xcc, 1b\n\t"
220 			     " nop"
221 			     : /* no outputs */
222 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 			     : "g1", "g7");
224 }
225 
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228 	unsigned long mask = (1UL << PG_dcache_dirty);
229 
230 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 			     "1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "srlx	%%g7, %4, %%g1\n\t"
234 			     "and	%%g1, %3, %%g1\n\t"
235 			     "cmp	%%g1, %0\n\t"
236 			     "bne,pn	%%icc, 2f\n\t"
237 			     " andn	%%g7, %1, %%g1\n\t"
238 			     "casx	[%2], %%g7, %%g1\n\t"
239 			     "cmp	%%g7, %%g1\n\t"
240 			     "bne,pn	%%xcc, 1b\n\t"
241 			     " nop\n"
242 			     "2:"
243 			     : /* no outputs */
244 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
245 			       "i" (PG_dcache_cpu_mask),
246 			       "i" (PG_dcache_cpu_shift)
247 			     : "g1", "g7");
248 }
249 
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252 	unsigned long tsb_addr = (unsigned long) ent;
253 
254 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 		tsb_addr = __pa(tsb_addr);
256 
257 	__tsb_insert(tsb_addr, tag, pte);
258 }
259 
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262 
263 static void flush_dcache(unsigned long pfn)
264 {
265 	struct page *page;
266 
267 	page = pfn_to_page(pfn);
268 	if (page) {
269 		unsigned long pg_flags;
270 
271 		pg_flags = page->flags;
272 		if (pg_flags & (1UL << PG_dcache_dirty)) {
273 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 				   PG_dcache_cpu_mask);
275 			int this_cpu = get_cpu();
276 
277 			/* This is just to optimize away some function calls
278 			 * in the SMP case.
279 			 */
280 			if (cpu == this_cpu)
281 				flush_dcache_page_impl(page);
282 			else
283 				smp_flush_dcache_page_impl(page, cpu);
284 
285 			clear_dcache_dirty_cpu(page, cpu);
286 
287 			put_cpu();
288 		}
289 	}
290 }
291 
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293 {
294 	struct mm_struct *mm;
295 	struct tsb *tsb;
296 	unsigned long tag, flags;
297 	unsigned long tsb_index, tsb_hash_shift;
298 	pte_t pte = *ptep;
299 
300 	if (tlb_type != hypervisor) {
301 		unsigned long pfn = pte_pfn(pte);
302 
303 		if (pfn_valid(pfn))
304 			flush_dcache(pfn);
305 	}
306 
307 	mm = vma->vm_mm;
308 
309 	tsb_index = MM_TSB_BASE;
310 	tsb_hash_shift = PAGE_SHIFT;
311 
312 	spin_lock_irqsave(&mm->context.lock, flags);
313 
314 #ifdef CONFIG_HUGETLB_PAGE
315 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 		if ((tlb_type == hypervisor &&
317 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 		    (tlb_type != hypervisor &&
319 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 			tsb_index = MM_TSB_HUGE;
321 			tsb_hash_shift = HPAGE_SHIFT;
322 		}
323 	}
324 #endif
325 
326 	tsb = mm->context.tsb_block[tsb_index].tsb;
327 	tsb += ((address >> tsb_hash_shift) &
328 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 	tag = (address >> 22UL);
330 	tsb_insert(tsb, tag, pte_val(pte));
331 
332 	spin_unlock_irqrestore(&mm->context.lock, flags);
333 }
334 
335 void flush_dcache_page(struct page *page)
336 {
337 	struct address_space *mapping;
338 	int this_cpu;
339 
340 	if (tlb_type == hypervisor)
341 		return;
342 
343 	/* Do not bother with the expensive D-cache flush if it
344 	 * is merely the zero page.  The 'bigcore' testcase in GDB
345 	 * causes this case to run millions of times.
346 	 */
347 	if (page == ZERO_PAGE(0))
348 		return;
349 
350 	this_cpu = get_cpu();
351 
352 	mapping = page_mapping(page);
353 	if (mapping && !mapping_mapped(mapping)) {
354 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 		if (dirty) {
356 			int dirty_cpu = dcache_dirty_cpu(page);
357 
358 			if (dirty_cpu == this_cpu)
359 				goto out;
360 			smp_flush_dcache_page_impl(page, dirty_cpu);
361 		}
362 		set_dcache_dirty(page, this_cpu);
363 	} else {
364 		/* We could delay the flush for the !page_mapping
365 		 * case too.  But that case is for exec env/arg
366 		 * pages and those are %99 certainly going to get
367 		 * faulted into the tlb (and thus flushed) anyways.
368 		 */
369 		flush_dcache_page_impl(page);
370 	}
371 
372 out:
373 	put_cpu();
374 }
375 EXPORT_SYMBOL(flush_dcache_page);
376 
377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 {
379 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 	if (tlb_type == spitfire) {
381 		unsigned long kaddr;
382 
383 		/* This code only runs on Spitfire cpus so this is
384 		 * why we can assume _PAGE_PADDR_4U.
385 		 */
386 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 			unsigned long paddr, mask = _PAGE_PADDR_4U;
388 
389 			if (kaddr >= PAGE_OFFSET)
390 				paddr = kaddr & mask;
391 			else {
392 				pgd_t *pgdp = pgd_offset_k(kaddr);
393 				pud_t *pudp = pud_offset(pgdp, kaddr);
394 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396 
397 				paddr = pte_val(*ptep) & mask;
398 			}
399 			__flush_icache_page(paddr);
400 		}
401 	}
402 }
403 EXPORT_SYMBOL(flush_icache_range);
404 
405 void mmu_info(struct seq_file *m)
406 {
407 	if (tlb_type == cheetah)
408 		seq_printf(m, "MMU Type\t: Cheetah\n");
409 	else if (tlb_type == cheetah_plus)
410 		seq_printf(m, "MMU Type\t: Cheetah+\n");
411 	else if (tlb_type == spitfire)
412 		seq_printf(m, "MMU Type\t: Spitfire\n");
413 	else if (tlb_type == hypervisor)
414 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 	else
416 		seq_printf(m, "MMU Type\t: ???\n");
417 
418 #ifdef CONFIG_DEBUG_DCFLUSH
419 	seq_printf(m, "DCPageFlushes\t: %d\n",
420 		   atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 		   atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427 
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
430 
431 unsigned long kern_locked_tte_data;
432 
433 /* The obp translations are saved based on 8k pagesize, since obp can
434  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435  * HI_OBP_ADDRESS range are handled in ktlb.S.
436  */
437 static inline int in_obp_range(unsigned long vaddr)
438 {
439 	return (vaddr >= LOW_OBP_ADDRESS &&
440 		vaddr < HI_OBP_ADDRESS);
441 }
442 
443 static int cmp_ptrans(const void *a, const void *b)
444 {
445 	const struct linux_prom_translation *x = a, *y = b;
446 
447 	if (x->virt > y->virt)
448 		return 1;
449 	if (x->virt < y->virt)
450 		return -1;
451 	return 0;
452 }
453 
454 /* Read OBP translations property into 'prom_trans[]'.  */
455 static void __init read_obp_translations(void)
456 {
457 	int n, node, ents, first, last, i;
458 
459 	node = prom_finddevice("/virtual-memory");
460 	n = prom_getproplen(node, "translations");
461 	if (unlikely(n == 0 || n == -1)) {
462 		prom_printf("prom_mappings: Couldn't get size.\n");
463 		prom_halt();
464 	}
465 	if (unlikely(n > sizeof(prom_trans))) {
466 		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 		prom_halt();
468 	}
469 
470 	if ((n = prom_getproperty(node, "translations",
471 				  (char *)&prom_trans[0],
472 				  sizeof(prom_trans))) == -1) {
473 		prom_printf("prom_mappings: Couldn't get property.\n");
474 		prom_halt();
475 	}
476 
477 	n = n / sizeof(struct linux_prom_translation);
478 
479 	ents = n;
480 
481 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 	     cmp_ptrans, NULL);
483 
484 	/* Now kick out all the non-OBP entries.  */
485 	for (i = 0; i < ents; i++) {
486 		if (in_obp_range(prom_trans[i].virt))
487 			break;
488 	}
489 	first = i;
490 	for (; i < ents; i++) {
491 		if (!in_obp_range(prom_trans[i].virt))
492 			break;
493 	}
494 	last = i;
495 
496 	for (i = 0; i < (last - first); i++) {
497 		struct linux_prom_translation *src = &prom_trans[i + first];
498 		struct linux_prom_translation *dest = &prom_trans[i];
499 
500 		*dest = *src;
501 	}
502 	for (; i < ents; i++) {
503 		struct linux_prom_translation *dest = &prom_trans[i];
504 		dest->virt = dest->size = dest->data = 0x0UL;
505 	}
506 
507 	prom_trans_ents = last - first;
508 
509 	if (tlb_type == spitfire) {
510 		/* Clear diag TTE bits. */
511 		for (i = 0; i < prom_trans_ents; i++)
512 			prom_trans[i].data &= ~0x0003fe0000000000UL;
513 	}
514 
515 	/* Force execute bit on.  */
516 	for (i = 0; i < prom_trans_ents; i++)
517 		prom_trans[i].data |= (tlb_type == hypervisor ?
518 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
519 }
520 
521 static void __init hypervisor_tlb_lock(unsigned long vaddr,
522 				       unsigned long pte,
523 				       unsigned long mmu)
524 {
525 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
526 
527 	if (ret != 0) {
528 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
530 		prom_halt();
531 	}
532 }
533 
534 static unsigned long kern_large_tte(unsigned long paddr);
535 
536 static void __init remap_kernel(void)
537 {
538 	unsigned long phys_page, tte_vaddr, tte_data;
539 	int i, tlb_ent = sparc64_highest_locked_tlbent();
540 
541 	tte_vaddr = (unsigned long) KERNBASE;
542 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543 	tte_data = kern_large_tte(phys_page);
544 
545 	kern_locked_tte_data = tte_data;
546 
547 	/* Now lock us into the TLBs via Hypervisor or OBP. */
548 	if (tlb_type == hypervisor) {
549 		for (i = 0; i < num_kernel_image_mappings; i++) {
550 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
551 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
552 			tte_vaddr += 0x400000;
553 			tte_data += 0x400000;
554 		}
555 	} else {
556 		for (i = 0; i < num_kernel_image_mappings; i++) {
557 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
559 			tte_vaddr += 0x400000;
560 			tte_data += 0x400000;
561 		}
562 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
563 	}
564 	if (tlb_type == cheetah_plus) {
565 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
566 					    CTX_CHEETAH_PLUS_NUC);
567 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
568 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
569 	}
570 }
571 
572 
573 static void __init inherit_prom_mappings(void)
574 {
575 	/* Now fixup OBP's idea about where we really are mapped. */
576 	printk("Remapping the kernel... ");
577 	remap_kernel();
578 	printk("done.\n");
579 }
580 
581 void prom_world(int enter)
582 {
583 	if (!enter)
584 		set_fs((mm_segment_t) { get_thread_current_ds() });
585 
586 	__asm__ __volatile__("flushw");
587 }
588 
589 void __flush_dcache_range(unsigned long start, unsigned long end)
590 {
591 	unsigned long va;
592 
593 	if (tlb_type == spitfire) {
594 		int n = 0;
595 
596 		for (va = start; va < end; va += 32) {
597 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
598 			if (++n >= 512)
599 				break;
600 		}
601 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
602 		start = __pa(start);
603 		end = __pa(end);
604 		for (va = start; va < end; va += 32)
605 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
606 					     "membar #Sync"
607 					     : /* no outputs */
608 					     : "r" (va),
609 					       "i" (ASI_DCACHE_INVALIDATE));
610 	}
611 }
612 EXPORT_SYMBOL(__flush_dcache_range);
613 
614 /* get_new_mmu_context() uses "cache + 1".  */
615 DEFINE_SPINLOCK(ctx_alloc_lock);
616 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
617 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
618 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
619 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
620 
621 /* Caller does TLB context flushing on local CPU if necessary.
622  * The caller also ensures that CTX_VALID(mm->context) is false.
623  *
624  * We must be careful about boundary cases so that we never
625  * let the user have CTX 0 (nucleus) or we ever use a CTX
626  * version of zero (and thus NO_CONTEXT would not be caught
627  * by version mis-match tests in mmu_context.h).
628  *
629  * Always invoked with interrupts disabled.
630  */
631 void get_new_mmu_context(struct mm_struct *mm)
632 {
633 	unsigned long ctx, new_ctx;
634 	unsigned long orig_pgsz_bits;
635 	unsigned long flags;
636 	int new_version;
637 
638 	spin_lock_irqsave(&ctx_alloc_lock, flags);
639 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
640 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
641 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
642 	new_version = 0;
643 	if (new_ctx >= (1 << CTX_NR_BITS)) {
644 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
645 		if (new_ctx >= ctx) {
646 			int i;
647 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
648 				CTX_FIRST_VERSION;
649 			if (new_ctx == 1)
650 				new_ctx = CTX_FIRST_VERSION;
651 
652 			/* Don't call memset, for 16 entries that's just
653 			 * plain silly...
654 			 */
655 			mmu_context_bmap[0] = 3;
656 			mmu_context_bmap[1] = 0;
657 			mmu_context_bmap[2] = 0;
658 			mmu_context_bmap[3] = 0;
659 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
660 				mmu_context_bmap[i + 0] = 0;
661 				mmu_context_bmap[i + 1] = 0;
662 				mmu_context_bmap[i + 2] = 0;
663 				mmu_context_bmap[i + 3] = 0;
664 			}
665 			new_version = 1;
666 			goto out;
667 		}
668 	}
669 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
670 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
671 out:
672 	tlb_context_cache = new_ctx;
673 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
674 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
675 
676 	if (unlikely(new_version))
677 		smp_new_mmu_context_version();
678 }
679 
680 static int numa_enabled = 1;
681 static int numa_debug;
682 
683 static int __init early_numa(char *p)
684 {
685 	if (!p)
686 		return 0;
687 
688 	if (strstr(p, "off"))
689 		numa_enabled = 0;
690 
691 	if (strstr(p, "debug"))
692 		numa_debug = 1;
693 
694 	return 0;
695 }
696 early_param("numa", early_numa);
697 
698 #define numadbg(f, a...) \
699 do {	if (numa_debug) \
700 		printk(KERN_INFO f, ## a); \
701 } while (0)
702 
703 static void __init find_ramdisk(unsigned long phys_base)
704 {
705 #ifdef CONFIG_BLK_DEV_INITRD
706 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
707 		unsigned long ramdisk_image;
708 
709 		/* Older versions of the bootloader only supported a
710 		 * 32-bit physical address for the ramdisk image
711 		 * location, stored at sparc_ramdisk_image.  Newer
712 		 * SILO versions set sparc_ramdisk_image to zero and
713 		 * provide a full 64-bit physical address at
714 		 * sparc_ramdisk_image64.
715 		 */
716 		ramdisk_image = sparc_ramdisk_image;
717 		if (!ramdisk_image)
718 			ramdisk_image = sparc_ramdisk_image64;
719 
720 		/* Another bootloader quirk.  The bootloader normalizes
721 		 * the physical address to KERNBASE, so we have to
722 		 * factor that back out and add in the lowest valid
723 		 * physical page address to get the true physical address.
724 		 */
725 		ramdisk_image -= KERNBASE;
726 		ramdisk_image += phys_base;
727 
728 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
729 			ramdisk_image, sparc_ramdisk_size);
730 
731 		initrd_start = ramdisk_image;
732 		initrd_end = ramdisk_image + sparc_ramdisk_size;
733 
734 		memblock_reserve(initrd_start, sparc_ramdisk_size);
735 
736 		initrd_start += PAGE_OFFSET;
737 		initrd_end += PAGE_OFFSET;
738 	}
739 #endif
740 }
741 
742 struct node_mem_mask {
743 	unsigned long mask;
744 	unsigned long val;
745 	unsigned long bootmem_paddr;
746 };
747 static struct node_mem_mask node_masks[MAX_NUMNODES];
748 static int num_node_masks;
749 
750 int numa_cpu_lookup_table[NR_CPUS];
751 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
752 
753 #ifdef CONFIG_NEED_MULTIPLE_NODES
754 
755 struct mdesc_mblock {
756 	u64	base;
757 	u64	size;
758 	u64	offset; /* RA-to-PA */
759 };
760 static struct mdesc_mblock *mblocks;
761 static int num_mblocks;
762 
763 static unsigned long ra_to_pa(unsigned long addr)
764 {
765 	int i;
766 
767 	for (i = 0; i < num_mblocks; i++) {
768 		struct mdesc_mblock *m = &mblocks[i];
769 
770 		if (addr >= m->base &&
771 		    addr < (m->base + m->size)) {
772 			addr += m->offset;
773 			break;
774 		}
775 	}
776 	return addr;
777 }
778 
779 static int find_node(unsigned long addr)
780 {
781 	int i;
782 
783 	addr = ra_to_pa(addr);
784 	for (i = 0; i < num_node_masks; i++) {
785 		struct node_mem_mask *p = &node_masks[i];
786 
787 		if ((addr & p->mask) == p->val)
788 			return i;
789 	}
790 	return -1;
791 }
792 
793 u64 memblock_nid_range(u64 start, u64 end, int *nid)
794 {
795 	*nid = find_node(start);
796 	start += PAGE_SIZE;
797 	while (start < end) {
798 		int n = find_node(start);
799 
800 		if (n != *nid)
801 			break;
802 		start += PAGE_SIZE;
803 	}
804 
805 	if (start > end)
806 		start = end;
807 
808 	return start;
809 }
810 #else
811 u64 memblock_nid_range(u64 start, u64 end, int *nid)
812 {
813 	*nid = 0;
814 	return end;
815 }
816 #endif
817 
818 /* This must be invoked after performing all of the necessary
819  * add_active_range() calls for 'nid'.  We need to be able to get
820  * correct data from get_pfn_range_for_nid().
821  */
822 static void __init allocate_node_data(int nid)
823 {
824 	unsigned long paddr, num_pages, start_pfn, end_pfn;
825 	struct pglist_data *p;
826 
827 #ifdef CONFIG_NEED_MULTIPLE_NODES
828 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
829 	if (!paddr) {
830 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
831 		prom_halt();
832 	}
833 	NODE_DATA(nid) = __va(paddr);
834 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
835 
836 	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837 #endif
838 
839 	p = NODE_DATA(nid);
840 
841 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
842 	p->node_start_pfn = start_pfn;
843 	p->node_spanned_pages = end_pfn - start_pfn;
844 
845 	if (p->node_spanned_pages) {
846 		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
847 
848 		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
849 		if (!paddr) {
850 			prom_printf("Cannot allocate bootmap for nid[%d]\n",
851 				  nid);
852 			prom_halt();
853 		}
854 		node_masks[nid].bootmem_paddr = paddr;
855 	}
856 }
857 
858 static void init_node_masks_nonnuma(void)
859 {
860 	int i;
861 
862 	numadbg("Initializing tables for non-numa.\n");
863 
864 	node_masks[0].mask = node_masks[0].val = 0;
865 	num_node_masks = 1;
866 
867 	for (i = 0; i < NR_CPUS; i++)
868 		numa_cpu_lookup_table[i] = 0;
869 
870 	cpumask_setall(&numa_cpumask_lookup_table[0]);
871 }
872 
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 struct pglist_data *node_data[MAX_NUMNODES];
875 
876 EXPORT_SYMBOL(numa_cpu_lookup_table);
877 EXPORT_SYMBOL(numa_cpumask_lookup_table);
878 EXPORT_SYMBOL(node_data);
879 
880 struct mdesc_mlgroup {
881 	u64	node;
882 	u64	latency;
883 	u64	match;
884 	u64	mask;
885 };
886 static struct mdesc_mlgroup *mlgroups;
887 static int num_mlgroups;
888 
889 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
890 				   u32 cfg_handle)
891 {
892 	u64 arc;
893 
894 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
895 		u64 target = mdesc_arc_target(md, arc);
896 		const u64 *val;
897 
898 		val = mdesc_get_property(md, target,
899 					 "cfg-handle", NULL);
900 		if (val && *val == cfg_handle)
901 			return 0;
902 	}
903 	return -ENODEV;
904 }
905 
906 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
907 				    u32 cfg_handle)
908 {
909 	u64 arc, candidate, best_latency = ~(u64)0;
910 
911 	candidate = MDESC_NODE_NULL;
912 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
913 		u64 target = mdesc_arc_target(md, arc);
914 		const char *name = mdesc_node_name(md, target);
915 		const u64 *val;
916 
917 		if (strcmp(name, "pio-latency-group"))
918 			continue;
919 
920 		val = mdesc_get_property(md, target, "latency", NULL);
921 		if (!val)
922 			continue;
923 
924 		if (*val < best_latency) {
925 			candidate = target;
926 			best_latency = *val;
927 		}
928 	}
929 
930 	if (candidate == MDESC_NODE_NULL)
931 		return -ENODEV;
932 
933 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
934 }
935 
936 int of_node_to_nid(struct device_node *dp)
937 {
938 	const struct linux_prom64_registers *regs;
939 	struct mdesc_handle *md;
940 	u32 cfg_handle;
941 	int count, nid;
942 	u64 grp;
943 
944 	/* This is the right thing to do on currently supported
945 	 * SUN4U NUMA platforms as well, as the PCI controller does
946 	 * not sit behind any particular memory controller.
947 	 */
948 	if (!mlgroups)
949 		return -1;
950 
951 	regs = of_get_property(dp, "reg", NULL);
952 	if (!regs)
953 		return -1;
954 
955 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
956 
957 	md = mdesc_grab();
958 
959 	count = 0;
960 	nid = -1;
961 	mdesc_for_each_node_by_name(md, grp, "group") {
962 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
963 			nid = count;
964 			break;
965 		}
966 		count++;
967 	}
968 
969 	mdesc_release(md);
970 
971 	return nid;
972 }
973 
974 static void __init add_node_ranges(void)
975 {
976 	struct memblock_region *reg;
977 
978 	for_each_memblock(memory, reg) {
979 		unsigned long size = reg->size;
980 		unsigned long start, end;
981 
982 		start = reg->base;
983 		end = start + size;
984 		while (start < end) {
985 			unsigned long this_end;
986 			int nid;
987 
988 			this_end = memblock_nid_range(start, end, &nid);
989 
990 			numadbg("Adding active range nid[%d] "
991 				"start[%lx] end[%lx]\n",
992 				nid, start, this_end);
993 
994 			add_active_range(nid,
995 					 start >> PAGE_SHIFT,
996 					 this_end >> PAGE_SHIFT);
997 
998 			start = this_end;
999 		}
1000 	}
1001 }
1002 
1003 static int __init grab_mlgroups(struct mdesc_handle *md)
1004 {
1005 	unsigned long paddr;
1006 	int count = 0;
1007 	u64 node;
1008 
1009 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010 		count++;
1011 	if (!count)
1012 		return -ENOENT;
1013 
1014 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015 			  SMP_CACHE_BYTES);
1016 	if (!paddr)
1017 		return -ENOMEM;
1018 
1019 	mlgroups = __va(paddr);
1020 	num_mlgroups = count;
1021 
1022 	count = 0;
1023 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024 		struct mdesc_mlgroup *m = &mlgroups[count++];
1025 		const u64 *val;
1026 
1027 		m->node = node;
1028 
1029 		val = mdesc_get_property(md, node, "latency", NULL);
1030 		m->latency = *val;
1031 		val = mdesc_get_property(md, node, "address-match", NULL);
1032 		m->match = *val;
1033 		val = mdesc_get_property(md, node, "address-mask", NULL);
1034 		m->mask = *val;
1035 
1036 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037 			"match[%llx] mask[%llx]\n",
1038 			count - 1, m->node, m->latency, m->match, m->mask);
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static int __init grab_mblocks(struct mdesc_handle *md)
1045 {
1046 	unsigned long paddr;
1047 	int count = 0;
1048 	u64 node;
1049 
1050 	mdesc_for_each_node_by_name(md, node, "mblock")
1051 		count++;
1052 	if (!count)
1053 		return -ENOENT;
1054 
1055 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056 			  SMP_CACHE_BYTES);
1057 	if (!paddr)
1058 		return -ENOMEM;
1059 
1060 	mblocks = __va(paddr);
1061 	num_mblocks = count;
1062 
1063 	count = 0;
1064 	mdesc_for_each_node_by_name(md, node, "mblock") {
1065 		struct mdesc_mblock *m = &mblocks[count++];
1066 		const u64 *val;
1067 
1068 		val = mdesc_get_property(md, node, "base", NULL);
1069 		m->base = *val;
1070 		val = mdesc_get_property(md, node, "size", NULL);
1071 		m->size = *val;
1072 		val = mdesc_get_property(md, node,
1073 					 "address-congruence-offset", NULL);
1074 		m->offset = *val;
1075 
1076 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077 			count - 1, m->base, m->size, m->offset);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084 					       u64 grp, cpumask_t *mask)
1085 {
1086 	u64 arc;
1087 
1088 	cpumask_clear(mask);
1089 
1090 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091 		u64 target = mdesc_arc_target(md, arc);
1092 		const char *name = mdesc_node_name(md, target);
1093 		const u64 *id;
1094 
1095 		if (strcmp(name, "cpu"))
1096 			continue;
1097 		id = mdesc_get_property(md, target, "id", NULL);
1098 		if (*id < nr_cpu_ids)
1099 			cpumask_set_cpu(*id, mask);
1100 	}
1101 }
1102 
1103 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104 {
1105 	int i;
1106 
1107 	for (i = 0; i < num_mlgroups; i++) {
1108 		struct mdesc_mlgroup *m = &mlgroups[i];
1109 		if (m->node == node)
1110 			return m;
1111 	}
1112 	return NULL;
1113 }
1114 
1115 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116 				      int index)
1117 {
1118 	struct mdesc_mlgroup *candidate = NULL;
1119 	u64 arc, best_latency = ~(u64)0;
1120 	struct node_mem_mask *n;
1121 
1122 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 		u64 target = mdesc_arc_target(md, arc);
1124 		struct mdesc_mlgroup *m = find_mlgroup(target);
1125 		if (!m)
1126 			continue;
1127 		if (m->latency < best_latency) {
1128 			candidate = m;
1129 			best_latency = m->latency;
1130 		}
1131 	}
1132 	if (!candidate)
1133 		return -ENOENT;
1134 
1135 	if (num_node_masks != index) {
1136 		printk(KERN_ERR "Inconsistent NUMA state, "
1137 		       "index[%d] != num_node_masks[%d]\n",
1138 		       index, num_node_masks);
1139 		return -EINVAL;
1140 	}
1141 
1142 	n = &node_masks[num_node_masks++];
1143 
1144 	n->mask = candidate->mask;
1145 	n->val = candidate->match;
1146 
1147 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148 		index, n->mask, n->val, candidate->latency);
1149 
1150 	return 0;
1151 }
1152 
1153 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154 					 int index)
1155 {
1156 	cpumask_t mask;
1157 	int cpu;
1158 
1159 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1160 
1161 	for_each_cpu(cpu, &mask)
1162 		numa_cpu_lookup_table[cpu] = index;
1163 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164 
1165 	if (numa_debug) {
1166 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167 		for_each_cpu(cpu, &mask)
1168 			printk("%d ", cpu);
1169 		printk("]\n");
1170 	}
1171 
1172 	return numa_attach_mlgroup(md, grp, index);
1173 }
1174 
1175 static int __init numa_parse_mdesc(void)
1176 {
1177 	struct mdesc_handle *md = mdesc_grab();
1178 	int i, err, count;
1179 	u64 node;
1180 
1181 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182 	if (node == MDESC_NODE_NULL) {
1183 		mdesc_release(md);
1184 		return -ENOENT;
1185 	}
1186 
1187 	err = grab_mblocks(md);
1188 	if (err < 0)
1189 		goto out;
1190 
1191 	err = grab_mlgroups(md);
1192 	if (err < 0)
1193 		goto out;
1194 
1195 	count = 0;
1196 	mdesc_for_each_node_by_name(md, node, "group") {
1197 		err = numa_parse_mdesc_group(md, node, count);
1198 		if (err < 0)
1199 			break;
1200 		count++;
1201 	}
1202 
1203 	add_node_ranges();
1204 
1205 	for (i = 0; i < num_node_masks; i++) {
1206 		allocate_node_data(i);
1207 		node_set_online(i);
1208 	}
1209 
1210 	err = 0;
1211 out:
1212 	mdesc_release(md);
1213 	return err;
1214 }
1215 
1216 static int __init numa_parse_jbus(void)
1217 {
1218 	unsigned long cpu, index;
1219 
1220 	/* NUMA node id is encoded in bits 36 and higher, and there is
1221 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222 	 */
1223 	index = 0;
1224 	for_each_present_cpu(cpu) {
1225 		numa_cpu_lookup_table[cpu] = index;
1226 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228 		node_masks[index].val = cpu << 36UL;
1229 
1230 		index++;
1231 	}
1232 	num_node_masks = index;
1233 
1234 	add_node_ranges();
1235 
1236 	for (index = 0; index < num_node_masks; index++) {
1237 		allocate_node_data(index);
1238 		node_set_online(index);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int __init numa_parse_sun4u(void)
1245 {
1246 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247 		unsigned long ver;
1248 
1249 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250 		if ((ver >> 32UL) == __JALAPENO_ID ||
1251 		    (ver >> 32UL) == __SERRANO_ID)
1252 			return numa_parse_jbus();
1253 	}
1254 	return -1;
1255 }
1256 
1257 static int __init bootmem_init_numa(void)
1258 {
1259 	int err = -1;
1260 
1261 	numadbg("bootmem_init_numa()\n");
1262 
1263 	if (numa_enabled) {
1264 		if (tlb_type == hypervisor)
1265 			err = numa_parse_mdesc();
1266 		else
1267 			err = numa_parse_sun4u();
1268 	}
1269 	return err;
1270 }
1271 
1272 #else
1273 
1274 static int bootmem_init_numa(void)
1275 {
1276 	return -1;
1277 }
1278 
1279 #endif
1280 
1281 static void __init bootmem_init_nonnuma(void)
1282 {
1283 	unsigned long top_of_ram = memblock_end_of_DRAM();
1284 	unsigned long total_ram = memblock_phys_mem_size();
1285 	struct memblock_region *reg;
1286 
1287 	numadbg("bootmem_init_nonnuma()\n");
1288 
1289 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290 	       top_of_ram, total_ram);
1291 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1292 	       (top_of_ram - total_ram) >> 20);
1293 
1294 	init_node_masks_nonnuma();
1295 
1296 	for_each_memblock(memory, reg) {
1297 		unsigned long start_pfn, end_pfn;
1298 
1299 		if (!reg->size)
1300 			continue;
1301 
1302 		start_pfn = memblock_region_memory_base_pfn(reg);
1303 		end_pfn = memblock_region_memory_end_pfn(reg);
1304 		add_active_range(0, start_pfn, end_pfn);
1305 	}
1306 
1307 	allocate_node_data(0);
1308 
1309 	node_set_online(0);
1310 }
1311 
1312 static void __init reserve_range_in_node(int nid, unsigned long start,
1313 					 unsigned long end)
1314 {
1315 	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 		nid, start, end);
1317 	while (start < end) {
1318 		unsigned long this_end;
1319 		int n;
1320 
1321 		this_end = memblock_nid_range(start, end, &n);
1322 		if (n == nid) {
1323 			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324 				start, this_end);
1325 			reserve_bootmem_node(NODE_DATA(nid), start,
1326 					     (this_end - start), BOOTMEM_DEFAULT);
1327 		} else
1328 			numadbg("      NO MATCH, advancing start to %lx\n",
1329 				this_end);
1330 
1331 		start = this_end;
1332 	}
1333 }
1334 
1335 static void __init trim_reserved_in_node(int nid)
1336 {
1337 	struct memblock_region *reg;
1338 
1339 	numadbg("  trim_reserved_in_node(%d)\n", nid);
1340 
1341 	for_each_memblock(reserved, reg)
1342 		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343 }
1344 
1345 static void __init bootmem_init_one_node(int nid)
1346 {
1347 	struct pglist_data *p;
1348 
1349 	numadbg("bootmem_init_one_node(%d)\n", nid);
1350 
1351 	p = NODE_DATA(nid);
1352 
1353 	if (p->node_spanned_pages) {
1354 		unsigned long paddr = node_masks[nid].bootmem_paddr;
1355 		unsigned long end_pfn;
1356 
1357 		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1358 
1359 		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360 			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1361 
1362 		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363 				  p->node_start_pfn, end_pfn);
1364 
1365 		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1366 			nid, end_pfn);
1367 		free_bootmem_with_active_regions(nid, end_pfn);
1368 
1369 		trim_reserved_in_node(nid);
1370 
1371 		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1372 			nid);
1373 		sparse_memory_present_with_active_regions(nid);
1374 	}
1375 }
1376 
1377 static unsigned long __init bootmem_init(unsigned long phys_base)
1378 {
1379 	unsigned long end_pfn;
1380 	int nid;
1381 
1382 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383 	max_pfn = max_low_pfn = end_pfn;
1384 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1385 
1386 	if (bootmem_init_numa() < 0)
1387 		bootmem_init_nonnuma();
1388 
1389 	/* XXX cpu notifier XXX */
1390 
1391 	for_each_online_node(nid)
1392 		bootmem_init_one_node(nid);
1393 
1394 	sparse_init();
1395 
1396 	return end_pfn;
1397 }
1398 
1399 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400 static int pall_ents __initdata;
1401 
1402 #ifdef CONFIG_DEBUG_PAGEALLOC
1403 static unsigned long __ref kernel_map_range(unsigned long pstart,
1404 					    unsigned long pend, pgprot_t prot)
1405 {
1406 	unsigned long vstart = PAGE_OFFSET + pstart;
1407 	unsigned long vend = PAGE_OFFSET + pend;
1408 	unsigned long alloc_bytes = 0UL;
1409 
1410 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412 			    vstart, vend);
1413 		prom_halt();
1414 	}
1415 
1416 	while (vstart < vend) {
1417 		unsigned long this_end, paddr = __pa(vstart);
1418 		pgd_t *pgd = pgd_offset_k(vstart);
1419 		pud_t *pud;
1420 		pmd_t *pmd;
1421 		pte_t *pte;
1422 
1423 		pud = pud_offset(pgd, vstart);
1424 		if (pud_none(*pud)) {
1425 			pmd_t *new;
1426 
1427 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428 			alloc_bytes += PAGE_SIZE;
1429 			pud_populate(&init_mm, pud, new);
1430 		}
1431 
1432 		pmd = pmd_offset(pud, vstart);
1433 		if (!pmd_present(*pmd)) {
1434 			pte_t *new;
1435 
1436 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437 			alloc_bytes += PAGE_SIZE;
1438 			pmd_populate_kernel(&init_mm, pmd, new);
1439 		}
1440 
1441 		pte = pte_offset_kernel(pmd, vstart);
1442 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443 		if (this_end > vend)
1444 			this_end = vend;
1445 
1446 		while (vstart < this_end) {
1447 			pte_val(*pte) = (paddr | pgprot_val(prot));
1448 
1449 			vstart += PAGE_SIZE;
1450 			paddr += PAGE_SIZE;
1451 			pte++;
1452 		}
1453 	}
1454 
1455 	return alloc_bytes;
1456 }
1457 
1458 extern unsigned int kvmap_linear_patch[1];
1459 #endif /* CONFIG_DEBUG_PAGEALLOC */
1460 
1461 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462 {
1463 	const unsigned long shift_256MB = 28;
1464 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465 	const unsigned long size_256MB = (1UL << shift_256MB);
1466 
1467 	while (start < end) {
1468 		long remains;
1469 
1470 		remains = end - start;
1471 		if (remains < size_256MB)
1472 			break;
1473 
1474 		if (start & mask_256MB) {
1475 			start = (start + size_256MB) & ~mask_256MB;
1476 			continue;
1477 		}
1478 
1479 		while (remains >= size_256MB) {
1480 			unsigned long index = start >> shift_256MB;
1481 
1482 			__set_bit(index, kpte_linear_bitmap);
1483 
1484 			start += size_256MB;
1485 			remains -= size_256MB;
1486 		}
1487 	}
1488 }
1489 
1490 static void __init init_kpte_bitmap(void)
1491 {
1492 	unsigned long i;
1493 
1494 	for (i = 0; i < pall_ents; i++) {
1495 		unsigned long phys_start, phys_end;
1496 
1497 		phys_start = pall[i].phys_addr;
1498 		phys_end = phys_start + pall[i].reg_size;
1499 
1500 		mark_kpte_bitmap(phys_start, phys_end);
1501 	}
1502 }
1503 
1504 static void __init kernel_physical_mapping_init(void)
1505 {
1506 #ifdef CONFIG_DEBUG_PAGEALLOC
1507 	unsigned long i, mem_alloced = 0UL;
1508 
1509 	for (i = 0; i < pall_ents; i++) {
1510 		unsigned long phys_start, phys_end;
1511 
1512 		phys_start = pall[i].phys_addr;
1513 		phys_end = phys_start + pall[i].reg_size;
1514 
1515 		mem_alloced += kernel_map_range(phys_start, phys_end,
1516 						PAGE_KERNEL);
1517 	}
1518 
1519 	printk("Allocated %ld bytes for kernel page tables.\n",
1520 	       mem_alloced);
1521 
1522 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 	flushi(&kvmap_linear_patch[0]);
1524 
1525 	__flush_tlb_all();
1526 #endif
1527 }
1528 
1529 #ifdef CONFIG_DEBUG_PAGEALLOC
1530 void kernel_map_pages(struct page *page, int numpages, int enable)
1531 {
1532 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534 
1535 	kernel_map_range(phys_start, phys_end,
1536 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537 
1538 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 			       PAGE_OFFSET + phys_end);
1540 
1541 	/* we should perform an IPI and flush all tlbs,
1542 	 * but that can deadlock->flush only current cpu.
1543 	 */
1544 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 				 PAGE_OFFSET + phys_end);
1546 }
1547 #endif
1548 
1549 unsigned long __init find_ecache_flush_span(unsigned long size)
1550 {
1551 	int i;
1552 
1553 	for (i = 0; i < pavail_ents; i++) {
1554 		if (pavail[i].reg_size >= size)
1555 			return pavail[i].phys_addr;
1556 	}
1557 
1558 	return ~0UL;
1559 }
1560 
1561 static void __init tsb_phys_patch(void)
1562 {
1563 	struct tsb_ldquad_phys_patch_entry *pquad;
1564 	struct tsb_phys_patch_entry *p;
1565 
1566 	pquad = &__tsb_ldquad_phys_patch;
1567 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1568 		unsigned long addr = pquad->addr;
1569 
1570 		if (tlb_type == hypervisor)
1571 			*(unsigned int *) addr = pquad->sun4v_insn;
1572 		else
1573 			*(unsigned int *) addr = pquad->sun4u_insn;
1574 		wmb();
1575 		__asm__ __volatile__("flush	%0"
1576 				     : /* no outputs */
1577 				     : "r" (addr));
1578 
1579 		pquad++;
1580 	}
1581 
1582 	p = &__tsb_phys_patch;
1583 	while (p < &__tsb_phys_patch_end) {
1584 		unsigned long addr = p->addr;
1585 
1586 		*(unsigned int *) addr = p->insn;
1587 		wmb();
1588 		__asm__ __volatile__("flush	%0"
1589 				     : /* no outputs */
1590 				     : "r" (addr));
1591 
1592 		p++;
1593 	}
1594 }
1595 
1596 /* Don't mark as init, we give this to the Hypervisor.  */
1597 #ifndef CONFIG_DEBUG_PAGEALLOC
1598 #define NUM_KTSB_DESCR	2
1599 #else
1600 #define NUM_KTSB_DESCR	1
1601 #endif
1602 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1604 
1605 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606 {
1607 	pa >>= KTSB_PHYS_SHIFT;
1608 
1609 	while (start < end) {
1610 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611 
1612 		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1614 
1615 		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1617 
1618 		start++;
1619 	}
1620 }
1621 
1622 static void ktsb_phys_patch(void)
1623 {
1624 	extern unsigned int __swapper_tsb_phys_patch;
1625 	extern unsigned int __swapper_tsb_phys_patch_end;
1626 	unsigned long ktsb_pa;
1627 
1628 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1631 #ifndef CONFIG_DEBUG_PAGEALLOC
1632 	{
1633 	extern unsigned int __swapper_4m_tsb_phys_patch;
1634 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635 	ktsb_pa = (kern_base +
1636 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639 	}
1640 #endif
1641 }
1642 
1643 static void __init sun4v_ktsb_init(void)
1644 {
1645 	unsigned long ktsb_pa;
1646 
1647 	/* First KTSB for PAGE_SIZE mappings.  */
1648 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649 
1650 	switch (PAGE_SIZE) {
1651 	case 8 * 1024:
1652 	default:
1653 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655 		break;
1656 
1657 	case 64 * 1024:
1658 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660 		break;
1661 
1662 	case 512 * 1024:
1663 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665 		break;
1666 
1667 	case 4 * 1024 * 1024:
1668 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670 		break;
1671 	}
1672 
1673 	ktsb_descr[0].assoc = 1;
1674 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675 	ktsb_descr[0].ctx_idx = 0;
1676 	ktsb_descr[0].tsb_base = ktsb_pa;
1677 	ktsb_descr[0].resv = 0;
1678 
1679 #ifndef CONFIG_DEBUG_PAGEALLOC
1680 	/* Second KTSB for 4MB/256MB mappings.  */
1681 	ktsb_pa = (kern_base +
1682 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683 
1684 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686 				   HV_PGSZ_MASK_256MB);
1687 	ktsb_descr[1].assoc = 1;
1688 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689 	ktsb_descr[1].ctx_idx = 0;
1690 	ktsb_descr[1].tsb_base = ktsb_pa;
1691 	ktsb_descr[1].resv = 0;
1692 #endif
1693 }
1694 
1695 void __cpuinit sun4v_ktsb_register(void)
1696 {
1697 	unsigned long pa, ret;
1698 
1699 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700 
1701 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702 	if (ret != 0) {
1703 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704 			    "errors with %lx\n", pa, ret);
1705 		prom_halt();
1706 	}
1707 }
1708 
1709 /* paging_init() sets up the page tables */
1710 
1711 static unsigned long last_valid_pfn;
1712 pgd_t swapper_pg_dir[2048];
1713 
1714 static void sun4u_pgprot_init(void);
1715 static void sun4v_pgprot_init(void);
1716 
1717 void __init paging_init(void)
1718 {
1719 	unsigned long end_pfn, shift, phys_base;
1720 	unsigned long real_end, i;
1721 
1722 	/* These build time checkes make sure that the dcache_dirty_cpu()
1723 	 * page->flags usage will work.
1724 	 *
1725 	 * When a page gets marked as dcache-dirty, we store the
1726 	 * cpu number starting at bit 32 in the page->flags.  Also,
1727 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1728 	 * in 13-bit signed-immediate instruction fields.
1729 	 */
1730 
1731 	/*
1732 	 * Page flags must not reach into upper 32 bits that are used
1733 	 * for the cpu number
1734 	 */
1735 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736 
1737 	/*
1738 	 * The bit fields placed in the high range must not reach below
1739 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740 	 * at the 32 bit boundary.
1741 	 */
1742 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744 
1745 	BUILD_BUG_ON(NR_CPUS > 4096);
1746 
1747 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749 
1750 	/* Invalidate both kernel TSBs.  */
1751 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752 #ifndef CONFIG_DEBUG_PAGEALLOC
1753 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754 #endif
1755 
1756 	if (tlb_type == hypervisor)
1757 		sun4v_pgprot_init();
1758 	else
1759 		sun4u_pgprot_init();
1760 
1761 	if (tlb_type == cheetah_plus ||
1762 	    tlb_type == hypervisor) {
1763 		tsb_phys_patch();
1764 		ktsb_phys_patch();
1765 	}
1766 
1767 	if (tlb_type == hypervisor) {
1768 		sun4v_patch_tlb_handlers();
1769 		sun4v_ktsb_init();
1770 	}
1771 
1772 	memblock_init();
1773 
1774 	/* Find available physical memory...
1775 	 *
1776 	 * Read it twice in order to work around a bug in openfirmware.
1777 	 * The call to grab this table itself can cause openfirmware to
1778 	 * allocate memory, which in turn can take away some space from
1779 	 * the list of available memory.  Reading it twice makes sure
1780 	 * we really do get the final value.
1781 	 */
1782 	read_obp_translations();
1783 	read_obp_memory("reg", &pall[0], &pall_ents);
1784 	read_obp_memory("available", &pavail[0], &pavail_ents);
1785 	read_obp_memory("available", &pavail[0], &pavail_ents);
1786 
1787 	phys_base = 0xffffffffffffffffUL;
1788 	for (i = 0; i < pavail_ents; i++) {
1789 		phys_base = min(phys_base, pavail[i].phys_addr);
1790 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791 	}
1792 
1793 	memblock_reserve(kern_base, kern_size);
1794 
1795 	find_ramdisk(phys_base);
1796 
1797 	memblock_enforce_memory_limit(cmdline_memory_size);
1798 
1799 	memblock_analyze();
1800 	memblock_dump_all();
1801 
1802 	set_bit(0, mmu_context_bmap);
1803 
1804 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805 
1806 	real_end = (unsigned long)_end;
1807 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809 	       num_kernel_image_mappings);
1810 
1811 	/* Set kernel pgd to upper alias so physical page computations
1812 	 * work.
1813 	 */
1814 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815 
1816 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817 
1818 	/* Now can init the kernel/bad page tables. */
1819 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821 
1822 	inherit_prom_mappings();
1823 
1824 	init_kpte_bitmap();
1825 
1826 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1827 	setup_tba();
1828 
1829 	__flush_tlb_all();
1830 
1831 	if (tlb_type == hypervisor)
1832 		sun4v_ktsb_register();
1833 
1834 	prom_build_devicetree();
1835 	of_populate_present_mask();
1836 #ifndef CONFIG_SMP
1837 	of_fill_in_cpu_data();
1838 #endif
1839 
1840 	if (tlb_type == hypervisor) {
1841 		sun4v_mdesc_init();
1842 		mdesc_populate_present_mask(cpu_all_mask);
1843 #ifndef CONFIG_SMP
1844 		mdesc_fill_in_cpu_data(cpu_all_mask);
1845 #endif
1846 	}
1847 
1848 	/* Once the OF device tree and MDESC have been setup, we know
1849 	 * the list of possible cpus.  Therefore we can allocate the
1850 	 * IRQ stacks.
1851 	 */
1852 	for_each_possible_cpu(i) {
1853 		/* XXX Use node local allocations... XXX */
1854 		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855 		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856 	}
1857 
1858 	/* Setup bootmem... */
1859 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1860 
1861 #ifndef CONFIG_NEED_MULTIPLE_NODES
1862 	max_mapnr = last_valid_pfn;
1863 #endif
1864 	kernel_physical_mapping_init();
1865 
1866 	{
1867 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1868 
1869 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870 
1871 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872 
1873 		free_area_init_nodes(max_zone_pfns);
1874 	}
1875 
1876 	printk("Booting Linux...\n");
1877 }
1878 
1879 int __devinit page_in_phys_avail(unsigned long paddr)
1880 {
1881 	int i;
1882 
1883 	paddr &= PAGE_MASK;
1884 
1885 	for (i = 0; i < pavail_ents; i++) {
1886 		unsigned long start, end;
1887 
1888 		start = pavail[i].phys_addr;
1889 		end = start + pavail[i].reg_size;
1890 
1891 		if (paddr >= start && paddr < end)
1892 			return 1;
1893 	}
1894 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895 		return 1;
1896 #ifdef CONFIG_BLK_DEV_INITRD
1897 	if (paddr >= __pa(initrd_start) &&
1898 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1899 		return 1;
1900 #endif
1901 
1902 	return 0;
1903 }
1904 
1905 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906 static int pavail_rescan_ents __initdata;
1907 
1908 /* Certain OBP calls, such as fetching "available" properties, can
1909  * claim physical memory.  So, along with initializing the valid
1910  * address bitmap, what we do here is refetch the physical available
1911  * memory list again, and make sure it provides at least as much
1912  * memory as 'pavail' does.
1913  */
1914 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915 {
1916 	int i;
1917 
1918 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919 
1920 	for (i = 0; i < pavail_ents; i++) {
1921 		unsigned long old_start, old_end;
1922 
1923 		old_start = pavail[i].phys_addr;
1924 		old_end = old_start + pavail[i].reg_size;
1925 		while (old_start < old_end) {
1926 			int n;
1927 
1928 			for (n = 0; n < pavail_rescan_ents; n++) {
1929 				unsigned long new_start, new_end;
1930 
1931 				new_start = pavail_rescan[n].phys_addr;
1932 				new_end = new_start +
1933 					pavail_rescan[n].reg_size;
1934 
1935 				if (new_start <= old_start &&
1936 				    new_end >= (old_start + PAGE_SIZE)) {
1937 					set_bit(old_start >> 22, bitmap);
1938 					goto do_next_page;
1939 				}
1940 			}
1941 
1942 			prom_printf("mem_init: Lost memory in pavail\n");
1943 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944 				    pavail[i].phys_addr,
1945 				    pavail[i].reg_size);
1946 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947 				    pavail_rescan[i].phys_addr,
1948 				    pavail_rescan[i].reg_size);
1949 			prom_printf("mem_init: Cannot continue, aborting.\n");
1950 			prom_halt();
1951 
1952 		do_next_page:
1953 			old_start += PAGE_SIZE;
1954 		}
1955 	}
1956 }
1957 
1958 static void __init patch_tlb_miss_handler_bitmap(void)
1959 {
1960 	extern unsigned int valid_addr_bitmap_insn[];
1961 	extern unsigned int valid_addr_bitmap_patch[];
1962 
1963 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964 	mb();
1965 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966 	flushi(&valid_addr_bitmap_insn[0]);
1967 }
1968 
1969 void __init mem_init(void)
1970 {
1971 	unsigned long codepages, datapages, initpages;
1972 	unsigned long addr, last;
1973 
1974 	addr = PAGE_OFFSET + kern_base;
1975 	last = PAGE_ALIGN(kern_size) + addr;
1976 	while (addr < last) {
1977 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978 		addr += PAGE_SIZE;
1979 	}
1980 
1981 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982 	patch_tlb_miss_handler_bitmap();
1983 
1984 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985 
1986 #ifdef CONFIG_NEED_MULTIPLE_NODES
1987 	{
1988 		int i;
1989 		for_each_online_node(i) {
1990 			if (NODE_DATA(i)->node_spanned_pages != 0) {
1991 				totalram_pages +=
1992 					free_all_bootmem_node(NODE_DATA(i));
1993 			}
1994 		}
1995 	}
1996 #else
1997 	totalram_pages = free_all_bootmem();
1998 #endif
1999 
2000 	/* We subtract one to account for the mem_map_zero page
2001 	 * allocated below.
2002 	 */
2003 	totalram_pages -= 1;
2004 	num_physpages = totalram_pages;
2005 
2006 	/*
2007 	 * Set up the zero page, mark it reserved, so that page count
2008 	 * is not manipulated when freeing the page from user ptes.
2009 	 */
2010 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011 	if (mem_map_zero == NULL) {
2012 		prom_printf("paging_init: Cannot alloc zero page.\n");
2013 		prom_halt();
2014 	}
2015 	SetPageReserved(mem_map_zero);
2016 
2017 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023 
2024 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025 	       nr_free_pages() << (PAGE_SHIFT-10),
2026 	       codepages << (PAGE_SHIFT-10),
2027 	       datapages << (PAGE_SHIFT-10),
2028 	       initpages << (PAGE_SHIFT-10),
2029 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030 
2031 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032 		cheetah_ecache_flush_init();
2033 }
2034 
2035 void free_initmem(void)
2036 {
2037 	unsigned long addr, initend;
2038 	int do_free = 1;
2039 
2040 	/* If the physical memory maps were trimmed by kernel command
2041 	 * line options, don't even try freeing this initmem stuff up.
2042 	 * The kernel image could have been in the trimmed out region
2043 	 * and if so the freeing below will free invalid page structs.
2044 	 */
2045 	if (cmdline_memory_size)
2046 		do_free = 0;
2047 
2048 	/*
2049 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050 	 */
2051 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2053 	for (; addr < initend; addr += PAGE_SIZE) {
2054 		unsigned long page;
2055 		struct page *p;
2056 
2057 		page = (addr +
2058 			((unsigned long) __va(kern_base)) -
2059 			((unsigned long) KERNBASE));
2060 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061 
2062 		if (do_free) {
2063 			p = virt_to_page(page);
2064 
2065 			ClearPageReserved(p);
2066 			init_page_count(p);
2067 			__free_page(p);
2068 			num_physpages++;
2069 			totalram_pages++;
2070 		}
2071 	}
2072 }
2073 
2074 #ifdef CONFIG_BLK_DEV_INITRD
2075 void free_initrd_mem(unsigned long start, unsigned long end)
2076 {
2077 	if (start < end)
2078 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079 	for (; start < end; start += PAGE_SIZE) {
2080 		struct page *p = virt_to_page(start);
2081 
2082 		ClearPageReserved(p);
2083 		init_page_count(p);
2084 		__free_page(p);
2085 		num_physpages++;
2086 		totalram_pages++;
2087 	}
2088 }
2089 #endif
2090 
2091 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2092 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2093 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097 
2098 pgprot_t PAGE_KERNEL __read_mostly;
2099 EXPORT_SYMBOL(PAGE_KERNEL);
2100 
2101 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102 pgprot_t PAGE_COPY __read_mostly;
2103 
2104 pgprot_t PAGE_SHARED __read_mostly;
2105 EXPORT_SYMBOL(PAGE_SHARED);
2106 
2107 unsigned long pg_iobits __read_mostly;
2108 
2109 unsigned long _PAGE_IE __read_mostly;
2110 EXPORT_SYMBOL(_PAGE_IE);
2111 
2112 unsigned long _PAGE_E __read_mostly;
2113 EXPORT_SYMBOL(_PAGE_E);
2114 
2115 unsigned long _PAGE_CACHE __read_mostly;
2116 EXPORT_SYMBOL(_PAGE_CACHE);
2117 
2118 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2119 unsigned long vmemmap_table[VMEMMAP_SIZE];
2120 
2121 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122 {
2123 	unsigned long vstart = (unsigned long) start;
2124 	unsigned long vend = (unsigned long) (start + nr);
2125 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2127 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2129 	unsigned long pte_base;
2130 
2131 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132 		    _PAGE_CP_4U | _PAGE_CV_4U |
2133 		    _PAGE_P_4U | _PAGE_W_4U);
2134 	if (tlb_type == hypervisor)
2135 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136 			    _PAGE_CP_4V | _PAGE_CV_4V |
2137 			    _PAGE_P_4V | _PAGE_W_4V);
2138 
2139 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2140 		unsigned long *vmem_pp =
2141 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142 		void *block;
2143 
2144 		if (!(*vmem_pp & _PAGE_VALID)) {
2145 			block = vmemmap_alloc_block(1UL << 22, node);
2146 			if (!block)
2147 				return -ENOMEM;
2148 
2149 			*vmem_pp = pte_base | __pa(block);
2150 
2151 			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152 			       "node=%d entry=%lu/%lu\n", start, block, nr,
2153 			       node,
2154 			       addr >> VMEMMAP_CHUNK_SHIFT,
2155 			       VMEMMAP_SIZE);
2156 		}
2157 	}
2158 	return 0;
2159 }
2160 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161 
2162 static void prot_init_common(unsigned long page_none,
2163 			     unsigned long page_shared,
2164 			     unsigned long page_copy,
2165 			     unsigned long page_readonly,
2166 			     unsigned long page_exec_bit)
2167 {
2168 	PAGE_COPY = __pgprot(page_copy);
2169 	PAGE_SHARED = __pgprot(page_shared);
2170 
2171 	protection_map[0x0] = __pgprot(page_none);
2172 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175 	protection_map[0x4] = __pgprot(page_readonly);
2176 	protection_map[0x5] = __pgprot(page_readonly);
2177 	protection_map[0x6] = __pgprot(page_copy);
2178 	protection_map[0x7] = __pgprot(page_copy);
2179 	protection_map[0x8] = __pgprot(page_none);
2180 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183 	protection_map[0xc] = __pgprot(page_readonly);
2184 	protection_map[0xd] = __pgprot(page_readonly);
2185 	protection_map[0xe] = __pgprot(page_shared);
2186 	protection_map[0xf] = __pgprot(page_shared);
2187 }
2188 
2189 static void __init sun4u_pgprot_init(void)
2190 {
2191 	unsigned long page_none, page_shared, page_copy, page_readonly;
2192 	unsigned long page_exec_bit;
2193 
2194 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195 				_PAGE_CACHE_4U | _PAGE_P_4U |
2196 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197 				_PAGE_EXEC_4U);
2198 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2200 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2202 
2203 	_PAGE_IE = _PAGE_IE_4U;
2204 	_PAGE_E = _PAGE_E_4U;
2205 	_PAGE_CACHE = _PAGE_CACHE_4U;
2206 
2207 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2209 
2210 #ifdef CONFIG_DEBUG_PAGEALLOC
2211 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212 		0xfffff80000000000UL;
2213 #else
2214 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215 		0xfffff80000000000UL;
2216 #endif
2217 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218 				   _PAGE_P_4U | _PAGE_W_4U);
2219 
2220 	/* XXX Should use 256MB on Panther. XXX */
2221 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222 
2223 	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2224 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227 
2228 
2229 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236 
2237 	page_exec_bit = _PAGE_EXEC_4U;
2238 
2239 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240 			 page_exec_bit);
2241 }
2242 
2243 static void __init sun4v_pgprot_init(void)
2244 {
2245 	unsigned long page_none, page_shared, page_copy, page_readonly;
2246 	unsigned long page_exec_bit;
2247 
2248 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249 				_PAGE_CACHE_4V | _PAGE_P_4V |
2250 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251 				_PAGE_EXEC_4V);
2252 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253 
2254 	_PAGE_IE = _PAGE_IE_4V;
2255 	_PAGE_E = _PAGE_E_4V;
2256 	_PAGE_CACHE = _PAGE_CACHE_4V;
2257 
2258 #ifdef CONFIG_DEBUG_PAGEALLOC
2259 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260 		0xfffff80000000000UL;
2261 #else
2262 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263 		0xfffff80000000000UL;
2264 #endif
2265 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266 				   _PAGE_P_4V | _PAGE_W_4V);
2267 
2268 #ifdef CONFIG_DEBUG_PAGEALLOC
2269 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270 		0xfffff80000000000UL;
2271 #else
2272 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273 		0xfffff80000000000UL;
2274 #endif
2275 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276 				   _PAGE_P_4V | _PAGE_W_4V);
2277 
2278 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2280 
2281 	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2282 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286 
2287 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294 
2295 	page_exec_bit = _PAGE_EXEC_4V;
2296 
2297 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298 			 page_exec_bit);
2299 }
2300 
2301 unsigned long pte_sz_bits(unsigned long sz)
2302 {
2303 	if (tlb_type == hypervisor) {
2304 		switch (sz) {
2305 		case 8 * 1024:
2306 		default:
2307 			return _PAGE_SZ8K_4V;
2308 		case 64 * 1024:
2309 			return _PAGE_SZ64K_4V;
2310 		case 512 * 1024:
2311 			return _PAGE_SZ512K_4V;
2312 		case 4 * 1024 * 1024:
2313 			return _PAGE_SZ4MB_4V;
2314 		}
2315 	} else {
2316 		switch (sz) {
2317 		case 8 * 1024:
2318 		default:
2319 			return _PAGE_SZ8K_4U;
2320 		case 64 * 1024:
2321 			return _PAGE_SZ64K_4U;
2322 		case 512 * 1024:
2323 			return _PAGE_SZ512K_4U;
2324 		case 4 * 1024 * 1024:
2325 			return _PAGE_SZ4MB_4U;
2326 		}
2327 	}
2328 }
2329 
2330 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331 {
2332 	pte_t pte;
2333 
2334 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2335 	pte_val(pte) |= (((unsigned long)space) << 32);
2336 	pte_val(pte) |= pte_sz_bits(page_size);
2337 
2338 	return pte;
2339 }
2340 
2341 static unsigned long kern_large_tte(unsigned long paddr)
2342 {
2343 	unsigned long val;
2344 
2345 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348 	if (tlb_type == hypervisor)
2349 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2352 
2353 	return val | paddr;
2354 }
2355 
2356 /* If not locked, zap it. */
2357 void __flush_tlb_all(void)
2358 {
2359 	unsigned long pstate;
2360 	int i;
2361 
2362 	__asm__ __volatile__("flushw\n\t"
2363 			     "rdpr	%%pstate, %0\n\t"
2364 			     "wrpr	%0, %1, %%pstate"
2365 			     : "=r" (pstate)
2366 			     : "i" (PSTATE_IE));
2367 	if (tlb_type == hypervisor) {
2368 		sun4v_mmu_demap_all();
2369 	} else if (tlb_type == spitfire) {
2370 		for (i = 0; i < 64; i++) {
2371 			/* Spitfire Errata #32 workaround */
2372 			/* NOTE: Always runs on spitfire, so no
2373 			 *       cheetah+ page size encodings.
2374 			 */
2375 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2376 					     "flush	%%g6"
2377 					     : /* No outputs */
2378 					     : "r" (0),
2379 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380 
2381 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383 						     "membar #Sync"
2384 						     : /* no outputs */
2385 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386 				spitfire_put_dtlb_data(i, 0x0UL);
2387 			}
2388 
2389 			/* Spitfire Errata #32 workaround */
2390 			/* NOTE: Always runs on spitfire, so no
2391 			 *       cheetah+ page size encodings.
2392 			 */
2393 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2394 					     "flush	%%g6"
2395 					     : /* No outputs */
2396 					     : "r" (0),
2397 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398 
2399 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401 						     "membar #Sync"
2402 						     : /* no outputs */
2403 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404 				spitfire_put_itlb_data(i, 0x0UL);
2405 			}
2406 		}
2407 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408 		cheetah_flush_dtlb_all();
2409 		cheetah_flush_itlb_all();
2410 	}
2411 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2412 			     : : "r" (pstate));
2413 }
2414