xref: /linux/arch/sparc/mm/init_64.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31 
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_folio_impl(struct folio *folio)
199 {
200 	unsigned int i, nr = folio_nr_pages(folio);
201 
202 	BUG_ON(tlb_type == hypervisor);
203 #ifdef CONFIG_DEBUG_DCFLUSH
204 	atomic_inc(&dcpage_flushes);
205 #endif
206 
207 #ifdef DCACHE_ALIASING_POSSIBLE
208 	for (i = 0; i < nr; i++)
209 		__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
210 				    ((tlb_type == spitfire) &&
211 				     folio_flush_mapping(folio) != NULL));
212 #else
213 	if (folio_flush_mapping(folio) != NULL &&
214 	    tlb_type == spitfire) {
215 		for (i = 0; i < nr; i++)
216 			__flush_icache_page((pfn + i) * PAGE_SIZE);
217 	}
218 #endif
219 }
220 
221 #define PG_dcache_dirty		PG_arch_1
222 #define PG_dcache_cpu_shift	32UL
223 #define PG_dcache_cpu_mask	\
224 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
225 
226 #define dcache_dirty_cpu(folio) \
227 	(((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
228 
229 static inline void set_dcache_dirty(struct folio *folio, int this_cpu)
230 {
231 	unsigned long mask = this_cpu;
232 	unsigned long non_cpu_bits;
233 
234 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
235 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
236 
237 	__asm__ __volatile__("1:\n\t"
238 			     "ldx	[%2], %%g7\n\t"
239 			     "and	%%g7, %1, %%g1\n\t"
240 			     "or	%%g1, %0, %%g1\n\t"
241 			     "casx	[%2], %%g7, %%g1\n\t"
242 			     "cmp	%%g7, %%g1\n\t"
243 			     "bne,pn	%%xcc, 1b\n\t"
244 			     " nop"
245 			     : /* no outputs */
246 			     : "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags)
247 			     : "g1", "g7");
248 }
249 
250 static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu)
251 {
252 	unsigned long mask = (1UL << PG_dcache_dirty);
253 
254 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
255 			     "1:\n\t"
256 			     "ldx	[%2], %%g7\n\t"
257 			     "srlx	%%g7, %4, %%g1\n\t"
258 			     "and	%%g1, %3, %%g1\n\t"
259 			     "cmp	%%g1, %0\n\t"
260 			     "bne,pn	%%icc, 2f\n\t"
261 			     " andn	%%g7, %1, %%g1\n\t"
262 			     "casx	[%2], %%g7, %%g1\n\t"
263 			     "cmp	%%g7, %%g1\n\t"
264 			     "bne,pn	%%xcc, 1b\n\t"
265 			     " nop\n"
266 			     "2:"
267 			     : /* no outputs */
268 			     : "r" (cpu), "r" (mask), "r" (&folio->flags),
269 			       "i" (PG_dcache_cpu_mask),
270 			       "i" (PG_dcache_cpu_shift)
271 			     : "g1", "g7");
272 }
273 
274 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275 {
276 	unsigned long tsb_addr = (unsigned long) ent;
277 
278 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279 		tsb_addr = __pa(tsb_addr);
280 
281 	__tsb_insert(tsb_addr, tag, pte);
282 }
283 
284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285 
286 static void flush_dcache(unsigned long pfn)
287 {
288 	struct page *page;
289 
290 	page = pfn_to_page(pfn);
291 	if (page) {
292 		struct folio *folio = page_folio(page);
293 		unsigned long pg_flags;
294 
295 		pg_flags = folio->flags;
296 		if (pg_flags & (1UL << PG_dcache_dirty)) {
297 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298 				   PG_dcache_cpu_mask);
299 			int this_cpu = get_cpu();
300 
301 			/* This is just to optimize away some function calls
302 			 * in the SMP case.
303 			 */
304 			if (cpu == this_cpu)
305 				flush_dcache_folio_impl(folio);
306 			else
307 				smp_flush_dcache_folio_impl(folio, cpu);
308 
309 			clear_dcache_dirty_cpu(folio, cpu);
310 
311 			put_cpu();
312 		}
313 	}
314 }
315 
316 /* mm->context.lock must be held */
317 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
318 				    unsigned long tsb_hash_shift, unsigned long address,
319 				    unsigned long tte)
320 {
321 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
322 	unsigned long tag;
323 
324 	if (unlikely(!tsb))
325 		return;
326 
327 	tsb += ((address >> tsb_hash_shift) &
328 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 	tag = (address >> 22UL);
330 	tsb_insert(tsb, tag, tte);
331 }
332 
333 #ifdef CONFIG_HUGETLB_PAGE
334 static int __init hugetlbpage_init(void)
335 {
336 	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
337 	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
338 	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
339 	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
340 
341 	return 0;
342 }
343 
344 arch_initcall(hugetlbpage_init);
345 
346 static void __init pud_huge_patch(void)
347 {
348 	struct pud_huge_patch_entry *p;
349 	unsigned long addr;
350 
351 	p = &__pud_huge_patch;
352 	addr = p->addr;
353 	*(unsigned int *)addr = p->insn;
354 
355 	__asm__ __volatile__("flush %0" : : "r" (addr));
356 }
357 
358 bool __init arch_hugetlb_valid_size(unsigned long size)
359 {
360 	unsigned int hugepage_shift = ilog2(size);
361 	unsigned short hv_pgsz_idx;
362 	unsigned int hv_pgsz_mask;
363 
364 	switch (hugepage_shift) {
365 	case HPAGE_16GB_SHIFT:
366 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
367 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
368 		pud_huge_patch();
369 		break;
370 	case HPAGE_2GB_SHIFT:
371 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
372 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
373 		break;
374 	case HPAGE_256MB_SHIFT:
375 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
376 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
377 		break;
378 	case HPAGE_SHIFT:
379 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
380 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
381 		break;
382 	case HPAGE_64K_SHIFT:
383 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
384 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
385 		break;
386 	default:
387 		hv_pgsz_mask = 0;
388 	}
389 
390 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
391 		return false;
392 
393 	return true;
394 }
395 #endif	/* CONFIG_HUGETLB_PAGE */
396 
397 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
398 		unsigned long address, pte_t *ptep, unsigned int nr)
399 {
400 	struct mm_struct *mm;
401 	unsigned long flags;
402 	bool is_huge_tsb;
403 	pte_t pte = *ptep;
404 	unsigned int i;
405 
406 	if (tlb_type != hypervisor) {
407 		unsigned long pfn = pte_pfn(pte);
408 
409 		if (pfn_valid(pfn))
410 			flush_dcache(pfn);
411 	}
412 
413 	mm = vma->vm_mm;
414 
415 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
416 	if (!pte_accessible(mm, pte))
417 		return;
418 
419 	spin_lock_irqsave(&mm->context.lock, flags);
420 
421 	is_huge_tsb = false;
422 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
423 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
424 		unsigned long hugepage_size = PAGE_SIZE;
425 
426 		if (is_vm_hugetlb_page(vma))
427 			hugepage_size = huge_page_size(hstate_vma(vma));
428 
429 		if (hugepage_size >= PUD_SIZE) {
430 			unsigned long mask = 0x1ffc00000UL;
431 
432 			/* Transfer bits [32:22] from address to resolve
433 			 * at 4M granularity.
434 			 */
435 			pte_val(pte) &= ~mask;
436 			pte_val(pte) |= (address & mask);
437 		} else if (hugepage_size >= PMD_SIZE) {
438 			/* We are fabricating 8MB pages using 4MB
439 			 * real hw pages.
440 			 */
441 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
442 		}
443 
444 		if (hugepage_size >= PMD_SIZE) {
445 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
446 				REAL_HPAGE_SHIFT, address, pte_val(pte));
447 			is_huge_tsb = true;
448 		}
449 	}
450 #endif
451 	if (!is_huge_tsb) {
452 		for (i = 0; i < nr; i++) {
453 			__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
454 						address, pte_val(pte));
455 			address += PAGE_SIZE;
456 			pte_val(pte) += PAGE_SIZE;
457 		}
458 	}
459 
460 	spin_unlock_irqrestore(&mm->context.lock, flags);
461 }
462 
463 void flush_dcache_folio(struct folio *folio)
464 {
465 	unsigned long pfn = folio_pfn(folio);
466 	struct address_space *mapping;
467 	int this_cpu;
468 
469 	if (tlb_type == hypervisor)
470 		return;
471 
472 	/* Do not bother with the expensive D-cache flush if it
473 	 * is merely the zero page.  The 'bigcore' testcase in GDB
474 	 * causes this case to run millions of times.
475 	 */
476 	if (is_zero_pfn(pfn))
477 		return;
478 
479 	this_cpu = get_cpu();
480 
481 	mapping = folio_flush_mapping(folio);
482 	if (mapping && !mapping_mapped(mapping)) {
483 		bool dirty = test_bit(PG_dcache_dirty, &folio->flags);
484 		if (dirty) {
485 			int dirty_cpu = dcache_dirty_cpu(folio);
486 
487 			if (dirty_cpu == this_cpu)
488 				goto out;
489 			smp_flush_dcache_folio_impl(folio, dirty_cpu);
490 		}
491 		set_dcache_dirty(folio, this_cpu);
492 	} else {
493 		/* We could delay the flush for the !folio_mapping
494 		 * case too.  But that case is for exec env/arg
495 		 * pages and those are %99 certainly going to get
496 		 * faulted into the tlb (and thus flushed) anyways.
497 		 */
498 		flush_dcache_folio_impl(folio);
499 	}
500 
501 out:
502 	put_cpu();
503 }
504 EXPORT_SYMBOL(flush_dcache_folio);
505 
506 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
507 {
508 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
509 	if (tlb_type == spitfire) {
510 		unsigned long kaddr;
511 
512 		/* This code only runs on Spitfire cpus so this is
513 		 * why we can assume _PAGE_PADDR_4U.
514 		 */
515 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
516 			unsigned long paddr, mask = _PAGE_PADDR_4U;
517 
518 			if (kaddr >= PAGE_OFFSET)
519 				paddr = kaddr & mask;
520 			else {
521 				pte_t *ptep = virt_to_kpte(kaddr);
522 
523 				paddr = pte_val(*ptep) & mask;
524 			}
525 			__flush_icache_page(paddr);
526 		}
527 	}
528 }
529 EXPORT_SYMBOL(flush_icache_range);
530 
531 void mmu_info(struct seq_file *m)
532 {
533 	static const char *pgsz_strings[] = {
534 		"8K", "64K", "512K", "4MB", "32MB",
535 		"256MB", "2GB", "16GB",
536 	};
537 	int i, printed;
538 
539 	if (tlb_type == cheetah)
540 		seq_printf(m, "MMU Type\t: Cheetah\n");
541 	else if (tlb_type == cheetah_plus)
542 		seq_printf(m, "MMU Type\t: Cheetah+\n");
543 	else if (tlb_type == spitfire)
544 		seq_printf(m, "MMU Type\t: Spitfire\n");
545 	else if (tlb_type == hypervisor)
546 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
547 	else
548 		seq_printf(m, "MMU Type\t: ???\n");
549 
550 	seq_printf(m, "MMU PGSZs\t: ");
551 	printed = 0;
552 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
553 		if (cpu_pgsz_mask & (1UL << i)) {
554 			seq_printf(m, "%s%s",
555 				   printed ? "," : "", pgsz_strings[i]);
556 			printed++;
557 		}
558 	}
559 	seq_putc(m, '\n');
560 
561 #ifdef CONFIG_DEBUG_DCFLUSH
562 	seq_printf(m, "DCPageFlushes\t: %d\n",
563 		   atomic_read(&dcpage_flushes));
564 #ifdef CONFIG_SMP
565 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
566 		   atomic_read(&dcpage_flushes_xcall));
567 #endif /* CONFIG_SMP */
568 #endif /* CONFIG_DEBUG_DCFLUSH */
569 }
570 
571 struct linux_prom_translation prom_trans[512] __read_mostly;
572 unsigned int prom_trans_ents __read_mostly;
573 
574 unsigned long kern_locked_tte_data;
575 
576 /* The obp translations are saved based on 8k pagesize, since obp can
577  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
578  * HI_OBP_ADDRESS range are handled in ktlb.S.
579  */
580 static inline int in_obp_range(unsigned long vaddr)
581 {
582 	return (vaddr >= LOW_OBP_ADDRESS &&
583 		vaddr < HI_OBP_ADDRESS);
584 }
585 
586 static int cmp_ptrans(const void *a, const void *b)
587 {
588 	const struct linux_prom_translation *x = a, *y = b;
589 
590 	if (x->virt > y->virt)
591 		return 1;
592 	if (x->virt < y->virt)
593 		return -1;
594 	return 0;
595 }
596 
597 /* Read OBP translations property into 'prom_trans[]'.  */
598 static void __init read_obp_translations(void)
599 {
600 	int n, node, ents, first, last, i;
601 
602 	node = prom_finddevice("/virtual-memory");
603 	n = prom_getproplen(node, "translations");
604 	if (unlikely(n == 0 || n == -1)) {
605 		prom_printf("prom_mappings: Couldn't get size.\n");
606 		prom_halt();
607 	}
608 	if (unlikely(n > sizeof(prom_trans))) {
609 		prom_printf("prom_mappings: Size %d is too big.\n", n);
610 		prom_halt();
611 	}
612 
613 	if ((n = prom_getproperty(node, "translations",
614 				  (char *)&prom_trans[0],
615 				  sizeof(prom_trans))) == -1) {
616 		prom_printf("prom_mappings: Couldn't get property.\n");
617 		prom_halt();
618 	}
619 
620 	n = n / sizeof(struct linux_prom_translation);
621 
622 	ents = n;
623 
624 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
625 	     cmp_ptrans, NULL);
626 
627 	/* Now kick out all the non-OBP entries.  */
628 	for (i = 0; i < ents; i++) {
629 		if (in_obp_range(prom_trans[i].virt))
630 			break;
631 	}
632 	first = i;
633 	for (; i < ents; i++) {
634 		if (!in_obp_range(prom_trans[i].virt))
635 			break;
636 	}
637 	last = i;
638 
639 	for (i = 0; i < (last - first); i++) {
640 		struct linux_prom_translation *src = &prom_trans[i + first];
641 		struct linux_prom_translation *dest = &prom_trans[i];
642 
643 		*dest = *src;
644 	}
645 	for (; i < ents; i++) {
646 		struct linux_prom_translation *dest = &prom_trans[i];
647 		dest->virt = dest->size = dest->data = 0x0UL;
648 	}
649 
650 	prom_trans_ents = last - first;
651 
652 	if (tlb_type == spitfire) {
653 		/* Clear diag TTE bits. */
654 		for (i = 0; i < prom_trans_ents; i++)
655 			prom_trans[i].data &= ~0x0003fe0000000000UL;
656 	}
657 
658 	/* Force execute bit on.  */
659 	for (i = 0; i < prom_trans_ents; i++)
660 		prom_trans[i].data |= (tlb_type == hypervisor ?
661 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
662 }
663 
664 static void __init hypervisor_tlb_lock(unsigned long vaddr,
665 				       unsigned long pte,
666 				       unsigned long mmu)
667 {
668 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
669 
670 	if (ret != 0) {
671 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
672 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
673 		prom_halt();
674 	}
675 }
676 
677 static unsigned long kern_large_tte(unsigned long paddr);
678 
679 static void __init remap_kernel(void)
680 {
681 	unsigned long phys_page, tte_vaddr, tte_data;
682 	int i, tlb_ent = sparc64_highest_locked_tlbent();
683 
684 	tte_vaddr = (unsigned long) KERNBASE;
685 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
686 	tte_data = kern_large_tte(phys_page);
687 
688 	kern_locked_tte_data = tte_data;
689 
690 	/* Now lock us into the TLBs via Hypervisor or OBP. */
691 	if (tlb_type == hypervisor) {
692 		for (i = 0; i < num_kernel_image_mappings; i++) {
693 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
694 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
695 			tte_vaddr += 0x400000;
696 			tte_data += 0x400000;
697 		}
698 	} else {
699 		for (i = 0; i < num_kernel_image_mappings; i++) {
700 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
701 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
702 			tte_vaddr += 0x400000;
703 			tte_data += 0x400000;
704 		}
705 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
706 	}
707 	if (tlb_type == cheetah_plus) {
708 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
709 					    CTX_CHEETAH_PLUS_NUC);
710 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
711 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
712 	}
713 }
714 
715 
716 static void __init inherit_prom_mappings(void)
717 {
718 	/* Now fixup OBP's idea about where we really are mapped. */
719 	printk("Remapping the kernel... ");
720 	remap_kernel();
721 	printk("done.\n");
722 }
723 
724 void prom_world(int enter)
725 {
726 	/*
727 	 * No need to change the address space any more, just flush
728 	 * the register windows
729 	 */
730 	__asm__ __volatile__("flushw");
731 }
732 
733 void __flush_dcache_range(unsigned long start, unsigned long end)
734 {
735 	unsigned long va;
736 
737 	if (tlb_type == spitfire) {
738 		int n = 0;
739 
740 		for (va = start; va < end; va += 32) {
741 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
742 			if (++n >= 512)
743 				break;
744 		}
745 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
746 		start = __pa(start);
747 		end = __pa(end);
748 		for (va = start; va < end; va += 32)
749 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
750 					     "membar #Sync"
751 					     : /* no outputs */
752 					     : "r" (va),
753 					       "i" (ASI_DCACHE_INVALIDATE));
754 	}
755 }
756 EXPORT_SYMBOL(__flush_dcache_range);
757 
758 /* get_new_mmu_context() uses "cache + 1".  */
759 DEFINE_SPINLOCK(ctx_alloc_lock);
760 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
761 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
762 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
763 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
764 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
765 
766 static void mmu_context_wrap(void)
767 {
768 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
769 	unsigned long new_ver, new_ctx, old_ctx;
770 	struct mm_struct *mm;
771 	int cpu;
772 
773 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
774 
775 	/* Reserve kernel context */
776 	set_bit(0, mmu_context_bmap);
777 
778 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
779 	if (unlikely(new_ver == 0))
780 		new_ver = CTX_FIRST_VERSION;
781 	tlb_context_cache = new_ver;
782 
783 	/*
784 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
785 	 * are going to go through get_new_mmu_context() path.
786 	 */
787 	mb();
788 
789 	/*
790 	 * Updated versions to current on those CPUs that had valid secondary
791 	 * contexts
792 	 */
793 	for_each_online_cpu(cpu) {
794 		/*
795 		 * If a new mm is stored after we took this mm from the array,
796 		 * it will go into get_new_mmu_context() path, because we
797 		 * already bumped the version in tlb_context_cache.
798 		 */
799 		mm = per_cpu(per_cpu_secondary_mm, cpu);
800 
801 		if (unlikely(!mm || mm == &init_mm))
802 			continue;
803 
804 		old_ctx = mm->context.sparc64_ctx_val;
805 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
806 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
807 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
808 			mm->context.sparc64_ctx_val = new_ctx;
809 		}
810 	}
811 }
812 
813 /* Caller does TLB context flushing on local CPU if necessary.
814  * The caller also ensures that CTX_VALID(mm->context) is false.
815  *
816  * We must be careful about boundary cases so that we never
817  * let the user have CTX 0 (nucleus) or we ever use a CTX
818  * version of zero (and thus NO_CONTEXT would not be caught
819  * by version mis-match tests in mmu_context.h).
820  *
821  * Always invoked with interrupts disabled.
822  */
823 void get_new_mmu_context(struct mm_struct *mm)
824 {
825 	unsigned long ctx, new_ctx;
826 	unsigned long orig_pgsz_bits;
827 
828 	spin_lock(&ctx_alloc_lock);
829 retry:
830 	/* wrap might have happened, test again if our context became valid */
831 	if (unlikely(CTX_VALID(mm->context)))
832 		goto out;
833 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
834 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
835 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
836 	if (new_ctx >= (1 << CTX_NR_BITS)) {
837 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
838 		if (new_ctx >= ctx) {
839 			mmu_context_wrap();
840 			goto retry;
841 		}
842 	}
843 	if (mm->context.sparc64_ctx_val)
844 		cpumask_clear(mm_cpumask(mm));
845 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
846 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
847 	tlb_context_cache = new_ctx;
848 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
849 out:
850 	spin_unlock(&ctx_alloc_lock);
851 }
852 
853 static int numa_enabled = 1;
854 static int numa_debug;
855 
856 static int __init early_numa(char *p)
857 {
858 	if (!p)
859 		return 0;
860 
861 	if (strstr(p, "off"))
862 		numa_enabled = 0;
863 
864 	if (strstr(p, "debug"))
865 		numa_debug = 1;
866 
867 	return 0;
868 }
869 early_param("numa", early_numa);
870 
871 #define numadbg(f, a...) \
872 do {	if (numa_debug) \
873 		printk(KERN_INFO f, ## a); \
874 } while (0)
875 
876 static void __init find_ramdisk(unsigned long phys_base)
877 {
878 #ifdef CONFIG_BLK_DEV_INITRD
879 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
880 		unsigned long ramdisk_image;
881 
882 		/* Older versions of the bootloader only supported a
883 		 * 32-bit physical address for the ramdisk image
884 		 * location, stored at sparc_ramdisk_image.  Newer
885 		 * SILO versions set sparc_ramdisk_image to zero and
886 		 * provide a full 64-bit physical address at
887 		 * sparc_ramdisk_image64.
888 		 */
889 		ramdisk_image = sparc_ramdisk_image;
890 		if (!ramdisk_image)
891 			ramdisk_image = sparc_ramdisk_image64;
892 
893 		/* Another bootloader quirk.  The bootloader normalizes
894 		 * the physical address to KERNBASE, so we have to
895 		 * factor that back out and add in the lowest valid
896 		 * physical page address to get the true physical address.
897 		 */
898 		ramdisk_image -= KERNBASE;
899 		ramdisk_image += phys_base;
900 
901 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
902 			ramdisk_image, sparc_ramdisk_size);
903 
904 		initrd_start = ramdisk_image;
905 		initrd_end = ramdisk_image + sparc_ramdisk_size;
906 
907 		memblock_reserve(initrd_start, sparc_ramdisk_size);
908 
909 		initrd_start += PAGE_OFFSET;
910 		initrd_end += PAGE_OFFSET;
911 	}
912 #endif
913 }
914 
915 struct node_mem_mask {
916 	unsigned long mask;
917 	unsigned long match;
918 };
919 static struct node_mem_mask node_masks[MAX_NUMNODES];
920 static int num_node_masks;
921 
922 #ifdef CONFIG_NUMA
923 
924 struct mdesc_mlgroup {
925 	u64	node;
926 	u64	latency;
927 	u64	match;
928 	u64	mask;
929 };
930 
931 static struct mdesc_mlgroup *mlgroups;
932 static int num_mlgroups;
933 
934 int numa_cpu_lookup_table[NR_CPUS];
935 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
936 
937 struct mdesc_mblock {
938 	u64	base;
939 	u64	size;
940 	u64	offset; /* RA-to-PA */
941 };
942 static struct mdesc_mblock *mblocks;
943 static int num_mblocks;
944 
945 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
946 {
947 	struct mdesc_mblock *m = NULL;
948 	int i;
949 
950 	for (i = 0; i < num_mblocks; i++) {
951 		m = &mblocks[i];
952 
953 		if (addr >= m->base &&
954 		    addr < (m->base + m->size)) {
955 			break;
956 		}
957 	}
958 
959 	return m;
960 }
961 
962 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
963 {
964 	int prev_nid, new_nid;
965 
966 	prev_nid = NUMA_NO_NODE;
967 	for ( ; start < end; start += PAGE_SIZE) {
968 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
969 			struct node_mem_mask *p = &node_masks[new_nid];
970 
971 			if ((start & p->mask) == p->match) {
972 				if (prev_nid == NUMA_NO_NODE)
973 					prev_nid = new_nid;
974 				break;
975 			}
976 		}
977 
978 		if (new_nid == num_node_masks) {
979 			prev_nid = 0;
980 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
981 				  start);
982 			break;
983 		}
984 
985 		if (prev_nid != new_nid)
986 			break;
987 	}
988 	*nid = prev_nid;
989 
990 	return start > end ? end : start;
991 }
992 
993 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
994 {
995 	u64 ret_end, pa_start, m_mask, m_match, m_end;
996 	struct mdesc_mblock *mblock;
997 	int _nid, i;
998 
999 	if (tlb_type != hypervisor)
1000 		return memblock_nid_range_sun4u(start, end, nid);
1001 
1002 	mblock = addr_to_mblock(start);
1003 	if (!mblock) {
1004 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1005 			  start);
1006 
1007 		_nid = 0;
1008 		ret_end = end;
1009 		goto done;
1010 	}
1011 
1012 	pa_start = start + mblock->offset;
1013 	m_match = 0;
1014 	m_mask = 0;
1015 
1016 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1017 		struct node_mem_mask *const m = &node_masks[_nid];
1018 
1019 		if ((pa_start & m->mask) == m->match) {
1020 			m_match = m->match;
1021 			m_mask = m->mask;
1022 			break;
1023 		}
1024 	}
1025 
1026 	if (num_node_masks == _nid) {
1027 		/* We could not find NUMA group, so default to 0, but lets
1028 		 * search for latency group, so we could calculate the correct
1029 		 * end address that we return
1030 		 */
1031 		_nid = 0;
1032 
1033 		for (i = 0; i < num_mlgroups; i++) {
1034 			struct mdesc_mlgroup *const m = &mlgroups[i];
1035 
1036 			if ((pa_start & m->mask) == m->match) {
1037 				m_match = m->match;
1038 				m_mask = m->mask;
1039 				break;
1040 			}
1041 		}
1042 
1043 		if (i == num_mlgroups) {
1044 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1045 				  start);
1046 
1047 			ret_end = end;
1048 			goto done;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * Each latency group has match and mask, and each memory block has an
1054 	 * offset.  An address belongs to a latency group if its address matches
1055 	 * the following formula: ((addr + offset) & mask) == match
1056 	 * It is, however, slow to check every single page if it matches a
1057 	 * particular latency group. As optimization we calculate end value by
1058 	 * using bit arithmetics.
1059 	 */
1060 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1061 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1062 	ret_end = m_end > end ? end : m_end;
1063 
1064 done:
1065 	*nid = _nid;
1066 	return ret_end;
1067 }
1068 #endif
1069 
1070 /* This must be invoked after performing all of the necessary
1071  * memblock_set_node() calls for 'nid'.  We need to be able to get
1072  * correct data from get_pfn_range_for_nid().
1073  */
1074 static void __init allocate_node_data(int nid)
1075 {
1076 	struct pglist_data *p;
1077 	unsigned long start_pfn, end_pfn;
1078 
1079 #ifdef CONFIG_NUMA
1080 	alloc_node_data(nid);
1081 
1082 	NODE_DATA(nid)->node_id = nid;
1083 #endif
1084 
1085 	p = NODE_DATA(nid);
1086 
1087 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1088 	p->node_start_pfn = start_pfn;
1089 	p->node_spanned_pages = end_pfn - start_pfn;
1090 }
1091 
1092 static void init_node_masks_nonnuma(void)
1093 {
1094 #ifdef CONFIG_NUMA
1095 	int i;
1096 #endif
1097 
1098 	numadbg("Initializing tables for non-numa.\n");
1099 
1100 	node_masks[0].mask = 0;
1101 	node_masks[0].match = 0;
1102 	num_node_masks = 1;
1103 
1104 #ifdef CONFIG_NUMA
1105 	for (i = 0; i < NR_CPUS; i++)
1106 		numa_cpu_lookup_table[i] = 0;
1107 
1108 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1109 #endif
1110 }
1111 
1112 #ifdef CONFIG_NUMA
1113 
1114 EXPORT_SYMBOL(numa_cpu_lookup_table);
1115 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1116 
1117 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1118 				   u32 cfg_handle)
1119 {
1120 	u64 arc;
1121 
1122 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1123 		u64 target = mdesc_arc_target(md, arc);
1124 		const u64 *val;
1125 
1126 		val = mdesc_get_property(md, target,
1127 					 "cfg-handle", NULL);
1128 		if (val && *val == cfg_handle)
1129 			return 0;
1130 	}
1131 	return -ENODEV;
1132 }
1133 
1134 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1135 				    u32 cfg_handle)
1136 {
1137 	u64 arc, candidate, best_latency = ~(u64)0;
1138 
1139 	candidate = MDESC_NODE_NULL;
1140 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1141 		u64 target = mdesc_arc_target(md, arc);
1142 		const char *name = mdesc_node_name(md, target);
1143 		const u64 *val;
1144 
1145 		if (strcmp(name, "pio-latency-group"))
1146 			continue;
1147 
1148 		val = mdesc_get_property(md, target, "latency", NULL);
1149 		if (!val)
1150 			continue;
1151 
1152 		if (*val < best_latency) {
1153 			candidate = target;
1154 			best_latency = *val;
1155 		}
1156 	}
1157 
1158 	if (candidate == MDESC_NODE_NULL)
1159 		return -ENODEV;
1160 
1161 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1162 }
1163 
1164 int of_node_to_nid(struct device_node *dp)
1165 {
1166 	const struct linux_prom64_registers *regs;
1167 	struct mdesc_handle *md;
1168 	u32 cfg_handle;
1169 	int count, nid;
1170 	u64 grp;
1171 
1172 	/* This is the right thing to do on currently supported
1173 	 * SUN4U NUMA platforms as well, as the PCI controller does
1174 	 * not sit behind any particular memory controller.
1175 	 */
1176 	if (!mlgroups)
1177 		return -1;
1178 
1179 	regs = of_get_property(dp, "reg", NULL);
1180 	if (!regs)
1181 		return -1;
1182 
1183 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1184 
1185 	md = mdesc_grab();
1186 
1187 	count = 0;
1188 	nid = NUMA_NO_NODE;
1189 	mdesc_for_each_node_by_name(md, grp, "group") {
1190 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1191 			nid = count;
1192 			break;
1193 		}
1194 		count++;
1195 	}
1196 
1197 	mdesc_release(md);
1198 
1199 	return nid;
1200 }
1201 
1202 static void __init add_node_ranges(void)
1203 {
1204 	phys_addr_t start, end;
1205 	unsigned long prev_max;
1206 	u64 i;
1207 
1208 memblock_resized:
1209 	prev_max = memblock.memory.max;
1210 
1211 	for_each_mem_range(i, &start, &end) {
1212 		while (start < end) {
1213 			unsigned long this_end;
1214 			int nid;
1215 
1216 			this_end = memblock_nid_range(start, end, &nid);
1217 
1218 			numadbg("Setting memblock NUMA node nid[%d] "
1219 				"start[%llx] end[%lx]\n",
1220 				nid, start, this_end);
1221 
1222 			memblock_set_node(start, this_end - start,
1223 					  &memblock.memory, nid);
1224 			if (memblock.memory.max != prev_max)
1225 				goto memblock_resized;
1226 			start = this_end;
1227 		}
1228 	}
1229 }
1230 
1231 static int __init grab_mlgroups(struct mdesc_handle *md)
1232 {
1233 	unsigned long paddr;
1234 	int count = 0;
1235 	u64 node;
1236 
1237 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1238 		count++;
1239 	if (!count)
1240 		return -ENOENT;
1241 
1242 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1243 				    SMP_CACHE_BYTES);
1244 	if (!paddr)
1245 		return -ENOMEM;
1246 
1247 	mlgroups = __va(paddr);
1248 	num_mlgroups = count;
1249 
1250 	count = 0;
1251 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1252 		struct mdesc_mlgroup *m = &mlgroups[count++];
1253 		const u64 *val;
1254 
1255 		m->node = node;
1256 
1257 		val = mdesc_get_property(md, node, "latency", NULL);
1258 		m->latency = *val;
1259 		val = mdesc_get_property(md, node, "address-match", NULL);
1260 		m->match = *val;
1261 		val = mdesc_get_property(md, node, "address-mask", NULL);
1262 		m->mask = *val;
1263 
1264 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1265 			"match[%llx] mask[%llx]\n",
1266 			count - 1, m->node, m->latency, m->match, m->mask);
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int __init grab_mblocks(struct mdesc_handle *md)
1273 {
1274 	unsigned long paddr;
1275 	int count = 0;
1276 	u64 node;
1277 
1278 	mdesc_for_each_node_by_name(md, node, "mblock")
1279 		count++;
1280 	if (!count)
1281 		return -ENOENT;
1282 
1283 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1284 				    SMP_CACHE_BYTES);
1285 	if (!paddr)
1286 		return -ENOMEM;
1287 
1288 	mblocks = __va(paddr);
1289 	num_mblocks = count;
1290 
1291 	count = 0;
1292 	mdesc_for_each_node_by_name(md, node, "mblock") {
1293 		struct mdesc_mblock *m = &mblocks[count++];
1294 		const u64 *val;
1295 
1296 		val = mdesc_get_property(md, node, "base", NULL);
1297 		m->base = *val;
1298 		val = mdesc_get_property(md, node, "size", NULL);
1299 		m->size = *val;
1300 		val = mdesc_get_property(md, node,
1301 					 "address-congruence-offset", NULL);
1302 
1303 		/* The address-congruence-offset property is optional.
1304 		 * Explicity zero it be identifty this.
1305 		 */
1306 		if (val)
1307 			m->offset = *val;
1308 		else
1309 			m->offset = 0UL;
1310 
1311 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1312 			count - 1, m->base, m->size, m->offset);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1319 					       u64 grp, cpumask_t *mask)
1320 {
1321 	u64 arc;
1322 
1323 	cpumask_clear(mask);
1324 
1325 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1326 		u64 target = mdesc_arc_target(md, arc);
1327 		const char *name = mdesc_node_name(md, target);
1328 		const u64 *id;
1329 
1330 		if (strcmp(name, "cpu"))
1331 			continue;
1332 		id = mdesc_get_property(md, target, "id", NULL);
1333 		if (*id < nr_cpu_ids)
1334 			cpumask_set_cpu(*id, mask);
1335 	}
1336 }
1337 
1338 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < num_mlgroups; i++) {
1343 		struct mdesc_mlgroup *m = &mlgroups[i];
1344 		if (m->node == node)
1345 			return m;
1346 	}
1347 	return NULL;
1348 }
1349 
1350 int __node_distance(int from, int to)
1351 {
1352 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1353 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1354 			from, to);
1355 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1356 	}
1357 	return numa_latency[from][to];
1358 }
1359 EXPORT_SYMBOL(__node_distance);
1360 
1361 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < MAX_NUMNODES; i++) {
1366 		struct node_mem_mask *n = &node_masks[i];
1367 
1368 		if ((grp->mask == n->mask) && (grp->match == n->match))
1369 			break;
1370 	}
1371 	return i;
1372 }
1373 
1374 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1375 						 u64 grp, int index)
1376 {
1377 	u64 arc;
1378 
1379 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1380 		int tnode;
1381 		u64 target = mdesc_arc_target(md, arc);
1382 		struct mdesc_mlgroup *m = find_mlgroup(target);
1383 
1384 		if (!m)
1385 			continue;
1386 		tnode = find_best_numa_node_for_mlgroup(m);
1387 		if (tnode == MAX_NUMNODES)
1388 			continue;
1389 		numa_latency[index][tnode] = m->latency;
1390 	}
1391 }
1392 
1393 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1394 				      int index)
1395 {
1396 	struct mdesc_mlgroup *candidate = NULL;
1397 	u64 arc, best_latency = ~(u64)0;
1398 	struct node_mem_mask *n;
1399 
1400 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1401 		u64 target = mdesc_arc_target(md, arc);
1402 		struct mdesc_mlgroup *m = find_mlgroup(target);
1403 		if (!m)
1404 			continue;
1405 		if (m->latency < best_latency) {
1406 			candidate = m;
1407 			best_latency = m->latency;
1408 		}
1409 	}
1410 	if (!candidate)
1411 		return -ENOENT;
1412 
1413 	if (num_node_masks != index) {
1414 		printk(KERN_ERR "Inconsistent NUMA state, "
1415 		       "index[%d] != num_node_masks[%d]\n",
1416 		       index, num_node_masks);
1417 		return -EINVAL;
1418 	}
1419 
1420 	n = &node_masks[num_node_masks++];
1421 
1422 	n->mask = candidate->mask;
1423 	n->match = candidate->match;
1424 
1425 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1426 		index, n->mask, n->match, candidate->latency);
1427 
1428 	return 0;
1429 }
1430 
1431 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1432 					 int index)
1433 {
1434 	cpumask_t mask;
1435 	int cpu;
1436 
1437 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1438 
1439 	for_each_cpu(cpu, &mask)
1440 		numa_cpu_lookup_table[cpu] = index;
1441 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1442 
1443 	if (numa_debug) {
1444 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1445 		for_each_cpu(cpu, &mask)
1446 			printk("%d ", cpu);
1447 		printk("]\n");
1448 	}
1449 
1450 	return numa_attach_mlgroup(md, grp, index);
1451 }
1452 
1453 static int __init numa_parse_mdesc(void)
1454 {
1455 	struct mdesc_handle *md = mdesc_grab();
1456 	int i, j, err, count;
1457 	u64 node;
1458 
1459 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1460 	if (node == MDESC_NODE_NULL) {
1461 		mdesc_release(md);
1462 		return -ENOENT;
1463 	}
1464 
1465 	err = grab_mblocks(md);
1466 	if (err < 0)
1467 		goto out;
1468 
1469 	err = grab_mlgroups(md);
1470 	if (err < 0)
1471 		goto out;
1472 
1473 	count = 0;
1474 	mdesc_for_each_node_by_name(md, node, "group") {
1475 		err = numa_parse_mdesc_group(md, node, count);
1476 		if (err < 0)
1477 			break;
1478 		count++;
1479 	}
1480 
1481 	count = 0;
1482 	mdesc_for_each_node_by_name(md, node, "group") {
1483 		find_numa_latencies_for_group(md, node, count);
1484 		count++;
1485 	}
1486 
1487 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1488 	for (i = 0; i < MAX_NUMNODES; i++) {
1489 		u64 self_latency = numa_latency[i][i];
1490 
1491 		for (j = 0; j < MAX_NUMNODES; j++) {
1492 			numa_latency[i][j] =
1493 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1494 				self_latency;
1495 		}
1496 	}
1497 
1498 	add_node_ranges();
1499 
1500 	for (i = 0; i < num_node_masks; i++) {
1501 		allocate_node_data(i);
1502 		node_set_online(i);
1503 	}
1504 
1505 	err = 0;
1506 out:
1507 	mdesc_release(md);
1508 	return err;
1509 }
1510 
1511 static int __init numa_parse_jbus(void)
1512 {
1513 	unsigned long cpu, index;
1514 
1515 	/* NUMA node id is encoded in bits 36 and higher, and there is
1516 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1517 	 */
1518 	index = 0;
1519 	for_each_present_cpu(cpu) {
1520 		numa_cpu_lookup_table[cpu] = index;
1521 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1522 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1523 		node_masks[index].match = cpu << 36UL;
1524 
1525 		index++;
1526 	}
1527 	num_node_masks = index;
1528 
1529 	add_node_ranges();
1530 
1531 	for (index = 0; index < num_node_masks; index++) {
1532 		allocate_node_data(index);
1533 		node_set_online(index);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static int __init numa_parse_sun4u(void)
1540 {
1541 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1542 		unsigned long ver;
1543 
1544 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1545 		if ((ver >> 32UL) == __JALAPENO_ID ||
1546 		    (ver >> 32UL) == __SERRANO_ID)
1547 			return numa_parse_jbus();
1548 	}
1549 	return -1;
1550 }
1551 
1552 static int __init bootmem_init_numa(void)
1553 {
1554 	int i, j;
1555 	int err = -1;
1556 
1557 	numadbg("bootmem_init_numa()\n");
1558 
1559 	/* Some sane defaults for numa latency values */
1560 	for (i = 0; i < MAX_NUMNODES; i++) {
1561 		for (j = 0; j < MAX_NUMNODES; j++)
1562 			numa_latency[i][j] = (i == j) ?
1563 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1564 	}
1565 
1566 	if (numa_enabled) {
1567 		if (tlb_type == hypervisor)
1568 			err = numa_parse_mdesc();
1569 		else
1570 			err = numa_parse_sun4u();
1571 	}
1572 	return err;
1573 }
1574 
1575 #else
1576 
1577 static int bootmem_init_numa(void)
1578 {
1579 	return -1;
1580 }
1581 
1582 #endif
1583 
1584 static void __init bootmem_init_nonnuma(void)
1585 {
1586 	unsigned long top_of_ram = memblock_end_of_DRAM();
1587 	unsigned long total_ram = memblock_phys_mem_size();
1588 
1589 	numadbg("bootmem_init_nonnuma()\n");
1590 
1591 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1592 	       top_of_ram, total_ram);
1593 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1594 	       (top_of_ram - total_ram) >> 20);
1595 
1596 	init_node_masks_nonnuma();
1597 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1598 	allocate_node_data(0);
1599 	node_set_online(0);
1600 }
1601 
1602 static unsigned long __init bootmem_init(unsigned long phys_base)
1603 {
1604 	unsigned long end_pfn;
1605 
1606 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1607 	max_pfn = max_low_pfn = end_pfn;
1608 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1609 
1610 	if (bootmem_init_numa() < 0)
1611 		bootmem_init_nonnuma();
1612 
1613 	/* Dump memblock with node info. */
1614 	memblock_dump_all();
1615 
1616 	/* XXX cpu notifier XXX */
1617 
1618 	sparse_init();
1619 
1620 	return end_pfn;
1621 }
1622 
1623 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1624 static int pall_ents __initdata;
1625 
1626 static unsigned long max_phys_bits = 40;
1627 
1628 bool kern_addr_valid(unsigned long addr)
1629 {
1630 	pgd_t *pgd;
1631 	p4d_t *p4d;
1632 	pud_t *pud;
1633 	pmd_t *pmd;
1634 	pte_t *pte;
1635 
1636 	if ((long)addr < 0L) {
1637 		unsigned long pa = __pa(addr);
1638 
1639 		if ((pa >> max_phys_bits) != 0UL)
1640 			return false;
1641 
1642 		return pfn_valid(pa >> PAGE_SHIFT);
1643 	}
1644 
1645 	if (addr >= (unsigned long) KERNBASE &&
1646 	    addr < (unsigned long)&_end)
1647 		return true;
1648 
1649 	pgd = pgd_offset_k(addr);
1650 	if (pgd_none(*pgd))
1651 		return false;
1652 
1653 	p4d = p4d_offset(pgd, addr);
1654 	if (p4d_none(*p4d))
1655 		return false;
1656 
1657 	pud = pud_offset(p4d, addr);
1658 	if (pud_none(*pud))
1659 		return false;
1660 
1661 	if (pud_leaf(*pud))
1662 		return pfn_valid(pud_pfn(*pud));
1663 
1664 	pmd = pmd_offset(pud, addr);
1665 	if (pmd_none(*pmd))
1666 		return false;
1667 
1668 	if (pmd_leaf(*pmd))
1669 		return pfn_valid(pmd_pfn(*pmd));
1670 
1671 	pte = pte_offset_kernel(pmd, addr);
1672 	if (pte_none(*pte))
1673 		return false;
1674 
1675 	return pfn_valid(pte_pfn(*pte));
1676 }
1677 
1678 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1679 					      unsigned long vend,
1680 					      pud_t *pud)
1681 {
1682 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1683 	u64 pte_val = vstart;
1684 
1685 	/* Each PUD is 8GB */
1686 	if ((vstart & mask16gb) ||
1687 	    (vend - vstart <= mask16gb)) {
1688 		pte_val ^= kern_linear_pte_xor[2];
1689 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1690 
1691 		return vstart + PUD_SIZE;
1692 	}
1693 
1694 	pte_val ^= kern_linear_pte_xor[3];
1695 	pte_val |= _PAGE_PUD_HUGE;
1696 
1697 	vend = vstart + mask16gb + 1UL;
1698 	while (vstart < vend) {
1699 		pud_val(*pud) = pte_val;
1700 
1701 		pte_val += PUD_SIZE;
1702 		vstart += PUD_SIZE;
1703 		pud++;
1704 	}
1705 	return vstart;
1706 }
1707 
1708 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1709 				   bool guard)
1710 {
1711 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1712 		return true;
1713 
1714 	return false;
1715 }
1716 
1717 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1718 					      unsigned long vend,
1719 					      pmd_t *pmd)
1720 {
1721 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1722 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1723 	u64 pte_val = vstart;
1724 
1725 	/* Each PMD is 8MB */
1726 	if ((vstart & mask256mb) ||
1727 	    (vend - vstart <= mask256mb)) {
1728 		pte_val ^= kern_linear_pte_xor[0];
1729 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1730 
1731 		return vstart + PMD_SIZE;
1732 	}
1733 
1734 	if ((vstart & mask2gb) ||
1735 	    (vend - vstart <= mask2gb)) {
1736 		pte_val ^= kern_linear_pte_xor[1];
1737 		pte_val |= _PAGE_PMD_HUGE;
1738 		vend = vstart + mask256mb + 1UL;
1739 	} else {
1740 		pte_val ^= kern_linear_pte_xor[2];
1741 		pte_val |= _PAGE_PMD_HUGE;
1742 		vend = vstart + mask2gb + 1UL;
1743 	}
1744 
1745 	while (vstart < vend) {
1746 		pmd_val(*pmd) = pte_val;
1747 
1748 		pte_val += PMD_SIZE;
1749 		vstart += PMD_SIZE;
1750 		pmd++;
1751 	}
1752 
1753 	return vstart;
1754 }
1755 
1756 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1757 				   bool guard)
1758 {
1759 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1760 		return true;
1761 
1762 	return false;
1763 }
1764 
1765 static unsigned long __ref kernel_map_range(unsigned long pstart,
1766 					    unsigned long pend, pgprot_t prot,
1767 					    bool use_huge)
1768 {
1769 	unsigned long vstart = PAGE_OFFSET + pstart;
1770 	unsigned long vend = PAGE_OFFSET + pend;
1771 	unsigned long alloc_bytes = 0UL;
1772 
1773 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1774 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1775 			    vstart, vend);
1776 		prom_halt();
1777 	}
1778 
1779 	while (vstart < vend) {
1780 		unsigned long this_end, paddr = __pa(vstart);
1781 		pgd_t *pgd = pgd_offset_k(vstart);
1782 		p4d_t *p4d;
1783 		pud_t *pud;
1784 		pmd_t *pmd;
1785 		pte_t *pte;
1786 
1787 		if (pgd_none(*pgd)) {
1788 			pud_t *new;
1789 
1790 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1791 						  PAGE_SIZE);
1792 			if (!new)
1793 				goto err_alloc;
1794 			alloc_bytes += PAGE_SIZE;
1795 			pgd_populate(&init_mm, pgd, new);
1796 		}
1797 
1798 		p4d = p4d_offset(pgd, vstart);
1799 		if (p4d_none(*p4d)) {
1800 			pud_t *new;
1801 
1802 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1803 						  PAGE_SIZE);
1804 			if (!new)
1805 				goto err_alloc;
1806 			alloc_bytes += PAGE_SIZE;
1807 			p4d_populate(&init_mm, p4d, new);
1808 		}
1809 
1810 		pud = pud_offset(p4d, vstart);
1811 		if (pud_none(*pud)) {
1812 			pmd_t *new;
1813 
1814 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1815 				vstart = kernel_map_hugepud(vstart, vend, pud);
1816 				continue;
1817 			}
1818 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1819 						  PAGE_SIZE);
1820 			if (!new)
1821 				goto err_alloc;
1822 			alloc_bytes += PAGE_SIZE;
1823 			pud_populate(&init_mm, pud, new);
1824 		}
1825 
1826 		pmd = pmd_offset(pud, vstart);
1827 		if (pmd_none(*pmd)) {
1828 			pte_t *new;
1829 
1830 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1831 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1832 				continue;
1833 			}
1834 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1835 						  PAGE_SIZE);
1836 			if (!new)
1837 				goto err_alloc;
1838 			alloc_bytes += PAGE_SIZE;
1839 			pmd_populate_kernel(&init_mm, pmd, new);
1840 		}
1841 
1842 		pte = pte_offset_kernel(pmd, vstart);
1843 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1844 		if (this_end > vend)
1845 			this_end = vend;
1846 
1847 		while (vstart < this_end) {
1848 			pte_val(*pte) = (paddr | pgprot_val(prot));
1849 
1850 			vstart += PAGE_SIZE;
1851 			paddr += PAGE_SIZE;
1852 			pte++;
1853 		}
1854 	}
1855 
1856 	return alloc_bytes;
1857 
1858 err_alloc:
1859 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1860 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1861 	return -ENOMEM;
1862 }
1863 
1864 static void __init flush_all_kernel_tsbs(void)
1865 {
1866 	int i;
1867 
1868 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1869 		struct tsb *ent = &swapper_tsb[i];
1870 
1871 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872 	}
1873 #ifndef CONFIG_DEBUG_PAGEALLOC
1874 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1875 		struct tsb *ent = &swapper_4m_tsb[i];
1876 
1877 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1878 	}
1879 #endif
1880 }
1881 
1882 extern unsigned int kvmap_linear_patch[1];
1883 
1884 static void __init kernel_physical_mapping_init(void)
1885 {
1886 	unsigned long i, mem_alloced = 0UL;
1887 	bool use_huge = true;
1888 
1889 #ifdef CONFIG_DEBUG_PAGEALLOC
1890 	use_huge = false;
1891 #endif
1892 	for (i = 0; i < pall_ents; i++) {
1893 		unsigned long phys_start, phys_end;
1894 
1895 		phys_start = pall[i].phys_addr;
1896 		phys_end = phys_start + pall[i].reg_size;
1897 
1898 		mem_alloced += kernel_map_range(phys_start, phys_end,
1899 						PAGE_KERNEL, use_huge);
1900 	}
1901 
1902 	printk("Allocated %ld bytes for kernel page tables.\n",
1903 	       mem_alloced);
1904 
1905 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1906 	flushi(&kvmap_linear_patch[0]);
1907 
1908 	flush_all_kernel_tsbs();
1909 
1910 	__flush_tlb_all();
1911 }
1912 
1913 #ifdef CONFIG_DEBUG_PAGEALLOC
1914 void __kernel_map_pages(struct page *page, int numpages, int enable)
1915 {
1916 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1917 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1918 
1919 	kernel_map_range(phys_start, phys_end,
1920 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1921 
1922 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1923 			       PAGE_OFFSET + phys_end);
1924 
1925 	/* we should perform an IPI and flush all tlbs,
1926 	 * but that can deadlock->flush only current cpu.
1927 	 */
1928 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1929 				 PAGE_OFFSET + phys_end);
1930 }
1931 #endif
1932 
1933 unsigned long __init find_ecache_flush_span(unsigned long size)
1934 {
1935 	int i;
1936 
1937 	for (i = 0; i < pavail_ents; i++) {
1938 		if (pavail[i].reg_size >= size)
1939 			return pavail[i].phys_addr;
1940 	}
1941 
1942 	return ~0UL;
1943 }
1944 
1945 unsigned long PAGE_OFFSET;
1946 EXPORT_SYMBOL(PAGE_OFFSET);
1947 
1948 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1949 EXPORT_SYMBOL(VMALLOC_END);
1950 
1951 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1952 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1953 
1954 static void __init setup_page_offset(void)
1955 {
1956 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1957 		/* Cheetah/Panther support a full 64-bit virtual
1958 		 * address, so we can use all that our page tables
1959 		 * support.
1960 		 */
1961 		sparc64_va_hole_top =    0xfff0000000000000UL;
1962 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1963 
1964 		max_phys_bits = 42;
1965 	} else if (tlb_type == hypervisor) {
1966 		switch (sun4v_chip_type) {
1967 		case SUN4V_CHIP_NIAGARA1:
1968 		case SUN4V_CHIP_NIAGARA2:
1969 			/* T1 and T2 support 48-bit virtual addresses.  */
1970 			sparc64_va_hole_top =    0xffff800000000000UL;
1971 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1972 
1973 			max_phys_bits = 39;
1974 			break;
1975 		case SUN4V_CHIP_NIAGARA3:
1976 			/* T3 supports 48-bit virtual addresses.  */
1977 			sparc64_va_hole_top =    0xffff800000000000UL;
1978 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1979 
1980 			max_phys_bits = 43;
1981 			break;
1982 		case SUN4V_CHIP_NIAGARA4:
1983 		case SUN4V_CHIP_NIAGARA5:
1984 		case SUN4V_CHIP_SPARC64X:
1985 		case SUN4V_CHIP_SPARC_M6:
1986 			/* T4 and later support 52-bit virtual addresses.  */
1987 			sparc64_va_hole_top =    0xfff8000000000000UL;
1988 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1989 			max_phys_bits = 47;
1990 			break;
1991 		case SUN4V_CHIP_SPARC_M7:
1992 		case SUN4V_CHIP_SPARC_SN:
1993 			/* M7 and later support 52-bit virtual addresses.  */
1994 			sparc64_va_hole_top =    0xfff8000000000000UL;
1995 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1996 			max_phys_bits = 49;
1997 			break;
1998 		case SUN4V_CHIP_SPARC_M8:
1999 		default:
2000 			/* M8 and later support 54-bit virtual addresses.
2001 			 * However, restricting M8 and above VA bits to 53
2002 			 * as 4-level page table cannot support more than
2003 			 * 53 VA bits.
2004 			 */
2005 			sparc64_va_hole_top =    0xfff0000000000000UL;
2006 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2007 			max_phys_bits = 51;
2008 			break;
2009 		}
2010 	}
2011 
2012 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2013 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2014 			    max_phys_bits);
2015 		prom_halt();
2016 	}
2017 
2018 	PAGE_OFFSET = sparc64_va_hole_top;
2019 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2020 		       (sparc64_va_hole_bottom >> 2));
2021 
2022 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2023 		PAGE_OFFSET, max_phys_bits);
2024 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2025 		VMALLOC_START, VMALLOC_END);
2026 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2027 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2028 }
2029 
2030 static void __init tsb_phys_patch(void)
2031 {
2032 	struct tsb_ldquad_phys_patch_entry *pquad;
2033 	struct tsb_phys_patch_entry *p;
2034 
2035 	pquad = &__tsb_ldquad_phys_patch;
2036 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2037 		unsigned long addr = pquad->addr;
2038 
2039 		if (tlb_type == hypervisor)
2040 			*(unsigned int *) addr = pquad->sun4v_insn;
2041 		else
2042 			*(unsigned int *) addr = pquad->sun4u_insn;
2043 		wmb();
2044 		__asm__ __volatile__("flush	%0"
2045 				     : /* no outputs */
2046 				     : "r" (addr));
2047 
2048 		pquad++;
2049 	}
2050 
2051 	p = &__tsb_phys_patch;
2052 	while (p < &__tsb_phys_patch_end) {
2053 		unsigned long addr = p->addr;
2054 
2055 		*(unsigned int *) addr = p->insn;
2056 		wmb();
2057 		__asm__ __volatile__("flush	%0"
2058 				     : /* no outputs */
2059 				     : "r" (addr));
2060 
2061 		p++;
2062 	}
2063 }
2064 
2065 /* Don't mark as init, we give this to the Hypervisor.  */
2066 #ifndef CONFIG_DEBUG_PAGEALLOC
2067 #define NUM_KTSB_DESCR	2
2068 #else
2069 #define NUM_KTSB_DESCR	1
2070 #endif
2071 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2072 
2073 /* The swapper TSBs are loaded with a base sequence of:
2074  *
2075  *	sethi	%uhi(SYMBOL), REG1
2076  *	sethi	%hi(SYMBOL), REG2
2077  *	or	REG1, %ulo(SYMBOL), REG1
2078  *	or	REG2, %lo(SYMBOL), REG2
2079  *	sllx	REG1, 32, REG1
2080  *	or	REG1, REG2, REG1
2081  *
2082  * When we use physical addressing for the TSB accesses, we patch the
2083  * first four instructions in the above sequence.
2084  */
2085 
2086 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2087 {
2088 	unsigned long high_bits, low_bits;
2089 
2090 	high_bits = (pa >> 32) & 0xffffffff;
2091 	low_bits = (pa >> 0) & 0xffffffff;
2092 
2093 	while (start < end) {
2094 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2095 
2096 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2097 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2098 
2099 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2100 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2101 
2102 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2103 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2104 
2105 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2106 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2107 
2108 		start++;
2109 	}
2110 }
2111 
2112 static void ktsb_phys_patch(void)
2113 {
2114 	extern unsigned int __swapper_tsb_phys_patch;
2115 	extern unsigned int __swapper_tsb_phys_patch_end;
2116 	unsigned long ktsb_pa;
2117 
2118 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2119 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2120 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2121 #ifndef CONFIG_DEBUG_PAGEALLOC
2122 	{
2123 	extern unsigned int __swapper_4m_tsb_phys_patch;
2124 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2125 	ktsb_pa = (kern_base +
2126 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2127 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2128 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2129 	}
2130 #endif
2131 }
2132 
2133 static void __init sun4v_ktsb_init(void)
2134 {
2135 	unsigned long ktsb_pa;
2136 
2137 	/* First KTSB for PAGE_SIZE mappings.  */
2138 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2139 
2140 	switch (PAGE_SIZE) {
2141 	case 8 * 1024:
2142 	default:
2143 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2144 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2145 		break;
2146 
2147 	case 64 * 1024:
2148 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2149 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2150 		break;
2151 
2152 	case 512 * 1024:
2153 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2154 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2155 		break;
2156 
2157 	case 4 * 1024 * 1024:
2158 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2159 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2160 		break;
2161 	}
2162 
2163 	ktsb_descr[0].assoc = 1;
2164 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2165 	ktsb_descr[0].ctx_idx = 0;
2166 	ktsb_descr[0].tsb_base = ktsb_pa;
2167 	ktsb_descr[0].resv = 0;
2168 
2169 #ifndef CONFIG_DEBUG_PAGEALLOC
2170 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2171 	ktsb_pa = (kern_base +
2172 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2173 
2174 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2175 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2176 				    HV_PGSZ_MASK_256MB |
2177 				    HV_PGSZ_MASK_2GB |
2178 				    HV_PGSZ_MASK_16GB) &
2179 				   cpu_pgsz_mask);
2180 	ktsb_descr[1].assoc = 1;
2181 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2182 	ktsb_descr[1].ctx_idx = 0;
2183 	ktsb_descr[1].tsb_base = ktsb_pa;
2184 	ktsb_descr[1].resv = 0;
2185 #endif
2186 }
2187 
2188 void sun4v_ktsb_register(void)
2189 {
2190 	unsigned long pa, ret;
2191 
2192 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2193 
2194 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2195 	if (ret != 0) {
2196 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2197 			    "errors with %lx\n", pa, ret);
2198 		prom_halt();
2199 	}
2200 }
2201 
2202 static void __init sun4u_linear_pte_xor_finalize(void)
2203 {
2204 #ifndef CONFIG_DEBUG_PAGEALLOC
2205 	/* This is where we would add Panther support for
2206 	 * 32MB and 256MB pages.
2207 	 */
2208 #endif
2209 }
2210 
2211 static void __init sun4v_linear_pte_xor_finalize(void)
2212 {
2213 	unsigned long pagecv_flag;
2214 
2215 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2216 	 * enables MCD error. Do not set bit 9 on M7 processor.
2217 	 */
2218 	switch (sun4v_chip_type) {
2219 	case SUN4V_CHIP_SPARC_M7:
2220 	case SUN4V_CHIP_SPARC_M8:
2221 	case SUN4V_CHIP_SPARC_SN:
2222 		pagecv_flag = 0x00;
2223 		break;
2224 	default:
2225 		pagecv_flag = _PAGE_CV_4V;
2226 		break;
2227 	}
2228 #ifndef CONFIG_DEBUG_PAGEALLOC
2229 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2230 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2231 			PAGE_OFFSET;
2232 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2233 					   _PAGE_P_4V | _PAGE_W_4V);
2234 	} else {
2235 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2236 	}
2237 
2238 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2239 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2240 			PAGE_OFFSET;
2241 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2242 					   _PAGE_P_4V | _PAGE_W_4V);
2243 	} else {
2244 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2245 	}
2246 
2247 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2248 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2249 			PAGE_OFFSET;
2250 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2251 					   _PAGE_P_4V | _PAGE_W_4V);
2252 	} else {
2253 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2254 	}
2255 #endif
2256 }
2257 
2258 /* paging_init() sets up the page tables */
2259 
2260 static unsigned long last_valid_pfn;
2261 
2262 static void sun4u_pgprot_init(void);
2263 static void sun4v_pgprot_init(void);
2264 
2265 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2266 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2267 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2268 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2269 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2270 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2271 
2272 /* We need to exclude reserved regions. This exclusion will include
2273  * vmlinux and initrd. To be more precise the initrd size could be used to
2274  * compute a new lower limit because it is freed later during initialization.
2275  */
2276 static void __init reduce_memory(phys_addr_t limit_ram)
2277 {
2278 	limit_ram += memblock_reserved_size();
2279 	memblock_enforce_memory_limit(limit_ram);
2280 }
2281 
2282 void __init paging_init(void)
2283 {
2284 	unsigned long end_pfn, shift, phys_base;
2285 	unsigned long real_end, i;
2286 
2287 	setup_page_offset();
2288 
2289 	/* These build time checkes make sure that the dcache_dirty_cpu()
2290 	 * folio->flags usage will work.
2291 	 *
2292 	 * When a page gets marked as dcache-dirty, we store the
2293 	 * cpu number starting at bit 32 in the folio->flags.  Also,
2294 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2295 	 * in 13-bit signed-immediate instruction fields.
2296 	 */
2297 
2298 	/*
2299 	 * Page flags must not reach into upper 32 bits that are used
2300 	 * for the cpu number
2301 	 */
2302 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2303 
2304 	/*
2305 	 * The bit fields placed in the high range must not reach below
2306 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2307 	 * at the 32 bit boundary.
2308 	 */
2309 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2310 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2311 
2312 	BUILD_BUG_ON(NR_CPUS > 4096);
2313 
2314 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2315 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2316 
2317 	/* Invalidate both kernel TSBs.  */
2318 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2319 #ifndef CONFIG_DEBUG_PAGEALLOC
2320 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2321 #endif
2322 
2323 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2324 	 * bit on M7 processor. This is a conflicting usage of the same
2325 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2326 	 * Detection error on all pages and this will lead to problems
2327 	 * later. Kernel does not run with MCD enabled and hence rest
2328 	 * of the required steps to fully configure memory corruption
2329 	 * detection are not taken. We need to ensure TTE.mcde is not
2330 	 * set on M7 processor. Compute the value of cacheability
2331 	 * flag for use later taking this into consideration.
2332 	 */
2333 	switch (sun4v_chip_type) {
2334 	case SUN4V_CHIP_SPARC_M7:
2335 	case SUN4V_CHIP_SPARC_M8:
2336 	case SUN4V_CHIP_SPARC_SN:
2337 		page_cache4v_flag = _PAGE_CP_4V;
2338 		break;
2339 	default:
2340 		page_cache4v_flag = _PAGE_CACHE_4V;
2341 		break;
2342 	}
2343 
2344 	if (tlb_type == hypervisor)
2345 		sun4v_pgprot_init();
2346 	else
2347 		sun4u_pgprot_init();
2348 
2349 	if (tlb_type == cheetah_plus ||
2350 	    tlb_type == hypervisor) {
2351 		tsb_phys_patch();
2352 		ktsb_phys_patch();
2353 	}
2354 
2355 	if (tlb_type == hypervisor)
2356 		sun4v_patch_tlb_handlers();
2357 
2358 	/* Find available physical memory...
2359 	 *
2360 	 * Read it twice in order to work around a bug in openfirmware.
2361 	 * The call to grab this table itself can cause openfirmware to
2362 	 * allocate memory, which in turn can take away some space from
2363 	 * the list of available memory.  Reading it twice makes sure
2364 	 * we really do get the final value.
2365 	 */
2366 	read_obp_translations();
2367 	read_obp_memory("reg", &pall[0], &pall_ents);
2368 	read_obp_memory("available", &pavail[0], &pavail_ents);
2369 	read_obp_memory("available", &pavail[0], &pavail_ents);
2370 
2371 	phys_base = 0xffffffffffffffffUL;
2372 	for (i = 0; i < pavail_ents; i++) {
2373 		phys_base = min(phys_base, pavail[i].phys_addr);
2374 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2375 	}
2376 
2377 	memblock_reserve(kern_base, kern_size);
2378 
2379 	find_ramdisk(phys_base);
2380 
2381 	if (cmdline_memory_size)
2382 		reduce_memory(cmdline_memory_size);
2383 
2384 	memblock_allow_resize();
2385 	memblock_dump_all();
2386 
2387 	set_bit(0, mmu_context_bmap);
2388 
2389 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2390 
2391 	real_end = (unsigned long)_end;
2392 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2393 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2394 	       num_kernel_image_mappings);
2395 
2396 	/* Set kernel pgd to upper alias so physical page computations
2397 	 * work.
2398 	 */
2399 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2400 
2401 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2402 
2403 	inherit_prom_mappings();
2404 
2405 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2406 	setup_tba();
2407 
2408 	__flush_tlb_all();
2409 
2410 	prom_build_devicetree();
2411 	of_populate_present_mask();
2412 #ifndef CONFIG_SMP
2413 	of_fill_in_cpu_data();
2414 #endif
2415 
2416 	if (tlb_type == hypervisor) {
2417 		sun4v_mdesc_init();
2418 		mdesc_populate_present_mask(cpu_all_mask);
2419 #ifndef CONFIG_SMP
2420 		mdesc_fill_in_cpu_data(cpu_all_mask);
2421 #endif
2422 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2423 
2424 		sun4v_linear_pte_xor_finalize();
2425 
2426 		sun4v_ktsb_init();
2427 		sun4v_ktsb_register();
2428 	} else {
2429 		unsigned long impl, ver;
2430 
2431 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2432 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2433 
2434 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2435 		impl = ((ver >> 32) & 0xffff);
2436 		if (impl == PANTHER_IMPL)
2437 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2438 					  HV_PGSZ_MASK_256MB);
2439 
2440 		sun4u_linear_pte_xor_finalize();
2441 	}
2442 
2443 	/* Flush the TLBs and the 4M TSB so that the updated linear
2444 	 * pte XOR settings are realized for all mappings.
2445 	 */
2446 	__flush_tlb_all();
2447 #ifndef CONFIG_DEBUG_PAGEALLOC
2448 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2449 #endif
2450 	__flush_tlb_all();
2451 
2452 	/* Setup bootmem... */
2453 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2454 
2455 	kernel_physical_mapping_init();
2456 
2457 	{
2458 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2459 
2460 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2461 
2462 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2463 
2464 		free_area_init(max_zone_pfns);
2465 	}
2466 
2467 	printk("Booting Linux...\n");
2468 }
2469 
2470 int page_in_phys_avail(unsigned long paddr)
2471 {
2472 	int i;
2473 
2474 	paddr &= PAGE_MASK;
2475 
2476 	for (i = 0; i < pavail_ents; i++) {
2477 		unsigned long start, end;
2478 
2479 		start = pavail[i].phys_addr;
2480 		end = start + pavail[i].reg_size;
2481 
2482 		if (paddr >= start && paddr < end)
2483 			return 1;
2484 	}
2485 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2486 		return 1;
2487 #ifdef CONFIG_BLK_DEV_INITRD
2488 	if (paddr >= __pa(initrd_start) &&
2489 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2490 		return 1;
2491 #endif
2492 
2493 	return 0;
2494 }
2495 
2496 static void __init register_page_bootmem_info(void)
2497 {
2498 #ifdef CONFIG_NUMA
2499 	int i;
2500 
2501 	for_each_online_node(i)
2502 		if (NODE_DATA(i)->node_spanned_pages)
2503 			register_page_bootmem_info_node(NODE_DATA(i));
2504 #endif
2505 }
2506 void __init mem_init(void)
2507 {
2508 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2509 
2510 	memblock_free_all();
2511 
2512 	/*
2513 	 * Must be done after boot memory is put on freelist, because here we
2514 	 * might set fields in deferred struct pages that have not yet been
2515 	 * initialized, and memblock_free_all() initializes all the reserved
2516 	 * deferred pages for us.
2517 	 */
2518 	register_page_bootmem_info();
2519 
2520 	/*
2521 	 * Set up the zero page, mark it reserved, so that page count
2522 	 * is not manipulated when freeing the page from user ptes.
2523 	 */
2524 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2525 	if (mem_map_zero == NULL) {
2526 		prom_printf("paging_init: Cannot alloc zero page.\n");
2527 		prom_halt();
2528 	}
2529 	mark_page_reserved(mem_map_zero);
2530 
2531 
2532 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2533 		cheetah_ecache_flush_init();
2534 }
2535 
2536 void free_initmem(void)
2537 {
2538 	unsigned long addr, initend;
2539 	int do_free = 1;
2540 
2541 	/* If the physical memory maps were trimmed by kernel command
2542 	 * line options, don't even try freeing this initmem stuff up.
2543 	 * The kernel image could have been in the trimmed out region
2544 	 * and if so the freeing below will free invalid page structs.
2545 	 */
2546 	if (cmdline_memory_size)
2547 		do_free = 0;
2548 
2549 	/*
2550 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2551 	 */
2552 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2553 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2554 	for (; addr < initend; addr += PAGE_SIZE) {
2555 		unsigned long page;
2556 
2557 		page = (addr +
2558 			((unsigned long) __va(kern_base)) -
2559 			((unsigned long) KERNBASE));
2560 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2561 
2562 		if (do_free)
2563 			free_reserved_page(virt_to_page(page));
2564 	}
2565 }
2566 
2567 pgprot_t PAGE_KERNEL __read_mostly;
2568 EXPORT_SYMBOL(PAGE_KERNEL);
2569 
2570 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2571 pgprot_t PAGE_COPY __read_mostly;
2572 
2573 pgprot_t PAGE_SHARED __read_mostly;
2574 EXPORT_SYMBOL(PAGE_SHARED);
2575 
2576 unsigned long pg_iobits __read_mostly;
2577 
2578 unsigned long _PAGE_IE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_IE);
2580 
2581 unsigned long _PAGE_E __read_mostly;
2582 EXPORT_SYMBOL(_PAGE_E);
2583 
2584 unsigned long _PAGE_CACHE __read_mostly;
2585 EXPORT_SYMBOL(_PAGE_CACHE);
2586 
2587 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2588 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2589 			       int node, struct vmem_altmap *altmap)
2590 {
2591 	unsigned long pte_base;
2592 
2593 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2594 		    _PAGE_CP_4U | _PAGE_CV_4U |
2595 		    _PAGE_P_4U | _PAGE_W_4U);
2596 	if (tlb_type == hypervisor)
2597 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2598 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2599 
2600 	pte_base |= _PAGE_PMD_HUGE;
2601 
2602 	vstart = vstart & PMD_MASK;
2603 	vend = ALIGN(vend, PMD_SIZE);
2604 	for (; vstart < vend; vstart += PMD_SIZE) {
2605 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2606 		unsigned long pte;
2607 		p4d_t *p4d;
2608 		pud_t *pud;
2609 		pmd_t *pmd;
2610 
2611 		if (!pgd)
2612 			return -ENOMEM;
2613 
2614 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2615 		if (!p4d)
2616 			return -ENOMEM;
2617 
2618 		pud = vmemmap_pud_populate(p4d, vstart, node);
2619 		if (!pud)
2620 			return -ENOMEM;
2621 
2622 		pmd = pmd_offset(pud, vstart);
2623 		pte = pmd_val(*pmd);
2624 		if (!(pte & _PAGE_VALID)) {
2625 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2626 
2627 			if (!block)
2628 				return -ENOMEM;
2629 
2630 			pmd_val(*pmd) = pte_base | __pa(block);
2631 		}
2632 	}
2633 
2634 	return 0;
2635 }
2636 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2637 
2638 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2639 static pgprot_t protection_map[16] __ro_after_init;
2640 
2641 static void prot_init_common(unsigned long page_none,
2642 			     unsigned long page_shared,
2643 			     unsigned long page_copy,
2644 			     unsigned long page_readonly,
2645 			     unsigned long page_exec_bit)
2646 {
2647 	PAGE_COPY = __pgprot(page_copy);
2648 	PAGE_SHARED = __pgprot(page_shared);
2649 
2650 	protection_map[0x0] = __pgprot(page_none);
2651 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2652 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2653 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2654 	protection_map[0x4] = __pgprot(page_readonly);
2655 	protection_map[0x5] = __pgprot(page_readonly);
2656 	protection_map[0x6] = __pgprot(page_copy);
2657 	protection_map[0x7] = __pgprot(page_copy);
2658 	protection_map[0x8] = __pgprot(page_none);
2659 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2660 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2661 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2662 	protection_map[0xc] = __pgprot(page_readonly);
2663 	protection_map[0xd] = __pgprot(page_readonly);
2664 	protection_map[0xe] = __pgprot(page_shared);
2665 	protection_map[0xf] = __pgprot(page_shared);
2666 }
2667 
2668 static void __init sun4u_pgprot_init(void)
2669 {
2670 	unsigned long page_none, page_shared, page_copy, page_readonly;
2671 	unsigned long page_exec_bit;
2672 	int i;
2673 
2674 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2675 				_PAGE_CACHE_4U | _PAGE_P_4U |
2676 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2677 				_PAGE_EXEC_4U);
2678 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2679 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2680 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2681 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2682 
2683 	_PAGE_IE = _PAGE_IE_4U;
2684 	_PAGE_E = _PAGE_E_4U;
2685 	_PAGE_CACHE = _PAGE_CACHE_4U;
2686 
2687 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2688 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2689 
2690 #ifdef CONFIG_DEBUG_PAGEALLOC
2691 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2692 #else
2693 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2694 		PAGE_OFFSET;
2695 #endif
2696 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2697 				   _PAGE_P_4U | _PAGE_W_4U);
2698 
2699 	for (i = 1; i < 4; i++)
2700 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2701 
2702 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2703 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2704 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2705 
2706 
2707 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2708 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2710 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2711 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2712 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2713 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2714 
2715 	page_exec_bit = _PAGE_EXEC_4U;
2716 
2717 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2718 			 page_exec_bit);
2719 }
2720 
2721 static void __init sun4v_pgprot_init(void)
2722 {
2723 	unsigned long page_none, page_shared, page_copy, page_readonly;
2724 	unsigned long page_exec_bit;
2725 	int i;
2726 
2727 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2728 				page_cache4v_flag | _PAGE_P_4V |
2729 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2730 				_PAGE_EXEC_4V);
2731 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2732 
2733 	_PAGE_IE = _PAGE_IE_4V;
2734 	_PAGE_E = _PAGE_E_4V;
2735 	_PAGE_CACHE = page_cache4v_flag;
2736 
2737 #ifdef CONFIG_DEBUG_PAGEALLOC
2738 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2739 #else
2740 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2741 		PAGE_OFFSET;
2742 #endif
2743 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2744 				   _PAGE_W_4V);
2745 
2746 	for (i = 1; i < 4; i++)
2747 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2748 
2749 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2750 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2751 
2752 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2753 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2754 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2755 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2756 
2757 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2758 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2760 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2761 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2762 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2763 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2764 
2765 	page_exec_bit = _PAGE_EXEC_4V;
2766 
2767 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2768 			 page_exec_bit);
2769 }
2770 
2771 unsigned long pte_sz_bits(unsigned long sz)
2772 {
2773 	if (tlb_type == hypervisor) {
2774 		switch (sz) {
2775 		case 8 * 1024:
2776 		default:
2777 			return _PAGE_SZ8K_4V;
2778 		case 64 * 1024:
2779 			return _PAGE_SZ64K_4V;
2780 		case 512 * 1024:
2781 			return _PAGE_SZ512K_4V;
2782 		case 4 * 1024 * 1024:
2783 			return _PAGE_SZ4MB_4V;
2784 		}
2785 	} else {
2786 		switch (sz) {
2787 		case 8 * 1024:
2788 		default:
2789 			return _PAGE_SZ8K_4U;
2790 		case 64 * 1024:
2791 			return _PAGE_SZ64K_4U;
2792 		case 512 * 1024:
2793 			return _PAGE_SZ512K_4U;
2794 		case 4 * 1024 * 1024:
2795 			return _PAGE_SZ4MB_4U;
2796 		}
2797 	}
2798 }
2799 
2800 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2801 {
2802 	pte_t pte;
2803 
2804 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2805 	pte_val(pte) |= (((unsigned long)space) << 32);
2806 	pte_val(pte) |= pte_sz_bits(page_size);
2807 
2808 	return pte;
2809 }
2810 
2811 static unsigned long kern_large_tte(unsigned long paddr)
2812 {
2813 	unsigned long val;
2814 
2815 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2816 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2817 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2818 	if (tlb_type == hypervisor)
2819 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2820 		       page_cache4v_flag | _PAGE_P_4V |
2821 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2822 
2823 	return val | paddr;
2824 }
2825 
2826 /* If not locked, zap it. */
2827 void __flush_tlb_all(void)
2828 {
2829 	unsigned long pstate;
2830 	int i;
2831 
2832 	__asm__ __volatile__("flushw\n\t"
2833 			     "rdpr	%%pstate, %0\n\t"
2834 			     "wrpr	%0, %1, %%pstate"
2835 			     : "=r" (pstate)
2836 			     : "i" (PSTATE_IE));
2837 	if (tlb_type == hypervisor) {
2838 		sun4v_mmu_demap_all();
2839 	} else if (tlb_type == spitfire) {
2840 		for (i = 0; i < 64; i++) {
2841 			/* Spitfire Errata #32 workaround */
2842 			/* NOTE: Always runs on spitfire, so no
2843 			 *       cheetah+ page size encodings.
2844 			 */
2845 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2846 					     "flush	%%g6"
2847 					     : /* No outputs */
2848 					     : "r" (0),
2849 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2850 
2851 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2852 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2853 						     "membar #Sync"
2854 						     : /* no outputs */
2855 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2856 				spitfire_put_dtlb_data(i, 0x0UL);
2857 			}
2858 
2859 			/* Spitfire Errata #32 workaround */
2860 			/* NOTE: Always runs on spitfire, so no
2861 			 *       cheetah+ page size encodings.
2862 			 */
2863 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2864 					     "flush	%%g6"
2865 					     : /* No outputs */
2866 					     : "r" (0),
2867 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2868 
2869 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2870 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2871 						     "membar #Sync"
2872 						     : /* no outputs */
2873 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2874 				spitfire_put_itlb_data(i, 0x0UL);
2875 			}
2876 		}
2877 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2878 		cheetah_flush_dtlb_all();
2879 		cheetah_flush_itlb_all();
2880 	}
2881 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2882 			     : : "r" (pstate));
2883 }
2884 
2885 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2886 {
2887 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2888 	pte_t *pte = NULL;
2889 
2890 	if (page)
2891 		pte = (pte_t *) page_address(page);
2892 
2893 	return pte;
2894 }
2895 
2896 pgtable_t pte_alloc_one(struct mm_struct *mm)
2897 {
2898 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0);
2899 
2900 	if (!ptdesc)
2901 		return NULL;
2902 	if (!pagetable_pte_ctor(ptdesc)) {
2903 		pagetable_free(ptdesc);
2904 		return NULL;
2905 	}
2906 	return ptdesc_address(ptdesc);
2907 }
2908 
2909 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2910 {
2911 	free_page((unsigned long)pte);
2912 }
2913 
2914 static void __pte_free(pgtable_t pte)
2915 {
2916 	struct ptdesc *ptdesc = virt_to_ptdesc(pte);
2917 
2918 	pagetable_pte_dtor(ptdesc);
2919 	pagetable_free(ptdesc);
2920 }
2921 
2922 void pte_free(struct mm_struct *mm, pgtable_t pte)
2923 {
2924 	__pte_free(pte);
2925 }
2926 
2927 void pgtable_free(void *table, bool is_page)
2928 {
2929 	if (is_page)
2930 		__pte_free(table);
2931 	else
2932 		kmem_cache_free(pgtable_cache, table);
2933 }
2934 
2935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2936 static void pte_free_now(struct rcu_head *head)
2937 {
2938 	struct page *page;
2939 
2940 	page = container_of(head, struct page, rcu_head);
2941 	__pte_free((pgtable_t)page_address(page));
2942 }
2943 
2944 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
2945 {
2946 	struct page *page;
2947 
2948 	page = virt_to_page(pgtable);
2949 	call_rcu(&page->rcu_head, pte_free_now);
2950 }
2951 
2952 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2953 			  pmd_t *pmd)
2954 {
2955 	unsigned long pte, flags;
2956 	struct mm_struct *mm;
2957 	pmd_t entry = *pmd;
2958 
2959 	if (!pmd_leaf(entry) || !pmd_young(entry))
2960 		return;
2961 
2962 	pte = pmd_val(entry);
2963 
2964 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2965 	if (!(pte & _PAGE_VALID))
2966 		return;
2967 
2968 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2969 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2970 
2971 	mm = vma->vm_mm;
2972 
2973 	spin_lock_irqsave(&mm->context.lock, flags);
2974 
2975 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2976 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2977 					addr, pte);
2978 
2979 	spin_unlock_irqrestore(&mm->context.lock, flags);
2980 }
2981 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2982 
2983 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2984 static void context_reload(void *__data)
2985 {
2986 	struct mm_struct *mm = __data;
2987 
2988 	if (mm == current->mm)
2989 		load_secondary_context(mm);
2990 }
2991 
2992 void hugetlb_setup(struct pt_regs *regs)
2993 {
2994 	struct mm_struct *mm = current->mm;
2995 	struct tsb_config *tp;
2996 
2997 	if (faulthandler_disabled() || !mm) {
2998 		const struct exception_table_entry *entry;
2999 
3000 		entry = search_exception_tables(regs->tpc);
3001 		if (entry) {
3002 			regs->tpc = entry->fixup;
3003 			regs->tnpc = regs->tpc + 4;
3004 			return;
3005 		}
3006 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3007 		die_if_kernel("HugeTSB in atomic", regs);
3008 	}
3009 
3010 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3011 	if (likely(tp->tsb == NULL))
3012 		tsb_grow(mm, MM_TSB_HUGE, 0);
3013 
3014 	tsb_context_switch(mm);
3015 	smp_tsb_sync(mm);
3016 
3017 	/* On UltraSPARC-III+ and later, configure the second half of
3018 	 * the Data-TLB for huge pages.
3019 	 */
3020 	if (tlb_type == cheetah_plus) {
3021 		bool need_context_reload = false;
3022 		unsigned long ctx;
3023 
3024 		spin_lock_irq(&ctx_alloc_lock);
3025 		ctx = mm->context.sparc64_ctx_val;
3026 		ctx &= ~CTX_PGSZ_MASK;
3027 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3028 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3029 
3030 		if (ctx != mm->context.sparc64_ctx_val) {
3031 			/* When changing the page size fields, we
3032 			 * must perform a context flush so that no
3033 			 * stale entries match.  This flush must
3034 			 * occur with the original context register
3035 			 * settings.
3036 			 */
3037 			do_flush_tlb_mm(mm);
3038 
3039 			/* Reload the context register of all processors
3040 			 * also executing in this address space.
3041 			 */
3042 			mm->context.sparc64_ctx_val = ctx;
3043 			need_context_reload = true;
3044 		}
3045 		spin_unlock_irq(&ctx_alloc_lock);
3046 
3047 		if (need_context_reload)
3048 			on_each_cpu(context_reload, mm, 0);
3049 	}
3050 }
3051 #endif
3052 
3053 static struct resource code_resource = {
3054 	.name	= "Kernel code",
3055 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3056 };
3057 
3058 static struct resource data_resource = {
3059 	.name	= "Kernel data",
3060 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3061 };
3062 
3063 static struct resource bss_resource = {
3064 	.name	= "Kernel bss",
3065 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3066 };
3067 
3068 static inline resource_size_t compute_kern_paddr(void *addr)
3069 {
3070 	return (resource_size_t) (addr - KERNBASE + kern_base);
3071 }
3072 
3073 static void __init kernel_lds_init(void)
3074 {
3075 	code_resource.start = compute_kern_paddr(_text);
3076 	code_resource.end   = compute_kern_paddr(_etext - 1);
3077 	data_resource.start = compute_kern_paddr(_etext);
3078 	data_resource.end   = compute_kern_paddr(_edata - 1);
3079 	bss_resource.start  = compute_kern_paddr(__bss_start);
3080 	bss_resource.end    = compute_kern_paddr(_end - 1);
3081 }
3082 
3083 static int __init report_memory(void)
3084 {
3085 	int i;
3086 	struct resource *res;
3087 
3088 	kernel_lds_init();
3089 
3090 	for (i = 0; i < pavail_ents; i++) {
3091 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3092 
3093 		if (!res) {
3094 			pr_warn("Failed to allocate source.\n");
3095 			break;
3096 		}
3097 
3098 		res->name = "System RAM";
3099 		res->start = pavail[i].phys_addr;
3100 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3101 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3102 
3103 		if (insert_resource(&iomem_resource, res) < 0) {
3104 			pr_warn("Resource insertion failed.\n");
3105 			break;
3106 		}
3107 
3108 		insert_resource(res, &code_resource);
3109 		insert_resource(res, &data_resource);
3110 		insert_resource(res, &bss_resource);
3111 	}
3112 
3113 	return 0;
3114 }
3115 arch_initcall(report_memory);
3116 
3117 #ifdef CONFIG_SMP
3118 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3119 #else
3120 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3121 #endif
3122 
3123 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3124 {
3125 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3126 		if (start < LOW_OBP_ADDRESS) {
3127 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3128 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3129 		}
3130 		if (end > HI_OBP_ADDRESS) {
3131 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3132 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3133 		}
3134 	} else {
3135 		flush_tsb_kernel_range(start, end);
3136 		do_flush_tlb_kernel_range(start, end);
3137 	}
3138 }
3139 
3140 void copy_user_highpage(struct page *to, struct page *from,
3141 	unsigned long vaddr, struct vm_area_struct *vma)
3142 {
3143 	char *vfrom, *vto;
3144 
3145 	vfrom = kmap_atomic(from);
3146 	vto = kmap_atomic(to);
3147 	copy_user_page(vto, vfrom, vaddr, to);
3148 	kunmap_atomic(vto);
3149 	kunmap_atomic(vfrom);
3150 
3151 	/* If this page has ADI enabled, copy over any ADI tags
3152 	 * as well
3153 	 */
3154 	if (vma->vm_flags & VM_SPARC_ADI) {
3155 		unsigned long pfrom, pto, i, adi_tag;
3156 
3157 		pfrom = page_to_phys(from);
3158 		pto = page_to_phys(to);
3159 
3160 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3161 			asm volatile("ldxa [%1] %2, %0\n\t"
3162 					: "=r" (adi_tag)
3163 					:  "r" (i), "i" (ASI_MCD_REAL));
3164 			asm volatile("stxa %0, [%1] %2\n\t"
3165 					:
3166 					: "r" (adi_tag), "r" (pto),
3167 					  "i" (ASI_MCD_REAL));
3168 			pto += adi_blksize();
3169 		}
3170 		asm volatile("membar #Sync\n\t");
3171 	}
3172 }
3173 EXPORT_SYMBOL(copy_user_highpage);
3174 
3175 void copy_highpage(struct page *to, struct page *from)
3176 {
3177 	char *vfrom, *vto;
3178 
3179 	vfrom = kmap_atomic(from);
3180 	vto = kmap_atomic(to);
3181 	copy_page(vto, vfrom);
3182 	kunmap_atomic(vto);
3183 	kunmap_atomic(vfrom);
3184 
3185 	/* If this platform is ADI enabled, copy any ADI tags
3186 	 * as well
3187 	 */
3188 	if (adi_capable()) {
3189 		unsigned long pfrom, pto, i, adi_tag;
3190 
3191 		pfrom = page_to_phys(from);
3192 		pto = page_to_phys(to);
3193 
3194 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3195 			asm volatile("ldxa [%1] %2, %0\n\t"
3196 					: "=r" (adi_tag)
3197 					:  "r" (i), "i" (ASI_MCD_REAL));
3198 			asm volatile("stxa %0, [%1] %2\n\t"
3199 					:
3200 					: "r" (adi_tag), "r" (pto),
3201 					  "i" (ASI_MCD_REAL));
3202 			pto += adi_blksize();
3203 		}
3204 		asm volatile("membar #Sync\n\t");
3205 	}
3206 }
3207 EXPORT_SYMBOL(copy_highpage);
3208 
3209 pgprot_t vm_get_page_prot(unsigned long vm_flags)
3210 {
3211 	unsigned long prot = pgprot_val(protection_map[vm_flags &
3212 					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3213 
3214 	if (vm_flags & VM_SPARC_ADI)
3215 		prot |= _PAGE_MCD_4V;
3216 
3217 	return __pgprot(prot);
3218 }
3219 EXPORT_SYMBOL(vm_get_page_prot);
3220