xref: /linux/arch/sparc/mm/init_64.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init setup_hugepagesz(char *string)
329 {
330 	unsigned long long hugepage_size;
331 	unsigned int hugepage_shift;
332 	unsigned short hv_pgsz_idx;
333 	unsigned int hv_pgsz_mask;
334 	int rc = 0;
335 
336 	hugepage_size = memparse(string, &string);
337 	hugepage_shift = ilog2(hugepage_size);
338 
339 	switch (hugepage_shift) {
340 	case HPAGE_2GB_SHIFT:
341 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
342 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
343 		break;
344 	case HPAGE_256MB_SHIFT:
345 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
346 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
347 		break;
348 	case HPAGE_SHIFT:
349 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
350 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
351 		break;
352 	case HPAGE_64K_SHIFT:
353 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
354 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
355 		break;
356 	default:
357 		hv_pgsz_mask = 0;
358 	}
359 
360 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
361 		pr_warn("hugepagesz=%llu not supported by MMU.\n",
362 			hugepage_size);
363 		goto out;
364 	}
365 
366 	hugetlb_add_hstate(hugepage_shift - PAGE_SHIFT);
367 	rc = 1;
368 
369 out:
370 	return rc;
371 }
372 __setup("hugepagesz=", setup_hugepagesz);
373 #endif	/* CONFIG_HUGETLB_PAGE */
374 
375 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
376 {
377 	struct mm_struct *mm;
378 	unsigned long flags;
379 	pte_t pte = *ptep;
380 
381 	if (tlb_type != hypervisor) {
382 		unsigned long pfn = pte_pfn(pte);
383 
384 		if (pfn_valid(pfn))
385 			flush_dcache(pfn);
386 	}
387 
388 	mm = vma->vm_mm;
389 
390 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
391 	if (!pte_accessible(mm, pte))
392 		return;
393 
394 	spin_lock_irqsave(&mm->context.lock, flags);
395 
396 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
397 	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
398 	    is_hugetlb_pmd(__pmd(pte_val(pte)))) {
399 		/* We are fabricating 8MB pages using 4MB real hw pages.  */
400 		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
401 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
402 					address, pte_val(pte));
403 	} else
404 #endif
405 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
406 					address, pte_val(pte));
407 
408 	spin_unlock_irqrestore(&mm->context.lock, flags);
409 }
410 
411 void flush_dcache_page(struct page *page)
412 {
413 	struct address_space *mapping;
414 	int this_cpu;
415 
416 	if (tlb_type == hypervisor)
417 		return;
418 
419 	/* Do not bother with the expensive D-cache flush if it
420 	 * is merely the zero page.  The 'bigcore' testcase in GDB
421 	 * causes this case to run millions of times.
422 	 */
423 	if (page == ZERO_PAGE(0))
424 		return;
425 
426 	this_cpu = get_cpu();
427 
428 	mapping = page_mapping(page);
429 	if (mapping && !mapping_mapped(mapping)) {
430 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
431 		if (dirty) {
432 			int dirty_cpu = dcache_dirty_cpu(page);
433 
434 			if (dirty_cpu == this_cpu)
435 				goto out;
436 			smp_flush_dcache_page_impl(page, dirty_cpu);
437 		}
438 		set_dcache_dirty(page, this_cpu);
439 	} else {
440 		/* We could delay the flush for the !page_mapping
441 		 * case too.  But that case is for exec env/arg
442 		 * pages and those are %99 certainly going to get
443 		 * faulted into the tlb (and thus flushed) anyways.
444 		 */
445 		flush_dcache_page_impl(page);
446 	}
447 
448 out:
449 	put_cpu();
450 }
451 EXPORT_SYMBOL(flush_dcache_page);
452 
453 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
454 {
455 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
456 	if (tlb_type == spitfire) {
457 		unsigned long kaddr;
458 
459 		/* This code only runs on Spitfire cpus so this is
460 		 * why we can assume _PAGE_PADDR_4U.
461 		 */
462 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
463 			unsigned long paddr, mask = _PAGE_PADDR_4U;
464 
465 			if (kaddr >= PAGE_OFFSET)
466 				paddr = kaddr & mask;
467 			else {
468 				pgd_t *pgdp = pgd_offset_k(kaddr);
469 				pud_t *pudp = pud_offset(pgdp, kaddr);
470 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
471 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
472 
473 				paddr = pte_val(*ptep) & mask;
474 			}
475 			__flush_icache_page(paddr);
476 		}
477 	}
478 }
479 EXPORT_SYMBOL(flush_icache_range);
480 
481 void mmu_info(struct seq_file *m)
482 {
483 	static const char *pgsz_strings[] = {
484 		"8K", "64K", "512K", "4MB", "32MB",
485 		"256MB", "2GB", "16GB",
486 	};
487 	int i, printed;
488 
489 	if (tlb_type == cheetah)
490 		seq_printf(m, "MMU Type\t: Cheetah\n");
491 	else if (tlb_type == cheetah_plus)
492 		seq_printf(m, "MMU Type\t: Cheetah+\n");
493 	else if (tlb_type == spitfire)
494 		seq_printf(m, "MMU Type\t: Spitfire\n");
495 	else if (tlb_type == hypervisor)
496 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
497 	else
498 		seq_printf(m, "MMU Type\t: ???\n");
499 
500 	seq_printf(m, "MMU PGSZs\t: ");
501 	printed = 0;
502 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
503 		if (cpu_pgsz_mask & (1UL << i)) {
504 			seq_printf(m, "%s%s",
505 				   printed ? "," : "", pgsz_strings[i]);
506 			printed++;
507 		}
508 	}
509 	seq_putc(m, '\n');
510 
511 #ifdef CONFIG_DEBUG_DCFLUSH
512 	seq_printf(m, "DCPageFlushes\t: %d\n",
513 		   atomic_read(&dcpage_flushes));
514 #ifdef CONFIG_SMP
515 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
516 		   atomic_read(&dcpage_flushes_xcall));
517 #endif /* CONFIG_SMP */
518 #endif /* CONFIG_DEBUG_DCFLUSH */
519 }
520 
521 struct linux_prom_translation prom_trans[512] __read_mostly;
522 unsigned int prom_trans_ents __read_mostly;
523 
524 unsigned long kern_locked_tte_data;
525 
526 /* The obp translations are saved based on 8k pagesize, since obp can
527  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
528  * HI_OBP_ADDRESS range are handled in ktlb.S.
529  */
530 static inline int in_obp_range(unsigned long vaddr)
531 {
532 	return (vaddr >= LOW_OBP_ADDRESS &&
533 		vaddr < HI_OBP_ADDRESS);
534 }
535 
536 static int cmp_ptrans(const void *a, const void *b)
537 {
538 	const struct linux_prom_translation *x = a, *y = b;
539 
540 	if (x->virt > y->virt)
541 		return 1;
542 	if (x->virt < y->virt)
543 		return -1;
544 	return 0;
545 }
546 
547 /* Read OBP translations property into 'prom_trans[]'.  */
548 static void __init read_obp_translations(void)
549 {
550 	int n, node, ents, first, last, i;
551 
552 	node = prom_finddevice("/virtual-memory");
553 	n = prom_getproplen(node, "translations");
554 	if (unlikely(n == 0 || n == -1)) {
555 		prom_printf("prom_mappings: Couldn't get size.\n");
556 		prom_halt();
557 	}
558 	if (unlikely(n > sizeof(prom_trans))) {
559 		prom_printf("prom_mappings: Size %d is too big.\n", n);
560 		prom_halt();
561 	}
562 
563 	if ((n = prom_getproperty(node, "translations",
564 				  (char *)&prom_trans[0],
565 				  sizeof(prom_trans))) == -1) {
566 		prom_printf("prom_mappings: Couldn't get property.\n");
567 		prom_halt();
568 	}
569 
570 	n = n / sizeof(struct linux_prom_translation);
571 
572 	ents = n;
573 
574 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
575 	     cmp_ptrans, NULL);
576 
577 	/* Now kick out all the non-OBP entries.  */
578 	for (i = 0; i < ents; i++) {
579 		if (in_obp_range(prom_trans[i].virt))
580 			break;
581 	}
582 	first = i;
583 	for (; i < ents; i++) {
584 		if (!in_obp_range(prom_trans[i].virt))
585 			break;
586 	}
587 	last = i;
588 
589 	for (i = 0; i < (last - first); i++) {
590 		struct linux_prom_translation *src = &prom_trans[i + first];
591 		struct linux_prom_translation *dest = &prom_trans[i];
592 
593 		*dest = *src;
594 	}
595 	for (; i < ents; i++) {
596 		struct linux_prom_translation *dest = &prom_trans[i];
597 		dest->virt = dest->size = dest->data = 0x0UL;
598 	}
599 
600 	prom_trans_ents = last - first;
601 
602 	if (tlb_type == spitfire) {
603 		/* Clear diag TTE bits. */
604 		for (i = 0; i < prom_trans_ents; i++)
605 			prom_trans[i].data &= ~0x0003fe0000000000UL;
606 	}
607 
608 	/* Force execute bit on.  */
609 	for (i = 0; i < prom_trans_ents; i++)
610 		prom_trans[i].data |= (tlb_type == hypervisor ?
611 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
612 }
613 
614 static void __init hypervisor_tlb_lock(unsigned long vaddr,
615 				       unsigned long pte,
616 				       unsigned long mmu)
617 {
618 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
619 
620 	if (ret != 0) {
621 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
622 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
623 		prom_halt();
624 	}
625 }
626 
627 static unsigned long kern_large_tte(unsigned long paddr);
628 
629 static void __init remap_kernel(void)
630 {
631 	unsigned long phys_page, tte_vaddr, tte_data;
632 	int i, tlb_ent = sparc64_highest_locked_tlbent();
633 
634 	tte_vaddr = (unsigned long) KERNBASE;
635 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
636 	tte_data = kern_large_tte(phys_page);
637 
638 	kern_locked_tte_data = tte_data;
639 
640 	/* Now lock us into the TLBs via Hypervisor or OBP. */
641 	if (tlb_type == hypervisor) {
642 		for (i = 0; i < num_kernel_image_mappings; i++) {
643 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
644 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
645 			tte_vaddr += 0x400000;
646 			tte_data += 0x400000;
647 		}
648 	} else {
649 		for (i = 0; i < num_kernel_image_mappings; i++) {
650 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
651 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
652 			tte_vaddr += 0x400000;
653 			tte_data += 0x400000;
654 		}
655 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
656 	}
657 	if (tlb_type == cheetah_plus) {
658 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
659 					    CTX_CHEETAH_PLUS_NUC);
660 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
661 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
662 	}
663 }
664 
665 
666 static void __init inherit_prom_mappings(void)
667 {
668 	/* Now fixup OBP's idea about where we really are mapped. */
669 	printk("Remapping the kernel... ");
670 	remap_kernel();
671 	printk("done.\n");
672 }
673 
674 void prom_world(int enter)
675 {
676 	if (!enter)
677 		set_fs(get_fs());
678 
679 	__asm__ __volatile__("flushw");
680 }
681 
682 void __flush_dcache_range(unsigned long start, unsigned long end)
683 {
684 	unsigned long va;
685 
686 	if (tlb_type == spitfire) {
687 		int n = 0;
688 
689 		for (va = start; va < end; va += 32) {
690 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
691 			if (++n >= 512)
692 				break;
693 		}
694 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
695 		start = __pa(start);
696 		end = __pa(end);
697 		for (va = start; va < end; va += 32)
698 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
699 					     "membar #Sync"
700 					     : /* no outputs */
701 					     : "r" (va),
702 					       "i" (ASI_DCACHE_INVALIDATE));
703 	}
704 }
705 EXPORT_SYMBOL(__flush_dcache_range);
706 
707 /* get_new_mmu_context() uses "cache + 1".  */
708 DEFINE_SPINLOCK(ctx_alloc_lock);
709 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
710 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
711 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
712 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
713 
714 /* Caller does TLB context flushing on local CPU if necessary.
715  * The caller also ensures that CTX_VALID(mm->context) is false.
716  *
717  * We must be careful about boundary cases so that we never
718  * let the user have CTX 0 (nucleus) or we ever use a CTX
719  * version of zero (and thus NO_CONTEXT would not be caught
720  * by version mis-match tests in mmu_context.h).
721  *
722  * Always invoked with interrupts disabled.
723  */
724 void get_new_mmu_context(struct mm_struct *mm)
725 {
726 	unsigned long ctx, new_ctx;
727 	unsigned long orig_pgsz_bits;
728 	int new_version;
729 
730 	spin_lock(&ctx_alloc_lock);
731 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
732 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
733 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
734 	new_version = 0;
735 	if (new_ctx >= (1 << CTX_NR_BITS)) {
736 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
737 		if (new_ctx >= ctx) {
738 			int i;
739 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
740 				CTX_FIRST_VERSION;
741 			if (new_ctx == 1)
742 				new_ctx = CTX_FIRST_VERSION;
743 
744 			/* Don't call memset, for 16 entries that's just
745 			 * plain silly...
746 			 */
747 			mmu_context_bmap[0] = 3;
748 			mmu_context_bmap[1] = 0;
749 			mmu_context_bmap[2] = 0;
750 			mmu_context_bmap[3] = 0;
751 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
752 				mmu_context_bmap[i + 0] = 0;
753 				mmu_context_bmap[i + 1] = 0;
754 				mmu_context_bmap[i + 2] = 0;
755 				mmu_context_bmap[i + 3] = 0;
756 			}
757 			new_version = 1;
758 			goto out;
759 		}
760 	}
761 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
762 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
763 out:
764 	tlb_context_cache = new_ctx;
765 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
766 	spin_unlock(&ctx_alloc_lock);
767 
768 	if (unlikely(new_version))
769 		smp_new_mmu_context_version();
770 }
771 
772 static int numa_enabled = 1;
773 static int numa_debug;
774 
775 static int __init early_numa(char *p)
776 {
777 	if (!p)
778 		return 0;
779 
780 	if (strstr(p, "off"))
781 		numa_enabled = 0;
782 
783 	if (strstr(p, "debug"))
784 		numa_debug = 1;
785 
786 	return 0;
787 }
788 early_param("numa", early_numa);
789 
790 #define numadbg(f, a...) \
791 do {	if (numa_debug) \
792 		printk(KERN_INFO f, ## a); \
793 } while (0)
794 
795 static void __init find_ramdisk(unsigned long phys_base)
796 {
797 #ifdef CONFIG_BLK_DEV_INITRD
798 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
799 		unsigned long ramdisk_image;
800 
801 		/* Older versions of the bootloader only supported a
802 		 * 32-bit physical address for the ramdisk image
803 		 * location, stored at sparc_ramdisk_image.  Newer
804 		 * SILO versions set sparc_ramdisk_image to zero and
805 		 * provide a full 64-bit physical address at
806 		 * sparc_ramdisk_image64.
807 		 */
808 		ramdisk_image = sparc_ramdisk_image;
809 		if (!ramdisk_image)
810 			ramdisk_image = sparc_ramdisk_image64;
811 
812 		/* Another bootloader quirk.  The bootloader normalizes
813 		 * the physical address to KERNBASE, so we have to
814 		 * factor that back out and add in the lowest valid
815 		 * physical page address to get the true physical address.
816 		 */
817 		ramdisk_image -= KERNBASE;
818 		ramdisk_image += phys_base;
819 
820 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
821 			ramdisk_image, sparc_ramdisk_size);
822 
823 		initrd_start = ramdisk_image;
824 		initrd_end = ramdisk_image + sparc_ramdisk_size;
825 
826 		memblock_reserve(initrd_start, sparc_ramdisk_size);
827 
828 		initrd_start += PAGE_OFFSET;
829 		initrd_end += PAGE_OFFSET;
830 	}
831 #endif
832 }
833 
834 struct node_mem_mask {
835 	unsigned long mask;
836 	unsigned long match;
837 };
838 static struct node_mem_mask node_masks[MAX_NUMNODES];
839 static int num_node_masks;
840 
841 #ifdef CONFIG_NEED_MULTIPLE_NODES
842 
843 struct mdesc_mlgroup {
844 	u64	node;
845 	u64	latency;
846 	u64	match;
847 	u64	mask;
848 };
849 
850 static struct mdesc_mlgroup *mlgroups;
851 static int num_mlgroups;
852 
853 int numa_cpu_lookup_table[NR_CPUS];
854 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
855 
856 struct mdesc_mblock {
857 	u64	base;
858 	u64	size;
859 	u64	offset; /* RA-to-PA */
860 };
861 static struct mdesc_mblock *mblocks;
862 static int num_mblocks;
863 
864 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
865 {
866 	struct mdesc_mblock *m = NULL;
867 	int i;
868 
869 	for (i = 0; i < num_mblocks; i++) {
870 		m = &mblocks[i];
871 
872 		if (addr >= m->base &&
873 		    addr < (m->base + m->size)) {
874 			break;
875 		}
876 	}
877 
878 	return m;
879 }
880 
881 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
882 {
883 	int prev_nid, new_nid;
884 
885 	prev_nid = -1;
886 	for ( ; start < end; start += PAGE_SIZE) {
887 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
888 			struct node_mem_mask *p = &node_masks[new_nid];
889 
890 			if ((start & p->mask) == p->match) {
891 				if (prev_nid == -1)
892 					prev_nid = new_nid;
893 				break;
894 			}
895 		}
896 
897 		if (new_nid == num_node_masks) {
898 			prev_nid = 0;
899 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
900 				  start);
901 			break;
902 		}
903 
904 		if (prev_nid != new_nid)
905 			break;
906 	}
907 	*nid = prev_nid;
908 
909 	return start > end ? end : start;
910 }
911 
912 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
913 {
914 	u64 ret_end, pa_start, m_mask, m_match, m_end;
915 	struct mdesc_mblock *mblock;
916 	int _nid, i;
917 
918 	if (tlb_type != hypervisor)
919 		return memblock_nid_range_sun4u(start, end, nid);
920 
921 	mblock = addr_to_mblock(start);
922 	if (!mblock) {
923 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
924 			  start);
925 
926 		_nid = 0;
927 		ret_end = end;
928 		goto done;
929 	}
930 
931 	pa_start = start + mblock->offset;
932 	m_match = 0;
933 	m_mask = 0;
934 
935 	for (_nid = 0; _nid < num_node_masks; _nid++) {
936 		struct node_mem_mask *const m = &node_masks[_nid];
937 
938 		if ((pa_start & m->mask) == m->match) {
939 			m_match = m->match;
940 			m_mask = m->mask;
941 			break;
942 		}
943 	}
944 
945 	if (num_node_masks == _nid) {
946 		/* We could not find NUMA group, so default to 0, but lets
947 		 * search for latency group, so we could calculate the correct
948 		 * end address that we return
949 		 */
950 		_nid = 0;
951 
952 		for (i = 0; i < num_mlgroups; i++) {
953 			struct mdesc_mlgroup *const m = &mlgroups[i];
954 
955 			if ((pa_start & m->mask) == m->match) {
956 				m_match = m->match;
957 				m_mask = m->mask;
958 				break;
959 			}
960 		}
961 
962 		if (i == num_mlgroups) {
963 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
964 				  start);
965 
966 			ret_end = end;
967 			goto done;
968 		}
969 	}
970 
971 	/*
972 	 * Each latency group has match and mask, and each memory block has an
973 	 * offset.  An address belongs to a latency group if its address matches
974 	 * the following formula: ((addr + offset) & mask) == match
975 	 * It is, however, slow to check every single page if it matches a
976 	 * particular latency group. As optimization we calculate end value by
977 	 * using bit arithmetics.
978 	 */
979 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
980 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
981 	ret_end = m_end > end ? end : m_end;
982 
983 done:
984 	*nid = _nid;
985 	return ret_end;
986 }
987 #endif
988 
989 /* This must be invoked after performing all of the necessary
990  * memblock_set_node() calls for 'nid'.  We need to be able to get
991  * correct data from get_pfn_range_for_nid().
992  */
993 static void __init allocate_node_data(int nid)
994 {
995 	struct pglist_data *p;
996 	unsigned long start_pfn, end_pfn;
997 #ifdef CONFIG_NEED_MULTIPLE_NODES
998 	unsigned long paddr;
999 
1000 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1001 	if (!paddr) {
1002 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1003 		prom_halt();
1004 	}
1005 	NODE_DATA(nid) = __va(paddr);
1006 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1007 
1008 	NODE_DATA(nid)->node_id = nid;
1009 #endif
1010 
1011 	p = NODE_DATA(nid);
1012 
1013 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1014 	p->node_start_pfn = start_pfn;
1015 	p->node_spanned_pages = end_pfn - start_pfn;
1016 }
1017 
1018 static void init_node_masks_nonnuma(void)
1019 {
1020 #ifdef CONFIG_NEED_MULTIPLE_NODES
1021 	int i;
1022 #endif
1023 
1024 	numadbg("Initializing tables for non-numa.\n");
1025 
1026 	node_masks[0].mask = 0;
1027 	node_masks[0].match = 0;
1028 	num_node_masks = 1;
1029 
1030 #ifdef CONFIG_NEED_MULTIPLE_NODES
1031 	for (i = 0; i < NR_CPUS; i++)
1032 		numa_cpu_lookup_table[i] = 0;
1033 
1034 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1035 #endif
1036 }
1037 
1038 #ifdef CONFIG_NEED_MULTIPLE_NODES
1039 struct pglist_data *node_data[MAX_NUMNODES];
1040 
1041 EXPORT_SYMBOL(numa_cpu_lookup_table);
1042 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1043 EXPORT_SYMBOL(node_data);
1044 
1045 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1046 				   u32 cfg_handle)
1047 {
1048 	u64 arc;
1049 
1050 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1051 		u64 target = mdesc_arc_target(md, arc);
1052 		const u64 *val;
1053 
1054 		val = mdesc_get_property(md, target,
1055 					 "cfg-handle", NULL);
1056 		if (val && *val == cfg_handle)
1057 			return 0;
1058 	}
1059 	return -ENODEV;
1060 }
1061 
1062 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1063 				    u32 cfg_handle)
1064 {
1065 	u64 arc, candidate, best_latency = ~(u64)0;
1066 
1067 	candidate = MDESC_NODE_NULL;
1068 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1069 		u64 target = mdesc_arc_target(md, arc);
1070 		const char *name = mdesc_node_name(md, target);
1071 		const u64 *val;
1072 
1073 		if (strcmp(name, "pio-latency-group"))
1074 			continue;
1075 
1076 		val = mdesc_get_property(md, target, "latency", NULL);
1077 		if (!val)
1078 			continue;
1079 
1080 		if (*val < best_latency) {
1081 			candidate = target;
1082 			best_latency = *val;
1083 		}
1084 	}
1085 
1086 	if (candidate == MDESC_NODE_NULL)
1087 		return -ENODEV;
1088 
1089 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1090 }
1091 
1092 int of_node_to_nid(struct device_node *dp)
1093 {
1094 	const struct linux_prom64_registers *regs;
1095 	struct mdesc_handle *md;
1096 	u32 cfg_handle;
1097 	int count, nid;
1098 	u64 grp;
1099 
1100 	/* This is the right thing to do on currently supported
1101 	 * SUN4U NUMA platforms as well, as the PCI controller does
1102 	 * not sit behind any particular memory controller.
1103 	 */
1104 	if (!mlgroups)
1105 		return -1;
1106 
1107 	regs = of_get_property(dp, "reg", NULL);
1108 	if (!regs)
1109 		return -1;
1110 
1111 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1112 
1113 	md = mdesc_grab();
1114 
1115 	count = 0;
1116 	nid = -1;
1117 	mdesc_for_each_node_by_name(md, grp, "group") {
1118 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1119 			nid = count;
1120 			break;
1121 		}
1122 		count++;
1123 	}
1124 
1125 	mdesc_release(md);
1126 
1127 	return nid;
1128 }
1129 
1130 static void __init add_node_ranges(void)
1131 {
1132 	struct memblock_region *reg;
1133 	unsigned long prev_max;
1134 
1135 memblock_resized:
1136 	prev_max = memblock.memory.max;
1137 
1138 	for_each_memblock(memory, reg) {
1139 		unsigned long size = reg->size;
1140 		unsigned long start, end;
1141 
1142 		start = reg->base;
1143 		end = start + size;
1144 		while (start < end) {
1145 			unsigned long this_end;
1146 			int nid;
1147 
1148 			this_end = memblock_nid_range(start, end, &nid);
1149 
1150 			numadbg("Setting memblock NUMA node nid[%d] "
1151 				"start[%lx] end[%lx]\n",
1152 				nid, start, this_end);
1153 
1154 			memblock_set_node(start, this_end - start,
1155 					  &memblock.memory, nid);
1156 			if (memblock.memory.max != prev_max)
1157 				goto memblock_resized;
1158 			start = this_end;
1159 		}
1160 	}
1161 }
1162 
1163 static int __init grab_mlgroups(struct mdesc_handle *md)
1164 {
1165 	unsigned long paddr;
1166 	int count = 0;
1167 	u64 node;
1168 
1169 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1170 		count++;
1171 	if (!count)
1172 		return -ENOENT;
1173 
1174 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1175 			  SMP_CACHE_BYTES);
1176 	if (!paddr)
1177 		return -ENOMEM;
1178 
1179 	mlgroups = __va(paddr);
1180 	num_mlgroups = count;
1181 
1182 	count = 0;
1183 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1184 		struct mdesc_mlgroup *m = &mlgroups[count++];
1185 		const u64 *val;
1186 
1187 		m->node = node;
1188 
1189 		val = mdesc_get_property(md, node, "latency", NULL);
1190 		m->latency = *val;
1191 		val = mdesc_get_property(md, node, "address-match", NULL);
1192 		m->match = *val;
1193 		val = mdesc_get_property(md, node, "address-mask", NULL);
1194 		m->mask = *val;
1195 
1196 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1197 			"match[%llx] mask[%llx]\n",
1198 			count - 1, m->node, m->latency, m->match, m->mask);
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static int __init grab_mblocks(struct mdesc_handle *md)
1205 {
1206 	unsigned long paddr;
1207 	int count = 0;
1208 	u64 node;
1209 
1210 	mdesc_for_each_node_by_name(md, node, "mblock")
1211 		count++;
1212 	if (!count)
1213 		return -ENOENT;
1214 
1215 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1216 			  SMP_CACHE_BYTES);
1217 	if (!paddr)
1218 		return -ENOMEM;
1219 
1220 	mblocks = __va(paddr);
1221 	num_mblocks = count;
1222 
1223 	count = 0;
1224 	mdesc_for_each_node_by_name(md, node, "mblock") {
1225 		struct mdesc_mblock *m = &mblocks[count++];
1226 		const u64 *val;
1227 
1228 		val = mdesc_get_property(md, node, "base", NULL);
1229 		m->base = *val;
1230 		val = mdesc_get_property(md, node, "size", NULL);
1231 		m->size = *val;
1232 		val = mdesc_get_property(md, node,
1233 					 "address-congruence-offset", NULL);
1234 
1235 		/* The address-congruence-offset property is optional.
1236 		 * Explicity zero it be identifty this.
1237 		 */
1238 		if (val)
1239 			m->offset = *val;
1240 		else
1241 			m->offset = 0UL;
1242 
1243 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1244 			count - 1, m->base, m->size, m->offset);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1251 					       u64 grp, cpumask_t *mask)
1252 {
1253 	u64 arc;
1254 
1255 	cpumask_clear(mask);
1256 
1257 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1258 		u64 target = mdesc_arc_target(md, arc);
1259 		const char *name = mdesc_node_name(md, target);
1260 		const u64 *id;
1261 
1262 		if (strcmp(name, "cpu"))
1263 			continue;
1264 		id = mdesc_get_property(md, target, "id", NULL);
1265 		if (*id < nr_cpu_ids)
1266 			cpumask_set_cpu(*id, mask);
1267 	}
1268 }
1269 
1270 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1271 {
1272 	int i;
1273 
1274 	for (i = 0; i < num_mlgroups; i++) {
1275 		struct mdesc_mlgroup *m = &mlgroups[i];
1276 		if (m->node == node)
1277 			return m;
1278 	}
1279 	return NULL;
1280 }
1281 
1282 int __node_distance(int from, int to)
1283 {
1284 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1285 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1286 			from, to);
1287 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1288 	}
1289 	return numa_latency[from][to];
1290 }
1291 
1292 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1293 {
1294 	int i;
1295 
1296 	for (i = 0; i < MAX_NUMNODES; i++) {
1297 		struct node_mem_mask *n = &node_masks[i];
1298 
1299 		if ((grp->mask == n->mask) && (grp->match == n->match))
1300 			break;
1301 	}
1302 	return i;
1303 }
1304 
1305 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1306 						 u64 grp, int index)
1307 {
1308 	u64 arc;
1309 
1310 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1311 		int tnode;
1312 		u64 target = mdesc_arc_target(md, arc);
1313 		struct mdesc_mlgroup *m = find_mlgroup(target);
1314 
1315 		if (!m)
1316 			continue;
1317 		tnode = find_best_numa_node_for_mlgroup(m);
1318 		if (tnode == MAX_NUMNODES)
1319 			continue;
1320 		numa_latency[index][tnode] = m->latency;
1321 	}
1322 }
1323 
1324 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1325 				      int index)
1326 {
1327 	struct mdesc_mlgroup *candidate = NULL;
1328 	u64 arc, best_latency = ~(u64)0;
1329 	struct node_mem_mask *n;
1330 
1331 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1332 		u64 target = mdesc_arc_target(md, arc);
1333 		struct mdesc_mlgroup *m = find_mlgroup(target);
1334 		if (!m)
1335 			continue;
1336 		if (m->latency < best_latency) {
1337 			candidate = m;
1338 			best_latency = m->latency;
1339 		}
1340 	}
1341 	if (!candidate)
1342 		return -ENOENT;
1343 
1344 	if (num_node_masks != index) {
1345 		printk(KERN_ERR "Inconsistent NUMA state, "
1346 		       "index[%d] != num_node_masks[%d]\n",
1347 		       index, num_node_masks);
1348 		return -EINVAL;
1349 	}
1350 
1351 	n = &node_masks[num_node_masks++];
1352 
1353 	n->mask = candidate->mask;
1354 	n->match = candidate->match;
1355 
1356 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1357 		index, n->mask, n->match, candidate->latency);
1358 
1359 	return 0;
1360 }
1361 
1362 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1363 					 int index)
1364 {
1365 	cpumask_t mask;
1366 	int cpu;
1367 
1368 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1369 
1370 	for_each_cpu(cpu, &mask)
1371 		numa_cpu_lookup_table[cpu] = index;
1372 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1373 
1374 	if (numa_debug) {
1375 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1376 		for_each_cpu(cpu, &mask)
1377 			printk("%d ", cpu);
1378 		printk("]\n");
1379 	}
1380 
1381 	return numa_attach_mlgroup(md, grp, index);
1382 }
1383 
1384 static int __init numa_parse_mdesc(void)
1385 {
1386 	struct mdesc_handle *md = mdesc_grab();
1387 	int i, j, err, count;
1388 	u64 node;
1389 
1390 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1391 	if (node == MDESC_NODE_NULL) {
1392 		mdesc_release(md);
1393 		return -ENOENT;
1394 	}
1395 
1396 	err = grab_mblocks(md);
1397 	if (err < 0)
1398 		goto out;
1399 
1400 	err = grab_mlgroups(md);
1401 	if (err < 0)
1402 		goto out;
1403 
1404 	count = 0;
1405 	mdesc_for_each_node_by_name(md, node, "group") {
1406 		err = numa_parse_mdesc_group(md, node, count);
1407 		if (err < 0)
1408 			break;
1409 		count++;
1410 	}
1411 
1412 	count = 0;
1413 	mdesc_for_each_node_by_name(md, node, "group") {
1414 		find_numa_latencies_for_group(md, node, count);
1415 		count++;
1416 	}
1417 
1418 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1419 	for (i = 0; i < MAX_NUMNODES; i++) {
1420 		u64 self_latency = numa_latency[i][i];
1421 
1422 		for (j = 0; j < MAX_NUMNODES; j++) {
1423 			numa_latency[i][j] =
1424 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1425 				self_latency;
1426 		}
1427 	}
1428 
1429 	add_node_ranges();
1430 
1431 	for (i = 0; i < num_node_masks; i++) {
1432 		allocate_node_data(i);
1433 		node_set_online(i);
1434 	}
1435 
1436 	err = 0;
1437 out:
1438 	mdesc_release(md);
1439 	return err;
1440 }
1441 
1442 static int __init numa_parse_jbus(void)
1443 {
1444 	unsigned long cpu, index;
1445 
1446 	/* NUMA node id is encoded in bits 36 and higher, and there is
1447 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1448 	 */
1449 	index = 0;
1450 	for_each_present_cpu(cpu) {
1451 		numa_cpu_lookup_table[cpu] = index;
1452 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1453 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1454 		node_masks[index].match = cpu << 36UL;
1455 
1456 		index++;
1457 	}
1458 	num_node_masks = index;
1459 
1460 	add_node_ranges();
1461 
1462 	for (index = 0; index < num_node_masks; index++) {
1463 		allocate_node_data(index);
1464 		node_set_online(index);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static int __init numa_parse_sun4u(void)
1471 {
1472 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1473 		unsigned long ver;
1474 
1475 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1476 		if ((ver >> 32UL) == __JALAPENO_ID ||
1477 		    (ver >> 32UL) == __SERRANO_ID)
1478 			return numa_parse_jbus();
1479 	}
1480 	return -1;
1481 }
1482 
1483 static int __init bootmem_init_numa(void)
1484 {
1485 	int i, j;
1486 	int err = -1;
1487 
1488 	numadbg("bootmem_init_numa()\n");
1489 
1490 	/* Some sane defaults for numa latency values */
1491 	for (i = 0; i < MAX_NUMNODES; i++) {
1492 		for (j = 0; j < MAX_NUMNODES; j++)
1493 			numa_latency[i][j] = (i == j) ?
1494 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1495 	}
1496 
1497 	if (numa_enabled) {
1498 		if (tlb_type == hypervisor)
1499 			err = numa_parse_mdesc();
1500 		else
1501 			err = numa_parse_sun4u();
1502 	}
1503 	return err;
1504 }
1505 
1506 #else
1507 
1508 static int bootmem_init_numa(void)
1509 {
1510 	return -1;
1511 }
1512 
1513 #endif
1514 
1515 static void __init bootmem_init_nonnuma(void)
1516 {
1517 	unsigned long top_of_ram = memblock_end_of_DRAM();
1518 	unsigned long total_ram = memblock_phys_mem_size();
1519 
1520 	numadbg("bootmem_init_nonnuma()\n");
1521 
1522 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1523 	       top_of_ram, total_ram);
1524 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1525 	       (top_of_ram - total_ram) >> 20);
1526 
1527 	init_node_masks_nonnuma();
1528 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1529 	allocate_node_data(0);
1530 	node_set_online(0);
1531 }
1532 
1533 static unsigned long __init bootmem_init(unsigned long phys_base)
1534 {
1535 	unsigned long end_pfn;
1536 
1537 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1538 	max_pfn = max_low_pfn = end_pfn;
1539 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1540 
1541 	if (bootmem_init_numa() < 0)
1542 		bootmem_init_nonnuma();
1543 
1544 	/* Dump memblock with node info. */
1545 	memblock_dump_all();
1546 
1547 	/* XXX cpu notifier XXX */
1548 
1549 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1550 	sparse_init();
1551 
1552 	return end_pfn;
1553 }
1554 
1555 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1556 static int pall_ents __initdata;
1557 
1558 static unsigned long max_phys_bits = 40;
1559 
1560 bool kern_addr_valid(unsigned long addr)
1561 {
1562 	pgd_t *pgd;
1563 	pud_t *pud;
1564 	pmd_t *pmd;
1565 	pte_t *pte;
1566 
1567 	if ((long)addr < 0L) {
1568 		unsigned long pa = __pa(addr);
1569 
1570 		if ((pa >> max_phys_bits) != 0UL)
1571 			return false;
1572 
1573 		return pfn_valid(pa >> PAGE_SHIFT);
1574 	}
1575 
1576 	if (addr >= (unsigned long) KERNBASE &&
1577 	    addr < (unsigned long)&_end)
1578 		return true;
1579 
1580 	pgd = pgd_offset_k(addr);
1581 	if (pgd_none(*pgd))
1582 		return 0;
1583 
1584 	pud = pud_offset(pgd, addr);
1585 	if (pud_none(*pud))
1586 		return 0;
1587 
1588 	if (pud_large(*pud))
1589 		return pfn_valid(pud_pfn(*pud));
1590 
1591 	pmd = pmd_offset(pud, addr);
1592 	if (pmd_none(*pmd))
1593 		return 0;
1594 
1595 	if (pmd_large(*pmd))
1596 		return pfn_valid(pmd_pfn(*pmd));
1597 
1598 	pte = pte_offset_kernel(pmd, addr);
1599 	if (pte_none(*pte))
1600 		return 0;
1601 
1602 	return pfn_valid(pte_pfn(*pte));
1603 }
1604 EXPORT_SYMBOL(kern_addr_valid);
1605 
1606 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1607 					      unsigned long vend,
1608 					      pud_t *pud)
1609 {
1610 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1611 	u64 pte_val = vstart;
1612 
1613 	/* Each PUD is 8GB */
1614 	if ((vstart & mask16gb) ||
1615 	    (vend - vstart <= mask16gb)) {
1616 		pte_val ^= kern_linear_pte_xor[2];
1617 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1618 
1619 		return vstart + PUD_SIZE;
1620 	}
1621 
1622 	pte_val ^= kern_linear_pte_xor[3];
1623 	pte_val |= _PAGE_PUD_HUGE;
1624 
1625 	vend = vstart + mask16gb + 1UL;
1626 	while (vstart < vend) {
1627 		pud_val(*pud) = pte_val;
1628 
1629 		pte_val += PUD_SIZE;
1630 		vstart += PUD_SIZE;
1631 		pud++;
1632 	}
1633 	return vstart;
1634 }
1635 
1636 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1637 				   bool guard)
1638 {
1639 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1640 		return true;
1641 
1642 	return false;
1643 }
1644 
1645 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1646 					      unsigned long vend,
1647 					      pmd_t *pmd)
1648 {
1649 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1650 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1651 	u64 pte_val = vstart;
1652 
1653 	/* Each PMD is 8MB */
1654 	if ((vstart & mask256mb) ||
1655 	    (vend - vstart <= mask256mb)) {
1656 		pte_val ^= kern_linear_pte_xor[0];
1657 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1658 
1659 		return vstart + PMD_SIZE;
1660 	}
1661 
1662 	if ((vstart & mask2gb) ||
1663 	    (vend - vstart <= mask2gb)) {
1664 		pte_val ^= kern_linear_pte_xor[1];
1665 		pte_val |= _PAGE_PMD_HUGE;
1666 		vend = vstart + mask256mb + 1UL;
1667 	} else {
1668 		pte_val ^= kern_linear_pte_xor[2];
1669 		pte_val |= _PAGE_PMD_HUGE;
1670 		vend = vstart + mask2gb + 1UL;
1671 	}
1672 
1673 	while (vstart < vend) {
1674 		pmd_val(*pmd) = pte_val;
1675 
1676 		pte_val += PMD_SIZE;
1677 		vstart += PMD_SIZE;
1678 		pmd++;
1679 	}
1680 
1681 	return vstart;
1682 }
1683 
1684 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1685 				   bool guard)
1686 {
1687 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1688 		return true;
1689 
1690 	return false;
1691 }
1692 
1693 static unsigned long __ref kernel_map_range(unsigned long pstart,
1694 					    unsigned long pend, pgprot_t prot,
1695 					    bool use_huge)
1696 {
1697 	unsigned long vstart = PAGE_OFFSET + pstart;
1698 	unsigned long vend = PAGE_OFFSET + pend;
1699 	unsigned long alloc_bytes = 0UL;
1700 
1701 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1702 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1703 			    vstart, vend);
1704 		prom_halt();
1705 	}
1706 
1707 	while (vstart < vend) {
1708 		unsigned long this_end, paddr = __pa(vstart);
1709 		pgd_t *pgd = pgd_offset_k(vstart);
1710 		pud_t *pud;
1711 		pmd_t *pmd;
1712 		pte_t *pte;
1713 
1714 		if (pgd_none(*pgd)) {
1715 			pud_t *new;
1716 
1717 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1718 			alloc_bytes += PAGE_SIZE;
1719 			pgd_populate(&init_mm, pgd, new);
1720 		}
1721 		pud = pud_offset(pgd, vstart);
1722 		if (pud_none(*pud)) {
1723 			pmd_t *new;
1724 
1725 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1726 				vstart = kernel_map_hugepud(vstart, vend, pud);
1727 				continue;
1728 			}
1729 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1730 			alloc_bytes += PAGE_SIZE;
1731 			pud_populate(&init_mm, pud, new);
1732 		}
1733 
1734 		pmd = pmd_offset(pud, vstart);
1735 		if (pmd_none(*pmd)) {
1736 			pte_t *new;
1737 
1738 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1739 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1740 				continue;
1741 			}
1742 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1743 			alloc_bytes += PAGE_SIZE;
1744 			pmd_populate_kernel(&init_mm, pmd, new);
1745 		}
1746 
1747 		pte = pte_offset_kernel(pmd, vstart);
1748 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1749 		if (this_end > vend)
1750 			this_end = vend;
1751 
1752 		while (vstart < this_end) {
1753 			pte_val(*pte) = (paddr | pgprot_val(prot));
1754 
1755 			vstart += PAGE_SIZE;
1756 			paddr += PAGE_SIZE;
1757 			pte++;
1758 		}
1759 	}
1760 
1761 	return alloc_bytes;
1762 }
1763 
1764 static void __init flush_all_kernel_tsbs(void)
1765 {
1766 	int i;
1767 
1768 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1769 		struct tsb *ent = &swapper_tsb[i];
1770 
1771 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1772 	}
1773 #ifndef CONFIG_DEBUG_PAGEALLOC
1774 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1775 		struct tsb *ent = &swapper_4m_tsb[i];
1776 
1777 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1778 	}
1779 #endif
1780 }
1781 
1782 extern unsigned int kvmap_linear_patch[1];
1783 
1784 static void __init kernel_physical_mapping_init(void)
1785 {
1786 	unsigned long i, mem_alloced = 0UL;
1787 	bool use_huge = true;
1788 
1789 #ifdef CONFIG_DEBUG_PAGEALLOC
1790 	use_huge = false;
1791 #endif
1792 	for (i = 0; i < pall_ents; i++) {
1793 		unsigned long phys_start, phys_end;
1794 
1795 		phys_start = pall[i].phys_addr;
1796 		phys_end = phys_start + pall[i].reg_size;
1797 
1798 		mem_alloced += kernel_map_range(phys_start, phys_end,
1799 						PAGE_KERNEL, use_huge);
1800 	}
1801 
1802 	printk("Allocated %ld bytes for kernel page tables.\n",
1803 	       mem_alloced);
1804 
1805 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1806 	flushi(&kvmap_linear_patch[0]);
1807 
1808 	flush_all_kernel_tsbs();
1809 
1810 	__flush_tlb_all();
1811 }
1812 
1813 #ifdef CONFIG_DEBUG_PAGEALLOC
1814 void __kernel_map_pages(struct page *page, int numpages, int enable)
1815 {
1816 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1817 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1818 
1819 	kernel_map_range(phys_start, phys_end,
1820 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1821 
1822 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1823 			       PAGE_OFFSET + phys_end);
1824 
1825 	/* we should perform an IPI and flush all tlbs,
1826 	 * but that can deadlock->flush only current cpu.
1827 	 */
1828 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1829 				 PAGE_OFFSET + phys_end);
1830 }
1831 #endif
1832 
1833 unsigned long __init find_ecache_flush_span(unsigned long size)
1834 {
1835 	int i;
1836 
1837 	for (i = 0; i < pavail_ents; i++) {
1838 		if (pavail[i].reg_size >= size)
1839 			return pavail[i].phys_addr;
1840 	}
1841 
1842 	return ~0UL;
1843 }
1844 
1845 unsigned long PAGE_OFFSET;
1846 EXPORT_SYMBOL(PAGE_OFFSET);
1847 
1848 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1849 EXPORT_SYMBOL(VMALLOC_END);
1850 
1851 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1852 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1853 
1854 static void __init setup_page_offset(void)
1855 {
1856 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1857 		/* Cheetah/Panther support a full 64-bit virtual
1858 		 * address, so we can use all that our page tables
1859 		 * support.
1860 		 */
1861 		sparc64_va_hole_top =    0xfff0000000000000UL;
1862 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1863 
1864 		max_phys_bits = 42;
1865 	} else if (tlb_type == hypervisor) {
1866 		switch (sun4v_chip_type) {
1867 		case SUN4V_CHIP_NIAGARA1:
1868 		case SUN4V_CHIP_NIAGARA2:
1869 			/* T1 and T2 support 48-bit virtual addresses.  */
1870 			sparc64_va_hole_top =    0xffff800000000000UL;
1871 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1872 
1873 			max_phys_bits = 39;
1874 			break;
1875 		case SUN4V_CHIP_NIAGARA3:
1876 			/* T3 supports 48-bit virtual addresses.  */
1877 			sparc64_va_hole_top =    0xffff800000000000UL;
1878 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1879 
1880 			max_phys_bits = 43;
1881 			break;
1882 		case SUN4V_CHIP_NIAGARA4:
1883 		case SUN4V_CHIP_NIAGARA5:
1884 		case SUN4V_CHIP_SPARC64X:
1885 		case SUN4V_CHIP_SPARC_M6:
1886 			/* T4 and later support 52-bit virtual addresses.  */
1887 			sparc64_va_hole_top =    0xfff8000000000000UL;
1888 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1889 			max_phys_bits = 47;
1890 			break;
1891 		case SUN4V_CHIP_SPARC_M7:
1892 		case SUN4V_CHIP_SPARC_SN:
1893 		default:
1894 			/* M7 and later support 52-bit virtual addresses.  */
1895 			sparc64_va_hole_top =    0xfff8000000000000UL;
1896 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1897 			max_phys_bits = 49;
1898 			break;
1899 		}
1900 	}
1901 
1902 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1903 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1904 			    max_phys_bits);
1905 		prom_halt();
1906 	}
1907 
1908 	PAGE_OFFSET = sparc64_va_hole_top;
1909 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1910 		       (sparc64_va_hole_bottom >> 2));
1911 
1912 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1913 		PAGE_OFFSET, max_phys_bits);
1914 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1915 		VMALLOC_START, VMALLOC_END);
1916 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1917 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1918 }
1919 
1920 static void __init tsb_phys_patch(void)
1921 {
1922 	struct tsb_ldquad_phys_patch_entry *pquad;
1923 	struct tsb_phys_patch_entry *p;
1924 
1925 	pquad = &__tsb_ldquad_phys_patch;
1926 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1927 		unsigned long addr = pquad->addr;
1928 
1929 		if (tlb_type == hypervisor)
1930 			*(unsigned int *) addr = pquad->sun4v_insn;
1931 		else
1932 			*(unsigned int *) addr = pquad->sun4u_insn;
1933 		wmb();
1934 		__asm__ __volatile__("flush	%0"
1935 				     : /* no outputs */
1936 				     : "r" (addr));
1937 
1938 		pquad++;
1939 	}
1940 
1941 	p = &__tsb_phys_patch;
1942 	while (p < &__tsb_phys_patch_end) {
1943 		unsigned long addr = p->addr;
1944 
1945 		*(unsigned int *) addr = p->insn;
1946 		wmb();
1947 		__asm__ __volatile__("flush	%0"
1948 				     : /* no outputs */
1949 				     : "r" (addr));
1950 
1951 		p++;
1952 	}
1953 }
1954 
1955 /* Don't mark as init, we give this to the Hypervisor.  */
1956 #ifndef CONFIG_DEBUG_PAGEALLOC
1957 #define NUM_KTSB_DESCR	2
1958 #else
1959 #define NUM_KTSB_DESCR	1
1960 #endif
1961 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1962 
1963 /* The swapper TSBs are loaded with a base sequence of:
1964  *
1965  *	sethi	%uhi(SYMBOL), REG1
1966  *	sethi	%hi(SYMBOL), REG2
1967  *	or	REG1, %ulo(SYMBOL), REG1
1968  *	or	REG2, %lo(SYMBOL), REG2
1969  *	sllx	REG1, 32, REG1
1970  *	or	REG1, REG2, REG1
1971  *
1972  * When we use physical addressing for the TSB accesses, we patch the
1973  * first four instructions in the above sequence.
1974  */
1975 
1976 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1977 {
1978 	unsigned long high_bits, low_bits;
1979 
1980 	high_bits = (pa >> 32) & 0xffffffff;
1981 	low_bits = (pa >> 0) & 0xffffffff;
1982 
1983 	while (start < end) {
1984 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1985 
1986 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1987 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1988 
1989 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1990 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1991 
1992 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1993 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1994 
1995 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1996 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1997 
1998 		start++;
1999 	}
2000 }
2001 
2002 static void ktsb_phys_patch(void)
2003 {
2004 	extern unsigned int __swapper_tsb_phys_patch;
2005 	extern unsigned int __swapper_tsb_phys_patch_end;
2006 	unsigned long ktsb_pa;
2007 
2008 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2009 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2010 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2011 #ifndef CONFIG_DEBUG_PAGEALLOC
2012 	{
2013 	extern unsigned int __swapper_4m_tsb_phys_patch;
2014 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2015 	ktsb_pa = (kern_base +
2016 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2017 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2018 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2019 	}
2020 #endif
2021 }
2022 
2023 static void __init sun4v_ktsb_init(void)
2024 {
2025 	unsigned long ktsb_pa;
2026 
2027 	/* First KTSB for PAGE_SIZE mappings.  */
2028 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2029 
2030 	switch (PAGE_SIZE) {
2031 	case 8 * 1024:
2032 	default:
2033 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2034 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2035 		break;
2036 
2037 	case 64 * 1024:
2038 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2039 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2040 		break;
2041 
2042 	case 512 * 1024:
2043 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2044 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2045 		break;
2046 
2047 	case 4 * 1024 * 1024:
2048 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2049 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2050 		break;
2051 	}
2052 
2053 	ktsb_descr[0].assoc = 1;
2054 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2055 	ktsb_descr[0].ctx_idx = 0;
2056 	ktsb_descr[0].tsb_base = ktsb_pa;
2057 	ktsb_descr[0].resv = 0;
2058 
2059 #ifndef CONFIG_DEBUG_PAGEALLOC
2060 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2061 	ktsb_pa = (kern_base +
2062 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2063 
2064 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2065 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2066 				    HV_PGSZ_MASK_256MB |
2067 				    HV_PGSZ_MASK_2GB |
2068 				    HV_PGSZ_MASK_16GB) &
2069 				   cpu_pgsz_mask);
2070 	ktsb_descr[1].assoc = 1;
2071 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2072 	ktsb_descr[1].ctx_idx = 0;
2073 	ktsb_descr[1].tsb_base = ktsb_pa;
2074 	ktsb_descr[1].resv = 0;
2075 #endif
2076 }
2077 
2078 void sun4v_ktsb_register(void)
2079 {
2080 	unsigned long pa, ret;
2081 
2082 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2083 
2084 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2085 	if (ret != 0) {
2086 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2087 			    "errors with %lx\n", pa, ret);
2088 		prom_halt();
2089 	}
2090 }
2091 
2092 static void __init sun4u_linear_pte_xor_finalize(void)
2093 {
2094 #ifndef CONFIG_DEBUG_PAGEALLOC
2095 	/* This is where we would add Panther support for
2096 	 * 32MB and 256MB pages.
2097 	 */
2098 #endif
2099 }
2100 
2101 static void __init sun4v_linear_pte_xor_finalize(void)
2102 {
2103 	unsigned long pagecv_flag;
2104 
2105 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2106 	 * enables MCD error. Do not set bit 9 on M7 processor.
2107 	 */
2108 	switch (sun4v_chip_type) {
2109 	case SUN4V_CHIP_SPARC_M7:
2110 	case SUN4V_CHIP_SPARC_SN:
2111 		pagecv_flag = 0x00;
2112 		break;
2113 	default:
2114 		pagecv_flag = _PAGE_CV_4V;
2115 		break;
2116 	}
2117 #ifndef CONFIG_DEBUG_PAGEALLOC
2118 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2119 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2120 			PAGE_OFFSET;
2121 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2122 					   _PAGE_P_4V | _PAGE_W_4V);
2123 	} else {
2124 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2125 	}
2126 
2127 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2128 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2129 			PAGE_OFFSET;
2130 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2131 					   _PAGE_P_4V | _PAGE_W_4V);
2132 	} else {
2133 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2134 	}
2135 
2136 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2137 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2138 			PAGE_OFFSET;
2139 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2140 					   _PAGE_P_4V | _PAGE_W_4V);
2141 	} else {
2142 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2143 	}
2144 #endif
2145 }
2146 
2147 /* paging_init() sets up the page tables */
2148 
2149 static unsigned long last_valid_pfn;
2150 
2151 static void sun4u_pgprot_init(void);
2152 static void sun4v_pgprot_init(void);
2153 
2154 static phys_addr_t __init available_memory(void)
2155 {
2156 	phys_addr_t available = 0ULL;
2157 	phys_addr_t pa_start, pa_end;
2158 	u64 i;
2159 
2160 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2161 				&pa_end, NULL)
2162 		available = available + (pa_end  - pa_start);
2163 
2164 	return available;
2165 }
2166 
2167 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2168 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2169 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2170 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2171 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2172 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2173 
2174 /* We need to exclude reserved regions. This exclusion will include
2175  * vmlinux and initrd. To be more precise the initrd size could be used to
2176  * compute a new lower limit because it is freed later during initialization.
2177  */
2178 static void __init reduce_memory(phys_addr_t limit_ram)
2179 {
2180 	phys_addr_t avail_ram = available_memory();
2181 	phys_addr_t pa_start, pa_end;
2182 	u64 i;
2183 
2184 	if (limit_ram >= avail_ram)
2185 		return;
2186 
2187 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2188 				&pa_end, NULL) {
2189 		phys_addr_t region_size = pa_end - pa_start;
2190 		phys_addr_t clip_start = pa_start;
2191 
2192 		avail_ram = avail_ram - region_size;
2193 		/* Are we consuming too much? */
2194 		if (avail_ram < limit_ram) {
2195 			phys_addr_t give_back = limit_ram - avail_ram;
2196 
2197 			region_size = region_size - give_back;
2198 			clip_start = clip_start + give_back;
2199 		}
2200 
2201 		memblock_remove(clip_start, region_size);
2202 
2203 		if (avail_ram <= limit_ram)
2204 			break;
2205 		i = 0UL;
2206 	}
2207 }
2208 
2209 void __init paging_init(void)
2210 {
2211 	unsigned long end_pfn, shift, phys_base;
2212 	unsigned long real_end, i;
2213 
2214 	setup_page_offset();
2215 
2216 	/* These build time checkes make sure that the dcache_dirty_cpu()
2217 	 * page->flags usage will work.
2218 	 *
2219 	 * When a page gets marked as dcache-dirty, we store the
2220 	 * cpu number starting at bit 32 in the page->flags.  Also,
2221 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2222 	 * in 13-bit signed-immediate instruction fields.
2223 	 */
2224 
2225 	/*
2226 	 * Page flags must not reach into upper 32 bits that are used
2227 	 * for the cpu number
2228 	 */
2229 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2230 
2231 	/*
2232 	 * The bit fields placed in the high range must not reach below
2233 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2234 	 * at the 32 bit boundary.
2235 	 */
2236 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2237 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2238 
2239 	BUILD_BUG_ON(NR_CPUS > 4096);
2240 
2241 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2242 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2243 
2244 	/* Invalidate both kernel TSBs.  */
2245 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2246 #ifndef CONFIG_DEBUG_PAGEALLOC
2247 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2248 #endif
2249 
2250 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2251 	 * bit on M7 processor. This is a conflicting usage of the same
2252 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2253 	 * Detection error on all pages and this will lead to problems
2254 	 * later. Kernel does not run with MCD enabled and hence rest
2255 	 * of the required steps to fully configure memory corruption
2256 	 * detection are not taken. We need to ensure TTE.mcde is not
2257 	 * set on M7 processor. Compute the value of cacheability
2258 	 * flag for use later taking this into consideration.
2259 	 */
2260 	switch (sun4v_chip_type) {
2261 	case SUN4V_CHIP_SPARC_M7:
2262 	case SUN4V_CHIP_SPARC_SN:
2263 		page_cache4v_flag = _PAGE_CP_4V;
2264 		break;
2265 	default:
2266 		page_cache4v_flag = _PAGE_CACHE_4V;
2267 		break;
2268 	}
2269 
2270 	if (tlb_type == hypervisor)
2271 		sun4v_pgprot_init();
2272 	else
2273 		sun4u_pgprot_init();
2274 
2275 	if (tlb_type == cheetah_plus ||
2276 	    tlb_type == hypervisor) {
2277 		tsb_phys_patch();
2278 		ktsb_phys_patch();
2279 	}
2280 
2281 	if (tlb_type == hypervisor)
2282 		sun4v_patch_tlb_handlers();
2283 
2284 	/* Find available physical memory...
2285 	 *
2286 	 * Read it twice in order to work around a bug in openfirmware.
2287 	 * The call to grab this table itself can cause openfirmware to
2288 	 * allocate memory, which in turn can take away some space from
2289 	 * the list of available memory.  Reading it twice makes sure
2290 	 * we really do get the final value.
2291 	 */
2292 	read_obp_translations();
2293 	read_obp_memory("reg", &pall[0], &pall_ents);
2294 	read_obp_memory("available", &pavail[0], &pavail_ents);
2295 	read_obp_memory("available", &pavail[0], &pavail_ents);
2296 
2297 	phys_base = 0xffffffffffffffffUL;
2298 	for (i = 0; i < pavail_ents; i++) {
2299 		phys_base = min(phys_base, pavail[i].phys_addr);
2300 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2301 	}
2302 
2303 	memblock_reserve(kern_base, kern_size);
2304 
2305 	find_ramdisk(phys_base);
2306 
2307 	if (cmdline_memory_size)
2308 		reduce_memory(cmdline_memory_size);
2309 
2310 	memblock_allow_resize();
2311 	memblock_dump_all();
2312 
2313 	set_bit(0, mmu_context_bmap);
2314 
2315 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2316 
2317 	real_end = (unsigned long)_end;
2318 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2319 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2320 	       num_kernel_image_mappings);
2321 
2322 	/* Set kernel pgd to upper alias so physical page computations
2323 	 * work.
2324 	 */
2325 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2326 
2327 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2328 
2329 	inherit_prom_mappings();
2330 
2331 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2332 	setup_tba();
2333 
2334 	__flush_tlb_all();
2335 
2336 	prom_build_devicetree();
2337 	of_populate_present_mask();
2338 #ifndef CONFIG_SMP
2339 	of_fill_in_cpu_data();
2340 #endif
2341 
2342 	if (tlb_type == hypervisor) {
2343 		sun4v_mdesc_init();
2344 		mdesc_populate_present_mask(cpu_all_mask);
2345 #ifndef CONFIG_SMP
2346 		mdesc_fill_in_cpu_data(cpu_all_mask);
2347 #endif
2348 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2349 
2350 		sun4v_linear_pte_xor_finalize();
2351 
2352 		sun4v_ktsb_init();
2353 		sun4v_ktsb_register();
2354 	} else {
2355 		unsigned long impl, ver;
2356 
2357 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2358 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2359 
2360 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2361 		impl = ((ver >> 32) & 0xffff);
2362 		if (impl == PANTHER_IMPL)
2363 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2364 					  HV_PGSZ_MASK_256MB);
2365 
2366 		sun4u_linear_pte_xor_finalize();
2367 	}
2368 
2369 	/* Flush the TLBs and the 4M TSB so that the updated linear
2370 	 * pte XOR settings are realized for all mappings.
2371 	 */
2372 	__flush_tlb_all();
2373 #ifndef CONFIG_DEBUG_PAGEALLOC
2374 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2375 #endif
2376 	__flush_tlb_all();
2377 
2378 	/* Setup bootmem... */
2379 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2380 
2381 	kernel_physical_mapping_init();
2382 
2383 	{
2384 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2385 
2386 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2387 
2388 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2389 
2390 		free_area_init_nodes(max_zone_pfns);
2391 	}
2392 
2393 	printk("Booting Linux...\n");
2394 }
2395 
2396 int page_in_phys_avail(unsigned long paddr)
2397 {
2398 	int i;
2399 
2400 	paddr &= PAGE_MASK;
2401 
2402 	for (i = 0; i < pavail_ents; i++) {
2403 		unsigned long start, end;
2404 
2405 		start = pavail[i].phys_addr;
2406 		end = start + pavail[i].reg_size;
2407 
2408 		if (paddr >= start && paddr < end)
2409 			return 1;
2410 	}
2411 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2412 		return 1;
2413 #ifdef CONFIG_BLK_DEV_INITRD
2414 	if (paddr >= __pa(initrd_start) &&
2415 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2416 		return 1;
2417 #endif
2418 
2419 	return 0;
2420 }
2421 
2422 static void __init register_page_bootmem_info(void)
2423 {
2424 #ifdef CONFIG_NEED_MULTIPLE_NODES
2425 	int i;
2426 
2427 	for_each_online_node(i)
2428 		if (NODE_DATA(i)->node_spanned_pages)
2429 			register_page_bootmem_info_node(NODE_DATA(i));
2430 #endif
2431 }
2432 void __init mem_init(void)
2433 {
2434 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2435 
2436 	register_page_bootmem_info();
2437 	free_all_bootmem();
2438 
2439 	/*
2440 	 * Set up the zero page, mark it reserved, so that page count
2441 	 * is not manipulated when freeing the page from user ptes.
2442 	 */
2443 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2444 	if (mem_map_zero == NULL) {
2445 		prom_printf("paging_init: Cannot alloc zero page.\n");
2446 		prom_halt();
2447 	}
2448 	mark_page_reserved(mem_map_zero);
2449 
2450 	mem_init_print_info(NULL);
2451 
2452 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2453 		cheetah_ecache_flush_init();
2454 }
2455 
2456 void free_initmem(void)
2457 {
2458 	unsigned long addr, initend;
2459 	int do_free = 1;
2460 
2461 	/* If the physical memory maps were trimmed by kernel command
2462 	 * line options, don't even try freeing this initmem stuff up.
2463 	 * The kernel image could have been in the trimmed out region
2464 	 * and if so the freeing below will free invalid page structs.
2465 	 */
2466 	if (cmdline_memory_size)
2467 		do_free = 0;
2468 
2469 	/*
2470 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2471 	 */
2472 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2473 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2474 	for (; addr < initend; addr += PAGE_SIZE) {
2475 		unsigned long page;
2476 
2477 		page = (addr +
2478 			((unsigned long) __va(kern_base)) -
2479 			((unsigned long) KERNBASE));
2480 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2481 
2482 		if (do_free)
2483 			free_reserved_page(virt_to_page(page));
2484 	}
2485 }
2486 
2487 #ifdef CONFIG_BLK_DEV_INITRD
2488 void free_initrd_mem(unsigned long start, unsigned long end)
2489 {
2490 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2491 			   "initrd");
2492 }
2493 #endif
2494 
2495 pgprot_t PAGE_KERNEL __read_mostly;
2496 EXPORT_SYMBOL(PAGE_KERNEL);
2497 
2498 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2499 pgprot_t PAGE_COPY __read_mostly;
2500 
2501 pgprot_t PAGE_SHARED __read_mostly;
2502 EXPORT_SYMBOL(PAGE_SHARED);
2503 
2504 unsigned long pg_iobits __read_mostly;
2505 
2506 unsigned long _PAGE_IE __read_mostly;
2507 EXPORT_SYMBOL(_PAGE_IE);
2508 
2509 unsigned long _PAGE_E __read_mostly;
2510 EXPORT_SYMBOL(_PAGE_E);
2511 
2512 unsigned long _PAGE_CACHE __read_mostly;
2513 EXPORT_SYMBOL(_PAGE_CACHE);
2514 
2515 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2516 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2517 			       int node)
2518 {
2519 	unsigned long pte_base;
2520 
2521 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2522 		    _PAGE_CP_4U | _PAGE_CV_4U |
2523 		    _PAGE_P_4U | _PAGE_W_4U);
2524 	if (tlb_type == hypervisor)
2525 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2526 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2527 
2528 	pte_base |= _PAGE_PMD_HUGE;
2529 
2530 	vstart = vstart & PMD_MASK;
2531 	vend = ALIGN(vend, PMD_SIZE);
2532 	for (; vstart < vend; vstart += PMD_SIZE) {
2533 		pgd_t *pgd = pgd_offset_k(vstart);
2534 		unsigned long pte;
2535 		pud_t *pud;
2536 		pmd_t *pmd;
2537 
2538 		if (pgd_none(*pgd)) {
2539 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2540 
2541 			if (!new)
2542 				return -ENOMEM;
2543 			pgd_populate(&init_mm, pgd, new);
2544 		}
2545 
2546 		pud = pud_offset(pgd, vstart);
2547 		if (pud_none(*pud)) {
2548 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2549 
2550 			if (!new)
2551 				return -ENOMEM;
2552 			pud_populate(&init_mm, pud, new);
2553 		}
2554 
2555 		pmd = pmd_offset(pud, vstart);
2556 
2557 		pte = pmd_val(*pmd);
2558 		if (!(pte & _PAGE_VALID)) {
2559 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2560 
2561 			if (!block)
2562 				return -ENOMEM;
2563 
2564 			pmd_val(*pmd) = pte_base | __pa(block);
2565 		}
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 void vmemmap_free(unsigned long start, unsigned long end)
2572 {
2573 }
2574 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2575 
2576 static void prot_init_common(unsigned long page_none,
2577 			     unsigned long page_shared,
2578 			     unsigned long page_copy,
2579 			     unsigned long page_readonly,
2580 			     unsigned long page_exec_bit)
2581 {
2582 	PAGE_COPY = __pgprot(page_copy);
2583 	PAGE_SHARED = __pgprot(page_shared);
2584 
2585 	protection_map[0x0] = __pgprot(page_none);
2586 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2587 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2588 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2589 	protection_map[0x4] = __pgprot(page_readonly);
2590 	protection_map[0x5] = __pgprot(page_readonly);
2591 	protection_map[0x6] = __pgprot(page_copy);
2592 	protection_map[0x7] = __pgprot(page_copy);
2593 	protection_map[0x8] = __pgprot(page_none);
2594 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2595 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2596 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2597 	protection_map[0xc] = __pgprot(page_readonly);
2598 	protection_map[0xd] = __pgprot(page_readonly);
2599 	protection_map[0xe] = __pgprot(page_shared);
2600 	protection_map[0xf] = __pgprot(page_shared);
2601 }
2602 
2603 static void __init sun4u_pgprot_init(void)
2604 {
2605 	unsigned long page_none, page_shared, page_copy, page_readonly;
2606 	unsigned long page_exec_bit;
2607 	int i;
2608 
2609 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2610 				_PAGE_CACHE_4U | _PAGE_P_4U |
2611 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2612 				_PAGE_EXEC_4U);
2613 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2614 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2615 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2616 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2617 
2618 	_PAGE_IE = _PAGE_IE_4U;
2619 	_PAGE_E = _PAGE_E_4U;
2620 	_PAGE_CACHE = _PAGE_CACHE_4U;
2621 
2622 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2623 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2624 
2625 #ifdef CONFIG_DEBUG_PAGEALLOC
2626 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2627 #else
2628 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2629 		PAGE_OFFSET;
2630 #endif
2631 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2632 				   _PAGE_P_4U | _PAGE_W_4U);
2633 
2634 	for (i = 1; i < 4; i++)
2635 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2636 
2637 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2638 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2639 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2640 
2641 
2642 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2643 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2644 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2645 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2646 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2647 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2648 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2649 
2650 	page_exec_bit = _PAGE_EXEC_4U;
2651 
2652 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2653 			 page_exec_bit);
2654 }
2655 
2656 static void __init sun4v_pgprot_init(void)
2657 {
2658 	unsigned long page_none, page_shared, page_copy, page_readonly;
2659 	unsigned long page_exec_bit;
2660 	int i;
2661 
2662 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2663 				page_cache4v_flag | _PAGE_P_4V |
2664 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2665 				_PAGE_EXEC_4V);
2666 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2667 
2668 	_PAGE_IE = _PAGE_IE_4V;
2669 	_PAGE_E = _PAGE_E_4V;
2670 	_PAGE_CACHE = page_cache4v_flag;
2671 
2672 #ifdef CONFIG_DEBUG_PAGEALLOC
2673 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2674 #else
2675 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2676 		PAGE_OFFSET;
2677 #endif
2678 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2679 				   _PAGE_W_4V);
2680 
2681 	for (i = 1; i < 4; i++)
2682 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2683 
2684 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2685 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2686 
2687 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2688 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2689 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2690 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2691 
2692 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2693 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2694 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2695 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2696 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2697 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2698 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2699 
2700 	page_exec_bit = _PAGE_EXEC_4V;
2701 
2702 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2703 			 page_exec_bit);
2704 }
2705 
2706 unsigned long pte_sz_bits(unsigned long sz)
2707 {
2708 	if (tlb_type == hypervisor) {
2709 		switch (sz) {
2710 		case 8 * 1024:
2711 		default:
2712 			return _PAGE_SZ8K_4V;
2713 		case 64 * 1024:
2714 			return _PAGE_SZ64K_4V;
2715 		case 512 * 1024:
2716 			return _PAGE_SZ512K_4V;
2717 		case 4 * 1024 * 1024:
2718 			return _PAGE_SZ4MB_4V;
2719 		}
2720 	} else {
2721 		switch (sz) {
2722 		case 8 * 1024:
2723 		default:
2724 			return _PAGE_SZ8K_4U;
2725 		case 64 * 1024:
2726 			return _PAGE_SZ64K_4U;
2727 		case 512 * 1024:
2728 			return _PAGE_SZ512K_4U;
2729 		case 4 * 1024 * 1024:
2730 			return _PAGE_SZ4MB_4U;
2731 		}
2732 	}
2733 }
2734 
2735 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2736 {
2737 	pte_t pte;
2738 
2739 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2740 	pte_val(pte) |= (((unsigned long)space) << 32);
2741 	pte_val(pte) |= pte_sz_bits(page_size);
2742 
2743 	return pte;
2744 }
2745 
2746 static unsigned long kern_large_tte(unsigned long paddr)
2747 {
2748 	unsigned long val;
2749 
2750 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2751 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2752 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2753 	if (tlb_type == hypervisor)
2754 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2755 		       page_cache4v_flag | _PAGE_P_4V |
2756 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2757 
2758 	return val | paddr;
2759 }
2760 
2761 /* If not locked, zap it. */
2762 void __flush_tlb_all(void)
2763 {
2764 	unsigned long pstate;
2765 	int i;
2766 
2767 	__asm__ __volatile__("flushw\n\t"
2768 			     "rdpr	%%pstate, %0\n\t"
2769 			     "wrpr	%0, %1, %%pstate"
2770 			     : "=r" (pstate)
2771 			     : "i" (PSTATE_IE));
2772 	if (tlb_type == hypervisor) {
2773 		sun4v_mmu_demap_all();
2774 	} else if (tlb_type == spitfire) {
2775 		for (i = 0; i < 64; i++) {
2776 			/* Spitfire Errata #32 workaround */
2777 			/* NOTE: Always runs on spitfire, so no
2778 			 *       cheetah+ page size encodings.
2779 			 */
2780 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2781 					     "flush	%%g6"
2782 					     : /* No outputs */
2783 					     : "r" (0),
2784 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2785 
2786 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2787 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2788 						     "membar #Sync"
2789 						     : /* no outputs */
2790 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2791 				spitfire_put_dtlb_data(i, 0x0UL);
2792 			}
2793 
2794 			/* Spitfire Errata #32 workaround */
2795 			/* NOTE: Always runs on spitfire, so no
2796 			 *       cheetah+ page size encodings.
2797 			 */
2798 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2799 					     "flush	%%g6"
2800 					     : /* No outputs */
2801 					     : "r" (0),
2802 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2803 
2804 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2805 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2806 						     "membar #Sync"
2807 						     : /* no outputs */
2808 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2809 				spitfire_put_itlb_data(i, 0x0UL);
2810 			}
2811 		}
2812 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2813 		cheetah_flush_dtlb_all();
2814 		cheetah_flush_itlb_all();
2815 	}
2816 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2817 			     : : "r" (pstate));
2818 }
2819 
2820 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2821 			    unsigned long address)
2822 {
2823 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2824 	pte_t *pte = NULL;
2825 
2826 	if (page)
2827 		pte = (pte_t *) page_address(page);
2828 
2829 	return pte;
2830 }
2831 
2832 pgtable_t pte_alloc_one(struct mm_struct *mm,
2833 			unsigned long address)
2834 {
2835 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2836 	if (!page)
2837 		return NULL;
2838 	if (!pgtable_page_ctor(page)) {
2839 		free_hot_cold_page(page, 0);
2840 		return NULL;
2841 	}
2842 	return (pte_t *) page_address(page);
2843 }
2844 
2845 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2846 {
2847 	free_page((unsigned long)pte);
2848 }
2849 
2850 static void __pte_free(pgtable_t pte)
2851 {
2852 	struct page *page = virt_to_page(pte);
2853 
2854 	pgtable_page_dtor(page);
2855 	__free_page(page);
2856 }
2857 
2858 void pte_free(struct mm_struct *mm, pgtable_t pte)
2859 {
2860 	__pte_free(pte);
2861 }
2862 
2863 void pgtable_free(void *table, bool is_page)
2864 {
2865 	if (is_page)
2866 		__pte_free(table);
2867 	else
2868 		kmem_cache_free(pgtable_cache, table);
2869 }
2870 
2871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2872 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2873 			  pmd_t *pmd)
2874 {
2875 	unsigned long pte, flags;
2876 	struct mm_struct *mm;
2877 	pmd_t entry = *pmd;
2878 
2879 	if (!pmd_large(entry) || !pmd_young(entry))
2880 		return;
2881 
2882 	pte = pmd_val(entry);
2883 
2884 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2885 	if (!(pte & _PAGE_VALID))
2886 		return;
2887 
2888 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2889 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2890 
2891 	mm = vma->vm_mm;
2892 
2893 	spin_lock_irqsave(&mm->context.lock, flags);
2894 
2895 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2896 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2897 					addr, pte);
2898 
2899 	spin_unlock_irqrestore(&mm->context.lock, flags);
2900 }
2901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2902 
2903 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2904 static void context_reload(void *__data)
2905 {
2906 	struct mm_struct *mm = __data;
2907 
2908 	if (mm == current->mm)
2909 		load_secondary_context(mm);
2910 }
2911 
2912 void hugetlb_setup(struct pt_regs *regs)
2913 {
2914 	struct mm_struct *mm = current->mm;
2915 	struct tsb_config *tp;
2916 
2917 	if (faulthandler_disabled() || !mm) {
2918 		const struct exception_table_entry *entry;
2919 
2920 		entry = search_exception_tables(regs->tpc);
2921 		if (entry) {
2922 			regs->tpc = entry->fixup;
2923 			regs->tnpc = regs->tpc + 4;
2924 			return;
2925 		}
2926 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2927 		die_if_kernel("HugeTSB in atomic", regs);
2928 	}
2929 
2930 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2931 	if (likely(tp->tsb == NULL))
2932 		tsb_grow(mm, MM_TSB_HUGE, 0);
2933 
2934 	tsb_context_switch(mm);
2935 	smp_tsb_sync(mm);
2936 
2937 	/* On UltraSPARC-III+ and later, configure the second half of
2938 	 * the Data-TLB for huge pages.
2939 	 */
2940 	if (tlb_type == cheetah_plus) {
2941 		bool need_context_reload = false;
2942 		unsigned long ctx;
2943 
2944 		spin_lock_irq(&ctx_alloc_lock);
2945 		ctx = mm->context.sparc64_ctx_val;
2946 		ctx &= ~CTX_PGSZ_MASK;
2947 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2948 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2949 
2950 		if (ctx != mm->context.sparc64_ctx_val) {
2951 			/* When changing the page size fields, we
2952 			 * must perform a context flush so that no
2953 			 * stale entries match.  This flush must
2954 			 * occur with the original context register
2955 			 * settings.
2956 			 */
2957 			do_flush_tlb_mm(mm);
2958 
2959 			/* Reload the context register of all processors
2960 			 * also executing in this address space.
2961 			 */
2962 			mm->context.sparc64_ctx_val = ctx;
2963 			need_context_reload = true;
2964 		}
2965 		spin_unlock_irq(&ctx_alloc_lock);
2966 
2967 		if (need_context_reload)
2968 			on_each_cpu(context_reload, mm, 0);
2969 	}
2970 }
2971 #endif
2972 
2973 static struct resource code_resource = {
2974 	.name	= "Kernel code",
2975 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2976 };
2977 
2978 static struct resource data_resource = {
2979 	.name	= "Kernel data",
2980 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2981 };
2982 
2983 static struct resource bss_resource = {
2984 	.name	= "Kernel bss",
2985 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2986 };
2987 
2988 static inline resource_size_t compute_kern_paddr(void *addr)
2989 {
2990 	return (resource_size_t) (addr - KERNBASE + kern_base);
2991 }
2992 
2993 static void __init kernel_lds_init(void)
2994 {
2995 	code_resource.start = compute_kern_paddr(_text);
2996 	code_resource.end   = compute_kern_paddr(_etext - 1);
2997 	data_resource.start = compute_kern_paddr(_etext);
2998 	data_resource.end   = compute_kern_paddr(_edata - 1);
2999 	bss_resource.start  = compute_kern_paddr(__bss_start);
3000 	bss_resource.end    = compute_kern_paddr(_end - 1);
3001 }
3002 
3003 static int __init report_memory(void)
3004 {
3005 	int i;
3006 	struct resource *res;
3007 
3008 	kernel_lds_init();
3009 
3010 	for (i = 0; i < pavail_ents; i++) {
3011 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3012 
3013 		if (!res) {
3014 			pr_warn("Failed to allocate source.\n");
3015 			break;
3016 		}
3017 
3018 		res->name = "System RAM";
3019 		res->start = pavail[i].phys_addr;
3020 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3021 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3022 
3023 		if (insert_resource(&iomem_resource, res) < 0) {
3024 			pr_warn("Resource insertion failed.\n");
3025 			break;
3026 		}
3027 
3028 		insert_resource(res, &code_resource);
3029 		insert_resource(res, &data_resource);
3030 		insert_resource(res, &bss_resource);
3031 	}
3032 
3033 	return 0;
3034 }
3035 arch_initcall(report_memory);
3036 
3037 #ifdef CONFIG_SMP
3038 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3039 #else
3040 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3041 #endif
3042 
3043 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3044 {
3045 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3046 		if (start < LOW_OBP_ADDRESS) {
3047 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3048 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3049 		}
3050 		if (end > HI_OBP_ADDRESS) {
3051 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3052 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3053 		}
3054 	} else {
3055 		flush_tsb_kernel_range(start, end);
3056 		do_flush_tlb_kernel_range(start, end);
3057 	}
3058 }
3059