1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/extable.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/initrd.h> 17 #include <linux/swap.h> 18 #include <linux/pagemap.h> 19 #include <linux/poison.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kprobes.h> 23 #include <linux/cache.h> 24 #include <linux/sort.h> 25 #include <linux/ioport.h> 26 #include <linux/percpu.h> 27 #include <linux/memblock.h> 28 #include <linux/mmzone.h> 29 #include <linux/gfp.h> 30 31 #include <asm/head.h> 32 #include <asm/page.h> 33 #include <asm/pgalloc.h> 34 #include <asm/pgtable.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <asm/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/setup.h> 52 #include <asm/irq.h> 53 54 #include "init_64.h" 55 56 unsigned long kern_linear_pte_xor[4] __read_mostly; 57 static unsigned long page_cache4v_flag; 58 59 /* A bitmap, two bits for every 256MB of physical memory. These two 60 * bits determine what page size we use for kernel linear 61 * translations. They form an index into kern_linear_pte_xor[]. The 62 * value in the indexed slot is XOR'd with the TLB miss virtual 63 * address to form the resulting TTE. The mapping is: 64 * 65 * 0 ==> 4MB 66 * 1 ==> 256MB 67 * 2 ==> 2GB 68 * 3 ==> 16GB 69 * 70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 71 * support 2GB pages, and hopefully future cpus will support the 16GB 72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 73 * if these larger page sizes are not supported by the cpu. 74 * 75 * It would be nice to determine this from the machine description 76 * 'cpu' properties, but we need to have this table setup before the 77 * MDESC is initialized. 78 */ 79 80 #ifndef CONFIG_DEBUG_PAGEALLOC 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 82 * Space is allocated for this right after the trap table in 83 * arch/sparc64/kernel/head.S 84 */ 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 86 #endif 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 88 89 static unsigned long cpu_pgsz_mask; 90 91 #define MAX_BANKS 1024 92 93 static struct linux_prom64_registers pavail[MAX_BANKS]; 94 static int pavail_ents; 95 96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; 97 98 static int cmp_p64(const void *a, const void *b) 99 { 100 const struct linux_prom64_registers *x = a, *y = b; 101 102 if (x->phys_addr > y->phys_addr) 103 return 1; 104 if (x->phys_addr < y->phys_addr) 105 return -1; 106 return 0; 107 } 108 109 static void __init read_obp_memory(const char *property, 110 struct linux_prom64_registers *regs, 111 int *num_ents) 112 { 113 phandle node = prom_finddevice("/memory"); 114 int prop_size = prom_getproplen(node, property); 115 int ents, ret, i; 116 117 ents = prop_size / sizeof(struct linux_prom64_registers); 118 if (ents > MAX_BANKS) { 119 prom_printf("The machine has more %s property entries than " 120 "this kernel can support (%d).\n", 121 property, MAX_BANKS); 122 prom_halt(); 123 } 124 125 ret = prom_getproperty(node, property, (char *) regs, prop_size); 126 if (ret == -1) { 127 prom_printf("Couldn't get %s property from /memory.\n", 128 property); 129 prom_halt(); 130 } 131 132 /* Sanitize what we got from the firmware, by page aligning 133 * everything. 134 */ 135 for (i = 0; i < ents; i++) { 136 unsigned long base, size; 137 138 base = regs[i].phys_addr; 139 size = regs[i].reg_size; 140 141 size &= PAGE_MASK; 142 if (base & ~PAGE_MASK) { 143 unsigned long new_base = PAGE_ALIGN(base); 144 145 size -= new_base - base; 146 if ((long) size < 0L) 147 size = 0UL; 148 base = new_base; 149 } 150 if (size == 0UL) { 151 /* If it is empty, simply get rid of it. 152 * This simplifies the logic of the other 153 * functions that process these arrays. 154 */ 155 memmove(®s[i], ®s[i + 1], 156 (ents - i - 1) * sizeof(regs[0])); 157 i--; 158 ents--; 159 continue; 160 } 161 regs[i].phys_addr = base; 162 regs[i].reg_size = size; 163 } 164 165 *num_ents = ents; 166 167 sort(regs, ents, sizeof(struct linux_prom64_registers), 168 cmp_p64, NULL); 169 } 170 171 /* Kernel physical address base and size in bytes. */ 172 unsigned long kern_base __read_mostly; 173 unsigned long kern_size __read_mostly; 174 175 /* Initial ramdisk setup */ 176 extern unsigned long sparc_ramdisk_image64; 177 extern unsigned int sparc_ramdisk_image; 178 extern unsigned int sparc_ramdisk_size; 179 180 struct page *mem_map_zero __read_mostly; 181 EXPORT_SYMBOL(mem_map_zero); 182 183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 184 185 unsigned long sparc64_kern_pri_context __read_mostly; 186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 187 unsigned long sparc64_kern_sec_context __read_mostly; 188 189 int num_kernel_image_mappings; 190 191 #ifdef CONFIG_DEBUG_DCFLUSH 192 atomic_t dcpage_flushes = ATOMIC_INIT(0); 193 #ifdef CONFIG_SMP 194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 195 #endif 196 #endif 197 198 inline void flush_dcache_page_impl(struct page *page) 199 { 200 BUG_ON(tlb_type == hypervisor); 201 #ifdef CONFIG_DEBUG_DCFLUSH 202 atomic_inc(&dcpage_flushes); 203 #endif 204 205 #ifdef DCACHE_ALIASING_POSSIBLE 206 __flush_dcache_page(page_address(page), 207 ((tlb_type == spitfire) && 208 page_mapping(page) != NULL)); 209 #else 210 if (page_mapping(page) != NULL && 211 tlb_type == spitfire) 212 __flush_icache_page(__pa(page_address(page))); 213 #endif 214 } 215 216 #define PG_dcache_dirty PG_arch_1 217 #define PG_dcache_cpu_shift 32UL 218 #define PG_dcache_cpu_mask \ 219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 220 221 #define dcache_dirty_cpu(page) \ 222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 223 224 static inline void set_dcache_dirty(struct page *page, int this_cpu) 225 { 226 unsigned long mask = this_cpu; 227 unsigned long non_cpu_bits; 228 229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 231 232 __asm__ __volatile__("1:\n\t" 233 "ldx [%2], %%g7\n\t" 234 "and %%g7, %1, %%g1\n\t" 235 "or %%g1, %0, %%g1\n\t" 236 "casx [%2], %%g7, %%g1\n\t" 237 "cmp %%g7, %%g1\n\t" 238 "bne,pn %%xcc, 1b\n\t" 239 " nop" 240 : /* no outputs */ 241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 242 : "g1", "g7"); 243 } 244 245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 246 { 247 unsigned long mask = (1UL << PG_dcache_dirty); 248 249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 250 "1:\n\t" 251 "ldx [%2], %%g7\n\t" 252 "srlx %%g7, %4, %%g1\n\t" 253 "and %%g1, %3, %%g1\n\t" 254 "cmp %%g1, %0\n\t" 255 "bne,pn %%icc, 2f\n\t" 256 " andn %%g7, %1, %%g1\n\t" 257 "casx [%2], %%g7, %%g1\n\t" 258 "cmp %%g7, %%g1\n\t" 259 "bne,pn %%xcc, 1b\n\t" 260 " nop\n" 261 "2:" 262 : /* no outputs */ 263 : "r" (cpu), "r" (mask), "r" (&page->flags), 264 "i" (PG_dcache_cpu_mask), 265 "i" (PG_dcache_cpu_shift) 266 : "g1", "g7"); 267 } 268 269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 270 { 271 unsigned long tsb_addr = (unsigned long) ent; 272 273 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 274 tsb_addr = __pa(tsb_addr); 275 276 __tsb_insert(tsb_addr, tag, pte); 277 } 278 279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 280 281 static void flush_dcache(unsigned long pfn) 282 { 283 struct page *page; 284 285 page = pfn_to_page(pfn); 286 if (page) { 287 unsigned long pg_flags; 288 289 pg_flags = page->flags; 290 if (pg_flags & (1UL << PG_dcache_dirty)) { 291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 292 PG_dcache_cpu_mask); 293 int this_cpu = get_cpu(); 294 295 /* This is just to optimize away some function calls 296 * in the SMP case. 297 */ 298 if (cpu == this_cpu) 299 flush_dcache_page_impl(page); 300 else 301 smp_flush_dcache_page_impl(page, cpu); 302 303 clear_dcache_dirty_cpu(page, cpu); 304 305 put_cpu(); 306 } 307 } 308 } 309 310 /* mm->context.lock must be held */ 311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 312 unsigned long tsb_hash_shift, unsigned long address, 313 unsigned long tte) 314 { 315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 316 unsigned long tag; 317 318 if (unlikely(!tsb)) 319 return; 320 321 tsb += ((address >> tsb_hash_shift) & 322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 323 tag = (address >> 22UL); 324 tsb_insert(tsb, tag, tte); 325 } 326 327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 328 { 329 struct mm_struct *mm; 330 unsigned long flags; 331 pte_t pte = *ptep; 332 333 if (tlb_type != hypervisor) { 334 unsigned long pfn = pte_pfn(pte); 335 336 if (pfn_valid(pfn)) 337 flush_dcache(pfn); 338 } 339 340 mm = vma->vm_mm; 341 342 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ 343 if (!pte_accessible(mm, pte)) 344 return; 345 346 spin_lock_irqsave(&mm->context.lock, flags); 347 348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 349 if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) && 350 is_hugetlb_pte(pte)) { 351 /* We are fabricating 8MB pages using 4MB real hw pages. */ 352 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); 353 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 354 address, pte_val(pte)); 355 } else 356 #endif 357 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 358 address, pte_val(pte)); 359 360 spin_unlock_irqrestore(&mm->context.lock, flags); 361 } 362 363 void flush_dcache_page(struct page *page) 364 { 365 struct address_space *mapping; 366 int this_cpu; 367 368 if (tlb_type == hypervisor) 369 return; 370 371 /* Do not bother with the expensive D-cache flush if it 372 * is merely the zero page. The 'bigcore' testcase in GDB 373 * causes this case to run millions of times. 374 */ 375 if (page == ZERO_PAGE(0)) 376 return; 377 378 this_cpu = get_cpu(); 379 380 mapping = page_mapping(page); 381 if (mapping && !mapping_mapped(mapping)) { 382 int dirty = test_bit(PG_dcache_dirty, &page->flags); 383 if (dirty) { 384 int dirty_cpu = dcache_dirty_cpu(page); 385 386 if (dirty_cpu == this_cpu) 387 goto out; 388 smp_flush_dcache_page_impl(page, dirty_cpu); 389 } 390 set_dcache_dirty(page, this_cpu); 391 } else { 392 /* We could delay the flush for the !page_mapping 393 * case too. But that case is for exec env/arg 394 * pages and those are %99 certainly going to get 395 * faulted into the tlb (and thus flushed) anyways. 396 */ 397 flush_dcache_page_impl(page); 398 } 399 400 out: 401 put_cpu(); 402 } 403 EXPORT_SYMBOL(flush_dcache_page); 404 405 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 406 { 407 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 408 if (tlb_type == spitfire) { 409 unsigned long kaddr; 410 411 /* This code only runs on Spitfire cpus so this is 412 * why we can assume _PAGE_PADDR_4U. 413 */ 414 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 415 unsigned long paddr, mask = _PAGE_PADDR_4U; 416 417 if (kaddr >= PAGE_OFFSET) 418 paddr = kaddr & mask; 419 else { 420 pgd_t *pgdp = pgd_offset_k(kaddr); 421 pud_t *pudp = pud_offset(pgdp, kaddr); 422 pmd_t *pmdp = pmd_offset(pudp, kaddr); 423 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 424 425 paddr = pte_val(*ptep) & mask; 426 } 427 __flush_icache_page(paddr); 428 } 429 } 430 } 431 EXPORT_SYMBOL(flush_icache_range); 432 433 void mmu_info(struct seq_file *m) 434 { 435 static const char *pgsz_strings[] = { 436 "8K", "64K", "512K", "4MB", "32MB", 437 "256MB", "2GB", "16GB", 438 }; 439 int i, printed; 440 441 if (tlb_type == cheetah) 442 seq_printf(m, "MMU Type\t: Cheetah\n"); 443 else if (tlb_type == cheetah_plus) 444 seq_printf(m, "MMU Type\t: Cheetah+\n"); 445 else if (tlb_type == spitfire) 446 seq_printf(m, "MMU Type\t: Spitfire\n"); 447 else if (tlb_type == hypervisor) 448 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 449 else 450 seq_printf(m, "MMU Type\t: ???\n"); 451 452 seq_printf(m, "MMU PGSZs\t: "); 453 printed = 0; 454 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 455 if (cpu_pgsz_mask & (1UL << i)) { 456 seq_printf(m, "%s%s", 457 printed ? "," : "", pgsz_strings[i]); 458 printed++; 459 } 460 } 461 seq_putc(m, '\n'); 462 463 #ifdef CONFIG_DEBUG_DCFLUSH 464 seq_printf(m, "DCPageFlushes\t: %d\n", 465 atomic_read(&dcpage_flushes)); 466 #ifdef CONFIG_SMP 467 seq_printf(m, "DCPageFlushesXC\t: %d\n", 468 atomic_read(&dcpage_flushes_xcall)); 469 #endif /* CONFIG_SMP */ 470 #endif /* CONFIG_DEBUG_DCFLUSH */ 471 } 472 473 struct linux_prom_translation prom_trans[512] __read_mostly; 474 unsigned int prom_trans_ents __read_mostly; 475 476 unsigned long kern_locked_tte_data; 477 478 /* The obp translations are saved based on 8k pagesize, since obp can 479 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 480 * HI_OBP_ADDRESS range are handled in ktlb.S. 481 */ 482 static inline int in_obp_range(unsigned long vaddr) 483 { 484 return (vaddr >= LOW_OBP_ADDRESS && 485 vaddr < HI_OBP_ADDRESS); 486 } 487 488 static int cmp_ptrans(const void *a, const void *b) 489 { 490 const struct linux_prom_translation *x = a, *y = b; 491 492 if (x->virt > y->virt) 493 return 1; 494 if (x->virt < y->virt) 495 return -1; 496 return 0; 497 } 498 499 /* Read OBP translations property into 'prom_trans[]'. */ 500 static void __init read_obp_translations(void) 501 { 502 int n, node, ents, first, last, i; 503 504 node = prom_finddevice("/virtual-memory"); 505 n = prom_getproplen(node, "translations"); 506 if (unlikely(n == 0 || n == -1)) { 507 prom_printf("prom_mappings: Couldn't get size.\n"); 508 prom_halt(); 509 } 510 if (unlikely(n > sizeof(prom_trans))) { 511 prom_printf("prom_mappings: Size %d is too big.\n", n); 512 prom_halt(); 513 } 514 515 if ((n = prom_getproperty(node, "translations", 516 (char *)&prom_trans[0], 517 sizeof(prom_trans))) == -1) { 518 prom_printf("prom_mappings: Couldn't get property.\n"); 519 prom_halt(); 520 } 521 522 n = n / sizeof(struct linux_prom_translation); 523 524 ents = n; 525 526 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 527 cmp_ptrans, NULL); 528 529 /* Now kick out all the non-OBP entries. */ 530 for (i = 0; i < ents; i++) { 531 if (in_obp_range(prom_trans[i].virt)) 532 break; 533 } 534 first = i; 535 for (; i < ents; i++) { 536 if (!in_obp_range(prom_trans[i].virt)) 537 break; 538 } 539 last = i; 540 541 for (i = 0; i < (last - first); i++) { 542 struct linux_prom_translation *src = &prom_trans[i + first]; 543 struct linux_prom_translation *dest = &prom_trans[i]; 544 545 *dest = *src; 546 } 547 for (; i < ents; i++) { 548 struct linux_prom_translation *dest = &prom_trans[i]; 549 dest->virt = dest->size = dest->data = 0x0UL; 550 } 551 552 prom_trans_ents = last - first; 553 554 if (tlb_type == spitfire) { 555 /* Clear diag TTE bits. */ 556 for (i = 0; i < prom_trans_ents; i++) 557 prom_trans[i].data &= ~0x0003fe0000000000UL; 558 } 559 560 /* Force execute bit on. */ 561 for (i = 0; i < prom_trans_ents; i++) 562 prom_trans[i].data |= (tlb_type == hypervisor ? 563 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 564 } 565 566 static void __init hypervisor_tlb_lock(unsigned long vaddr, 567 unsigned long pte, 568 unsigned long mmu) 569 { 570 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 571 572 if (ret != 0) { 573 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 574 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 575 prom_halt(); 576 } 577 } 578 579 static unsigned long kern_large_tte(unsigned long paddr); 580 581 static void __init remap_kernel(void) 582 { 583 unsigned long phys_page, tte_vaddr, tte_data; 584 int i, tlb_ent = sparc64_highest_locked_tlbent(); 585 586 tte_vaddr = (unsigned long) KERNBASE; 587 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 588 tte_data = kern_large_tte(phys_page); 589 590 kern_locked_tte_data = tte_data; 591 592 /* Now lock us into the TLBs via Hypervisor or OBP. */ 593 if (tlb_type == hypervisor) { 594 for (i = 0; i < num_kernel_image_mappings; i++) { 595 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 596 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 597 tte_vaddr += 0x400000; 598 tte_data += 0x400000; 599 } 600 } else { 601 for (i = 0; i < num_kernel_image_mappings; i++) { 602 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 603 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 604 tte_vaddr += 0x400000; 605 tte_data += 0x400000; 606 } 607 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 608 } 609 if (tlb_type == cheetah_plus) { 610 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 611 CTX_CHEETAH_PLUS_NUC); 612 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 613 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 614 } 615 } 616 617 618 static void __init inherit_prom_mappings(void) 619 { 620 /* Now fixup OBP's idea about where we really are mapped. */ 621 printk("Remapping the kernel... "); 622 remap_kernel(); 623 printk("done.\n"); 624 } 625 626 void prom_world(int enter) 627 { 628 if (!enter) 629 set_fs(get_fs()); 630 631 __asm__ __volatile__("flushw"); 632 } 633 634 void __flush_dcache_range(unsigned long start, unsigned long end) 635 { 636 unsigned long va; 637 638 if (tlb_type == spitfire) { 639 int n = 0; 640 641 for (va = start; va < end; va += 32) { 642 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 643 if (++n >= 512) 644 break; 645 } 646 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 647 start = __pa(start); 648 end = __pa(end); 649 for (va = start; va < end; va += 32) 650 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 651 "membar #Sync" 652 : /* no outputs */ 653 : "r" (va), 654 "i" (ASI_DCACHE_INVALIDATE)); 655 } 656 } 657 EXPORT_SYMBOL(__flush_dcache_range); 658 659 /* get_new_mmu_context() uses "cache + 1". */ 660 DEFINE_SPINLOCK(ctx_alloc_lock); 661 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 662 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 663 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 664 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 665 666 /* Caller does TLB context flushing on local CPU if necessary. 667 * The caller also ensures that CTX_VALID(mm->context) is false. 668 * 669 * We must be careful about boundary cases so that we never 670 * let the user have CTX 0 (nucleus) or we ever use a CTX 671 * version of zero (and thus NO_CONTEXT would not be caught 672 * by version mis-match tests in mmu_context.h). 673 * 674 * Always invoked with interrupts disabled. 675 */ 676 void get_new_mmu_context(struct mm_struct *mm) 677 { 678 unsigned long ctx, new_ctx; 679 unsigned long orig_pgsz_bits; 680 int new_version; 681 682 spin_lock(&ctx_alloc_lock); 683 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 684 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 685 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 686 new_version = 0; 687 if (new_ctx >= (1 << CTX_NR_BITS)) { 688 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 689 if (new_ctx >= ctx) { 690 int i; 691 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 692 CTX_FIRST_VERSION; 693 if (new_ctx == 1) 694 new_ctx = CTX_FIRST_VERSION; 695 696 /* Don't call memset, for 16 entries that's just 697 * plain silly... 698 */ 699 mmu_context_bmap[0] = 3; 700 mmu_context_bmap[1] = 0; 701 mmu_context_bmap[2] = 0; 702 mmu_context_bmap[3] = 0; 703 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 704 mmu_context_bmap[i + 0] = 0; 705 mmu_context_bmap[i + 1] = 0; 706 mmu_context_bmap[i + 2] = 0; 707 mmu_context_bmap[i + 3] = 0; 708 } 709 new_version = 1; 710 goto out; 711 } 712 } 713 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 714 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 715 out: 716 tlb_context_cache = new_ctx; 717 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 718 spin_unlock(&ctx_alloc_lock); 719 720 if (unlikely(new_version)) 721 smp_new_mmu_context_version(); 722 } 723 724 static int numa_enabled = 1; 725 static int numa_debug; 726 727 static int __init early_numa(char *p) 728 { 729 if (!p) 730 return 0; 731 732 if (strstr(p, "off")) 733 numa_enabled = 0; 734 735 if (strstr(p, "debug")) 736 numa_debug = 1; 737 738 return 0; 739 } 740 early_param("numa", early_numa); 741 742 #define numadbg(f, a...) \ 743 do { if (numa_debug) \ 744 printk(KERN_INFO f, ## a); \ 745 } while (0) 746 747 static void __init find_ramdisk(unsigned long phys_base) 748 { 749 #ifdef CONFIG_BLK_DEV_INITRD 750 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 751 unsigned long ramdisk_image; 752 753 /* Older versions of the bootloader only supported a 754 * 32-bit physical address for the ramdisk image 755 * location, stored at sparc_ramdisk_image. Newer 756 * SILO versions set sparc_ramdisk_image to zero and 757 * provide a full 64-bit physical address at 758 * sparc_ramdisk_image64. 759 */ 760 ramdisk_image = sparc_ramdisk_image; 761 if (!ramdisk_image) 762 ramdisk_image = sparc_ramdisk_image64; 763 764 /* Another bootloader quirk. The bootloader normalizes 765 * the physical address to KERNBASE, so we have to 766 * factor that back out and add in the lowest valid 767 * physical page address to get the true physical address. 768 */ 769 ramdisk_image -= KERNBASE; 770 ramdisk_image += phys_base; 771 772 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 773 ramdisk_image, sparc_ramdisk_size); 774 775 initrd_start = ramdisk_image; 776 initrd_end = ramdisk_image + sparc_ramdisk_size; 777 778 memblock_reserve(initrd_start, sparc_ramdisk_size); 779 780 initrd_start += PAGE_OFFSET; 781 initrd_end += PAGE_OFFSET; 782 } 783 #endif 784 } 785 786 struct node_mem_mask { 787 unsigned long mask; 788 unsigned long val; 789 }; 790 static struct node_mem_mask node_masks[MAX_NUMNODES]; 791 static int num_node_masks; 792 793 #ifdef CONFIG_NEED_MULTIPLE_NODES 794 795 int numa_cpu_lookup_table[NR_CPUS]; 796 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 797 798 struct mdesc_mblock { 799 u64 base; 800 u64 size; 801 u64 offset; /* RA-to-PA */ 802 }; 803 static struct mdesc_mblock *mblocks; 804 static int num_mblocks; 805 static int find_numa_node_for_addr(unsigned long pa, 806 struct node_mem_mask *pnode_mask); 807 808 static unsigned long __init ra_to_pa(unsigned long addr) 809 { 810 int i; 811 812 for (i = 0; i < num_mblocks; i++) { 813 struct mdesc_mblock *m = &mblocks[i]; 814 815 if (addr >= m->base && 816 addr < (m->base + m->size)) { 817 addr += m->offset; 818 break; 819 } 820 } 821 return addr; 822 } 823 824 static int __init find_node(unsigned long addr) 825 { 826 static bool search_mdesc = true; 827 static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL }; 828 static int last_index; 829 int i; 830 831 addr = ra_to_pa(addr); 832 for (i = 0; i < num_node_masks; i++) { 833 struct node_mem_mask *p = &node_masks[i]; 834 835 if ((addr & p->mask) == p->val) 836 return i; 837 } 838 /* The following condition has been observed on LDOM guests because 839 * node_masks only contains the best latency mask and value. 840 * LDOM guest's mdesc can contain a single latency group to 841 * cover multiple address range. Print warning message only if the 842 * address cannot be found in node_masks nor mdesc. 843 */ 844 if ((search_mdesc) && 845 ((addr & last_mem_mask.mask) != last_mem_mask.val)) { 846 /* find the available node in the mdesc */ 847 last_index = find_numa_node_for_addr(addr, &last_mem_mask); 848 numadbg("find_node: latency group for address 0x%lx is %d\n", 849 addr, last_index); 850 if ((last_index < 0) || (last_index >= num_node_masks)) { 851 /* WARN_ONCE() and use default group 0 */ 852 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0."); 853 search_mdesc = false; 854 last_index = 0; 855 } 856 } 857 858 return last_index; 859 } 860 861 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) 862 { 863 *nid = find_node(start); 864 start += PAGE_SIZE; 865 while (start < end) { 866 int n = find_node(start); 867 868 if (n != *nid) 869 break; 870 start += PAGE_SIZE; 871 } 872 873 if (start > end) 874 start = end; 875 876 return start; 877 } 878 #endif 879 880 /* This must be invoked after performing all of the necessary 881 * memblock_set_node() calls for 'nid'. We need to be able to get 882 * correct data from get_pfn_range_for_nid(). 883 */ 884 static void __init allocate_node_data(int nid) 885 { 886 struct pglist_data *p; 887 unsigned long start_pfn, end_pfn; 888 #ifdef CONFIG_NEED_MULTIPLE_NODES 889 unsigned long paddr; 890 891 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 892 if (!paddr) { 893 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 894 prom_halt(); 895 } 896 NODE_DATA(nid) = __va(paddr); 897 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 898 899 NODE_DATA(nid)->node_id = nid; 900 #endif 901 902 p = NODE_DATA(nid); 903 904 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 905 p->node_start_pfn = start_pfn; 906 p->node_spanned_pages = end_pfn - start_pfn; 907 } 908 909 static void init_node_masks_nonnuma(void) 910 { 911 #ifdef CONFIG_NEED_MULTIPLE_NODES 912 int i; 913 #endif 914 915 numadbg("Initializing tables for non-numa.\n"); 916 917 node_masks[0].mask = node_masks[0].val = 0; 918 num_node_masks = 1; 919 920 #ifdef CONFIG_NEED_MULTIPLE_NODES 921 for (i = 0; i < NR_CPUS; i++) 922 numa_cpu_lookup_table[i] = 0; 923 924 cpumask_setall(&numa_cpumask_lookup_table[0]); 925 #endif 926 } 927 928 #ifdef CONFIG_NEED_MULTIPLE_NODES 929 struct pglist_data *node_data[MAX_NUMNODES]; 930 931 EXPORT_SYMBOL(numa_cpu_lookup_table); 932 EXPORT_SYMBOL(numa_cpumask_lookup_table); 933 EXPORT_SYMBOL(node_data); 934 935 struct mdesc_mlgroup { 936 u64 node; 937 u64 latency; 938 u64 match; 939 u64 mask; 940 }; 941 static struct mdesc_mlgroup *mlgroups; 942 static int num_mlgroups; 943 944 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 945 u32 cfg_handle) 946 { 947 u64 arc; 948 949 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 950 u64 target = mdesc_arc_target(md, arc); 951 const u64 *val; 952 953 val = mdesc_get_property(md, target, 954 "cfg-handle", NULL); 955 if (val && *val == cfg_handle) 956 return 0; 957 } 958 return -ENODEV; 959 } 960 961 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 962 u32 cfg_handle) 963 { 964 u64 arc, candidate, best_latency = ~(u64)0; 965 966 candidate = MDESC_NODE_NULL; 967 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 968 u64 target = mdesc_arc_target(md, arc); 969 const char *name = mdesc_node_name(md, target); 970 const u64 *val; 971 972 if (strcmp(name, "pio-latency-group")) 973 continue; 974 975 val = mdesc_get_property(md, target, "latency", NULL); 976 if (!val) 977 continue; 978 979 if (*val < best_latency) { 980 candidate = target; 981 best_latency = *val; 982 } 983 } 984 985 if (candidate == MDESC_NODE_NULL) 986 return -ENODEV; 987 988 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 989 } 990 991 int of_node_to_nid(struct device_node *dp) 992 { 993 const struct linux_prom64_registers *regs; 994 struct mdesc_handle *md; 995 u32 cfg_handle; 996 int count, nid; 997 u64 grp; 998 999 /* This is the right thing to do on currently supported 1000 * SUN4U NUMA platforms as well, as the PCI controller does 1001 * not sit behind any particular memory controller. 1002 */ 1003 if (!mlgroups) 1004 return -1; 1005 1006 regs = of_get_property(dp, "reg", NULL); 1007 if (!regs) 1008 return -1; 1009 1010 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 1011 1012 md = mdesc_grab(); 1013 1014 count = 0; 1015 nid = -1; 1016 mdesc_for_each_node_by_name(md, grp, "group") { 1017 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 1018 nid = count; 1019 break; 1020 } 1021 count++; 1022 } 1023 1024 mdesc_release(md); 1025 1026 return nid; 1027 } 1028 1029 static void __init add_node_ranges(void) 1030 { 1031 struct memblock_region *reg; 1032 1033 for_each_memblock(memory, reg) { 1034 unsigned long size = reg->size; 1035 unsigned long start, end; 1036 1037 start = reg->base; 1038 end = start + size; 1039 while (start < end) { 1040 unsigned long this_end; 1041 int nid; 1042 1043 this_end = memblock_nid_range(start, end, &nid); 1044 1045 numadbg("Setting memblock NUMA node nid[%d] " 1046 "start[%lx] end[%lx]\n", 1047 nid, start, this_end); 1048 1049 memblock_set_node(start, this_end - start, 1050 &memblock.memory, nid); 1051 start = this_end; 1052 } 1053 } 1054 } 1055 1056 static int __init grab_mlgroups(struct mdesc_handle *md) 1057 { 1058 unsigned long paddr; 1059 int count = 0; 1060 u64 node; 1061 1062 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1063 count++; 1064 if (!count) 1065 return -ENOENT; 1066 1067 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1068 SMP_CACHE_BYTES); 1069 if (!paddr) 1070 return -ENOMEM; 1071 1072 mlgroups = __va(paddr); 1073 num_mlgroups = count; 1074 1075 count = 0; 1076 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1077 struct mdesc_mlgroup *m = &mlgroups[count++]; 1078 const u64 *val; 1079 1080 m->node = node; 1081 1082 val = mdesc_get_property(md, node, "latency", NULL); 1083 m->latency = *val; 1084 val = mdesc_get_property(md, node, "address-match", NULL); 1085 m->match = *val; 1086 val = mdesc_get_property(md, node, "address-mask", NULL); 1087 m->mask = *val; 1088 1089 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1090 "match[%llx] mask[%llx]\n", 1091 count - 1, m->node, m->latency, m->match, m->mask); 1092 } 1093 1094 return 0; 1095 } 1096 1097 static int __init grab_mblocks(struct mdesc_handle *md) 1098 { 1099 unsigned long paddr; 1100 int count = 0; 1101 u64 node; 1102 1103 mdesc_for_each_node_by_name(md, node, "mblock") 1104 count++; 1105 if (!count) 1106 return -ENOENT; 1107 1108 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1109 SMP_CACHE_BYTES); 1110 if (!paddr) 1111 return -ENOMEM; 1112 1113 mblocks = __va(paddr); 1114 num_mblocks = count; 1115 1116 count = 0; 1117 mdesc_for_each_node_by_name(md, node, "mblock") { 1118 struct mdesc_mblock *m = &mblocks[count++]; 1119 const u64 *val; 1120 1121 val = mdesc_get_property(md, node, "base", NULL); 1122 m->base = *val; 1123 val = mdesc_get_property(md, node, "size", NULL); 1124 m->size = *val; 1125 val = mdesc_get_property(md, node, 1126 "address-congruence-offset", NULL); 1127 1128 /* The address-congruence-offset property is optional. 1129 * Explicity zero it be identifty this. 1130 */ 1131 if (val) 1132 m->offset = *val; 1133 else 1134 m->offset = 0UL; 1135 1136 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1137 count - 1, m->base, m->size, m->offset); 1138 } 1139 1140 return 0; 1141 } 1142 1143 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1144 u64 grp, cpumask_t *mask) 1145 { 1146 u64 arc; 1147 1148 cpumask_clear(mask); 1149 1150 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1151 u64 target = mdesc_arc_target(md, arc); 1152 const char *name = mdesc_node_name(md, target); 1153 const u64 *id; 1154 1155 if (strcmp(name, "cpu")) 1156 continue; 1157 id = mdesc_get_property(md, target, "id", NULL); 1158 if (*id < nr_cpu_ids) 1159 cpumask_set_cpu(*id, mask); 1160 } 1161 } 1162 1163 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1164 { 1165 int i; 1166 1167 for (i = 0; i < num_mlgroups; i++) { 1168 struct mdesc_mlgroup *m = &mlgroups[i]; 1169 if (m->node == node) 1170 return m; 1171 } 1172 return NULL; 1173 } 1174 1175 int __node_distance(int from, int to) 1176 { 1177 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { 1178 pr_warn("Returning default NUMA distance value for %d->%d\n", 1179 from, to); 1180 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; 1181 } 1182 return numa_latency[from][to]; 1183 } 1184 1185 static int find_numa_node_for_addr(unsigned long pa, 1186 struct node_mem_mask *pnode_mask) 1187 { 1188 struct mdesc_handle *md = mdesc_grab(); 1189 u64 node, arc; 1190 int i = 0; 1191 1192 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1193 if (node == MDESC_NODE_NULL) 1194 goto out; 1195 1196 mdesc_for_each_node_by_name(md, node, "group") { 1197 mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) { 1198 u64 target = mdesc_arc_target(md, arc); 1199 struct mdesc_mlgroup *m = find_mlgroup(target); 1200 1201 if (!m) 1202 continue; 1203 if ((pa & m->mask) == m->match) { 1204 if (pnode_mask) { 1205 pnode_mask->mask = m->mask; 1206 pnode_mask->val = m->match; 1207 } 1208 mdesc_release(md); 1209 return i; 1210 } 1211 } 1212 i++; 1213 } 1214 1215 out: 1216 mdesc_release(md); 1217 return -1; 1218 } 1219 1220 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) 1221 { 1222 int i; 1223 1224 for (i = 0; i < MAX_NUMNODES; i++) { 1225 struct node_mem_mask *n = &node_masks[i]; 1226 1227 if ((grp->mask == n->mask) && (grp->match == n->val)) 1228 break; 1229 } 1230 return i; 1231 } 1232 1233 static void __init find_numa_latencies_for_group(struct mdesc_handle *md, 1234 u64 grp, int index) 1235 { 1236 u64 arc; 1237 1238 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1239 int tnode; 1240 u64 target = mdesc_arc_target(md, arc); 1241 struct mdesc_mlgroup *m = find_mlgroup(target); 1242 1243 if (!m) 1244 continue; 1245 tnode = find_best_numa_node_for_mlgroup(m); 1246 if (tnode == MAX_NUMNODES) 1247 continue; 1248 numa_latency[index][tnode] = m->latency; 1249 } 1250 } 1251 1252 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1253 int index) 1254 { 1255 struct mdesc_mlgroup *candidate = NULL; 1256 u64 arc, best_latency = ~(u64)0; 1257 struct node_mem_mask *n; 1258 1259 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1260 u64 target = mdesc_arc_target(md, arc); 1261 struct mdesc_mlgroup *m = find_mlgroup(target); 1262 if (!m) 1263 continue; 1264 if (m->latency < best_latency) { 1265 candidate = m; 1266 best_latency = m->latency; 1267 } 1268 } 1269 if (!candidate) 1270 return -ENOENT; 1271 1272 if (num_node_masks != index) { 1273 printk(KERN_ERR "Inconsistent NUMA state, " 1274 "index[%d] != num_node_masks[%d]\n", 1275 index, num_node_masks); 1276 return -EINVAL; 1277 } 1278 1279 n = &node_masks[num_node_masks++]; 1280 1281 n->mask = candidate->mask; 1282 n->val = candidate->match; 1283 1284 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1285 index, n->mask, n->val, candidate->latency); 1286 1287 return 0; 1288 } 1289 1290 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1291 int index) 1292 { 1293 cpumask_t mask; 1294 int cpu; 1295 1296 numa_parse_mdesc_group_cpus(md, grp, &mask); 1297 1298 for_each_cpu(cpu, &mask) 1299 numa_cpu_lookup_table[cpu] = index; 1300 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1301 1302 if (numa_debug) { 1303 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1304 for_each_cpu(cpu, &mask) 1305 printk("%d ", cpu); 1306 printk("]\n"); 1307 } 1308 1309 return numa_attach_mlgroup(md, grp, index); 1310 } 1311 1312 static int __init numa_parse_mdesc(void) 1313 { 1314 struct mdesc_handle *md = mdesc_grab(); 1315 int i, j, err, count; 1316 u64 node; 1317 1318 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1319 if (node == MDESC_NODE_NULL) { 1320 mdesc_release(md); 1321 return -ENOENT; 1322 } 1323 1324 err = grab_mblocks(md); 1325 if (err < 0) 1326 goto out; 1327 1328 err = grab_mlgroups(md); 1329 if (err < 0) 1330 goto out; 1331 1332 count = 0; 1333 mdesc_for_each_node_by_name(md, node, "group") { 1334 err = numa_parse_mdesc_group(md, node, count); 1335 if (err < 0) 1336 break; 1337 count++; 1338 } 1339 1340 count = 0; 1341 mdesc_for_each_node_by_name(md, node, "group") { 1342 find_numa_latencies_for_group(md, node, count); 1343 count++; 1344 } 1345 1346 /* Normalize numa latency matrix according to ACPI SLIT spec. */ 1347 for (i = 0; i < MAX_NUMNODES; i++) { 1348 u64 self_latency = numa_latency[i][i]; 1349 1350 for (j = 0; j < MAX_NUMNODES; j++) { 1351 numa_latency[i][j] = 1352 (numa_latency[i][j] * LOCAL_DISTANCE) / 1353 self_latency; 1354 } 1355 } 1356 1357 add_node_ranges(); 1358 1359 for (i = 0; i < num_node_masks; i++) { 1360 allocate_node_data(i); 1361 node_set_online(i); 1362 } 1363 1364 err = 0; 1365 out: 1366 mdesc_release(md); 1367 return err; 1368 } 1369 1370 static int __init numa_parse_jbus(void) 1371 { 1372 unsigned long cpu, index; 1373 1374 /* NUMA node id is encoded in bits 36 and higher, and there is 1375 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1376 */ 1377 index = 0; 1378 for_each_present_cpu(cpu) { 1379 numa_cpu_lookup_table[cpu] = index; 1380 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1381 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1382 node_masks[index].val = cpu << 36UL; 1383 1384 index++; 1385 } 1386 num_node_masks = index; 1387 1388 add_node_ranges(); 1389 1390 for (index = 0; index < num_node_masks; index++) { 1391 allocate_node_data(index); 1392 node_set_online(index); 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int __init numa_parse_sun4u(void) 1399 { 1400 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1401 unsigned long ver; 1402 1403 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1404 if ((ver >> 32UL) == __JALAPENO_ID || 1405 (ver >> 32UL) == __SERRANO_ID) 1406 return numa_parse_jbus(); 1407 } 1408 return -1; 1409 } 1410 1411 static int __init bootmem_init_numa(void) 1412 { 1413 int i, j; 1414 int err = -1; 1415 1416 numadbg("bootmem_init_numa()\n"); 1417 1418 /* Some sane defaults for numa latency values */ 1419 for (i = 0; i < MAX_NUMNODES; i++) { 1420 for (j = 0; j < MAX_NUMNODES; j++) 1421 numa_latency[i][j] = (i == j) ? 1422 LOCAL_DISTANCE : REMOTE_DISTANCE; 1423 } 1424 1425 if (numa_enabled) { 1426 if (tlb_type == hypervisor) 1427 err = numa_parse_mdesc(); 1428 else 1429 err = numa_parse_sun4u(); 1430 } 1431 return err; 1432 } 1433 1434 #else 1435 1436 static int bootmem_init_numa(void) 1437 { 1438 return -1; 1439 } 1440 1441 #endif 1442 1443 static void __init bootmem_init_nonnuma(void) 1444 { 1445 unsigned long top_of_ram = memblock_end_of_DRAM(); 1446 unsigned long total_ram = memblock_phys_mem_size(); 1447 1448 numadbg("bootmem_init_nonnuma()\n"); 1449 1450 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1451 top_of_ram, total_ram); 1452 printk(KERN_INFO "Memory hole size: %ldMB\n", 1453 (top_of_ram - total_ram) >> 20); 1454 1455 init_node_masks_nonnuma(); 1456 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); 1457 allocate_node_data(0); 1458 node_set_online(0); 1459 } 1460 1461 static unsigned long __init bootmem_init(unsigned long phys_base) 1462 { 1463 unsigned long end_pfn; 1464 1465 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1466 max_pfn = max_low_pfn = end_pfn; 1467 min_low_pfn = (phys_base >> PAGE_SHIFT); 1468 1469 if (bootmem_init_numa() < 0) 1470 bootmem_init_nonnuma(); 1471 1472 /* Dump memblock with node info. */ 1473 memblock_dump_all(); 1474 1475 /* XXX cpu notifier XXX */ 1476 1477 sparse_memory_present_with_active_regions(MAX_NUMNODES); 1478 sparse_init(); 1479 1480 return end_pfn; 1481 } 1482 1483 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1484 static int pall_ents __initdata; 1485 1486 static unsigned long max_phys_bits = 40; 1487 1488 bool kern_addr_valid(unsigned long addr) 1489 { 1490 pgd_t *pgd; 1491 pud_t *pud; 1492 pmd_t *pmd; 1493 pte_t *pte; 1494 1495 if ((long)addr < 0L) { 1496 unsigned long pa = __pa(addr); 1497 1498 if ((addr >> max_phys_bits) != 0UL) 1499 return false; 1500 1501 return pfn_valid(pa >> PAGE_SHIFT); 1502 } 1503 1504 if (addr >= (unsigned long) KERNBASE && 1505 addr < (unsigned long)&_end) 1506 return true; 1507 1508 pgd = pgd_offset_k(addr); 1509 if (pgd_none(*pgd)) 1510 return 0; 1511 1512 pud = pud_offset(pgd, addr); 1513 if (pud_none(*pud)) 1514 return 0; 1515 1516 if (pud_large(*pud)) 1517 return pfn_valid(pud_pfn(*pud)); 1518 1519 pmd = pmd_offset(pud, addr); 1520 if (pmd_none(*pmd)) 1521 return 0; 1522 1523 if (pmd_large(*pmd)) 1524 return pfn_valid(pmd_pfn(*pmd)); 1525 1526 pte = pte_offset_kernel(pmd, addr); 1527 if (pte_none(*pte)) 1528 return 0; 1529 1530 return pfn_valid(pte_pfn(*pte)); 1531 } 1532 EXPORT_SYMBOL(kern_addr_valid); 1533 1534 static unsigned long __ref kernel_map_hugepud(unsigned long vstart, 1535 unsigned long vend, 1536 pud_t *pud) 1537 { 1538 const unsigned long mask16gb = (1UL << 34) - 1UL; 1539 u64 pte_val = vstart; 1540 1541 /* Each PUD is 8GB */ 1542 if ((vstart & mask16gb) || 1543 (vend - vstart <= mask16gb)) { 1544 pte_val ^= kern_linear_pte_xor[2]; 1545 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; 1546 1547 return vstart + PUD_SIZE; 1548 } 1549 1550 pte_val ^= kern_linear_pte_xor[3]; 1551 pte_val |= _PAGE_PUD_HUGE; 1552 1553 vend = vstart + mask16gb + 1UL; 1554 while (vstart < vend) { 1555 pud_val(*pud) = pte_val; 1556 1557 pte_val += PUD_SIZE; 1558 vstart += PUD_SIZE; 1559 pud++; 1560 } 1561 return vstart; 1562 } 1563 1564 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, 1565 bool guard) 1566 { 1567 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) 1568 return true; 1569 1570 return false; 1571 } 1572 1573 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, 1574 unsigned long vend, 1575 pmd_t *pmd) 1576 { 1577 const unsigned long mask256mb = (1UL << 28) - 1UL; 1578 const unsigned long mask2gb = (1UL << 31) - 1UL; 1579 u64 pte_val = vstart; 1580 1581 /* Each PMD is 8MB */ 1582 if ((vstart & mask256mb) || 1583 (vend - vstart <= mask256mb)) { 1584 pte_val ^= kern_linear_pte_xor[0]; 1585 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; 1586 1587 return vstart + PMD_SIZE; 1588 } 1589 1590 if ((vstart & mask2gb) || 1591 (vend - vstart <= mask2gb)) { 1592 pte_val ^= kern_linear_pte_xor[1]; 1593 pte_val |= _PAGE_PMD_HUGE; 1594 vend = vstart + mask256mb + 1UL; 1595 } else { 1596 pte_val ^= kern_linear_pte_xor[2]; 1597 pte_val |= _PAGE_PMD_HUGE; 1598 vend = vstart + mask2gb + 1UL; 1599 } 1600 1601 while (vstart < vend) { 1602 pmd_val(*pmd) = pte_val; 1603 1604 pte_val += PMD_SIZE; 1605 vstart += PMD_SIZE; 1606 pmd++; 1607 } 1608 1609 return vstart; 1610 } 1611 1612 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, 1613 bool guard) 1614 { 1615 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) 1616 return true; 1617 1618 return false; 1619 } 1620 1621 static unsigned long __ref kernel_map_range(unsigned long pstart, 1622 unsigned long pend, pgprot_t prot, 1623 bool use_huge) 1624 { 1625 unsigned long vstart = PAGE_OFFSET + pstart; 1626 unsigned long vend = PAGE_OFFSET + pend; 1627 unsigned long alloc_bytes = 0UL; 1628 1629 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1630 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1631 vstart, vend); 1632 prom_halt(); 1633 } 1634 1635 while (vstart < vend) { 1636 unsigned long this_end, paddr = __pa(vstart); 1637 pgd_t *pgd = pgd_offset_k(vstart); 1638 pud_t *pud; 1639 pmd_t *pmd; 1640 pte_t *pte; 1641 1642 if (pgd_none(*pgd)) { 1643 pud_t *new; 1644 1645 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1646 alloc_bytes += PAGE_SIZE; 1647 pgd_populate(&init_mm, pgd, new); 1648 } 1649 pud = pud_offset(pgd, vstart); 1650 if (pud_none(*pud)) { 1651 pmd_t *new; 1652 1653 if (kernel_can_map_hugepud(vstart, vend, use_huge)) { 1654 vstart = kernel_map_hugepud(vstart, vend, pud); 1655 continue; 1656 } 1657 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1658 alloc_bytes += PAGE_SIZE; 1659 pud_populate(&init_mm, pud, new); 1660 } 1661 1662 pmd = pmd_offset(pud, vstart); 1663 if (pmd_none(*pmd)) { 1664 pte_t *new; 1665 1666 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { 1667 vstart = kernel_map_hugepmd(vstart, vend, pmd); 1668 continue; 1669 } 1670 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1671 alloc_bytes += PAGE_SIZE; 1672 pmd_populate_kernel(&init_mm, pmd, new); 1673 } 1674 1675 pte = pte_offset_kernel(pmd, vstart); 1676 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1677 if (this_end > vend) 1678 this_end = vend; 1679 1680 while (vstart < this_end) { 1681 pte_val(*pte) = (paddr | pgprot_val(prot)); 1682 1683 vstart += PAGE_SIZE; 1684 paddr += PAGE_SIZE; 1685 pte++; 1686 } 1687 } 1688 1689 return alloc_bytes; 1690 } 1691 1692 static void __init flush_all_kernel_tsbs(void) 1693 { 1694 int i; 1695 1696 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { 1697 struct tsb *ent = &swapper_tsb[i]; 1698 1699 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1700 } 1701 #ifndef CONFIG_DEBUG_PAGEALLOC 1702 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { 1703 struct tsb *ent = &swapper_4m_tsb[i]; 1704 1705 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1706 } 1707 #endif 1708 } 1709 1710 extern unsigned int kvmap_linear_patch[1]; 1711 1712 static void __init kernel_physical_mapping_init(void) 1713 { 1714 unsigned long i, mem_alloced = 0UL; 1715 bool use_huge = true; 1716 1717 #ifdef CONFIG_DEBUG_PAGEALLOC 1718 use_huge = false; 1719 #endif 1720 for (i = 0; i < pall_ents; i++) { 1721 unsigned long phys_start, phys_end; 1722 1723 phys_start = pall[i].phys_addr; 1724 phys_end = phys_start + pall[i].reg_size; 1725 1726 mem_alloced += kernel_map_range(phys_start, phys_end, 1727 PAGE_KERNEL, use_huge); 1728 } 1729 1730 printk("Allocated %ld bytes for kernel page tables.\n", 1731 mem_alloced); 1732 1733 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1734 flushi(&kvmap_linear_patch[0]); 1735 1736 flush_all_kernel_tsbs(); 1737 1738 __flush_tlb_all(); 1739 } 1740 1741 #ifdef CONFIG_DEBUG_PAGEALLOC 1742 void __kernel_map_pages(struct page *page, int numpages, int enable) 1743 { 1744 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1745 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1746 1747 kernel_map_range(phys_start, phys_end, 1748 (enable ? PAGE_KERNEL : __pgprot(0)), false); 1749 1750 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1751 PAGE_OFFSET + phys_end); 1752 1753 /* we should perform an IPI and flush all tlbs, 1754 * but that can deadlock->flush only current cpu. 1755 */ 1756 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1757 PAGE_OFFSET + phys_end); 1758 } 1759 #endif 1760 1761 unsigned long __init find_ecache_flush_span(unsigned long size) 1762 { 1763 int i; 1764 1765 for (i = 0; i < pavail_ents; i++) { 1766 if (pavail[i].reg_size >= size) 1767 return pavail[i].phys_addr; 1768 } 1769 1770 return ~0UL; 1771 } 1772 1773 unsigned long PAGE_OFFSET; 1774 EXPORT_SYMBOL(PAGE_OFFSET); 1775 1776 unsigned long VMALLOC_END = 0x0000010000000000UL; 1777 EXPORT_SYMBOL(VMALLOC_END); 1778 1779 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; 1780 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; 1781 1782 static void __init setup_page_offset(void) 1783 { 1784 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1785 /* Cheetah/Panther support a full 64-bit virtual 1786 * address, so we can use all that our page tables 1787 * support. 1788 */ 1789 sparc64_va_hole_top = 0xfff0000000000000UL; 1790 sparc64_va_hole_bottom = 0x0010000000000000UL; 1791 1792 max_phys_bits = 42; 1793 } else if (tlb_type == hypervisor) { 1794 switch (sun4v_chip_type) { 1795 case SUN4V_CHIP_NIAGARA1: 1796 case SUN4V_CHIP_NIAGARA2: 1797 /* T1 and T2 support 48-bit virtual addresses. */ 1798 sparc64_va_hole_top = 0xffff800000000000UL; 1799 sparc64_va_hole_bottom = 0x0000800000000000UL; 1800 1801 max_phys_bits = 39; 1802 break; 1803 case SUN4V_CHIP_NIAGARA3: 1804 /* T3 supports 48-bit virtual addresses. */ 1805 sparc64_va_hole_top = 0xffff800000000000UL; 1806 sparc64_va_hole_bottom = 0x0000800000000000UL; 1807 1808 max_phys_bits = 43; 1809 break; 1810 case SUN4V_CHIP_NIAGARA4: 1811 case SUN4V_CHIP_NIAGARA5: 1812 case SUN4V_CHIP_SPARC64X: 1813 case SUN4V_CHIP_SPARC_M6: 1814 /* T4 and later support 52-bit virtual addresses. */ 1815 sparc64_va_hole_top = 0xfff8000000000000UL; 1816 sparc64_va_hole_bottom = 0x0008000000000000UL; 1817 max_phys_bits = 47; 1818 break; 1819 case SUN4V_CHIP_SPARC_M7: 1820 case SUN4V_CHIP_SPARC_SN: 1821 default: 1822 /* M7 and later support 52-bit virtual addresses. */ 1823 sparc64_va_hole_top = 0xfff8000000000000UL; 1824 sparc64_va_hole_bottom = 0x0008000000000000UL; 1825 max_phys_bits = 49; 1826 break; 1827 } 1828 } 1829 1830 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 1831 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 1832 max_phys_bits); 1833 prom_halt(); 1834 } 1835 1836 PAGE_OFFSET = sparc64_va_hole_top; 1837 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + 1838 (sparc64_va_hole_bottom >> 2)); 1839 1840 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 1841 PAGE_OFFSET, max_phys_bits); 1842 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", 1843 VMALLOC_START, VMALLOC_END); 1844 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", 1845 VMEMMAP_BASE, VMEMMAP_BASE << 1); 1846 } 1847 1848 static void __init tsb_phys_patch(void) 1849 { 1850 struct tsb_ldquad_phys_patch_entry *pquad; 1851 struct tsb_phys_patch_entry *p; 1852 1853 pquad = &__tsb_ldquad_phys_patch; 1854 while (pquad < &__tsb_ldquad_phys_patch_end) { 1855 unsigned long addr = pquad->addr; 1856 1857 if (tlb_type == hypervisor) 1858 *(unsigned int *) addr = pquad->sun4v_insn; 1859 else 1860 *(unsigned int *) addr = pquad->sun4u_insn; 1861 wmb(); 1862 __asm__ __volatile__("flush %0" 1863 : /* no outputs */ 1864 : "r" (addr)); 1865 1866 pquad++; 1867 } 1868 1869 p = &__tsb_phys_patch; 1870 while (p < &__tsb_phys_patch_end) { 1871 unsigned long addr = p->addr; 1872 1873 *(unsigned int *) addr = p->insn; 1874 wmb(); 1875 __asm__ __volatile__("flush %0" 1876 : /* no outputs */ 1877 : "r" (addr)); 1878 1879 p++; 1880 } 1881 } 1882 1883 /* Don't mark as init, we give this to the Hypervisor. */ 1884 #ifndef CONFIG_DEBUG_PAGEALLOC 1885 #define NUM_KTSB_DESCR 2 1886 #else 1887 #define NUM_KTSB_DESCR 1 1888 #endif 1889 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1890 1891 /* The swapper TSBs are loaded with a base sequence of: 1892 * 1893 * sethi %uhi(SYMBOL), REG1 1894 * sethi %hi(SYMBOL), REG2 1895 * or REG1, %ulo(SYMBOL), REG1 1896 * or REG2, %lo(SYMBOL), REG2 1897 * sllx REG1, 32, REG1 1898 * or REG1, REG2, REG1 1899 * 1900 * When we use physical addressing for the TSB accesses, we patch the 1901 * first four instructions in the above sequence. 1902 */ 1903 1904 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 1905 { 1906 unsigned long high_bits, low_bits; 1907 1908 high_bits = (pa >> 32) & 0xffffffff; 1909 low_bits = (pa >> 0) & 0xffffffff; 1910 1911 while (start < end) { 1912 unsigned int *ia = (unsigned int *)(unsigned long)*start; 1913 1914 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); 1915 __asm__ __volatile__("flush %0" : : "r" (ia)); 1916 1917 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); 1918 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 1919 1920 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); 1921 __asm__ __volatile__("flush %0" : : "r" (ia + 2)); 1922 1923 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); 1924 __asm__ __volatile__("flush %0" : : "r" (ia + 3)); 1925 1926 start++; 1927 } 1928 } 1929 1930 static void ktsb_phys_patch(void) 1931 { 1932 extern unsigned int __swapper_tsb_phys_patch; 1933 extern unsigned int __swapper_tsb_phys_patch_end; 1934 unsigned long ktsb_pa; 1935 1936 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1937 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 1938 &__swapper_tsb_phys_patch_end, ktsb_pa); 1939 #ifndef CONFIG_DEBUG_PAGEALLOC 1940 { 1941 extern unsigned int __swapper_4m_tsb_phys_patch; 1942 extern unsigned int __swapper_4m_tsb_phys_patch_end; 1943 ktsb_pa = (kern_base + 1944 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1945 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 1946 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 1947 } 1948 #endif 1949 } 1950 1951 static void __init sun4v_ktsb_init(void) 1952 { 1953 unsigned long ktsb_pa; 1954 1955 /* First KTSB for PAGE_SIZE mappings. */ 1956 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1957 1958 switch (PAGE_SIZE) { 1959 case 8 * 1024: 1960 default: 1961 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1962 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1963 break; 1964 1965 case 64 * 1024: 1966 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1967 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1968 break; 1969 1970 case 512 * 1024: 1971 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1972 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1973 break; 1974 1975 case 4 * 1024 * 1024: 1976 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1977 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1978 break; 1979 } 1980 1981 ktsb_descr[0].assoc = 1; 1982 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1983 ktsb_descr[0].ctx_idx = 0; 1984 ktsb_descr[0].tsb_base = ktsb_pa; 1985 ktsb_descr[0].resv = 0; 1986 1987 #ifndef CONFIG_DEBUG_PAGEALLOC 1988 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 1989 ktsb_pa = (kern_base + 1990 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1991 1992 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1993 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 1994 HV_PGSZ_MASK_256MB | 1995 HV_PGSZ_MASK_2GB | 1996 HV_PGSZ_MASK_16GB) & 1997 cpu_pgsz_mask); 1998 ktsb_descr[1].assoc = 1; 1999 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 2000 ktsb_descr[1].ctx_idx = 0; 2001 ktsb_descr[1].tsb_base = ktsb_pa; 2002 ktsb_descr[1].resv = 0; 2003 #endif 2004 } 2005 2006 void sun4v_ktsb_register(void) 2007 { 2008 unsigned long pa, ret; 2009 2010 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 2011 2012 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 2013 if (ret != 0) { 2014 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 2015 "errors with %lx\n", pa, ret); 2016 prom_halt(); 2017 } 2018 } 2019 2020 static void __init sun4u_linear_pte_xor_finalize(void) 2021 { 2022 #ifndef CONFIG_DEBUG_PAGEALLOC 2023 /* This is where we would add Panther support for 2024 * 32MB and 256MB pages. 2025 */ 2026 #endif 2027 } 2028 2029 static void __init sun4v_linear_pte_xor_finalize(void) 2030 { 2031 unsigned long pagecv_flag; 2032 2033 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead 2034 * enables MCD error. Do not set bit 9 on M7 processor. 2035 */ 2036 switch (sun4v_chip_type) { 2037 case SUN4V_CHIP_SPARC_M7: 2038 case SUN4V_CHIP_SPARC_SN: 2039 pagecv_flag = 0x00; 2040 break; 2041 default: 2042 pagecv_flag = _PAGE_CV_4V; 2043 break; 2044 } 2045 #ifndef CONFIG_DEBUG_PAGEALLOC 2046 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 2047 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2048 PAGE_OFFSET; 2049 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | 2050 _PAGE_P_4V | _PAGE_W_4V); 2051 } else { 2052 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2053 } 2054 2055 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 2056 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 2057 PAGE_OFFSET; 2058 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | 2059 _PAGE_P_4V | _PAGE_W_4V); 2060 } else { 2061 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 2062 } 2063 2064 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 2065 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 2066 PAGE_OFFSET; 2067 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | 2068 _PAGE_P_4V | _PAGE_W_4V); 2069 } else { 2070 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 2071 } 2072 #endif 2073 } 2074 2075 /* paging_init() sets up the page tables */ 2076 2077 static unsigned long last_valid_pfn; 2078 2079 static void sun4u_pgprot_init(void); 2080 static void sun4v_pgprot_init(void); 2081 2082 static phys_addr_t __init available_memory(void) 2083 { 2084 phys_addr_t available = 0ULL; 2085 phys_addr_t pa_start, pa_end; 2086 u64 i; 2087 2088 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, 2089 &pa_end, NULL) 2090 available = available + (pa_end - pa_start); 2091 2092 return available; 2093 } 2094 2095 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2096 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2097 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2098 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2099 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2100 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2101 2102 /* We need to exclude reserved regions. This exclusion will include 2103 * vmlinux and initrd. To be more precise the initrd size could be used to 2104 * compute a new lower limit because it is freed later during initialization. 2105 */ 2106 static void __init reduce_memory(phys_addr_t limit_ram) 2107 { 2108 phys_addr_t avail_ram = available_memory(); 2109 phys_addr_t pa_start, pa_end; 2110 u64 i; 2111 2112 if (limit_ram >= avail_ram) 2113 return; 2114 2115 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, 2116 &pa_end, NULL) { 2117 phys_addr_t region_size = pa_end - pa_start; 2118 phys_addr_t clip_start = pa_start; 2119 2120 avail_ram = avail_ram - region_size; 2121 /* Are we consuming too much? */ 2122 if (avail_ram < limit_ram) { 2123 phys_addr_t give_back = limit_ram - avail_ram; 2124 2125 region_size = region_size - give_back; 2126 clip_start = clip_start + give_back; 2127 } 2128 2129 memblock_remove(clip_start, region_size); 2130 2131 if (avail_ram <= limit_ram) 2132 break; 2133 i = 0UL; 2134 } 2135 } 2136 2137 void __init paging_init(void) 2138 { 2139 unsigned long end_pfn, shift, phys_base; 2140 unsigned long real_end, i; 2141 2142 setup_page_offset(); 2143 2144 /* These build time checkes make sure that the dcache_dirty_cpu() 2145 * page->flags usage will work. 2146 * 2147 * When a page gets marked as dcache-dirty, we store the 2148 * cpu number starting at bit 32 in the page->flags. Also, 2149 * functions like clear_dcache_dirty_cpu use the cpu mask 2150 * in 13-bit signed-immediate instruction fields. 2151 */ 2152 2153 /* 2154 * Page flags must not reach into upper 32 bits that are used 2155 * for the cpu number 2156 */ 2157 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 2158 2159 /* 2160 * The bit fields placed in the high range must not reach below 2161 * the 32 bit boundary. Otherwise we cannot place the cpu field 2162 * at the 32 bit boundary. 2163 */ 2164 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 2165 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 2166 2167 BUILD_BUG_ON(NR_CPUS > 4096); 2168 2169 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 2170 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 2171 2172 /* Invalidate both kernel TSBs. */ 2173 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 2174 #ifndef CONFIG_DEBUG_PAGEALLOC 2175 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2176 #endif 2177 2178 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde 2179 * bit on M7 processor. This is a conflicting usage of the same 2180 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption 2181 * Detection error on all pages and this will lead to problems 2182 * later. Kernel does not run with MCD enabled and hence rest 2183 * of the required steps to fully configure memory corruption 2184 * detection are not taken. We need to ensure TTE.mcde is not 2185 * set on M7 processor. Compute the value of cacheability 2186 * flag for use later taking this into consideration. 2187 */ 2188 switch (sun4v_chip_type) { 2189 case SUN4V_CHIP_SPARC_M7: 2190 case SUN4V_CHIP_SPARC_SN: 2191 page_cache4v_flag = _PAGE_CP_4V; 2192 break; 2193 default: 2194 page_cache4v_flag = _PAGE_CACHE_4V; 2195 break; 2196 } 2197 2198 if (tlb_type == hypervisor) 2199 sun4v_pgprot_init(); 2200 else 2201 sun4u_pgprot_init(); 2202 2203 if (tlb_type == cheetah_plus || 2204 tlb_type == hypervisor) { 2205 tsb_phys_patch(); 2206 ktsb_phys_patch(); 2207 } 2208 2209 if (tlb_type == hypervisor) 2210 sun4v_patch_tlb_handlers(); 2211 2212 /* Find available physical memory... 2213 * 2214 * Read it twice in order to work around a bug in openfirmware. 2215 * The call to grab this table itself can cause openfirmware to 2216 * allocate memory, which in turn can take away some space from 2217 * the list of available memory. Reading it twice makes sure 2218 * we really do get the final value. 2219 */ 2220 read_obp_translations(); 2221 read_obp_memory("reg", &pall[0], &pall_ents); 2222 read_obp_memory("available", &pavail[0], &pavail_ents); 2223 read_obp_memory("available", &pavail[0], &pavail_ents); 2224 2225 phys_base = 0xffffffffffffffffUL; 2226 for (i = 0; i < pavail_ents; i++) { 2227 phys_base = min(phys_base, pavail[i].phys_addr); 2228 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 2229 } 2230 2231 memblock_reserve(kern_base, kern_size); 2232 2233 find_ramdisk(phys_base); 2234 2235 if (cmdline_memory_size) 2236 reduce_memory(cmdline_memory_size); 2237 2238 memblock_allow_resize(); 2239 memblock_dump_all(); 2240 2241 set_bit(0, mmu_context_bmap); 2242 2243 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 2244 2245 real_end = (unsigned long)_end; 2246 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 2247 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 2248 num_kernel_image_mappings); 2249 2250 /* Set kernel pgd to upper alias so physical page computations 2251 * work. 2252 */ 2253 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 2254 2255 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); 2256 2257 inherit_prom_mappings(); 2258 2259 /* Ok, we can use our TLB miss and window trap handlers safely. */ 2260 setup_tba(); 2261 2262 __flush_tlb_all(); 2263 2264 prom_build_devicetree(); 2265 of_populate_present_mask(); 2266 #ifndef CONFIG_SMP 2267 of_fill_in_cpu_data(); 2268 #endif 2269 2270 if (tlb_type == hypervisor) { 2271 sun4v_mdesc_init(); 2272 mdesc_populate_present_mask(cpu_all_mask); 2273 #ifndef CONFIG_SMP 2274 mdesc_fill_in_cpu_data(cpu_all_mask); 2275 #endif 2276 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 2277 2278 sun4v_linear_pte_xor_finalize(); 2279 2280 sun4v_ktsb_init(); 2281 sun4v_ktsb_register(); 2282 } else { 2283 unsigned long impl, ver; 2284 2285 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 2286 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 2287 2288 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 2289 impl = ((ver >> 32) & 0xffff); 2290 if (impl == PANTHER_IMPL) 2291 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 2292 HV_PGSZ_MASK_256MB); 2293 2294 sun4u_linear_pte_xor_finalize(); 2295 } 2296 2297 /* Flush the TLBs and the 4M TSB so that the updated linear 2298 * pte XOR settings are realized for all mappings. 2299 */ 2300 __flush_tlb_all(); 2301 #ifndef CONFIG_DEBUG_PAGEALLOC 2302 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2303 #endif 2304 __flush_tlb_all(); 2305 2306 /* Setup bootmem... */ 2307 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2308 2309 kernel_physical_mapping_init(); 2310 2311 { 2312 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2313 2314 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2315 2316 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2317 2318 free_area_init_nodes(max_zone_pfns); 2319 } 2320 2321 printk("Booting Linux...\n"); 2322 } 2323 2324 int page_in_phys_avail(unsigned long paddr) 2325 { 2326 int i; 2327 2328 paddr &= PAGE_MASK; 2329 2330 for (i = 0; i < pavail_ents; i++) { 2331 unsigned long start, end; 2332 2333 start = pavail[i].phys_addr; 2334 end = start + pavail[i].reg_size; 2335 2336 if (paddr >= start && paddr < end) 2337 return 1; 2338 } 2339 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2340 return 1; 2341 #ifdef CONFIG_BLK_DEV_INITRD 2342 if (paddr >= __pa(initrd_start) && 2343 paddr < __pa(PAGE_ALIGN(initrd_end))) 2344 return 1; 2345 #endif 2346 2347 return 0; 2348 } 2349 2350 static void __init register_page_bootmem_info(void) 2351 { 2352 #ifdef CONFIG_NEED_MULTIPLE_NODES 2353 int i; 2354 2355 for_each_online_node(i) 2356 if (NODE_DATA(i)->node_spanned_pages) 2357 register_page_bootmem_info_node(NODE_DATA(i)); 2358 #endif 2359 } 2360 void __init mem_init(void) 2361 { 2362 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2363 2364 register_page_bootmem_info(); 2365 free_all_bootmem(); 2366 2367 /* 2368 * Set up the zero page, mark it reserved, so that page count 2369 * is not manipulated when freeing the page from user ptes. 2370 */ 2371 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2372 if (mem_map_zero == NULL) { 2373 prom_printf("paging_init: Cannot alloc zero page.\n"); 2374 prom_halt(); 2375 } 2376 mark_page_reserved(mem_map_zero); 2377 2378 mem_init_print_info(NULL); 2379 2380 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2381 cheetah_ecache_flush_init(); 2382 } 2383 2384 void free_initmem(void) 2385 { 2386 unsigned long addr, initend; 2387 int do_free = 1; 2388 2389 /* If the physical memory maps were trimmed by kernel command 2390 * line options, don't even try freeing this initmem stuff up. 2391 * The kernel image could have been in the trimmed out region 2392 * and if so the freeing below will free invalid page structs. 2393 */ 2394 if (cmdline_memory_size) 2395 do_free = 0; 2396 2397 /* 2398 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2399 */ 2400 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2401 initend = (unsigned long)(__init_end) & PAGE_MASK; 2402 for (; addr < initend; addr += PAGE_SIZE) { 2403 unsigned long page; 2404 2405 page = (addr + 2406 ((unsigned long) __va(kern_base)) - 2407 ((unsigned long) KERNBASE)); 2408 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2409 2410 if (do_free) 2411 free_reserved_page(virt_to_page(page)); 2412 } 2413 } 2414 2415 #ifdef CONFIG_BLK_DEV_INITRD 2416 void free_initrd_mem(unsigned long start, unsigned long end) 2417 { 2418 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, 2419 "initrd"); 2420 } 2421 #endif 2422 2423 pgprot_t PAGE_KERNEL __read_mostly; 2424 EXPORT_SYMBOL(PAGE_KERNEL); 2425 2426 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2427 pgprot_t PAGE_COPY __read_mostly; 2428 2429 pgprot_t PAGE_SHARED __read_mostly; 2430 EXPORT_SYMBOL(PAGE_SHARED); 2431 2432 unsigned long pg_iobits __read_mostly; 2433 2434 unsigned long _PAGE_IE __read_mostly; 2435 EXPORT_SYMBOL(_PAGE_IE); 2436 2437 unsigned long _PAGE_E __read_mostly; 2438 EXPORT_SYMBOL(_PAGE_E); 2439 2440 unsigned long _PAGE_CACHE __read_mostly; 2441 EXPORT_SYMBOL(_PAGE_CACHE); 2442 2443 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2444 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2445 int node) 2446 { 2447 unsigned long pte_base; 2448 2449 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2450 _PAGE_CP_4U | _PAGE_CV_4U | 2451 _PAGE_P_4U | _PAGE_W_4U); 2452 if (tlb_type == hypervisor) 2453 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2454 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); 2455 2456 pte_base |= _PAGE_PMD_HUGE; 2457 2458 vstart = vstart & PMD_MASK; 2459 vend = ALIGN(vend, PMD_SIZE); 2460 for (; vstart < vend; vstart += PMD_SIZE) { 2461 pgd_t *pgd = pgd_offset_k(vstart); 2462 unsigned long pte; 2463 pud_t *pud; 2464 pmd_t *pmd; 2465 2466 if (pgd_none(*pgd)) { 2467 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node); 2468 2469 if (!new) 2470 return -ENOMEM; 2471 pgd_populate(&init_mm, pgd, new); 2472 } 2473 2474 pud = pud_offset(pgd, vstart); 2475 if (pud_none(*pud)) { 2476 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node); 2477 2478 if (!new) 2479 return -ENOMEM; 2480 pud_populate(&init_mm, pud, new); 2481 } 2482 2483 pmd = pmd_offset(pud, vstart); 2484 2485 pte = pmd_val(*pmd); 2486 if (!(pte & _PAGE_VALID)) { 2487 void *block = vmemmap_alloc_block(PMD_SIZE, node); 2488 2489 if (!block) 2490 return -ENOMEM; 2491 2492 pmd_val(*pmd) = pte_base | __pa(block); 2493 } 2494 } 2495 2496 return 0; 2497 } 2498 2499 void vmemmap_free(unsigned long start, unsigned long end) 2500 { 2501 } 2502 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2503 2504 static void prot_init_common(unsigned long page_none, 2505 unsigned long page_shared, 2506 unsigned long page_copy, 2507 unsigned long page_readonly, 2508 unsigned long page_exec_bit) 2509 { 2510 PAGE_COPY = __pgprot(page_copy); 2511 PAGE_SHARED = __pgprot(page_shared); 2512 2513 protection_map[0x0] = __pgprot(page_none); 2514 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2515 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2516 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2517 protection_map[0x4] = __pgprot(page_readonly); 2518 protection_map[0x5] = __pgprot(page_readonly); 2519 protection_map[0x6] = __pgprot(page_copy); 2520 protection_map[0x7] = __pgprot(page_copy); 2521 protection_map[0x8] = __pgprot(page_none); 2522 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2523 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2524 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2525 protection_map[0xc] = __pgprot(page_readonly); 2526 protection_map[0xd] = __pgprot(page_readonly); 2527 protection_map[0xe] = __pgprot(page_shared); 2528 protection_map[0xf] = __pgprot(page_shared); 2529 } 2530 2531 static void __init sun4u_pgprot_init(void) 2532 { 2533 unsigned long page_none, page_shared, page_copy, page_readonly; 2534 unsigned long page_exec_bit; 2535 int i; 2536 2537 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2538 _PAGE_CACHE_4U | _PAGE_P_4U | 2539 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2540 _PAGE_EXEC_4U); 2541 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2542 _PAGE_CACHE_4U | _PAGE_P_4U | 2543 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2544 _PAGE_EXEC_4U | _PAGE_L_4U); 2545 2546 _PAGE_IE = _PAGE_IE_4U; 2547 _PAGE_E = _PAGE_E_4U; 2548 _PAGE_CACHE = _PAGE_CACHE_4U; 2549 2550 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2551 __ACCESS_BITS_4U | _PAGE_E_4U); 2552 2553 #ifdef CONFIG_DEBUG_PAGEALLOC 2554 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2555 #else 2556 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2557 PAGE_OFFSET; 2558 #endif 2559 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2560 _PAGE_P_4U | _PAGE_W_4U); 2561 2562 for (i = 1; i < 4; i++) 2563 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2564 2565 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2566 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2567 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2568 2569 2570 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2571 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2572 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2573 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2574 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2575 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2576 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2577 2578 page_exec_bit = _PAGE_EXEC_4U; 2579 2580 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2581 page_exec_bit); 2582 } 2583 2584 static void __init sun4v_pgprot_init(void) 2585 { 2586 unsigned long page_none, page_shared, page_copy, page_readonly; 2587 unsigned long page_exec_bit; 2588 int i; 2589 2590 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2591 page_cache4v_flag | _PAGE_P_4V | 2592 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2593 _PAGE_EXEC_4V); 2594 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2595 2596 _PAGE_IE = _PAGE_IE_4V; 2597 _PAGE_E = _PAGE_E_4V; 2598 _PAGE_CACHE = page_cache4v_flag; 2599 2600 #ifdef CONFIG_DEBUG_PAGEALLOC 2601 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2602 #else 2603 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2604 PAGE_OFFSET; 2605 #endif 2606 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | 2607 _PAGE_W_4V); 2608 2609 for (i = 1; i < 4; i++) 2610 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2611 2612 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2613 __ACCESS_BITS_4V | _PAGE_E_4V); 2614 2615 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2616 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2617 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2618 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2619 2620 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; 2621 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2622 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2623 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2624 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2625 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2626 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2627 2628 page_exec_bit = _PAGE_EXEC_4V; 2629 2630 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2631 page_exec_bit); 2632 } 2633 2634 unsigned long pte_sz_bits(unsigned long sz) 2635 { 2636 if (tlb_type == hypervisor) { 2637 switch (sz) { 2638 case 8 * 1024: 2639 default: 2640 return _PAGE_SZ8K_4V; 2641 case 64 * 1024: 2642 return _PAGE_SZ64K_4V; 2643 case 512 * 1024: 2644 return _PAGE_SZ512K_4V; 2645 case 4 * 1024 * 1024: 2646 return _PAGE_SZ4MB_4V; 2647 } 2648 } else { 2649 switch (sz) { 2650 case 8 * 1024: 2651 default: 2652 return _PAGE_SZ8K_4U; 2653 case 64 * 1024: 2654 return _PAGE_SZ64K_4U; 2655 case 512 * 1024: 2656 return _PAGE_SZ512K_4U; 2657 case 4 * 1024 * 1024: 2658 return _PAGE_SZ4MB_4U; 2659 } 2660 } 2661 } 2662 2663 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2664 { 2665 pte_t pte; 2666 2667 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2668 pte_val(pte) |= (((unsigned long)space) << 32); 2669 pte_val(pte) |= pte_sz_bits(page_size); 2670 2671 return pte; 2672 } 2673 2674 static unsigned long kern_large_tte(unsigned long paddr) 2675 { 2676 unsigned long val; 2677 2678 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2679 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2680 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2681 if (tlb_type == hypervisor) 2682 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2683 page_cache4v_flag | _PAGE_P_4V | 2684 _PAGE_EXEC_4V | _PAGE_W_4V); 2685 2686 return val | paddr; 2687 } 2688 2689 /* If not locked, zap it. */ 2690 void __flush_tlb_all(void) 2691 { 2692 unsigned long pstate; 2693 int i; 2694 2695 __asm__ __volatile__("flushw\n\t" 2696 "rdpr %%pstate, %0\n\t" 2697 "wrpr %0, %1, %%pstate" 2698 : "=r" (pstate) 2699 : "i" (PSTATE_IE)); 2700 if (tlb_type == hypervisor) { 2701 sun4v_mmu_demap_all(); 2702 } else if (tlb_type == spitfire) { 2703 for (i = 0; i < 64; i++) { 2704 /* Spitfire Errata #32 workaround */ 2705 /* NOTE: Always runs on spitfire, so no 2706 * cheetah+ page size encodings. 2707 */ 2708 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2709 "flush %%g6" 2710 : /* No outputs */ 2711 : "r" (0), 2712 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2713 2714 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2715 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2716 "membar #Sync" 2717 : /* no outputs */ 2718 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2719 spitfire_put_dtlb_data(i, 0x0UL); 2720 } 2721 2722 /* Spitfire Errata #32 workaround */ 2723 /* NOTE: Always runs on spitfire, so no 2724 * cheetah+ page size encodings. 2725 */ 2726 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2727 "flush %%g6" 2728 : /* No outputs */ 2729 : "r" (0), 2730 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2731 2732 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2733 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2734 "membar #Sync" 2735 : /* no outputs */ 2736 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2737 spitfire_put_itlb_data(i, 0x0UL); 2738 } 2739 } 2740 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2741 cheetah_flush_dtlb_all(); 2742 cheetah_flush_itlb_all(); 2743 } 2744 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2745 : : "r" (pstate)); 2746 } 2747 2748 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 2749 unsigned long address) 2750 { 2751 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 2752 pte_t *pte = NULL; 2753 2754 if (page) 2755 pte = (pte_t *) page_address(page); 2756 2757 return pte; 2758 } 2759 2760 pgtable_t pte_alloc_one(struct mm_struct *mm, 2761 unsigned long address) 2762 { 2763 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); 2764 if (!page) 2765 return NULL; 2766 if (!pgtable_page_ctor(page)) { 2767 free_hot_cold_page(page, 0); 2768 return NULL; 2769 } 2770 return (pte_t *) page_address(page); 2771 } 2772 2773 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2774 { 2775 free_page((unsigned long)pte); 2776 } 2777 2778 static void __pte_free(pgtable_t pte) 2779 { 2780 struct page *page = virt_to_page(pte); 2781 2782 pgtable_page_dtor(page); 2783 __free_page(page); 2784 } 2785 2786 void pte_free(struct mm_struct *mm, pgtable_t pte) 2787 { 2788 __pte_free(pte); 2789 } 2790 2791 void pgtable_free(void *table, bool is_page) 2792 { 2793 if (is_page) 2794 __pte_free(table); 2795 else 2796 kmem_cache_free(pgtable_cache, table); 2797 } 2798 2799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2800 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2801 pmd_t *pmd) 2802 { 2803 unsigned long pte, flags; 2804 struct mm_struct *mm; 2805 pmd_t entry = *pmd; 2806 2807 if (!pmd_large(entry) || !pmd_young(entry)) 2808 return; 2809 2810 pte = pmd_val(entry); 2811 2812 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ 2813 if (!(pte & _PAGE_VALID)) 2814 return; 2815 2816 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2817 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2818 2819 mm = vma->vm_mm; 2820 2821 spin_lock_irqsave(&mm->context.lock, flags); 2822 2823 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2824 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2825 addr, pte); 2826 2827 spin_unlock_irqrestore(&mm->context.lock, flags); 2828 } 2829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2830 2831 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2832 static void context_reload(void *__data) 2833 { 2834 struct mm_struct *mm = __data; 2835 2836 if (mm == current->mm) 2837 load_secondary_context(mm); 2838 } 2839 2840 void hugetlb_setup(struct pt_regs *regs) 2841 { 2842 struct mm_struct *mm = current->mm; 2843 struct tsb_config *tp; 2844 2845 if (faulthandler_disabled() || !mm) { 2846 const struct exception_table_entry *entry; 2847 2848 entry = search_exception_tables(regs->tpc); 2849 if (entry) { 2850 regs->tpc = entry->fixup; 2851 regs->tnpc = regs->tpc + 4; 2852 return; 2853 } 2854 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2855 die_if_kernel("HugeTSB in atomic", regs); 2856 } 2857 2858 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2859 if (likely(tp->tsb == NULL)) 2860 tsb_grow(mm, MM_TSB_HUGE, 0); 2861 2862 tsb_context_switch(mm); 2863 smp_tsb_sync(mm); 2864 2865 /* On UltraSPARC-III+ and later, configure the second half of 2866 * the Data-TLB for huge pages. 2867 */ 2868 if (tlb_type == cheetah_plus) { 2869 bool need_context_reload = false; 2870 unsigned long ctx; 2871 2872 spin_lock_irq(&ctx_alloc_lock); 2873 ctx = mm->context.sparc64_ctx_val; 2874 ctx &= ~CTX_PGSZ_MASK; 2875 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 2876 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 2877 2878 if (ctx != mm->context.sparc64_ctx_val) { 2879 /* When changing the page size fields, we 2880 * must perform a context flush so that no 2881 * stale entries match. This flush must 2882 * occur with the original context register 2883 * settings. 2884 */ 2885 do_flush_tlb_mm(mm); 2886 2887 /* Reload the context register of all processors 2888 * also executing in this address space. 2889 */ 2890 mm->context.sparc64_ctx_val = ctx; 2891 need_context_reload = true; 2892 } 2893 spin_unlock_irq(&ctx_alloc_lock); 2894 2895 if (need_context_reload) 2896 on_each_cpu(context_reload, mm, 0); 2897 } 2898 } 2899 #endif 2900 2901 static struct resource code_resource = { 2902 .name = "Kernel code", 2903 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2904 }; 2905 2906 static struct resource data_resource = { 2907 .name = "Kernel data", 2908 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2909 }; 2910 2911 static struct resource bss_resource = { 2912 .name = "Kernel bss", 2913 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 2914 }; 2915 2916 static inline resource_size_t compute_kern_paddr(void *addr) 2917 { 2918 return (resource_size_t) (addr - KERNBASE + kern_base); 2919 } 2920 2921 static void __init kernel_lds_init(void) 2922 { 2923 code_resource.start = compute_kern_paddr(_text); 2924 code_resource.end = compute_kern_paddr(_etext - 1); 2925 data_resource.start = compute_kern_paddr(_etext); 2926 data_resource.end = compute_kern_paddr(_edata - 1); 2927 bss_resource.start = compute_kern_paddr(__bss_start); 2928 bss_resource.end = compute_kern_paddr(_end - 1); 2929 } 2930 2931 static int __init report_memory(void) 2932 { 2933 int i; 2934 struct resource *res; 2935 2936 kernel_lds_init(); 2937 2938 for (i = 0; i < pavail_ents; i++) { 2939 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 2940 2941 if (!res) { 2942 pr_warn("Failed to allocate source.\n"); 2943 break; 2944 } 2945 2946 res->name = "System RAM"; 2947 res->start = pavail[i].phys_addr; 2948 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; 2949 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 2950 2951 if (insert_resource(&iomem_resource, res) < 0) { 2952 pr_warn("Resource insertion failed.\n"); 2953 break; 2954 } 2955 2956 insert_resource(res, &code_resource); 2957 insert_resource(res, &data_resource); 2958 insert_resource(res, &bss_resource); 2959 } 2960 2961 return 0; 2962 } 2963 arch_initcall(report_memory); 2964 2965 #ifdef CONFIG_SMP 2966 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range 2967 #else 2968 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range 2969 #endif 2970 2971 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 2972 { 2973 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { 2974 if (start < LOW_OBP_ADDRESS) { 2975 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); 2976 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); 2977 } 2978 if (end > HI_OBP_ADDRESS) { 2979 flush_tsb_kernel_range(HI_OBP_ADDRESS, end); 2980 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); 2981 } 2982 } else { 2983 flush_tsb_kernel_range(start, end); 2984 do_flush_tlb_kernel_range(start, end); 2985 } 2986 } 2987