1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/init.c 4 * 5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 #include <linux/extable.h> 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/string.h> 13 #include <linux/init.h> 14 #include <linux/memblock.h> 15 #include <linux/mm.h> 16 #include <linux/hugetlb.h> 17 #include <linux/initrd.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/poison.h> 21 #include <linux/fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kprobes.h> 24 #include <linux/cache.h> 25 #include <linux/sort.h> 26 #include <linux/ioport.h> 27 #include <linux/percpu.h> 28 #include <linux/mmzone.h> 29 #include <linux/gfp.h> 30 #include <linux/bootmem_info.h> 31 32 #include <asm/head.h> 33 #include <asm/page.h> 34 #include <asm/pgalloc.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <linux/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/setup.h> 52 #include <asm/irq.h> 53 54 #include "init_64.h" 55 56 unsigned long kern_linear_pte_xor[4] __read_mostly; 57 static unsigned long page_cache4v_flag; 58 59 /* A bitmap, two bits for every 256MB of physical memory. These two 60 * bits determine what page size we use for kernel linear 61 * translations. They form an index into kern_linear_pte_xor[]. The 62 * value in the indexed slot is XOR'd with the TLB miss virtual 63 * address to form the resulting TTE. The mapping is: 64 * 65 * 0 ==> 4MB 66 * 1 ==> 256MB 67 * 2 ==> 2GB 68 * 3 ==> 16GB 69 * 70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 71 * support 2GB pages, and hopefully future cpus will support the 16GB 72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 73 * if these larger page sizes are not supported by the cpu. 74 * 75 * It would be nice to determine this from the machine description 76 * 'cpu' properties, but we need to have this table setup before the 77 * MDESC is initialized. 78 */ 79 80 #ifndef CONFIG_DEBUG_PAGEALLOC 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 82 * Space is allocated for this right after the trap table in 83 * arch/sparc64/kernel/head.S 84 */ 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 86 #endif 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 88 89 static unsigned long cpu_pgsz_mask; 90 91 #define MAX_BANKS 1024 92 93 static struct linux_prom64_registers pavail[MAX_BANKS]; 94 static int pavail_ents; 95 96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; 97 98 static int cmp_p64(const void *a, const void *b) 99 { 100 const struct linux_prom64_registers *x = a, *y = b; 101 102 if (x->phys_addr > y->phys_addr) 103 return 1; 104 if (x->phys_addr < y->phys_addr) 105 return -1; 106 return 0; 107 } 108 109 static void __init read_obp_memory(const char *property, 110 struct linux_prom64_registers *regs, 111 int *num_ents) 112 { 113 phandle node = prom_finddevice("/memory"); 114 int prop_size = prom_getproplen(node, property); 115 int ents, ret, i; 116 117 ents = prop_size / sizeof(struct linux_prom64_registers); 118 if (ents > MAX_BANKS) { 119 prom_printf("The machine has more %s property entries than " 120 "this kernel can support (%d).\n", 121 property, MAX_BANKS); 122 prom_halt(); 123 } 124 125 ret = prom_getproperty(node, property, (char *) regs, prop_size); 126 if (ret == -1) { 127 prom_printf("Couldn't get %s property from /memory.\n", 128 property); 129 prom_halt(); 130 } 131 132 /* Sanitize what we got from the firmware, by page aligning 133 * everything. 134 */ 135 for (i = 0; i < ents; i++) { 136 unsigned long base, size; 137 138 base = regs[i].phys_addr; 139 size = regs[i].reg_size; 140 141 size &= PAGE_MASK; 142 if (base & ~PAGE_MASK) { 143 unsigned long new_base = PAGE_ALIGN(base); 144 145 size -= new_base - base; 146 if ((long) size < 0L) 147 size = 0UL; 148 base = new_base; 149 } 150 if (size == 0UL) { 151 /* If it is empty, simply get rid of it. 152 * This simplifies the logic of the other 153 * functions that process these arrays. 154 */ 155 memmove(®s[i], ®s[i + 1], 156 (ents - i - 1) * sizeof(regs[0])); 157 i--; 158 ents--; 159 continue; 160 } 161 regs[i].phys_addr = base; 162 regs[i].reg_size = size; 163 } 164 165 *num_ents = ents; 166 167 sort(regs, ents, sizeof(struct linux_prom64_registers), 168 cmp_p64, NULL); 169 } 170 171 /* Kernel physical address base and size in bytes. */ 172 unsigned long kern_base __read_mostly; 173 unsigned long kern_size __read_mostly; 174 175 /* Initial ramdisk setup */ 176 extern unsigned long sparc_ramdisk_image64; 177 extern unsigned int sparc_ramdisk_image; 178 extern unsigned int sparc_ramdisk_size; 179 180 struct page *mem_map_zero __read_mostly; 181 EXPORT_SYMBOL(mem_map_zero); 182 183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 184 185 unsigned long sparc64_kern_pri_context __read_mostly; 186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 187 unsigned long sparc64_kern_sec_context __read_mostly; 188 189 int num_kernel_image_mappings; 190 191 #ifdef CONFIG_DEBUG_DCFLUSH 192 atomic_t dcpage_flushes = ATOMIC_INIT(0); 193 #ifdef CONFIG_SMP 194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 195 #endif 196 #endif 197 198 inline void flush_dcache_folio_impl(struct folio *folio) 199 { 200 unsigned int i, nr = folio_nr_pages(folio); 201 202 BUG_ON(tlb_type == hypervisor); 203 #ifdef CONFIG_DEBUG_DCFLUSH 204 atomic_inc(&dcpage_flushes); 205 #endif 206 207 #ifdef DCACHE_ALIASING_POSSIBLE 208 for (i = 0; i < nr; i++) 209 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE, 210 ((tlb_type == spitfire) && 211 folio_flush_mapping(folio) != NULL)); 212 #else 213 if (folio_flush_mapping(folio) != NULL && 214 tlb_type == spitfire) { 215 for (i = 0; i < nr; i++) 216 __flush_icache_page((pfn + i) * PAGE_SIZE); 217 } 218 #endif 219 } 220 221 #define PG_dcache_dirty PG_arch_1 222 #define PG_dcache_cpu_shift 32UL 223 #define PG_dcache_cpu_mask \ 224 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 225 226 #define dcache_dirty_cpu(folio) \ 227 (((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 228 229 static inline void set_dcache_dirty(struct folio *folio, int this_cpu) 230 { 231 unsigned long mask = this_cpu; 232 unsigned long non_cpu_bits; 233 234 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 235 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 236 237 __asm__ __volatile__("1:\n\t" 238 "ldx [%2], %%g7\n\t" 239 "and %%g7, %1, %%g1\n\t" 240 "or %%g1, %0, %%g1\n\t" 241 "casx [%2], %%g7, %%g1\n\t" 242 "cmp %%g7, %%g1\n\t" 243 "bne,pn %%xcc, 1b\n\t" 244 " nop" 245 : /* no outputs */ 246 : "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags) 247 : "g1", "g7"); 248 } 249 250 static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu) 251 { 252 unsigned long mask = (1UL << PG_dcache_dirty); 253 254 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 255 "1:\n\t" 256 "ldx [%2], %%g7\n\t" 257 "srlx %%g7, %4, %%g1\n\t" 258 "and %%g1, %3, %%g1\n\t" 259 "cmp %%g1, %0\n\t" 260 "bne,pn %%icc, 2f\n\t" 261 " andn %%g7, %1, %%g1\n\t" 262 "casx [%2], %%g7, %%g1\n\t" 263 "cmp %%g7, %%g1\n\t" 264 "bne,pn %%xcc, 1b\n\t" 265 " nop\n" 266 "2:" 267 : /* no outputs */ 268 : "r" (cpu), "r" (mask), "r" (&folio->flags), 269 "i" (PG_dcache_cpu_mask), 270 "i" (PG_dcache_cpu_shift) 271 : "g1", "g7"); 272 } 273 274 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 275 { 276 unsigned long tsb_addr = (unsigned long) ent; 277 278 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 279 tsb_addr = __pa(tsb_addr); 280 281 __tsb_insert(tsb_addr, tag, pte); 282 } 283 284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 285 286 static void flush_dcache(unsigned long pfn) 287 { 288 struct page *page; 289 290 page = pfn_to_page(pfn); 291 if (page) { 292 struct folio *folio = page_folio(page); 293 unsigned long pg_flags; 294 295 pg_flags = folio->flags; 296 if (pg_flags & (1UL << PG_dcache_dirty)) { 297 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 298 PG_dcache_cpu_mask); 299 int this_cpu = get_cpu(); 300 301 /* This is just to optimize away some function calls 302 * in the SMP case. 303 */ 304 if (cpu == this_cpu) 305 flush_dcache_folio_impl(folio); 306 else 307 smp_flush_dcache_folio_impl(folio, cpu); 308 309 clear_dcache_dirty_cpu(folio, cpu); 310 311 put_cpu(); 312 } 313 } 314 } 315 316 /* mm->context.lock must be held */ 317 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 318 unsigned long tsb_hash_shift, unsigned long address, 319 unsigned long tte) 320 { 321 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 322 unsigned long tag; 323 324 if (unlikely(!tsb)) 325 return; 326 327 tsb += ((address >> tsb_hash_shift) & 328 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 329 tag = (address >> 22UL); 330 tsb_insert(tsb, tag, tte); 331 } 332 333 #ifdef CONFIG_HUGETLB_PAGE 334 static int __init hugetlbpage_init(void) 335 { 336 hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT); 337 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT); 338 hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT); 339 hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT); 340 341 return 0; 342 } 343 344 arch_initcall(hugetlbpage_init); 345 346 static void __init pud_huge_patch(void) 347 { 348 struct pud_huge_patch_entry *p; 349 unsigned long addr; 350 351 p = &__pud_huge_patch; 352 addr = p->addr; 353 *(unsigned int *)addr = p->insn; 354 355 __asm__ __volatile__("flush %0" : : "r" (addr)); 356 } 357 358 bool __init arch_hugetlb_valid_size(unsigned long size) 359 { 360 unsigned int hugepage_shift = ilog2(size); 361 unsigned short hv_pgsz_idx; 362 unsigned int hv_pgsz_mask; 363 364 switch (hugepage_shift) { 365 case HPAGE_16GB_SHIFT: 366 hv_pgsz_mask = HV_PGSZ_MASK_16GB; 367 hv_pgsz_idx = HV_PGSZ_IDX_16GB; 368 pud_huge_patch(); 369 break; 370 case HPAGE_2GB_SHIFT: 371 hv_pgsz_mask = HV_PGSZ_MASK_2GB; 372 hv_pgsz_idx = HV_PGSZ_IDX_2GB; 373 break; 374 case HPAGE_256MB_SHIFT: 375 hv_pgsz_mask = HV_PGSZ_MASK_256MB; 376 hv_pgsz_idx = HV_PGSZ_IDX_256MB; 377 break; 378 case HPAGE_SHIFT: 379 hv_pgsz_mask = HV_PGSZ_MASK_4MB; 380 hv_pgsz_idx = HV_PGSZ_IDX_4MB; 381 break; 382 case HPAGE_64K_SHIFT: 383 hv_pgsz_mask = HV_PGSZ_MASK_64K; 384 hv_pgsz_idx = HV_PGSZ_IDX_64K; 385 break; 386 default: 387 hv_pgsz_mask = 0; 388 } 389 390 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) 391 return false; 392 393 return true; 394 } 395 #endif /* CONFIG_HUGETLB_PAGE */ 396 397 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 398 unsigned long address, pte_t *ptep, unsigned int nr) 399 { 400 struct mm_struct *mm; 401 unsigned long flags; 402 bool is_huge_tsb; 403 pte_t pte = *ptep; 404 unsigned int i; 405 406 if (tlb_type != hypervisor) { 407 unsigned long pfn = pte_pfn(pte); 408 409 if (pfn_valid(pfn)) 410 flush_dcache(pfn); 411 } 412 413 mm = vma->vm_mm; 414 415 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ 416 if (!pte_accessible(mm, pte)) 417 return; 418 419 spin_lock_irqsave(&mm->context.lock, flags); 420 421 is_huge_tsb = false; 422 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 423 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) { 424 unsigned long hugepage_size = PAGE_SIZE; 425 426 if (is_vm_hugetlb_page(vma)) 427 hugepage_size = huge_page_size(hstate_vma(vma)); 428 429 if (hugepage_size >= PUD_SIZE) { 430 unsigned long mask = 0x1ffc00000UL; 431 432 /* Transfer bits [32:22] from address to resolve 433 * at 4M granularity. 434 */ 435 pte_val(pte) &= ~mask; 436 pte_val(pte) |= (address & mask); 437 } else if (hugepage_size >= PMD_SIZE) { 438 /* We are fabricating 8MB pages using 4MB 439 * real hw pages. 440 */ 441 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); 442 } 443 444 if (hugepage_size >= PMD_SIZE) { 445 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, 446 REAL_HPAGE_SHIFT, address, pte_val(pte)); 447 is_huge_tsb = true; 448 } 449 } 450 #endif 451 if (!is_huge_tsb) { 452 for (i = 0; i < nr; i++) { 453 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 454 address, pte_val(pte)); 455 address += PAGE_SIZE; 456 pte_val(pte) += PAGE_SIZE; 457 } 458 } 459 460 spin_unlock_irqrestore(&mm->context.lock, flags); 461 } 462 463 void flush_dcache_folio(struct folio *folio) 464 { 465 unsigned long pfn = folio_pfn(folio); 466 struct address_space *mapping; 467 int this_cpu; 468 469 if (tlb_type == hypervisor) 470 return; 471 472 /* Do not bother with the expensive D-cache flush if it 473 * is merely the zero page. The 'bigcore' testcase in GDB 474 * causes this case to run millions of times. 475 */ 476 if (is_zero_pfn(pfn)) 477 return; 478 479 this_cpu = get_cpu(); 480 481 mapping = folio_flush_mapping(folio); 482 if (mapping && !mapping_mapped(mapping)) { 483 bool dirty = test_bit(PG_dcache_dirty, &folio->flags); 484 if (dirty) { 485 int dirty_cpu = dcache_dirty_cpu(folio); 486 487 if (dirty_cpu == this_cpu) 488 goto out; 489 smp_flush_dcache_folio_impl(folio, dirty_cpu); 490 } 491 set_dcache_dirty(folio, this_cpu); 492 } else { 493 /* We could delay the flush for the !page_mapping 494 * case too. But that case is for exec env/arg 495 * pages and those are %99 certainly going to get 496 * faulted into the tlb (and thus flushed) anyways. 497 */ 498 flush_dcache_folio_impl(folio); 499 } 500 501 out: 502 put_cpu(); 503 } 504 EXPORT_SYMBOL(flush_dcache_folio); 505 506 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 507 { 508 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 509 if (tlb_type == spitfire) { 510 unsigned long kaddr; 511 512 /* This code only runs on Spitfire cpus so this is 513 * why we can assume _PAGE_PADDR_4U. 514 */ 515 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 516 unsigned long paddr, mask = _PAGE_PADDR_4U; 517 518 if (kaddr >= PAGE_OFFSET) 519 paddr = kaddr & mask; 520 else { 521 pte_t *ptep = virt_to_kpte(kaddr); 522 523 paddr = pte_val(*ptep) & mask; 524 } 525 __flush_icache_page(paddr); 526 } 527 } 528 } 529 EXPORT_SYMBOL(flush_icache_range); 530 531 void mmu_info(struct seq_file *m) 532 { 533 static const char *pgsz_strings[] = { 534 "8K", "64K", "512K", "4MB", "32MB", 535 "256MB", "2GB", "16GB", 536 }; 537 int i, printed; 538 539 if (tlb_type == cheetah) 540 seq_printf(m, "MMU Type\t: Cheetah\n"); 541 else if (tlb_type == cheetah_plus) 542 seq_printf(m, "MMU Type\t: Cheetah+\n"); 543 else if (tlb_type == spitfire) 544 seq_printf(m, "MMU Type\t: Spitfire\n"); 545 else if (tlb_type == hypervisor) 546 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 547 else 548 seq_printf(m, "MMU Type\t: ???\n"); 549 550 seq_printf(m, "MMU PGSZs\t: "); 551 printed = 0; 552 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 553 if (cpu_pgsz_mask & (1UL << i)) { 554 seq_printf(m, "%s%s", 555 printed ? "," : "", pgsz_strings[i]); 556 printed++; 557 } 558 } 559 seq_putc(m, '\n'); 560 561 #ifdef CONFIG_DEBUG_DCFLUSH 562 seq_printf(m, "DCPageFlushes\t: %d\n", 563 atomic_read(&dcpage_flushes)); 564 #ifdef CONFIG_SMP 565 seq_printf(m, "DCPageFlushesXC\t: %d\n", 566 atomic_read(&dcpage_flushes_xcall)); 567 #endif /* CONFIG_SMP */ 568 #endif /* CONFIG_DEBUG_DCFLUSH */ 569 } 570 571 struct linux_prom_translation prom_trans[512] __read_mostly; 572 unsigned int prom_trans_ents __read_mostly; 573 574 unsigned long kern_locked_tte_data; 575 576 /* The obp translations are saved based on 8k pagesize, since obp can 577 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 578 * HI_OBP_ADDRESS range are handled in ktlb.S. 579 */ 580 static inline int in_obp_range(unsigned long vaddr) 581 { 582 return (vaddr >= LOW_OBP_ADDRESS && 583 vaddr < HI_OBP_ADDRESS); 584 } 585 586 static int cmp_ptrans(const void *a, const void *b) 587 { 588 const struct linux_prom_translation *x = a, *y = b; 589 590 if (x->virt > y->virt) 591 return 1; 592 if (x->virt < y->virt) 593 return -1; 594 return 0; 595 } 596 597 /* Read OBP translations property into 'prom_trans[]'. */ 598 static void __init read_obp_translations(void) 599 { 600 int n, node, ents, first, last, i; 601 602 node = prom_finddevice("/virtual-memory"); 603 n = prom_getproplen(node, "translations"); 604 if (unlikely(n == 0 || n == -1)) { 605 prom_printf("prom_mappings: Couldn't get size.\n"); 606 prom_halt(); 607 } 608 if (unlikely(n > sizeof(prom_trans))) { 609 prom_printf("prom_mappings: Size %d is too big.\n", n); 610 prom_halt(); 611 } 612 613 if ((n = prom_getproperty(node, "translations", 614 (char *)&prom_trans[0], 615 sizeof(prom_trans))) == -1) { 616 prom_printf("prom_mappings: Couldn't get property.\n"); 617 prom_halt(); 618 } 619 620 n = n / sizeof(struct linux_prom_translation); 621 622 ents = n; 623 624 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 625 cmp_ptrans, NULL); 626 627 /* Now kick out all the non-OBP entries. */ 628 for (i = 0; i < ents; i++) { 629 if (in_obp_range(prom_trans[i].virt)) 630 break; 631 } 632 first = i; 633 for (; i < ents; i++) { 634 if (!in_obp_range(prom_trans[i].virt)) 635 break; 636 } 637 last = i; 638 639 for (i = 0; i < (last - first); i++) { 640 struct linux_prom_translation *src = &prom_trans[i + first]; 641 struct linux_prom_translation *dest = &prom_trans[i]; 642 643 *dest = *src; 644 } 645 for (; i < ents; i++) { 646 struct linux_prom_translation *dest = &prom_trans[i]; 647 dest->virt = dest->size = dest->data = 0x0UL; 648 } 649 650 prom_trans_ents = last - first; 651 652 if (tlb_type == spitfire) { 653 /* Clear diag TTE bits. */ 654 for (i = 0; i < prom_trans_ents; i++) 655 prom_trans[i].data &= ~0x0003fe0000000000UL; 656 } 657 658 /* Force execute bit on. */ 659 for (i = 0; i < prom_trans_ents; i++) 660 prom_trans[i].data |= (tlb_type == hypervisor ? 661 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 662 } 663 664 static void __init hypervisor_tlb_lock(unsigned long vaddr, 665 unsigned long pte, 666 unsigned long mmu) 667 { 668 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 669 670 if (ret != 0) { 671 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 672 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 673 prom_halt(); 674 } 675 } 676 677 static unsigned long kern_large_tte(unsigned long paddr); 678 679 static void __init remap_kernel(void) 680 { 681 unsigned long phys_page, tte_vaddr, tte_data; 682 int i, tlb_ent = sparc64_highest_locked_tlbent(); 683 684 tte_vaddr = (unsigned long) KERNBASE; 685 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 686 tte_data = kern_large_tte(phys_page); 687 688 kern_locked_tte_data = tte_data; 689 690 /* Now lock us into the TLBs via Hypervisor or OBP. */ 691 if (tlb_type == hypervisor) { 692 for (i = 0; i < num_kernel_image_mappings; i++) { 693 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 694 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 695 tte_vaddr += 0x400000; 696 tte_data += 0x400000; 697 } 698 } else { 699 for (i = 0; i < num_kernel_image_mappings; i++) { 700 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 701 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 702 tte_vaddr += 0x400000; 703 tte_data += 0x400000; 704 } 705 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 706 } 707 if (tlb_type == cheetah_plus) { 708 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 709 CTX_CHEETAH_PLUS_NUC); 710 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 711 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 712 } 713 } 714 715 716 static void __init inherit_prom_mappings(void) 717 { 718 /* Now fixup OBP's idea about where we really are mapped. */ 719 printk("Remapping the kernel... "); 720 remap_kernel(); 721 printk("done.\n"); 722 } 723 724 void prom_world(int enter) 725 { 726 /* 727 * No need to change the address space any more, just flush 728 * the register windows 729 */ 730 __asm__ __volatile__("flushw"); 731 } 732 733 void __flush_dcache_range(unsigned long start, unsigned long end) 734 { 735 unsigned long va; 736 737 if (tlb_type == spitfire) { 738 int n = 0; 739 740 for (va = start; va < end; va += 32) { 741 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 742 if (++n >= 512) 743 break; 744 } 745 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 746 start = __pa(start); 747 end = __pa(end); 748 for (va = start; va < end; va += 32) 749 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 750 "membar #Sync" 751 : /* no outputs */ 752 : "r" (va), 753 "i" (ASI_DCACHE_INVALIDATE)); 754 } 755 } 756 EXPORT_SYMBOL(__flush_dcache_range); 757 758 /* get_new_mmu_context() uses "cache + 1". */ 759 DEFINE_SPINLOCK(ctx_alloc_lock); 760 unsigned long tlb_context_cache = CTX_FIRST_VERSION; 761 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 762 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 763 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 764 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0}; 765 766 static void mmu_context_wrap(void) 767 { 768 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK; 769 unsigned long new_ver, new_ctx, old_ctx; 770 struct mm_struct *mm; 771 int cpu; 772 773 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS); 774 775 /* Reserve kernel context */ 776 set_bit(0, mmu_context_bmap); 777 778 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; 779 if (unlikely(new_ver == 0)) 780 new_ver = CTX_FIRST_VERSION; 781 tlb_context_cache = new_ver; 782 783 /* 784 * Make sure that any new mm that are added into per_cpu_secondary_mm, 785 * are going to go through get_new_mmu_context() path. 786 */ 787 mb(); 788 789 /* 790 * Updated versions to current on those CPUs that had valid secondary 791 * contexts 792 */ 793 for_each_online_cpu(cpu) { 794 /* 795 * If a new mm is stored after we took this mm from the array, 796 * it will go into get_new_mmu_context() path, because we 797 * already bumped the version in tlb_context_cache. 798 */ 799 mm = per_cpu(per_cpu_secondary_mm, cpu); 800 801 if (unlikely(!mm || mm == &init_mm)) 802 continue; 803 804 old_ctx = mm->context.sparc64_ctx_val; 805 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) { 806 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver; 807 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap); 808 mm->context.sparc64_ctx_val = new_ctx; 809 } 810 } 811 } 812 813 /* Caller does TLB context flushing on local CPU if necessary. 814 * The caller also ensures that CTX_VALID(mm->context) is false. 815 * 816 * We must be careful about boundary cases so that we never 817 * let the user have CTX 0 (nucleus) or we ever use a CTX 818 * version of zero (and thus NO_CONTEXT would not be caught 819 * by version mis-match tests in mmu_context.h). 820 * 821 * Always invoked with interrupts disabled. 822 */ 823 void get_new_mmu_context(struct mm_struct *mm) 824 { 825 unsigned long ctx, new_ctx; 826 unsigned long orig_pgsz_bits; 827 828 spin_lock(&ctx_alloc_lock); 829 retry: 830 /* wrap might have happened, test again if our context became valid */ 831 if (unlikely(CTX_VALID(mm->context))) 832 goto out; 833 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 834 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 835 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 836 if (new_ctx >= (1 << CTX_NR_BITS)) { 837 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 838 if (new_ctx >= ctx) { 839 mmu_context_wrap(); 840 goto retry; 841 } 842 } 843 if (mm->context.sparc64_ctx_val) 844 cpumask_clear(mm_cpumask(mm)); 845 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 846 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 847 tlb_context_cache = new_ctx; 848 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 849 out: 850 spin_unlock(&ctx_alloc_lock); 851 } 852 853 static int numa_enabled = 1; 854 static int numa_debug; 855 856 static int __init early_numa(char *p) 857 { 858 if (!p) 859 return 0; 860 861 if (strstr(p, "off")) 862 numa_enabled = 0; 863 864 if (strstr(p, "debug")) 865 numa_debug = 1; 866 867 return 0; 868 } 869 early_param("numa", early_numa); 870 871 #define numadbg(f, a...) \ 872 do { if (numa_debug) \ 873 printk(KERN_INFO f, ## a); \ 874 } while (0) 875 876 static void __init find_ramdisk(unsigned long phys_base) 877 { 878 #ifdef CONFIG_BLK_DEV_INITRD 879 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 880 unsigned long ramdisk_image; 881 882 /* Older versions of the bootloader only supported a 883 * 32-bit physical address for the ramdisk image 884 * location, stored at sparc_ramdisk_image. Newer 885 * SILO versions set sparc_ramdisk_image to zero and 886 * provide a full 64-bit physical address at 887 * sparc_ramdisk_image64. 888 */ 889 ramdisk_image = sparc_ramdisk_image; 890 if (!ramdisk_image) 891 ramdisk_image = sparc_ramdisk_image64; 892 893 /* Another bootloader quirk. The bootloader normalizes 894 * the physical address to KERNBASE, so we have to 895 * factor that back out and add in the lowest valid 896 * physical page address to get the true physical address. 897 */ 898 ramdisk_image -= KERNBASE; 899 ramdisk_image += phys_base; 900 901 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 902 ramdisk_image, sparc_ramdisk_size); 903 904 initrd_start = ramdisk_image; 905 initrd_end = ramdisk_image + sparc_ramdisk_size; 906 907 memblock_reserve(initrd_start, sparc_ramdisk_size); 908 909 initrd_start += PAGE_OFFSET; 910 initrd_end += PAGE_OFFSET; 911 } 912 #endif 913 } 914 915 struct node_mem_mask { 916 unsigned long mask; 917 unsigned long match; 918 }; 919 static struct node_mem_mask node_masks[MAX_NUMNODES]; 920 static int num_node_masks; 921 922 #ifdef CONFIG_NUMA 923 924 struct mdesc_mlgroup { 925 u64 node; 926 u64 latency; 927 u64 match; 928 u64 mask; 929 }; 930 931 static struct mdesc_mlgroup *mlgroups; 932 static int num_mlgroups; 933 934 int numa_cpu_lookup_table[NR_CPUS]; 935 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 936 937 struct mdesc_mblock { 938 u64 base; 939 u64 size; 940 u64 offset; /* RA-to-PA */ 941 }; 942 static struct mdesc_mblock *mblocks; 943 static int num_mblocks; 944 945 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr) 946 { 947 struct mdesc_mblock *m = NULL; 948 int i; 949 950 for (i = 0; i < num_mblocks; i++) { 951 m = &mblocks[i]; 952 953 if (addr >= m->base && 954 addr < (m->base + m->size)) { 955 break; 956 } 957 } 958 959 return m; 960 } 961 962 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid) 963 { 964 int prev_nid, new_nid; 965 966 prev_nid = NUMA_NO_NODE; 967 for ( ; start < end; start += PAGE_SIZE) { 968 for (new_nid = 0; new_nid < num_node_masks; new_nid++) { 969 struct node_mem_mask *p = &node_masks[new_nid]; 970 971 if ((start & p->mask) == p->match) { 972 if (prev_nid == NUMA_NO_NODE) 973 prev_nid = new_nid; 974 break; 975 } 976 } 977 978 if (new_nid == num_node_masks) { 979 prev_nid = 0; 980 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.", 981 start); 982 break; 983 } 984 985 if (prev_nid != new_nid) 986 break; 987 } 988 *nid = prev_nid; 989 990 return start > end ? end : start; 991 } 992 993 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) 994 { 995 u64 ret_end, pa_start, m_mask, m_match, m_end; 996 struct mdesc_mblock *mblock; 997 int _nid, i; 998 999 if (tlb_type != hypervisor) 1000 return memblock_nid_range_sun4u(start, end, nid); 1001 1002 mblock = addr_to_mblock(start); 1003 if (!mblock) { 1004 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]", 1005 start); 1006 1007 _nid = 0; 1008 ret_end = end; 1009 goto done; 1010 } 1011 1012 pa_start = start + mblock->offset; 1013 m_match = 0; 1014 m_mask = 0; 1015 1016 for (_nid = 0; _nid < num_node_masks; _nid++) { 1017 struct node_mem_mask *const m = &node_masks[_nid]; 1018 1019 if ((pa_start & m->mask) == m->match) { 1020 m_match = m->match; 1021 m_mask = m->mask; 1022 break; 1023 } 1024 } 1025 1026 if (num_node_masks == _nid) { 1027 /* We could not find NUMA group, so default to 0, but lets 1028 * search for latency group, so we could calculate the correct 1029 * end address that we return 1030 */ 1031 _nid = 0; 1032 1033 for (i = 0; i < num_mlgroups; i++) { 1034 struct mdesc_mlgroup *const m = &mlgroups[i]; 1035 1036 if ((pa_start & m->mask) == m->match) { 1037 m_match = m->match; 1038 m_mask = m->mask; 1039 break; 1040 } 1041 } 1042 1043 if (i == num_mlgroups) { 1044 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]", 1045 start); 1046 1047 ret_end = end; 1048 goto done; 1049 } 1050 } 1051 1052 /* 1053 * Each latency group has match and mask, and each memory block has an 1054 * offset. An address belongs to a latency group if its address matches 1055 * the following formula: ((addr + offset) & mask) == match 1056 * It is, however, slow to check every single page if it matches a 1057 * particular latency group. As optimization we calculate end value by 1058 * using bit arithmetics. 1059 */ 1060 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset; 1061 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1); 1062 ret_end = m_end > end ? end : m_end; 1063 1064 done: 1065 *nid = _nid; 1066 return ret_end; 1067 } 1068 #endif 1069 1070 /* This must be invoked after performing all of the necessary 1071 * memblock_set_node() calls for 'nid'. We need to be able to get 1072 * correct data from get_pfn_range_for_nid(). 1073 */ 1074 static void __init allocate_node_data(int nid) 1075 { 1076 struct pglist_data *p; 1077 unsigned long start_pfn, end_pfn; 1078 #ifdef CONFIG_NUMA 1079 1080 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data), 1081 SMP_CACHE_BYTES, nid); 1082 if (!NODE_DATA(nid)) { 1083 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 1084 prom_halt(); 1085 } 1086 1087 NODE_DATA(nid)->node_id = nid; 1088 #endif 1089 1090 p = NODE_DATA(nid); 1091 1092 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1093 p->node_start_pfn = start_pfn; 1094 p->node_spanned_pages = end_pfn - start_pfn; 1095 } 1096 1097 static void init_node_masks_nonnuma(void) 1098 { 1099 #ifdef CONFIG_NUMA 1100 int i; 1101 #endif 1102 1103 numadbg("Initializing tables for non-numa.\n"); 1104 1105 node_masks[0].mask = 0; 1106 node_masks[0].match = 0; 1107 num_node_masks = 1; 1108 1109 #ifdef CONFIG_NUMA 1110 for (i = 0; i < NR_CPUS; i++) 1111 numa_cpu_lookup_table[i] = 0; 1112 1113 cpumask_setall(&numa_cpumask_lookup_table[0]); 1114 #endif 1115 } 1116 1117 #ifdef CONFIG_NUMA 1118 struct pglist_data *node_data[MAX_NUMNODES]; 1119 1120 EXPORT_SYMBOL(numa_cpu_lookup_table); 1121 EXPORT_SYMBOL(numa_cpumask_lookup_table); 1122 EXPORT_SYMBOL(node_data); 1123 1124 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 1125 u32 cfg_handle) 1126 { 1127 u64 arc; 1128 1129 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 1130 u64 target = mdesc_arc_target(md, arc); 1131 const u64 *val; 1132 1133 val = mdesc_get_property(md, target, 1134 "cfg-handle", NULL); 1135 if (val && *val == cfg_handle) 1136 return 0; 1137 } 1138 return -ENODEV; 1139 } 1140 1141 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 1142 u32 cfg_handle) 1143 { 1144 u64 arc, candidate, best_latency = ~(u64)0; 1145 1146 candidate = MDESC_NODE_NULL; 1147 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1148 u64 target = mdesc_arc_target(md, arc); 1149 const char *name = mdesc_node_name(md, target); 1150 const u64 *val; 1151 1152 if (strcmp(name, "pio-latency-group")) 1153 continue; 1154 1155 val = mdesc_get_property(md, target, "latency", NULL); 1156 if (!val) 1157 continue; 1158 1159 if (*val < best_latency) { 1160 candidate = target; 1161 best_latency = *val; 1162 } 1163 } 1164 1165 if (candidate == MDESC_NODE_NULL) 1166 return -ENODEV; 1167 1168 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 1169 } 1170 1171 int of_node_to_nid(struct device_node *dp) 1172 { 1173 const struct linux_prom64_registers *regs; 1174 struct mdesc_handle *md; 1175 u32 cfg_handle; 1176 int count, nid; 1177 u64 grp; 1178 1179 /* This is the right thing to do on currently supported 1180 * SUN4U NUMA platforms as well, as the PCI controller does 1181 * not sit behind any particular memory controller. 1182 */ 1183 if (!mlgroups) 1184 return -1; 1185 1186 regs = of_get_property(dp, "reg", NULL); 1187 if (!regs) 1188 return -1; 1189 1190 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 1191 1192 md = mdesc_grab(); 1193 1194 count = 0; 1195 nid = NUMA_NO_NODE; 1196 mdesc_for_each_node_by_name(md, grp, "group") { 1197 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 1198 nid = count; 1199 break; 1200 } 1201 count++; 1202 } 1203 1204 mdesc_release(md); 1205 1206 return nid; 1207 } 1208 1209 static void __init add_node_ranges(void) 1210 { 1211 phys_addr_t start, end; 1212 unsigned long prev_max; 1213 u64 i; 1214 1215 memblock_resized: 1216 prev_max = memblock.memory.max; 1217 1218 for_each_mem_range(i, &start, &end) { 1219 while (start < end) { 1220 unsigned long this_end; 1221 int nid; 1222 1223 this_end = memblock_nid_range(start, end, &nid); 1224 1225 numadbg("Setting memblock NUMA node nid[%d] " 1226 "start[%llx] end[%lx]\n", 1227 nid, start, this_end); 1228 1229 memblock_set_node(start, this_end - start, 1230 &memblock.memory, nid); 1231 if (memblock.memory.max != prev_max) 1232 goto memblock_resized; 1233 start = this_end; 1234 } 1235 } 1236 } 1237 1238 static int __init grab_mlgroups(struct mdesc_handle *md) 1239 { 1240 unsigned long paddr; 1241 int count = 0; 1242 u64 node; 1243 1244 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1245 count++; 1246 if (!count) 1247 return -ENOENT; 1248 1249 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup), 1250 SMP_CACHE_BYTES); 1251 if (!paddr) 1252 return -ENOMEM; 1253 1254 mlgroups = __va(paddr); 1255 num_mlgroups = count; 1256 1257 count = 0; 1258 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1259 struct mdesc_mlgroup *m = &mlgroups[count++]; 1260 const u64 *val; 1261 1262 m->node = node; 1263 1264 val = mdesc_get_property(md, node, "latency", NULL); 1265 m->latency = *val; 1266 val = mdesc_get_property(md, node, "address-match", NULL); 1267 m->match = *val; 1268 val = mdesc_get_property(md, node, "address-mask", NULL); 1269 m->mask = *val; 1270 1271 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1272 "match[%llx] mask[%llx]\n", 1273 count - 1, m->node, m->latency, m->match, m->mask); 1274 } 1275 1276 return 0; 1277 } 1278 1279 static int __init grab_mblocks(struct mdesc_handle *md) 1280 { 1281 unsigned long paddr; 1282 int count = 0; 1283 u64 node; 1284 1285 mdesc_for_each_node_by_name(md, node, "mblock") 1286 count++; 1287 if (!count) 1288 return -ENOENT; 1289 1290 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock), 1291 SMP_CACHE_BYTES); 1292 if (!paddr) 1293 return -ENOMEM; 1294 1295 mblocks = __va(paddr); 1296 num_mblocks = count; 1297 1298 count = 0; 1299 mdesc_for_each_node_by_name(md, node, "mblock") { 1300 struct mdesc_mblock *m = &mblocks[count++]; 1301 const u64 *val; 1302 1303 val = mdesc_get_property(md, node, "base", NULL); 1304 m->base = *val; 1305 val = mdesc_get_property(md, node, "size", NULL); 1306 m->size = *val; 1307 val = mdesc_get_property(md, node, 1308 "address-congruence-offset", NULL); 1309 1310 /* The address-congruence-offset property is optional. 1311 * Explicity zero it be identifty this. 1312 */ 1313 if (val) 1314 m->offset = *val; 1315 else 1316 m->offset = 0UL; 1317 1318 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1319 count - 1, m->base, m->size, m->offset); 1320 } 1321 1322 return 0; 1323 } 1324 1325 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1326 u64 grp, cpumask_t *mask) 1327 { 1328 u64 arc; 1329 1330 cpumask_clear(mask); 1331 1332 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1333 u64 target = mdesc_arc_target(md, arc); 1334 const char *name = mdesc_node_name(md, target); 1335 const u64 *id; 1336 1337 if (strcmp(name, "cpu")) 1338 continue; 1339 id = mdesc_get_property(md, target, "id", NULL); 1340 if (*id < nr_cpu_ids) 1341 cpumask_set_cpu(*id, mask); 1342 } 1343 } 1344 1345 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1346 { 1347 int i; 1348 1349 for (i = 0; i < num_mlgroups; i++) { 1350 struct mdesc_mlgroup *m = &mlgroups[i]; 1351 if (m->node == node) 1352 return m; 1353 } 1354 return NULL; 1355 } 1356 1357 int __node_distance(int from, int to) 1358 { 1359 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { 1360 pr_warn("Returning default NUMA distance value for %d->%d\n", 1361 from, to); 1362 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; 1363 } 1364 return numa_latency[from][to]; 1365 } 1366 EXPORT_SYMBOL(__node_distance); 1367 1368 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) 1369 { 1370 int i; 1371 1372 for (i = 0; i < MAX_NUMNODES; i++) { 1373 struct node_mem_mask *n = &node_masks[i]; 1374 1375 if ((grp->mask == n->mask) && (grp->match == n->match)) 1376 break; 1377 } 1378 return i; 1379 } 1380 1381 static void __init find_numa_latencies_for_group(struct mdesc_handle *md, 1382 u64 grp, int index) 1383 { 1384 u64 arc; 1385 1386 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1387 int tnode; 1388 u64 target = mdesc_arc_target(md, arc); 1389 struct mdesc_mlgroup *m = find_mlgroup(target); 1390 1391 if (!m) 1392 continue; 1393 tnode = find_best_numa_node_for_mlgroup(m); 1394 if (tnode == MAX_NUMNODES) 1395 continue; 1396 numa_latency[index][tnode] = m->latency; 1397 } 1398 } 1399 1400 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1401 int index) 1402 { 1403 struct mdesc_mlgroup *candidate = NULL; 1404 u64 arc, best_latency = ~(u64)0; 1405 struct node_mem_mask *n; 1406 1407 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1408 u64 target = mdesc_arc_target(md, arc); 1409 struct mdesc_mlgroup *m = find_mlgroup(target); 1410 if (!m) 1411 continue; 1412 if (m->latency < best_latency) { 1413 candidate = m; 1414 best_latency = m->latency; 1415 } 1416 } 1417 if (!candidate) 1418 return -ENOENT; 1419 1420 if (num_node_masks != index) { 1421 printk(KERN_ERR "Inconsistent NUMA state, " 1422 "index[%d] != num_node_masks[%d]\n", 1423 index, num_node_masks); 1424 return -EINVAL; 1425 } 1426 1427 n = &node_masks[num_node_masks++]; 1428 1429 n->mask = candidate->mask; 1430 n->match = candidate->match; 1431 1432 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n", 1433 index, n->mask, n->match, candidate->latency); 1434 1435 return 0; 1436 } 1437 1438 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1439 int index) 1440 { 1441 cpumask_t mask; 1442 int cpu; 1443 1444 numa_parse_mdesc_group_cpus(md, grp, &mask); 1445 1446 for_each_cpu(cpu, &mask) 1447 numa_cpu_lookup_table[cpu] = index; 1448 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1449 1450 if (numa_debug) { 1451 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1452 for_each_cpu(cpu, &mask) 1453 printk("%d ", cpu); 1454 printk("]\n"); 1455 } 1456 1457 return numa_attach_mlgroup(md, grp, index); 1458 } 1459 1460 static int __init numa_parse_mdesc(void) 1461 { 1462 struct mdesc_handle *md = mdesc_grab(); 1463 int i, j, err, count; 1464 u64 node; 1465 1466 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1467 if (node == MDESC_NODE_NULL) { 1468 mdesc_release(md); 1469 return -ENOENT; 1470 } 1471 1472 err = grab_mblocks(md); 1473 if (err < 0) 1474 goto out; 1475 1476 err = grab_mlgroups(md); 1477 if (err < 0) 1478 goto out; 1479 1480 count = 0; 1481 mdesc_for_each_node_by_name(md, node, "group") { 1482 err = numa_parse_mdesc_group(md, node, count); 1483 if (err < 0) 1484 break; 1485 count++; 1486 } 1487 1488 count = 0; 1489 mdesc_for_each_node_by_name(md, node, "group") { 1490 find_numa_latencies_for_group(md, node, count); 1491 count++; 1492 } 1493 1494 /* Normalize numa latency matrix according to ACPI SLIT spec. */ 1495 for (i = 0; i < MAX_NUMNODES; i++) { 1496 u64 self_latency = numa_latency[i][i]; 1497 1498 for (j = 0; j < MAX_NUMNODES; j++) { 1499 numa_latency[i][j] = 1500 (numa_latency[i][j] * LOCAL_DISTANCE) / 1501 self_latency; 1502 } 1503 } 1504 1505 add_node_ranges(); 1506 1507 for (i = 0; i < num_node_masks; i++) { 1508 allocate_node_data(i); 1509 node_set_online(i); 1510 } 1511 1512 err = 0; 1513 out: 1514 mdesc_release(md); 1515 return err; 1516 } 1517 1518 static int __init numa_parse_jbus(void) 1519 { 1520 unsigned long cpu, index; 1521 1522 /* NUMA node id is encoded in bits 36 and higher, and there is 1523 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1524 */ 1525 index = 0; 1526 for_each_present_cpu(cpu) { 1527 numa_cpu_lookup_table[cpu] = index; 1528 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1529 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1530 node_masks[index].match = cpu << 36UL; 1531 1532 index++; 1533 } 1534 num_node_masks = index; 1535 1536 add_node_ranges(); 1537 1538 for (index = 0; index < num_node_masks; index++) { 1539 allocate_node_data(index); 1540 node_set_online(index); 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int __init numa_parse_sun4u(void) 1547 { 1548 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1549 unsigned long ver; 1550 1551 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1552 if ((ver >> 32UL) == __JALAPENO_ID || 1553 (ver >> 32UL) == __SERRANO_ID) 1554 return numa_parse_jbus(); 1555 } 1556 return -1; 1557 } 1558 1559 static int __init bootmem_init_numa(void) 1560 { 1561 int i, j; 1562 int err = -1; 1563 1564 numadbg("bootmem_init_numa()\n"); 1565 1566 /* Some sane defaults for numa latency values */ 1567 for (i = 0; i < MAX_NUMNODES; i++) { 1568 for (j = 0; j < MAX_NUMNODES; j++) 1569 numa_latency[i][j] = (i == j) ? 1570 LOCAL_DISTANCE : REMOTE_DISTANCE; 1571 } 1572 1573 if (numa_enabled) { 1574 if (tlb_type == hypervisor) 1575 err = numa_parse_mdesc(); 1576 else 1577 err = numa_parse_sun4u(); 1578 } 1579 return err; 1580 } 1581 1582 #else 1583 1584 static int bootmem_init_numa(void) 1585 { 1586 return -1; 1587 } 1588 1589 #endif 1590 1591 static void __init bootmem_init_nonnuma(void) 1592 { 1593 unsigned long top_of_ram = memblock_end_of_DRAM(); 1594 unsigned long total_ram = memblock_phys_mem_size(); 1595 1596 numadbg("bootmem_init_nonnuma()\n"); 1597 1598 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1599 top_of_ram, total_ram); 1600 printk(KERN_INFO "Memory hole size: %ldMB\n", 1601 (top_of_ram - total_ram) >> 20); 1602 1603 init_node_masks_nonnuma(); 1604 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 1605 allocate_node_data(0); 1606 node_set_online(0); 1607 } 1608 1609 static unsigned long __init bootmem_init(unsigned long phys_base) 1610 { 1611 unsigned long end_pfn; 1612 1613 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1614 max_pfn = max_low_pfn = end_pfn; 1615 min_low_pfn = (phys_base >> PAGE_SHIFT); 1616 1617 if (bootmem_init_numa() < 0) 1618 bootmem_init_nonnuma(); 1619 1620 /* Dump memblock with node info. */ 1621 memblock_dump_all(); 1622 1623 /* XXX cpu notifier XXX */ 1624 1625 sparse_init(); 1626 1627 return end_pfn; 1628 } 1629 1630 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1631 static int pall_ents __initdata; 1632 1633 static unsigned long max_phys_bits = 40; 1634 1635 bool kern_addr_valid(unsigned long addr) 1636 { 1637 pgd_t *pgd; 1638 p4d_t *p4d; 1639 pud_t *pud; 1640 pmd_t *pmd; 1641 pte_t *pte; 1642 1643 if ((long)addr < 0L) { 1644 unsigned long pa = __pa(addr); 1645 1646 if ((pa >> max_phys_bits) != 0UL) 1647 return false; 1648 1649 return pfn_valid(pa >> PAGE_SHIFT); 1650 } 1651 1652 if (addr >= (unsigned long) KERNBASE && 1653 addr < (unsigned long)&_end) 1654 return true; 1655 1656 pgd = pgd_offset_k(addr); 1657 if (pgd_none(*pgd)) 1658 return false; 1659 1660 p4d = p4d_offset(pgd, addr); 1661 if (p4d_none(*p4d)) 1662 return false; 1663 1664 pud = pud_offset(p4d, addr); 1665 if (pud_none(*pud)) 1666 return false; 1667 1668 if (pud_large(*pud)) 1669 return pfn_valid(pud_pfn(*pud)); 1670 1671 pmd = pmd_offset(pud, addr); 1672 if (pmd_none(*pmd)) 1673 return false; 1674 1675 if (pmd_large(*pmd)) 1676 return pfn_valid(pmd_pfn(*pmd)); 1677 1678 pte = pte_offset_kernel(pmd, addr); 1679 if (pte_none(*pte)) 1680 return false; 1681 1682 return pfn_valid(pte_pfn(*pte)); 1683 } 1684 1685 static unsigned long __ref kernel_map_hugepud(unsigned long vstart, 1686 unsigned long vend, 1687 pud_t *pud) 1688 { 1689 const unsigned long mask16gb = (1UL << 34) - 1UL; 1690 u64 pte_val = vstart; 1691 1692 /* Each PUD is 8GB */ 1693 if ((vstart & mask16gb) || 1694 (vend - vstart <= mask16gb)) { 1695 pte_val ^= kern_linear_pte_xor[2]; 1696 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; 1697 1698 return vstart + PUD_SIZE; 1699 } 1700 1701 pte_val ^= kern_linear_pte_xor[3]; 1702 pte_val |= _PAGE_PUD_HUGE; 1703 1704 vend = vstart + mask16gb + 1UL; 1705 while (vstart < vend) { 1706 pud_val(*pud) = pte_val; 1707 1708 pte_val += PUD_SIZE; 1709 vstart += PUD_SIZE; 1710 pud++; 1711 } 1712 return vstart; 1713 } 1714 1715 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, 1716 bool guard) 1717 { 1718 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) 1719 return true; 1720 1721 return false; 1722 } 1723 1724 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, 1725 unsigned long vend, 1726 pmd_t *pmd) 1727 { 1728 const unsigned long mask256mb = (1UL << 28) - 1UL; 1729 const unsigned long mask2gb = (1UL << 31) - 1UL; 1730 u64 pte_val = vstart; 1731 1732 /* Each PMD is 8MB */ 1733 if ((vstart & mask256mb) || 1734 (vend - vstart <= mask256mb)) { 1735 pte_val ^= kern_linear_pte_xor[0]; 1736 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; 1737 1738 return vstart + PMD_SIZE; 1739 } 1740 1741 if ((vstart & mask2gb) || 1742 (vend - vstart <= mask2gb)) { 1743 pte_val ^= kern_linear_pte_xor[1]; 1744 pte_val |= _PAGE_PMD_HUGE; 1745 vend = vstart + mask256mb + 1UL; 1746 } else { 1747 pte_val ^= kern_linear_pte_xor[2]; 1748 pte_val |= _PAGE_PMD_HUGE; 1749 vend = vstart + mask2gb + 1UL; 1750 } 1751 1752 while (vstart < vend) { 1753 pmd_val(*pmd) = pte_val; 1754 1755 pte_val += PMD_SIZE; 1756 vstart += PMD_SIZE; 1757 pmd++; 1758 } 1759 1760 return vstart; 1761 } 1762 1763 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, 1764 bool guard) 1765 { 1766 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) 1767 return true; 1768 1769 return false; 1770 } 1771 1772 static unsigned long __ref kernel_map_range(unsigned long pstart, 1773 unsigned long pend, pgprot_t prot, 1774 bool use_huge) 1775 { 1776 unsigned long vstart = PAGE_OFFSET + pstart; 1777 unsigned long vend = PAGE_OFFSET + pend; 1778 unsigned long alloc_bytes = 0UL; 1779 1780 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1781 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1782 vstart, vend); 1783 prom_halt(); 1784 } 1785 1786 while (vstart < vend) { 1787 unsigned long this_end, paddr = __pa(vstart); 1788 pgd_t *pgd = pgd_offset_k(vstart); 1789 p4d_t *p4d; 1790 pud_t *pud; 1791 pmd_t *pmd; 1792 pte_t *pte; 1793 1794 if (pgd_none(*pgd)) { 1795 pud_t *new; 1796 1797 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1798 PAGE_SIZE); 1799 if (!new) 1800 goto err_alloc; 1801 alloc_bytes += PAGE_SIZE; 1802 pgd_populate(&init_mm, pgd, new); 1803 } 1804 1805 p4d = p4d_offset(pgd, vstart); 1806 if (p4d_none(*p4d)) { 1807 pud_t *new; 1808 1809 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1810 PAGE_SIZE); 1811 if (!new) 1812 goto err_alloc; 1813 alloc_bytes += PAGE_SIZE; 1814 p4d_populate(&init_mm, p4d, new); 1815 } 1816 1817 pud = pud_offset(p4d, vstart); 1818 if (pud_none(*pud)) { 1819 pmd_t *new; 1820 1821 if (kernel_can_map_hugepud(vstart, vend, use_huge)) { 1822 vstart = kernel_map_hugepud(vstart, vend, pud); 1823 continue; 1824 } 1825 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1826 PAGE_SIZE); 1827 if (!new) 1828 goto err_alloc; 1829 alloc_bytes += PAGE_SIZE; 1830 pud_populate(&init_mm, pud, new); 1831 } 1832 1833 pmd = pmd_offset(pud, vstart); 1834 if (pmd_none(*pmd)) { 1835 pte_t *new; 1836 1837 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { 1838 vstart = kernel_map_hugepmd(vstart, vend, pmd); 1839 continue; 1840 } 1841 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1842 PAGE_SIZE); 1843 if (!new) 1844 goto err_alloc; 1845 alloc_bytes += PAGE_SIZE; 1846 pmd_populate_kernel(&init_mm, pmd, new); 1847 } 1848 1849 pte = pte_offset_kernel(pmd, vstart); 1850 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1851 if (this_end > vend) 1852 this_end = vend; 1853 1854 while (vstart < this_end) { 1855 pte_val(*pte) = (paddr | pgprot_val(prot)); 1856 1857 vstart += PAGE_SIZE; 1858 paddr += PAGE_SIZE; 1859 pte++; 1860 } 1861 } 1862 1863 return alloc_bytes; 1864 1865 err_alloc: 1866 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 1867 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1868 return -ENOMEM; 1869 } 1870 1871 static void __init flush_all_kernel_tsbs(void) 1872 { 1873 int i; 1874 1875 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { 1876 struct tsb *ent = &swapper_tsb[i]; 1877 1878 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1879 } 1880 #ifndef CONFIG_DEBUG_PAGEALLOC 1881 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { 1882 struct tsb *ent = &swapper_4m_tsb[i]; 1883 1884 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1885 } 1886 #endif 1887 } 1888 1889 extern unsigned int kvmap_linear_patch[1]; 1890 1891 static void __init kernel_physical_mapping_init(void) 1892 { 1893 unsigned long i, mem_alloced = 0UL; 1894 bool use_huge = true; 1895 1896 #ifdef CONFIG_DEBUG_PAGEALLOC 1897 use_huge = false; 1898 #endif 1899 for (i = 0; i < pall_ents; i++) { 1900 unsigned long phys_start, phys_end; 1901 1902 phys_start = pall[i].phys_addr; 1903 phys_end = phys_start + pall[i].reg_size; 1904 1905 mem_alloced += kernel_map_range(phys_start, phys_end, 1906 PAGE_KERNEL, use_huge); 1907 } 1908 1909 printk("Allocated %ld bytes for kernel page tables.\n", 1910 mem_alloced); 1911 1912 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1913 flushi(&kvmap_linear_patch[0]); 1914 1915 flush_all_kernel_tsbs(); 1916 1917 __flush_tlb_all(); 1918 } 1919 1920 #ifdef CONFIG_DEBUG_PAGEALLOC 1921 void __kernel_map_pages(struct page *page, int numpages, int enable) 1922 { 1923 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1924 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1925 1926 kernel_map_range(phys_start, phys_end, 1927 (enable ? PAGE_KERNEL : __pgprot(0)), false); 1928 1929 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1930 PAGE_OFFSET + phys_end); 1931 1932 /* we should perform an IPI and flush all tlbs, 1933 * but that can deadlock->flush only current cpu. 1934 */ 1935 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1936 PAGE_OFFSET + phys_end); 1937 } 1938 #endif 1939 1940 unsigned long __init find_ecache_flush_span(unsigned long size) 1941 { 1942 int i; 1943 1944 for (i = 0; i < pavail_ents; i++) { 1945 if (pavail[i].reg_size >= size) 1946 return pavail[i].phys_addr; 1947 } 1948 1949 return ~0UL; 1950 } 1951 1952 unsigned long PAGE_OFFSET; 1953 EXPORT_SYMBOL(PAGE_OFFSET); 1954 1955 unsigned long VMALLOC_END = 0x0000010000000000UL; 1956 EXPORT_SYMBOL(VMALLOC_END); 1957 1958 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; 1959 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; 1960 1961 static void __init setup_page_offset(void) 1962 { 1963 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1964 /* Cheetah/Panther support a full 64-bit virtual 1965 * address, so we can use all that our page tables 1966 * support. 1967 */ 1968 sparc64_va_hole_top = 0xfff0000000000000UL; 1969 sparc64_va_hole_bottom = 0x0010000000000000UL; 1970 1971 max_phys_bits = 42; 1972 } else if (tlb_type == hypervisor) { 1973 switch (sun4v_chip_type) { 1974 case SUN4V_CHIP_NIAGARA1: 1975 case SUN4V_CHIP_NIAGARA2: 1976 /* T1 and T2 support 48-bit virtual addresses. */ 1977 sparc64_va_hole_top = 0xffff800000000000UL; 1978 sparc64_va_hole_bottom = 0x0000800000000000UL; 1979 1980 max_phys_bits = 39; 1981 break; 1982 case SUN4V_CHIP_NIAGARA3: 1983 /* T3 supports 48-bit virtual addresses. */ 1984 sparc64_va_hole_top = 0xffff800000000000UL; 1985 sparc64_va_hole_bottom = 0x0000800000000000UL; 1986 1987 max_phys_bits = 43; 1988 break; 1989 case SUN4V_CHIP_NIAGARA4: 1990 case SUN4V_CHIP_NIAGARA5: 1991 case SUN4V_CHIP_SPARC64X: 1992 case SUN4V_CHIP_SPARC_M6: 1993 /* T4 and later support 52-bit virtual addresses. */ 1994 sparc64_va_hole_top = 0xfff8000000000000UL; 1995 sparc64_va_hole_bottom = 0x0008000000000000UL; 1996 max_phys_bits = 47; 1997 break; 1998 case SUN4V_CHIP_SPARC_M7: 1999 case SUN4V_CHIP_SPARC_SN: 2000 /* M7 and later support 52-bit virtual addresses. */ 2001 sparc64_va_hole_top = 0xfff8000000000000UL; 2002 sparc64_va_hole_bottom = 0x0008000000000000UL; 2003 max_phys_bits = 49; 2004 break; 2005 case SUN4V_CHIP_SPARC_M8: 2006 default: 2007 /* M8 and later support 54-bit virtual addresses. 2008 * However, restricting M8 and above VA bits to 53 2009 * as 4-level page table cannot support more than 2010 * 53 VA bits. 2011 */ 2012 sparc64_va_hole_top = 0xfff0000000000000UL; 2013 sparc64_va_hole_bottom = 0x0010000000000000UL; 2014 max_phys_bits = 51; 2015 break; 2016 } 2017 } 2018 2019 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 2020 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 2021 max_phys_bits); 2022 prom_halt(); 2023 } 2024 2025 PAGE_OFFSET = sparc64_va_hole_top; 2026 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + 2027 (sparc64_va_hole_bottom >> 2)); 2028 2029 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 2030 PAGE_OFFSET, max_phys_bits); 2031 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", 2032 VMALLOC_START, VMALLOC_END); 2033 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", 2034 VMEMMAP_BASE, VMEMMAP_BASE << 1); 2035 } 2036 2037 static void __init tsb_phys_patch(void) 2038 { 2039 struct tsb_ldquad_phys_patch_entry *pquad; 2040 struct tsb_phys_patch_entry *p; 2041 2042 pquad = &__tsb_ldquad_phys_patch; 2043 while (pquad < &__tsb_ldquad_phys_patch_end) { 2044 unsigned long addr = pquad->addr; 2045 2046 if (tlb_type == hypervisor) 2047 *(unsigned int *) addr = pquad->sun4v_insn; 2048 else 2049 *(unsigned int *) addr = pquad->sun4u_insn; 2050 wmb(); 2051 __asm__ __volatile__("flush %0" 2052 : /* no outputs */ 2053 : "r" (addr)); 2054 2055 pquad++; 2056 } 2057 2058 p = &__tsb_phys_patch; 2059 while (p < &__tsb_phys_patch_end) { 2060 unsigned long addr = p->addr; 2061 2062 *(unsigned int *) addr = p->insn; 2063 wmb(); 2064 __asm__ __volatile__("flush %0" 2065 : /* no outputs */ 2066 : "r" (addr)); 2067 2068 p++; 2069 } 2070 } 2071 2072 /* Don't mark as init, we give this to the Hypervisor. */ 2073 #ifndef CONFIG_DEBUG_PAGEALLOC 2074 #define NUM_KTSB_DESCR 2 2075 #else 2076 #define NUM_KTSB_DESCR 1 2077 #endif 2078 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 2079 2080 /* The swapper TSBs are loaded with a base sequence of: 2081 * 2082 * sethi %uhi(SYMBOL), REG1 2083 * sethi %hi(SYMBOL), REG2 2084 * or REG1, %ulo(SYMBOL), REG1 2085 * or REG2, %lo(SYMBOL), REG2 2086 * sllx REG1, 32, REG1 2087 * or REG1, REG2, REG1 2088 * 2089 * When we use physical addressing for the TSB accesses, we patch the 2090 * first four instructions in the above sequence. 2091 */ 2092 2093 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 2094 { 2095 unsigned long high_bits, low_bits; 2096 2097 high_bits = (pa >> 32) & 0xffffffff; 2098 low_bits = (pa >> 0) & 0xffffffff; 2099 2100 while (start < end) { 2101 unsigned int *ia = (unsigned int *)(unsigned long)*start; 2102 2103 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); 2104 __asm__ __volatile__("flush %0" : : "r" (ia)); 2105 2106 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); 2107 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 2108 2109 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); 2110 __asm__ __volatile__("flush %0" : : "r" (ia + 2)); 2111 2112 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); 2113 __asm__ __volatile__("flush %0" : : "r" (ia + 3)); 2114 2115 start++; 2116 } 2117 } 2118 2119 static void ktsb_phys_patch(void) 2120 { 2121 extern unsigned int __swapper_tsb_phys_patch; 2122 extern unsigned int __swapper_tsb_phys_patch_end; 2123 unsigned long ktsb_pa; 2124 2125 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2126 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 2127 &__swapper_tsb_phys_patch_end, ktsb_pa); 2128 #ifndef CONFIG_DEBUG_PAGEALLOC 2129 { 2130 extern unsigned int __swapper_4m_tsb_phys_patch; 2131 extern unsigned int __swapper_4m_tsb_phys_patch_end; 2132 ktsb_pa = (kern_base + 2133 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2134 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 2135 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 2136 } 2137 #endif 2138 } 2139 2140 static void __init sun4v_ktsb_init(void) 2141 { 2142 unsigned long ktsb_pa; 2143 2144 /* First KTSB for PAGE_SIZE mappings. */ 2145 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2146 2147 switch (PAGE_SIZE) { 2148 case 8 * 1024: 2149 default: 2150 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 2151 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 2152 break; 2153 2154 case 64 * 1024: 2155 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 2156 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 2157 break; 2158 2159 case 512 * 1024: 2160 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 2161 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 2162 break; 2163 2164 case 4 * 1024 * 1024: 2165 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 2166 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 2167 break; 2168 } 2169 2170 ktsb_descr[0].assoc = 1; 2171 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 2172 ktsb_descr[0].ctx_idx = 0; 2173 ktsb_descr[0].tsb_base = ktsb_pa; 2174 ktsb_descr[0].resv = 0; 2175 2176 #ifndef CONFIG_DEBUG_PAGEALLOC 2177 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 2178 ktsb_pa = (kern_base + 2179 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2180 2181 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 2182 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 2183 HV_PGSZ_MASK_256MB | 2184 HV_PGSZ_MASK_2GB | 2185 HV_PGSZ_MASK_16GB) & 2186 cpu_pgsz_mask); 2187 ktsb_descr[1].assoc = 1; 2188 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 2189 ktsb_descr[1].ctx_idx = 0; 2190 ktsb_descr[1].tsb_base = ktsb_pa; 2191 ktsb_descr[1].resv = 0; 2192 #endif 2193 } 2194 2195 void sun4v_ktsb_register(void) 2196 { 2197 unsigned long pa, ret; 2198 2199 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 2200 2201 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 2202 if (ret != 0) { 2203 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 2204 "errors with %lx\n", pa, ret); 2205 prom_halt(); 2206 } 2207 } 2208 2209 static void __init sun4u_linear_pte_xor_finalize(void) 2210 { 2211 #ifndef CONFIG_DEBUG_PAGEALLOC 2212 /* This is where we would add Panther support for 2213 * 32MB and 256MB pages. 2214 */ 2215 #endif 2216 } 2217 2218 static void __init sun4v_linear_pte_xor_finalize(void) 2219 { 2220 unsigned long pagecv_flag; 2221 2222 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead 2223 * enables MCD error. Do not set bit 9 on M7 processor. 2224 */ 2225 switch (sun4v_chip_type) { 2226 case SUN4V_CHIP_SPARC_M7: 2227 case SUN4V_CHIP_SPARC_M8: 2228 case SUN4V_CHIP_SPARC_SN: 2229 pagecv_flag = 0x00; 2230 break; 2231 default: 2232 pagecv_flag = _PAGE_CV_4V; 2233 break; 2234 } 2235 #ifndef CONFIG_DEBUG_PAGEALLOC 2236 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 2237 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2238 PAGE_OFFSET; 2239 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | 2240 _PAGE_P_4V | _PAGE_W_4V); 2241 } else { 2242 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2243 } 2244 2245 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 2246 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 2247 PAGE_OFFSET; 2248 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | 2249 _PAGE_P_4V | _PAGE_W_4V); 2250 } else { 2251 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 2252 } 2253 2254 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 2255 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 2256 PAGE_OFFSET; 2257 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | 2258 _PAGE_P_4V | _PAGE_W_4V); 2259 } else { 2260 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 2261 } 2262 #endif 2263 } 2264 2265 /* paging_init() sets up the page tables */ 2266 2267 static unsigned long last_valid_pfn; 2268 2269 static void sun4u_pgprot_init(void); 2270 static void sun4v_pgprot_init(void); 2271 2272 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2273 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2274 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2275 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2276 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2277 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2278 2279 /* We need to exclude reserved regions. This exclusion will include 2280 * vmlinux and initrd. To be more precise the initrd size could be used to 2281 * compute a new lower limit because it is freed later during initialization. 2282 */ 2283 static void __init reduce_memory(phys_addr_t limit_ram) 2284 { 2285 limit_ram += memblock_reserved_size(); 2286 memblock_enforce_memory_limit(limit_ram); 2287 } 2288 2289 void __init paging_init(void) 2290 { 2291 unsigned long end_pfn, shift, phys_base; 2292 unsigned long real_end, i; 2293 2294 setup_page_offset(); 2295 2296 /* These build time checkes make sure that the dcache_dirty_cpu() 2297 * folio->flags usage will work. 2298 * 2299 * When a page gets marked as dcache-dirty, we store the 2300 * cpu number starting at bit 32 in the folio->flags. Also, 2301 * functions like clear_dcache_dirty_cpu use the cpu mask 2302 * in 13-bit signed-immediate instruction fields. 2303 */ 2304 2305 /* 2306 * Page flags must not reach into upper 32 bits that are used 2307 * for the cpu number 2308 */ 2309 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 2310 2311 /* 2312 * The bit fields placed in the high range must not reach below 2313 * the 32 bit boundary. Otherwise we cannot place the cpu field 2314 * at the 32 bit boundary. 2315 */ 2316 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 2317 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 2318 2319 BUILD_BUG_ON(NR_CPUS > 4096); 2320 2321 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 2322 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 2323 2324 /* Invalidate both kernel TSBs. */ 2325 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 2326 #ifndef CONFIG_DEBUG_PAGEALLOC 2327 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2328 #endif 2329 2330 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde 2331 * bit on M7 processor. This is a conflicting usage of the same 2332 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption 2333 * Detection error on all pages and this will lead to problems 2334 * later. Kernel does not run with MCD enabled and hence rest 2335 * of the required steps to fully configure memory corruption 2336 * detection are not taken. We need to ensure TTE.mcde is not 2337 * set on M7 processor. Compute the value of cacheability 2338 * flag for use later taking this into consideration. 2339 */ 2340 switch (sun4v_chip_type) { 2341 case SUN4V_CHIP_SPARC_M7: 2342 case SUN4V_CHIP_SPARC_M8: 2343 case SUN4V_CHIP_SPARC_SN: 2344 page_cache4v_flag = _PAGE_CP_4V; 2345 break; 2346 default: 2347 page_cache4v_flag = _PAGE_CACHE_4V; 2348 break; 2349 } 2350 2351 if (tlb_type == hypervisor) 2352 sun4v_pgprot_init(); 2353 else 2354 sun4u_pgprot_init(); 2355 2356 if (tlb_type == cheetah_plus || 2357 tlb_type == hypervisor) { 2358 tsb_phys_patch(); 2359 ktsb_phys_patch(); 2360 } 2361 2362 if (tlb_type == hypervisor) 2363 sun4v_patch_tlb_handlers(); 2364 2365 /* Find available physical memory... 2366 * 2367 * Read it twice in order to work around a bug in openfirmware. 2368 * The call to grab this table itself can cause openfirmware to 2369 * allocate memory, which in turn can take away some space from 2370 * the list of available memory. Reading it twice makes sure 2371 * we really do get the final value. 2372 */ 2373 read_obp_translations(); 2374 read_obp_memory("reg", &pall[0], &pall_ents); 2375 read_obp_memory("available", &pavail[0], &pavail_ents); 2376 read_obp_memory("available", &pavail[0], &pavail_ents); 2377 2378 phys_base = 0xffffffffffffffffUL; 2379 for (i = 0; i < pavail_ents; i++) { 2380 phys_base = min(phys_base, pavail[i].phys_addr); 2381 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 2382 } 2383 2384 memblock_reserve(kern_base, kern_size); 2385 2386 find_ramdisk(phys_base); 2387 2388 if (cmdline_memory_size) 2389 reduce_memory(cmdline_memory_size); 2390 2391 memblock_allow_resize(); 2392 memblock_dump_all(); 2393 2394 set_bit(0, mmu_context_bmap); 2395 2396 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 2397 2398 real_end = (unsigned long)_end; 2399 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 2400 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 2401 num_kernel_image_mappings); 2402 2403 /* Set kernel pgd to upper alias so physical page computations 2404 * work. 2405 */ 2406 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 2407 2408 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); 2409 2410 inherit_prom_mappings(); 2411 2412 /* Ok, we can use our TLB miss and window trap handlers safely. */ 2413 setup_tba(); 2414 2415 __flush_tlb_all(); 2416 2417 prom_build_devicetree(); 2418 of_populate_present_mask(); 2419 #ifndef CONFIG_SMP 2420 of_fill_in_cpu_data(); 2421 #endif 2422 2423 if (tlb_type == hypervisor) { 2424 sun4v_mdesc_init(); 2425 mdesc_populate_present_mask(cpu_all_mask); 2426 #ifndef CONFIG_SMP 2427 mdesc_fill_in_cpu_data(cpu_all_mask); 2428 #endif 2429 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 2430 2431 sun4v_linear_pte_xor_finalize(); 2432 2433 sun4v_ktsb_init(); 2434 sun4v_ktsb_register(); 2435 } else { 2436 unsigned long impl, ver; 2437 2438 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 2439 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 2440 2441 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 2442 impl = ((ver >> 32) & 0xffff); 2443 if (impl == PANTHER_IMPL) 2444 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 2445 HV_PGSZ_MASK_256MB); 2446 2447 sun4u_linear_pte_xor_finalize(); 2448 } 2449 2450 /* Flush the TLBs and the 4M TSB so that the updated linear 2451 * pte XOR settings are realized for all mappings. 2452 */ 2453 __flush_tlb_all(); 2454 #ifndef CONFIG_DEBUG_PAGEALLOC 2455 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2456 #endif 2457 __flush_tlb_all(); 2458 2459 /* Setup bootmem... */ 2460 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2461 2462 kernel_physical_mapping_init(); 2463 2464 { 2465 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2466 2467 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2468 2469 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2470 2471 free_area_init(max_zone_pfns); 2472 } 2473 2474 printk("Booting Linux...\n"); 2475 } 2476 2477 int page_in_phys_avail(unsigned long paddr) 2478 { 2479 int i; 2480 2481 paddr &= PAGE_MASK; 2482 2483 for (i = 0; i < pavail_ents; i++) { 2484 unsigned long start, end; 2485 2486 start = pavail[i].phys_addr; 2487 end = start + pavail[i].reg_size; 2488 2489 if (paddr >= start && paddr < end) 2490 return 1; 2491 } 2492 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2493 return 1; 2494 #ifdef CONFIG_BLK_DEV_INITRD 2495 if (paddr >= __pa(initrd_start) && 2496 paddr < __pa(PAGE_ALIGN(initrd_end))) 2497 return 1; 2498 #endif 2499 2500 return 0; 2501 } 2502 2503 static void __init register_page_bootmem_info(void) 2504 { 2505 #ifdef CONFIG_NUMA 2506 int i; 2507 2508 for_each_online_node(i) 2509 if (NODE_DATA(i)->node_spanned_pages) 2510 register_page_bootmem_info_node(NODE_DATA(i)); 2511 #endif 2512 } 2513 void __init mem_init(void) 2514 { 2515 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2516 2517 memblock_free_all(); 2518 2519 /* 2520 * Must be done after boot memory is put on freelist, because here we 2521 * might set fields in deferred struct pages that have not yet been 2522 * initialized, and memblock_free_all() initializes all the reserved 2523 * deferred pages for us. 2524 */ 2525 register_page_bootmem_info(); 2526 2527 /* 2528 * Set up the zero page, mark it reserved, so that page count 2529 * is not manipulated when freeing the page from user ptes. 2530 */ 2531 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2532 if (mem_map_zero == NULL) { 2533 prom_printf("paging_init: Cannot alloc zero page.\n"); 2534 prom_halt(); 2535 } 2536 mark_page_reserved(mem_map_zero); 2537 2538 2539 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2540 cheetah_ecache_flush_init(); 2541 } 2542 2543 void free_initmem(void) 2544 { 2545 unsigned long addr, initend; 2546 int do_free = 1; 2547 2548 /* If the physical memory maps were trimmed by kernel command 2549 * line options, don't even try freeing this initmem stuff up. 2550 * The kernel image could have been in the trimmed out region 2551 * and if so the freeing below will free invalid page structs. 2552 */ 2553 if (cmdline_memory_size) 2554 do_free = 0; 2555 2556 /* 2557 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2558 */ 2559 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2560 initend = (unsigned long)(__init_end) & PAGE_MASK; 2561 for (; addr < initend; addr += PAGE_SIZE) { 2562 unsigned long page; 2563 2564 page = (addr + 2565 ((unsigned long) __va(kern_base)) - 2566 ((unsigned long) KERNBASE)); 2567 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2568 2569 if (do_free) 2570 free_reserved_page(virt_to_page(page)); 2571 } 2572 } 2573 2574 pgprot_t PAGE_KERNEL __read_mostly; 2575 EXPORT_SYMBOL(PAGE_KERNEL); 2576 2577 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2578 pgprot_t PAGE_COPY __read_mostly; 2579 2580 pgprot_t PAGE_SHARED __read_mostly; 2581 EXPORT_SYMBOL(PAGE_SHARED); 2582 2583 unsigned long pg_iobits __read_mostly; 2584 2585 unsigned long _PAGE_IE __read_mostly; 2586 EXPORT_SYMBOL(_PAGE_IE); 2587 2588 unsigned long _PAGE_E __read_mostly; 2589 EXPORT_SYMBOL(_PAGE_E); 2590 2591 unsigned long _PAGE_CACHE __read_mostly; 2592 EXPORT_SYMBOL(_PAGE_CACHE); 2593 2594 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2595 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2596 int node, struct vmem_altmap *altmap) 2597 { 2598 unsigned long pte_base; 2599 2600 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2601 _PAGE_CP_4U | _PAGE_CV_4U | 2602 _PAGE_P_4U | _PAGE_W_4U); 2603 if (tlb_type == hypervisor) 2604 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2605 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); 2606 2607 pte_base |= _PAGE_PMD_HUGE; 2608 2609 vstart = vstart & PMD_MASK; 2610 vend = ALIGN(vend, PMD_SIZE); 2611 for (; vstart < vend; vstart += PMD_SIZE) { 2612 pgd_t *pgd = vmemmap_pgd_populate(vstart, node); 2613 unsigned long pte; 2614 p4d_t *p4d; 2615 pud_t *pud; 2616 pmd_t *pmd; 2617 2618 if (!pgd) 2619 return -ENOMEM; 2620 2621 p4d = vmemmap_p4d_populate(pgd, vstart, node); 2622 if (!p4d) 2623 return -ENOMEM; 2624 2625 pud = vmemmap_pud_populate(p4d, vstart, node); 2626 if (!pud) 2627 return -ENOMEM; 2628 2629 pmd = pmd_offset(pud, vstart); 2630 pte = pmd_val(*pmd); 2631 if (!(pte & _PAGE_VALID)) { 2632 void *block = vmemmap_alloc_block(PMD_SIZE, node); 2633 2634 if (!block) 2635 return -ENOMEM; 2636 2637 pmd_val(*pmd) = pte_base | __pa(block); 2638 } 2639 } 2640 2641 return 0; 2642 } 2643 2644 void vmemmap_free(unsigned long start, unsigned long end, 2645 struct vmem_altmap *altmap) 2646 { 2647 } 2648 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2649 2650 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */ 2651 static pgprot_t protection_map[16] __ro_after_init; 2652 2653 static void prot_init_common(unsigned long page_none, 2654 unsigned long page_shared, 2655 unsigned long page_copy, 2656 unsigned long page_readonly, 2657 unsigned long page_exec_bit) 2658 { 2659 PAGE_COPY = __pgprot(page_copy); 2660 PAGE_SHARED = __pgprot(page_shared); 2661 2662 protection_map[0x0] = __pgprot(page_none); 2663 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2664 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2665 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2666 protection_map[0x4] = __pgprot(page_readonly); 2667 protection_map[0x5] = __pgprot(page_readonly); 2668 protection_map[0x6] = __pgprot(page_copy); 2669 protection_map[0x7] = __pgprot(page_copy); 2670 protection_map[0x8] = __pgprot(page_none); 2671 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2672 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2673 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2674 protection_map[0xc] = __pgprot(page_readonly); 2675 protection_map[0xd] = __pgprot(page_readonly); 2676 protection_map[0xe] = __pgprot(page_shared); 2677 protection_map[0xf] = __pgprot(page_shared); 2678 } 2679 2680 static void __init sun4u_pgprot_init(void) 2681 { 2682 unsigned long page_none, page_shared, page_copy, page_readonly; 2683 unsigned long page_exec_bit; 2684 int i; 2685 2686 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2687 _PAGE_CACHE_4U | _PAGE_P_4U | 2688 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2689 _PAGE_EXEC_4U); 2690 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2691 _PAGE_CACHE_4U | _PAGE_P_4U | 2692 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2693 _PAGE_EXEC_4U | _PAGE_L_4U); 2694 2695 _PAGE_IE = _PAGE_IE_4U; 2696 _PAGE_E = _PAGE_E_4U; 2697 _PAGE_CACHE = _PAGE_CACHE_4U; 2698 2699 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2700 __ACCESS_BITS_4U | _PAGE_E_4U); 2701 2702 #ifdef CONFIG_DEBUG_PAGEALLOC 2703 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2704 #else 2705 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2706 PAGE_OFFSET; 2707 #endif 2708 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2709 _PAGE_P_4U | _PAGE_W_4U); 2710 2711 for (i = 1; i < 4; i++) 2712 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2713 2714 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2715 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2716 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2717 2718 2719 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2720 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2721 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2722 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2723 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2724 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2725 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2726 2727 page_exec_bit = _PAGE_EXEC_4U; 2728 2729 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2730 page_exec_bit); 2731 } 2732 2733 static void __init sun4v_pgprot_init(void) 2734 { 2735 unsigned long page_none, page_shared, page_copy, page_readonly; 2736 unsigned long page_exec_bit; 2737 int i; 2738 2739 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2740 page_cache4v_flag | _PAGE_P_4V | 2741 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2742 _PAGE_EXEC_4V); 2743 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2744 2745 _PAGE_IE = _PAGE_IE_4V; 2746 _PAGE_E = _PAGE_E_4V; 2747 _PAGE_CACHE = page_cache4v_flag; 2748 2749 #ifdef CONFIG_DEBUG_PAGEALLOC 2750 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2751 #else 2752 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2753 PAGE_OFFSET; 2754 #endif 2755 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | 2756 _PAGE_W_4V); 2757 2758 for (i = 1; i < 4; i++) 2759 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2760 2761 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2762 __ACCESS_BITS_4V | _PAGE_E_4V); 2763 2764 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2765 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2766 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2767 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2768 2769 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; 2770 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2771 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2772 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2773 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2774 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2775 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2776 2777 page_exec_bit = _PAGE_EXEC_4V; 2778 2779 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2780 page_exec_bit); 2781 } 2782 2783 unsigned long pte_sz_bits(unsigned long sz) 2784 { 2785 if (tlb_type == hypervisor) { 2786 switch (sz) { 2787 case 8 * 1024: 2788 default: 2789 return _PAGE_SZ8K_4V; 2790 case 64 * 1024: 2791 return _PAGE_SZ64K_4V; 2792 case 512 * 1024: 2793 return _PAGE_SZ512K_4V; 2794 case 4 * 1024 * 1024: 2795 return _PAGE_SZ4MB_4V; 2796 } 2797 } else { 2798 switch (sz) { 2799 case 8 * 1024: 2800 default: 2801 return _PAGE_SZ8K_4U; 2802 case 64 * 1024: 2803 return _PAGE_SZ64K_4U; 2804 case 512 * 1024: 2805 return _PAGE_SZ512K_4U; 2806 case 4 * 1024 * 1024: 2807 return _PAGE_SZ4MB_4U; 2808 } 2809 } 2810 } 2811 2812 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2813 { 2814 pte_t pte; 2815 2816 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2817 pte_val(pte) |= (((unsigned long)space) << 32); 2818 pte_val(pte) |= pte_sz_bits(page_size); 2819 2820 return pte; 2821 } 2822 2823 static unsigned long kern_large_tte(unsigned long paddr) 2824 { 2825 unsigned long val; 2826 2827 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2828 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2829 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2830 if (tlb_type == hypervisor) 2831 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2832 page_cache4v_flag | _PAGE_P_4V | 2833 _PAGE_EXEC_4V | _PAGE_W_4V); 2834 2835 return val | paddr; 2836 } 2837 2838 /* If not locked, zap it. */ 2839 void __flush_tlb_all(void) 2840 { 2841 unsigned long pstate; 2842 int i; 2843 2844 __asm__ __volatile__("flushw\n\t" 2845 "rdpr %%pstate, %0\n\t" 2846 "wrpr %0, %1, %%pstate" 2847 : "=r" (pstate) 2848 : "i" (PSTATE_IE)); 2849 if (tlb_type == hypervisor) { 2850 sun4v_mmu_demap_all(); 2851 } else if (tlb_type == spitfire) { 2852 for (i = 0; i < 64; i++) { 2853 /* Spitfire Errata #32 workaround */ 2854 /* NOTE: Always runs on spitfire, so no 2855 * cheetah+ page size encodings. 2856 */ 2857 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2858 "flush %%g6" 2859 : /* No outputs */ 2860 : "r" (0), 2861 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2862 2863 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2864 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2865 "membar #Sync" 2866 : /* no outputs */ 2867 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2868 spitfire_put_dtlb_data(i, 0x0UL); 2869 } 2870 2871 /* Spitfire Errata #32 workaround */ 2872 /* NOTE: Always runs on spitfire, so no 2873 * cheetah+ page size encodings. 2874 */ 2875 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2876 "flush %%g6" 2877 : /* No outputs */ 2878 : "r" (0), 2879 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2880 2881 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2882 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2883 "membar #Sync" 2884 : /* no outputs */ 2885 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2886 spitfire_put_itlb_data(i, 0x0UL); 2887 } 2888 } 2889 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2890 cheetah_flush_dtlb_all(); 2891 cheetah_flush_itlb_all(); 2892 } 2893 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2894 : : "r" (pstate)); 2895 } 2896 2897 pte_t *pte_alloc_one_kernel(struct mm_struct *mm) 2898 { 2899 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2900 pte_t *pte = NULL; 2901 2902 if (page) 2903 pte = (pte_t *) page_address(page); 2904 2905 return pte; 2906 } 2907 2908 pgtable_t pte_alloc_one(struct mm_struct *mm) 2909 { 2910 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0); 2911 2912 if (!ptdesc) 2913 return NULL; 2914 if (!pagetable_pte_ctor(ptdesc)) { 2915 pagetable_free(ptdesc); 2916 return NULL; 2917 } 2918 return ptdesc_address(ptdesc); 2919 } 2920 2921 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2922 { 2923 free_page((unsigned long)pte); 2924 } 2925 2926 static void __pte_free(pgtable_t pte) 2927 { 2928 struct ptdesc *ptdesc = virt_to_ptdesc(pte); 2929 2930 pagetable_pte_dtor(ptdesc); 2931 pagetable_free(ptdesc); 2932 } 2933 2934 void pte_free(struct mm_struct *mm, pgtable_t pte) 2935 { 2936 __pte_free(pte); 2937 } 2938 2939 void pgtable_free(void *table, bool is_page) 2940 { 2941 if (is_page) 2942 __pte_free(table); 2943 else 2944 kmem_cache_free(pgtable_cache, table); 2945 } 2946 2947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2948 static void pte_free_now(struct rcu_head *head) 2949 { 2950 struct page *page; 2951 2952 page = container_of(head, struct page, rcu_head); 2953 __pte_free((pgtable_t)page_address(page)); 2954 } 2955 2956 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 2957 { 2958 struct page *page; 2959 2960 page = virt_to_page(pgtable); 2961 call_rcu(&page->rcu_head, pte_free_now); 2962 } 2963 2964 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2965 pmd_t *pmd) 2966 { 2967 unsigned long pte, flags; 2968 struct mm_struct *mm; 2969 pmd_t entry = *pmd; 2970 2971 if (!pmd_large(entry) || !pmd_young(entry)) 2972 return; 2973 2974 pte = pmd_val(entry); 2975 2976 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ 2977 if (!(pte & _PAGE_VALID)) 2978 return; 2979 2980 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2981 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2982 2983 mm = vma->vm_mm; 2984 2985 spin_lock_irqsave(&mm->context.lock, flags); 2986 2987 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2988 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2989 addr, pte); 2990 2991 spin_unlock_irqrestore(&mm->context.lock, flags); 2992 } 2993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2994 2995 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2996 static void context_reload(void *__data) 2997 { 2998 struct mm_struct *mm = __data; 2999 3000 if (mm == current->mm) 3001 load_secondary_context(mm); 3002 } 3003 3004 void hugetlb_setup(struct pt_regs *regs) 3005 { 3006 struct mm_struct *mm = current->mm; 3007 struct tsb_config *tp; 3008 3009 if (faulthandler_disabled() || !mm) { 3010 const struct exception_table_entry *entry; 3011 3012 entry = search_exception_tables(regs->tpc); 3013 if (entry) { 3014 regs->tpc = entry->fixup; 3015 regs->tnpc = regs->tpc + 4; 3016 return; 3017 } 3018 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 3019 die_if_kernel("HugeTSB in atomic", regs); 3020 } 3021 3022 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 3023 if (likely(tp->tsb == NULL)) 3024 tsb_grow(mm, MM_TSB_HUGE, 0); 3025 3026 tsb_context_switch(mm); 3027 smp_tsb_sync(mm); 3028 3029 /* On UltraSPARC-III+ and later, configure the second half of 3030 * the Data-TLB for huge pages. 3031 */ 3032 if (tlb_type == cheetah_plus) { 3033 bool need_context_reload = false; 3034 unsigned long ctx; 3035 3036 spin_lock_irq(&ctx_alloc_lock); 3037 ctx = mm->context.sparc64_ctx_val; 3038 ctx &= ~CTX_PGSZ_MASK; 3039 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 3040 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 3041 3042 if (ctx != mm->context.sparc64_ctx_val) { 3043 /* When changing the page size fields, we 3044 * must perform a context flush so that no 3045 * stale entries match. This flush must 3046 * occur with the original context register 3047 * settings. 3048 */ 3049 do_flush_tlb_mm(mm); 3050 3051 /* Reload the context register of all processors 3052 * also executing in this address space. 3053 */ 3054 mm->context.sparc64_ctx_val = ctx; 3055 need_context_reload = true; 3056 } 3057 spin_unlock_irq(&ctx_alloc_lock); 3058 3059 if (need_context_reload) 3060 on_each_cpu(context_reload, mm, 0); 3061 } 3062 } 3063 #endif 3064 3065 static struct resource code_resource = { 3066 .name = "Kernel code", 3067 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3068 }; 3069 3070 static struct resource data_resource = { 3071 .name = "Kernel data", 3072 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3073 }; 3074 3075 static struct resource bss_resource = { 3076 .name = "Kernel bss", 3077 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3078 }; 3079 3080 static inline resource_size_t compute_kern_paddr(void *addr) 3081 { 3082 return (resource_size_t) (addr - KERNBASE + kern_base); 3083 } 3084 3085 static void __init kernel_lds_init(void) 3086 { 3087 code_resource.start = compute_kern_paddr(_text); 3088 code_resource.end = compute_kern_paddr(_etext - 1); 3089 data_resource.start = compute_kern_paddr(_etext); 3090 data_resource.end = compute_kern_paddr(_edata - 1); 3091 bss_resource.start = compute_kern_paddr(__bss_start); 3092 bss_resource.end = compute_kern_paddr(_end - 1); 3093 } 3094 3095 static int __init report_memory(void) 3096 { 3097 int i; 3098 struct resource *res; 3099 3100 kernel_lds_init(); 3101 3102 for (i = 0; i < pavail_ents; i++) { 3103 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 3104 3105 if (!res) { 3106 pr_warn("Failed to allocate source.\n"); 3107 break; 3108 } 3109 3110 res->name = "System RAM"; 3111 res->start = pavail[i].phys_addr; 3112 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; 3113 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 3114 3115 if (insert_resource(&iomem_resource, res) < 0) { 3116 pr_warn("Resource insertion failed.\n"); 3117 break; 3118 } 3119 3120 insert_resource(res, &code_resource); 3121 insert_resource(res, &data_resource); 3122 insert_resource(res, &bss_resource); 3123 } 3124 3125 return 0; 3126 } 3127 arch_initcall(report_memory); 3128 3129 #ifdef CONFIG_SMP 3130 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range 3131 #else 3132 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range 3133 #endif 3134 3135 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 3136 { 3137 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { 3138 if (start < LOW_OBP_ADDRESS) { 3139 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); 3140 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); 3141 } 3142 if (end > HI_OBP_ADDRESS) { 3143 flush_tsb_kernel_range(HI_OBP_ADDRESS, end); 3144 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); 3145 } 3146 } else { 3147 flush_tsb_kernel_range(start, end); 3148 do_flush_tlb_kernel_range(start, end); 3149 } 3150 } 3151 3152 void copy_user_highpage(struct page *to, struct page *from, 3153 unsigned long vaddr, struct vm_area_struct *vma) 3154 { 3155 char *vfrom, *vto; 3156 3157 vfrom = kmap_atomic(from); 3158 vto = kmap_atomic(to); 3159 copy_user_page(vto, vfrom, vaddr, to); 3160 kunmap_atomic(vto); 3161 kunmap_atomic(vfrom); 3162 3163 /* If this page has ADI enabled, copy over any ADI tags 3164 * as well 3165 */ 3166 if (vma->vm_flags & VM_SPARC_ADI) { 3167 unsigned long pfrom, pto, i, adi_tag; 3168 3169 pfrom = page_to_phys(from); 3170 pto = page_to_phys(to); 3171 3172 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3173 asm volatile("ldxa [%1] %2, %0\n\t" 3174 : "=r" (adi_tag) 3175 : "r" (i), "i" (ASI_MCD_REAL)); 3176 asm volatile("stxa %0, [%1] %2\n\t" 3177 : 3178 : "r" (adi_tag), "r" (pto), 3179 "i" (ASI_MCD_REAL)); 3180 pto += adi_blksize(); 3181 } 3182 asm volatile("membar #Sync\n\t"); 3183 } 3184 } 3185 EXPORT_SYMBOL(copy_user_highpage); 3186 3187 void copy_highpage(struct page *to, struct page *from) 3188 { 3189 char *vfrom, *vto; 3190 3191 vfrom = kmap_atomic(from); 3192 vto = kmap_atomic(to); 3193 copy_page(vto, vfrom); 3194 kunmap_atomic(vto); 3195 kunmap_atomic(vfrom); 3196 3197 /* If this platform is ADI enabled, copy any ADI tags 3198 * as well 3199 */ 3200 if (adi_capable()) { 3201 unsigned long pfrom, pto, i, adi_tag; 3202 3203 pfrom = page_to_phys(from); 3204 pto = page_to_phys(to); 3205 3206 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3207 asm volatile("ldxa [%1] %2, %0\n\t" 3208 : "=r" (adi_tag) 3209 : "r" (i), "i" (ASI_MCD_REAL)); 3210 asm volatile("stxa %0, [%1] %2\n\t" 3211 : 3212 : "r" (adi_tag), "r" (pto), 3213 "i" (ASI_MCD_REAL)); 3214 pto += adi_blksize(); 3215 } 3216 asm volatile("membar #Sync\n\t"); 3217 } 3218 } 3219 EXPORT_SYMBOL(copy_highpage); 3220 3221 pgprot_t vm_get_page_prot(unsigned long vm_flags) 3222 { 3223 unsigned long prot = pgprot_val(protection_map[vm_flags & 3224 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]); 3225 3226 if (vm_flags & VM_SPARC_ADI) 3227 prot |= _PAGE_MCD_4V; 3228 3229 return __pgprot(prot); 3230 } 3231 EXPORT_SYMBOL(vm_get_page_prot); 3232