xref: /linux/arch/sparc/mm/init_64.c (revision 31368ce83c59a5422ee621a38aeea98142d0ecf7)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init setup_hugepagesz(char *string)
329 {
330 	unsigned long long hugepage_size;
331 	unsigned int hugepage_shift;
332 	unsigned short hv_pgsz_idx;
333 	unsigned int hv_pgsz_mask;
334 	int rc = 0;
335 
336 	hugepage_size = memparse(string, &string);
337 	hugepage_shift = ilog2(hugepage_size);
338 
339 	switch (hugepage_shift) {
340 	case HPAGE_2GB_SHIFT:
341 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
342 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
343 		break;
344 	case HPAGE_256MB_SHIFT:
345 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
346 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
347 		break;
348 	case HPAGE_SHIFT:
349 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
350 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
351 		break;
352 	case HPAGE_64K_SHIFT:
353 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
354 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
355 		break;
356 	default:
357 		hv_pgsz_mask = 0;
358 	}
359 
360 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
361 		hugetlb_bad_size();
362 		pr_err("hugepagesz=%llu not supported by MMU.\n",
363 			hugepage_size);
364 		goto out;
365 	}
366 
367 	hugetlb_add_hstate(hugepage_shift - PAGE_SHIFT);
368 	rc = 1;
369 
370 out:
371 	return rc;
372 }
373 __setup("hugepagesz=", setup_hugepagesz);
374 #endif	/* CONFIG_HUGETLB_PAGE */
375 
376 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
377 {
378 	struct mm_struct *mm;
379 	unsigned long flags;
380 	pte_t pte = *ptep;
381 
382 	if (tlb_type != hypervisor) {
383 		unsigned long pfn = pte_pfn(pte);
384 
385 		if (pfn_valid(pfn))
386 			flush_dcache(pfn);
387 	}
388 
389 	mm = vma->vm_mm;
390 
391 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
392 	if (!pte_accessible(mm, pte))
393 		return;
394 
395 	spin_lock_irqsave(&mm->context.lock, flags);
396 
397 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
398 	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
399 	    is_hugetlb_pmd(__pmd(pte_val(pte)))) {
400 		/* We are fabricating 8MB pages using 4MB real hw pages.  */
401 		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
402 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
403 					address, pte_val(pte));
404 	} else
405 #endif
406 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
407 					address, pte_val(pte));
408 
409 	spin_unlock_irqrestore(&mm->context.lock, flags);
410 }
411 
412 void flush_dcache_page(struct page *page)
413 {
414 	struct address_space *mapping;
415 	int this_cpu;
416 
417 	if (tlb_type == hypervisor)
418 		return;
419 
420 	/* Do not bother with the expensive D-cache flush if it
421 	 * is merely the zero page.  The 'bigcore' testcase in GDB
422 	 * causes this case to run millions of times.
423 	 */
424 	if (page == ZERO_PAGE(0))
425 		return;
426 
427 	this_cpu = get_cpu();
428 
429 	mapping = page_mapping(page);
430 	if (mapping && !mapping_mapped(mapping)) {
431 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
432 		if (dirty) {
433 			int dirty_cpu = dcache_dirty_cpu(page);
434 
435 			if (dirty_cpu == this_cpu)
436 				goto out;
437 			smp_flush_dcache_page_impl(page, dirty_cpu);
438 		}
439 		set_dcache_dirty(page, this_cpu);
440 	} else {
441 		/* We could delay the flush for the !page_mapping
442 		 * case too.  But that case is for exec env/arg
443 		 * pages and those are %99 certainly going to get
444 		 * faulted into the tlb (and thus flushed) anyways.
445 		 */
446 		flush_dcache_page_impl(page);
447 	}
448 
449 out:
450 	put_cpu();
451 }
452 EXPORT_SYMBOL(flush_dcache_page);
453 
454 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
455 {
456 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
457 	if (tlb_type == spitfire) {
458 		unsigned long kaddr;
459 
460 		/* This code only runs on Spitfire cpus so this is
461 		 * why we can assume _PAGE_PADDR_4U.
462 		 */
463 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
464 			unsigned long paddr, mask = _PAGE_PADDR_4U;
465 
466 			if (kaddr >= PAGE_OFFSET)
467 				paddr = kaddr & mask;
468 			else {
469 				pgd_t *pgdp = pgd_offset_k(kaddr);
470 				pud_t *pudp = pud_offset(pgdp, kaddr);
471 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
472 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
473 
474 				paddr = pte_val(*ptep) & mask;
475 			}
476 			__flush_icache_page(paddr);
477 		}
478 	}
479 }
480 EXPORT_SYMBOL(flush_icache_range);
481 
482 void mmu_info(struct seq_file *m)
483 {
484 	static const char *pgsz_strings[] = {
485 		"8K", "64K", "512K", "4MB", "32MB",
486 		"256MB", "2GB", "16GB",
487 	};
488 	int i, printed;
489 
490 	if (tlb_type == cheetah)
491 		seq_printf(m, "MMU Type\t: Cheetah\n");
492 	else if (tlb_type == cheetah_plus)
493 		seq_printf(m, "MMU Type\t: Cheetah+\n");
494 	else if (tlb_type == spitfire)
495 		seq_printf(m, "MMU Type\t: Spitfire\n");
496 	else if (tlb_type == hypervisor)
497 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
498 	else
499 		seq_printf(m, "MMU Type\t: ???\n");
500 
501 	seq_printf(m, "MMU PGSZs\t: ");
502 	printed = 0;
503 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
504 		if (cpu_pgsz_mask & (1UL << i)) {
505 			seq_printf(m, "%s%s",
506 				   printed ? "," : "", pgsz_strings[i]);
507 			printed++;
508 		}
509 	}
510 	seq_putc(m, '\n');
511 
512 #ifdef CONFIG_DEBUG_DCFLUSH
513 	seq_printf(m, "DCPageFlushes\t: %d\n",
514 		   atomic_read(&dcpage_flushes));
515 #ifdef CONFIG_SMP
516 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
517 		   atomic_read(&dcpage_flushes_xcall));
518 #endif /* CONFIG_SMP */
519 #endif /* CONFIG_DEBUG_DCFLUSH */
520 }
521 
522 struct linux_prom_translation prom_trans[512] __read_mostly;
523 unsigned int prom_trans_ents __read_mostly;
524 
525 unsigned long kern_locked_tte_data;
526 
527 /* The obp translations are saved based on 8k pagesize, since obp can
528  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
529  * HI_OBP_ADDRESS range are handled in ktlb.S.
530  */
531 static inline int in_obp_range(unsigned long vaddr)
532 {
533 	return (vaddr >= LOW_OBP_ADDRESS &&
534 		vaddr < HI_OBP_ADDRESS);
535 }
536 
537 static int cmp_ptrans(const void *a, const void *b)
538 {
539 	const struct linux_prom_translation *x = a, *y = b;
540 
541 	if (x->virt > y->virt)
542 		return 1;
543 	if (x->virt < y->virt)
544 		return -1;
545 	return 0;
546 }
547 
548 /* Read OBP translations property into 'prom_trans[]'.  */
549 static void __init read_obp_translations(void)
550 {
551 	int n, node, ents, first, last, i;
552 
553 	node = prom_finddevice("/virtual-memory");
554 	n = prom_getproplen(node, "translations");
555 	if (unlikely(n == 0 || n == -1)) {
556 		prom_printf("prom_mappings: Couldn't get size.\n");
557 		prom_halt();
558 	}
559 	if (unlikely(n > sizeof(prom_trans))) {
560 		prom_printf("prom_mappings: Size %d is too big.\n", n);
561 		prom_halt();
562 	}
563 
564 	if ((n = prom_getproperty(node, "translations",
565 				  (char *)&prom_trans[0],
566 				  sizeof(prom_trans))) == -1) {
567 		prom_printf("prom_mappings: Couldn't get property.\n");
568 		prom_halt();
569 	}
570 
571 	n = n / sizeof(struct linux_prom_translation);
572 
573 	ents = n;
574 
575 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
576 	     cmp_ptrans, NULL);
577 
578 	/* Now kick out all the non-OBP entries.  */
579 	for (i = 0; i < ents; i++) {
580 		if (in_obp_range(prom_trans[i].virt))
581 			break;
582 	}
583 	first = i;
584 	for (; i < ents; i++) {
585 		if (!in_obp_range(prom_trans[i].virt))
586 			break;
587 	}
588 	last = i;
589 
590 	for (i = 0; i < (last - first); i++) {
591 		struct linux_prom_translation *src = &prom_trans[i + first];
592 		struct linux_prom_translation *dest = &prom_trans[i];
593 
594 		*dest = *src;
595 	}
596 	for (; i < ents; i++) {
597 		struct linux_prom_translation *dest = &prom_trans[i];
598 		dest->virt = dest->size = dest->data = 0x0UL;
599 	}
600 
601 	prom_trans_ents = last - first;
602 
603 	if (tlb_type == spitfire) {
604 		/* Clear diag TTE bits. */
605 		for (i = 0; i < prom_trans_ents; i++)
606 			prom_trans[i].data &= ~0x0003fe0000000000UL;
607 	}
608 
609 	/* Force execute bit on.  */
610 	for (i = 0; i < prom_trans_ents; i++)
611 		prom_trans[i].data |= (tlb_type == hypervisor ?
612 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
613 }
614 
615 static void __init hypervisor_tlb_lock(unsigned long vaddr,
616 				       unsigned long pte,
617 				       unsigned long mmu)
618 {
619 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
620 
621 	if (ret != 0) {
622 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
623 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
624 		prom_halt();
625 	}
626 }
627 
628 static unsigned long kern_large_tte(unsigned long paddr);
629 
630 static void __init remap_kernel(void)
631 {
632 	unsigned long phys_page, tte_vaddr, tte_data;
633 	int i, tlb_ent = sparc64_highest_locked_tlbent();
634 
635 	tte_vaddr = (unsigned long) KERNBASE;
636 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
637 	tte_data = kern_large_tte(phys_page);
638 
639 	kern_locked_tte_data = tte_data;
640 
641 	/* Now lock us into the TLBs via Hypervisor or OBP. */
642 	if (tlb_type == hypervisor) {
643 		for (i = 0; i < num_kernel_image_mappings; i++) {
644 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
645 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
646 			tte_vaddr += 0x400000;
647 			tte_data += 0x400000;
648 		}
649 	} else {
650 		for (i = 0; i < num_kernel_image_mappings; i++) {
651 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
652 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
653 			tte_vaddr += 0x400000;
654 			tte_data += 0x400000;
655 		}
656 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
657 	}
658 	if (tlb_type == cheetah_plus) {
659 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
660 					    CTX_CHEETAH_PLUS_NUC);
661 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
662 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
663 	}
664 }
665 
666 
667 static void __init inherit_prom_mappings(void)
668 {
669 	/* Now fixup OBP's idea about where we really are mapped. */
670 	printk("Remapping the kernel... ");
671 	remap_kernel();
672 	printk("done.\n");
673 }
674 
675 void prom_world(int enter)
676 {
677 	if (!enter)
678 		set_fs(get_fs());
679 
680 	__asm__ __volatile__("flushw");
681 }
682 
683 void __flush_dcache_range(unsigned long start, unsigned long end)
684 {
685 	unsigned long va;
686 
687 	if (tlb_type == spitfire) {
688 		int n = 0;
689 
690 		for (va = start; va < end; va += 32) {
691 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
692 			if (++n >= 512)
693 				break;
694 		}
695 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
696 		start = __pa(start);
697 		end = __pa(end);
698 		for (va = start; va < end; va += 32)
699 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
700 					     "membar #Sync"
701 					     : /* no outputs */
702 					     : "r" (va),
703 					       "i" (ASI_DCACHE_INVALIDATE));
704 	}
705 }
706 EXPORT_SYMBOL(__flush_dcache_range);
707 
708 /* get_new_mmu_context() uses "cache + 1".  */
709 DEFINE_SPINLOCK(ctx_alloc_lock);
710 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
711 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
712 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
713 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
714 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
715 
716 static void mmu_context_wrap(void)
717 {
718 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
719 	unsigned long new_ver, new_ctx, old_ctx;
720 	struct mm_struct *mm;
721 	int cpu;
722 
723 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
724 
725 	/* Reserve kernel context */
726 	set_bit(0, mmu_context_bmap);
727 
728 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
729 	if (unlikely(new_ver == 0))
730 		new_ver = CTX_FIRST_VERSION;
731 	tlb_context_cache = new_ver;
732 
733 	/*
734 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
735 	 * are going to go through get_new_mmu_context() path.
736 	 */
737 	mb();
738 
739 	/*
740 	 * Updated versions to current on those CPUs that had valid secondary
741 	 * contexts
742 	 */
743 	for_each_online_cpu(cpu) {
744 		/*
745 		 * If a new mm is stored after we took this mm from the array,
746 		 * it will go into get_new_mmu_context() path, because we
747 		 * already bumped the version in tlb_context_cache.
748 		 */
749 		mm = per_cpu(per_cpu_secondary_mm, cpu);
750 
751 		if (unlikely(!mm || mm == &init_mm))
752 			continue;
753 
754 		old_ctx = mm->context.sparc64_ctx_val;
755 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
756 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
757 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
758 			mm->context.sparc64_ctx_val = new_ctx;
759 		}
760 	}
761 }
762 
763 /* Caller does TLB context flushing on local CPU if necessary.
764  * The caller also ensures that CTX_VALID(mm->context) is false.
765  *
766  * We must be careful about boundary cases so that we never
767  * let the user have CTX 0 (nucleus) or we ever use a CTX
768  * version of zero (and thus NO_CONTEXT would not be caught
769  * by version mis-match tests in mmu_context.h).
770  *
771  * Always invoked with interrupts disabled.
772  */
773 void get_new_mmu_context(struct mm_struct *mm)
774 {
775 	unsigned long ctx, new_ctx;
776 	unsigned long orig_pgsz_bits;
777 
778 	spin_lock(&ctx_alloc_lock);
779 retry:
780 	/* wrap might have happened, test again if our context became valid */
781 	if (unlikely(CTX_VALID(mm->context)))
782 		goto out;
783 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
784 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
785 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
786 	if (new_ctx >= (1 << CTX_NR_BITS)) {
787 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
788 		if (new_ctx >= ctx) {
789 			mmu_context_wrap();
790 			goto retry;
791 		}
792 	}
793 	if (mm->context.sparc64_ctx_val)
794 		cpumask_clear(mm_cpumask(mm));
795 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
796 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
797 	tlb_context_cache = new_ctx;
798 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
799 out:
800 	spin_unlock(&ctx_alloc_lock);
801 }
802 
803 static int numa_enabled = 1;
804 static int numa_debug;
805 
806 static int __init early_numa(char *p)
807 {
808 	if (!p)
809 		return 0;
810 
811 	if (strstr(p, "off"))
812 		numa_enabled = 0;
813 
814 	if (strstr(p, "debug"))
815 		numa_debug = 1;
816 
817 	return 0;
818 }
819 early_param("numa", early_numa);
820 
821 #define numadbg(f, a...) \
822 do {	if (numa_debug) \
823 		printk(KERN_INFO f, ## a); \
824 } while (0)
825 
826 static void __init find_ramdisk(unsigned long phys_base)
827 {
828 #ifdef CONFIG_BLK_DEV_INITRD
829 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
830 		unsigned long ramdisk_image;
831 
832 		/* Older versions of the bootloader only supported a
833 		 * 32-bit physical address for the ramdisk image
834 		 * location, stored at sparc_ramdisk_image.  Newer
835 		 * SILO versions set sparc_ramdisk_image to zero and
836 		 * provide a full 64-bit physical address at
837 		 * sparc_ramdisk_image64.
838 		 */
839 		ramdisk_image = sparc_ramdisk_image;
840 		if (!ramdisk_image)
841 			ramdisk_image = sparc_ramdisk_image64;
842 
843 		/* Another bootloader quirk.  The bootloader normalizes
844 		 * the physical address to KERNBASE, so we have to
845 		 * factor that back out and add in the lowest valid
846 		 * physical page address to get the true physical address.
847 		 */
848 		ramdisk_image -= KERNBASE;
849 		ramdisk_image += phys_base;
850 
851 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
852 			ramdisk_image, sparc_ramdisk_size);
853 
854 		initrd_start = ramdisk_image;
855 		initrd_end = ramdisk_image + sparc_ramdisk_size;
856 
857 		memblock_reserve(initrd_start, sparc_ramdisk_size);
858 
859 		initrd_start += PAGE_OFFSET;
860 		initrd_end += PAGE_OFFSET;
861 	}
862 #endif
863 }
864 
865 struct node_mem_mask {
866 	unsigned long mask;
867 	unsigned long match;
868 };
869 static struct node_mem_mask node_masks[MAX_NUMNODES];
870 static int num_node_masks;
871 
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 
874 struct mdesc_mlgroup {
875 	u64	node;
876 	u64	latency;
877 	u64	match;
878 	u64	mask;
879 };
880 
881 static struct mdesc_mlgroup *mlgroups;
882 static int num_mlgroups;
883 
884 int numa_cpu_lookup_table[NR_CPUS];
885 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
886 
887 struct mdesc_mblock {
888 	u64	base;
889 	u64	size;
890 	u64	offset; /* RA-to-PA */
891 };
892 static struct mdesc_mblock *mblocks;
893 static int num_mblocks;
894 
895 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
896 {
897 	struct mdesc_mblock *m = NULL;
898 	int i;
899 
900 	for (i = 0; i < num_mblocks; i++) {
901 		m = &mblocks[i];
902 
903 		if (addr >= m->base &&
904 		    addr < (m->base + m->size)) {
905 			break;
906 		}
907 	}
908 
909 	return m;
910 }
911 
912 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
913 {
914 	int prev_nid, new_nid;
915 
916 	prev_nid = -1;
917 	for ( ; start < end; start += PAGE_SIZE) {
918 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
919 			struct node_mem_mask *p = &node_masks[new_nid];
920 
921 			if ((start & p->mask) == p->match) {
922 				if (prev_nid == -1)
923 					prev_nid = new_nid;
924 				break;
925 			}
926 		}
927 
928 		if (new_nid == num_node_masks) {
929 			prev_nid = 0;
930 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
931 				  start);
932 			break;
933 		}
934 
935 		if (prev_nid != new_nid)
936 			break;
937 	}
938 	*nid = prev_nid;
939 
940 	return start > end ? end : start;
941 }
942 
943 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
944 {
945 	u64 ret_end, pa_start, m_mask, m_match, m_end;
946 	struct mdesc_mblock *mblock;
947 	int _nid, i;
948 
949 	if (tlb_type != hypervisor)
950 		return memblock_nid_range_sun4u(start, end, nid);
951 
952 	mblock = addr_to_mblock(start);
953 	if (!mblock) {
954 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
955 			  start);
956 
957 		_nid = 0;
958 		ret_end = end;
959 		goto done;
960 	}
961 
962 	pa_start = start + mblock->offset;
963 	m_match = 0;
964 	m_mask = 0;
965 
966 	for (_nid = 0; _nid < num_node_masks; _nid++) {
967 		struct node_mem_mask *const m = &node_masks[_nid];
968 
969 		if ((pa_start & m->mask) == m->match) {
970 			m_match = m->match;
971 			m_mask = m->mask;
972 			break;
973 		}
974 	}
975 
976 	if (num_node_masks == _nid) {
977 		/* We could not find NUMA group, so default to 0, but lets
978 		 * search for latency group, so we could calculate the correct
979 		 * end address that we return
980 		 */
981 		_nid = 0;
982 
983 		for (i = 0; i < num_mlgroups; i++) {
984 			struct mdesc_mlgroup *const m = &mlgroups[i];
985 
986 			if ((pa_start & m->mask) == m->match) {
987 				m_match = m->match;
988 				m_mask = m->mask;
989 				break;
990 			}
991 		}
992 
993 		if (i == num_mlgroups) {
994 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
995 				  start);
996 
997 			ret_end = end;
998 			goto done;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Each latency group has match and mask, and each memory block has an
1004 	 * offset.  An address belongs to a latency group if its address matches
1005 	 * the following formula: ((addr + offset) & mask) == match
1006 	 * It is, however, slow to check every single page if it matches a
1007 	 * particular latency group. As optimization we calculate end value by
1008 	 * using bit arithmetics.
1009 	 */
1010 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1011 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1012 	ret_end = m_end > end ? end : m_end;
1013 
1014 done:
1015 	*nid = _nid;
1016 	return ret_end;
1017 }
1018 #endif
1019 
1020 /* This must be invoked after performing all of the necessary
1021  * memblock_set_node() calls for 'nid'.  We need to be able to get
1022  * correct data from get_pfn_range_for_nid().
1023  */
1024 static void __init allocate_node_data(int nid)
1025 {
1026 	struct pglist_data *p;
1027 	unsigned long start_pfn, end_pfn;
1028 #ifdef CONFIG_NEED_MULTIPLE_NODES
1029 	unsigned long paddr;
1030 
1031 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1032 	if (!paddr) {
1033 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1034 		prom_halt();
1035 	}
1036 	NODE_DATA(nid) = __va(paddr);
1037 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1038 
1039 	NODE_DATA(nid)->node_id = nid;
1040 #endif
1041 
1042 	p = NODE_DATA(nid);
1043 
1044 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1045 	p->node_start_pfn = start_pfn;
1046 	p->node_spanned_pages = end_pfn - start_pfn;
1047 }
1048 
1049 static void init_node_masks_nonnuma(void)
1050 {
1051 #ifdef CONFIG_NEED_MULTIPLE_NODES
1052 	int i;
1053 #endif
1054 
1055 	numadbg("Initializing tables for non-numa.\n");
1056 
1057 	node_masks[0].mask = 0;
1058 	node_masks[0].match = 0;
1059 	num_node_masks = 1;
1060 
1061 #ifdef CONFIG_NEED_MULTIPLE_NODES
1062 	for (i = 0; i < NR_CPUS; i++)
1063 		numa_cpu_lookup_table[i] = 0;
1064 
1065 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1066 #endif
1067 }
1068 
1069 #ifdef CONFIG_NEED_MULTIPLE_NODES
1070 struct pglist_data *node_data[MAX_NUMNODES];
1071 
1072 EXPORT_SYMBOL(numa_cpu_lookup_table);
1073 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1074 EXPORT_SYMBOL(node_data);
1075 
1076 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1077 				   u32 cfg_handle)
1078 {
1079 	u64 arc;
1080 
1081 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1082 		u64 target = mdesc_arc_target(md, arc);
1083 		const u64 *val;
1084 
1085 		val = mdesc_get_property(md, target,
1086 					 "cfg-handle", NULL);
1087 		if (val && *val == cfg_handle)
1088 			return 0;
1089 	}
1090 	return -ENODEV;
1091 }
1092 
1093 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1094 				    u32 cfg_handle)
1095 {
1096 	u64 arc, candidate, best_latency = ~(u64)0;
1097 
1098 	candidate = MDESC_NODE_NULL;
1099 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1100 		u64 target = mdesc_arc_target(md, arc);
1101 		const char *name = mdesc_node_name(md, target);
1102 		const u64 *val;
1103 
1104 		if (strcmp(name, "pio-latency-group"))
1105 			continue;
1106 
1107 		val = mdesc_get_property(md, target, "latency", NULL);
1108 		if (!val)
1109 			continue;
1110 
1111 		if (*val < best_latency) {
1112 			candidate = target;
1113 			best_latency = *val;
1114 		}
1115 	}
1116 
1117 	if (candidate == MDESC_NODE_NULL)
1118 		return -ENODEV;
1119 
1120 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1121 }
1122 
1123 int of_node_to_nid(struct device_node *dp)
1124 {
1125 	const struct linux_prom64_registers *regs;
1126 	struct mdesc_handle *md;
1127 	u32 cfg_handle;
1128 	int count, nid;
1129 	u64 grp;
1130 
1131 	/* This is the right thing to do on currently supported
1132 	 * SUN4U NUMA platforms as well, as the PCI controller does
1133 	 * not sit behind any particular memory controller.
1134 	 */
1135 	if (!mlgroups)
1136 		return -1;
1137 
1138 	regs = of_get_property(dp, "reg", NULL);
1139 	if (!regs)
1140 		return -1;
1141 
1142 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1143 
1144 	md = mdesc_grab();
1145 
1146 	count = 0;
1147 	nid = -1;
1148 	mdesc_for_each_node_by_name(md, grp, "group") {
1149 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1150 			nid = count;
1151 			break;
1152 		}
1153 		count++;
1154 	}
1155 
1156 	mdesc_release(md);
1157 
1158 	return nid;
1159 }
1160 
1161 static void __init add_node_ranges(void)
1162 {
1163 	struct memblock_region *reg;
1164 	unsigned long prev_max;
1165 
1166 memblock_resized:
1167 	prev_max = memblock.memory.max;
1168 
1169 	for_each_memblock(memory, reg) {
1170 		unsigned long size = reg->size;
1171 		unsigned long start, end;
1172 
1173 		start = reg->base;
1174 		end = start + size;
1175 		while (start < end) {
1176 			unsigned long this_end;
1177 			int nid;
1178 
1179 			this_end = memblock_nid_range(start, end, &nid);
1180 
1181 			numadbg("Setting memblock NUMA node nid[%d] "
1182 				"start[%lx] end[%lx]\n",
1183 				nid, start, this_end);
1184 
1185 			memblock_set_node(start, this_end - start,
1186 					  &memblock.memory, nid);
1187 			if (memblock.memory.max != prev_max)
1188 				goto memblock_resized;
1189 			start = this_end;
1190 		}
1191 	}
1192 }
1193 
1194 static int __init grab_mlgroups(struct mdesc_handle *md)
1195 {
1196 	unsigned long paddr;
1197 	int count = 0;
1198 	u64 node;
1199 
1200 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1201 		count++;
1202 	if (!count)
1203 		return -ENOENT;
1204 
1205 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1206 			  SMP_CACHE_BYTES);
1207 	if (!paddr)
1208 		return -ENOMEM;
1209 
1210 	mlgroups = __va(paddr);
1211 	num_mlgroups = count;
1212 
1213 	count = 0;
1214 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1215 		struct mdesc_mlgroup *m = &mlgroups[count++];
1216 		const u64 *val;
1217 
1218 		m->node = node;
1219 
1220 		val = mdesc_get_property(md, node, "latency", NULL);
1221 		m->latency = *val;
1222 		val = mdesc_get_property(md, node, "address-match", NULL);
1223 		m->match = *val;
1224 		val = mdesc_get_property(md, node, "address-mask", NULL);
1225 		m->mask = *val;
1226 
1227 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1228 			"match[%llx] mask[%llx]\n",
1229 			count - 1, m->node, m->latency, m->match, m->mask);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static int __init grab_mblocks(struct mdesc_handle *md)
1236 {
1237 	unsigned long paddr;
1238 	int count = 0;
1239 	u64 node;
1240 
1241 	mdesc_for_each_node_by_name(md, node, "mblock")
1242 		count++;
1243 	if (!count)
1244 		return -ENOENT;
1245 
1246 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1247 			  SMP_CACHE_BYTES);
1248 	if (!paddr)
1249 		return -ENOMEM;
1250 
1251 	mblocks = __va(paddr);
1252 	num_mblocks = count;
1253 
1254 	count = 0;
1255 	mdesc_for_each_node_by_name(md, node, "mblock") {
1256 		struct mdesc_mblock *m = &mblocks[count++];
1257 		const u64 *val;
1258 
1259 		val = mdesc_get_property(md, node, "base", NULL);
1260 		m->base = *val;
1261 		val = mdesc_get_property(md, node, "size", NULL);
1262 		m->size = *val;
1263 		val = mdesc_get_property(md, node,
1264 					 "address-congruence-offset", NULL);
1265 
1266 		/* The address-congruence-offset property is optional.
1267 		 * Explicity zero it be identifty this.
1268 		 */
1269 		if (val)
1270 			m->offset = *val;
1271 		else
1272 			m->offset = 0UL;
1273 
1274 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1275 			count - 1, m->base, m->size, m->offset);
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1282 					       u64 grp, cpumask_t *mask)
1283 {
1284 	u64 arc;
1285 
1286 	cpumask_clear(mask);
1287 
1288 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1289 		u64 target = mdesc_arc_target(md, arc);
1290 		const char *name = mdesc_node_name(md, target);
1291 		const u64 *id;
1292 
1293 		if (strcmp(name, "cpu"))
1294 			continue;
1295 		id = mdesc_get_property(md, target, "id", NULL);
1296 		if (*id < nr_cpu_ids)
1297 			cpumask_set_cpu(*id, mask);
1298 	}
1299 }
1300 
1301 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1302 {
1303 	int i;
1304 
1305 	for (i = 0; i < num_mlgroups; i++) {
1306 		struct mdesc_mlgroup *m = &mlgroups[i];
1307 		if (m->node == node)
1308 			return m;
1309 	}
1310 	return NULL;
1311 }
1312 
1313 int __node_distance(int from, int to)
1314 {
1315 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1316 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1317 			from, to);
1318 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1319 	}
1320 	return numa_latency[from][to];
1321 }
1322 
1323 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1324 {
1325 	int i;
1326 
1327 	for (i = 0; i < MAX_NUMNODES; i++) {
1328 		struct node_mem_mask *n = &node_masks[i];
1329 
1330 		if ((grp->mask == n->mask) && (grp->match == n->match))
1331 			break;
1332 	}
1333 	return i;
1334 }
1335 
1336 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1337 						 u64 grp, int index)
1338 {
1339 	u64 arc;
1340 
1341 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1342 		int tnode;
1343 		u64 target = mdesc_arc_target(md, arc);
1344 		struct mdesc_mlgroup *m = find_mlgroup(target);
1345 
1346 		if (!m)
1347 			continue;
1348 		tnode = find_best_numa_node_for_mlgroup(m);
1349 		if (tnode == MAX_NUMNODES)
1350 			continue;
1351 		numa_latency[index][tnode] = m->latency;
1352 	}
1353 }
1354 
1355 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1356 				      int index)
1357 {
1358 	struct mdesc_mlgroup *candidate = NULL;
1359 	u64 arc, best_latency = ~(u64)0;
1360 	struct node_mem_mask *n;
1361 
1362 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1363 		u64 target = mdesc_arc_target(md, arc);
1364 		struct mdesc_mlgroup *m = find_mlgroup(target);
1365 		if (!m)
1366 			continue;
1367 		if (m->latency < best_latency) {
1368 			candidate = m;
1369 			best_latency = m->latency;
1370 		}
1371 	}
1372 	if (!candidate)
1373 		return -ENOENT;
1374 
1375 	if (num_node_masks != index) {
1376 		printk(KERN_ERR "Inconsistent NUMA state, "
1377 		       "index[%d] != num_node_masks[%d]\n",
1378 		       index, num_node_masks);
1379 		return -EINVAL;
1380 	}
1381 
1382 	n = &node_masks[num_node_masks++];
1383 
1384 	n->mask = candidate->mask;
1385 	n->match = candidate->match;
1386 
1387 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1388 		index, n->mask, n->match, candidate->latency);
1389 
1390 	return 0;
1391 }
1392 
1393 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1394 					 int index)
1395 {
1396 	cpumask_t mask;
1397 	int cpu;
1398 
1399 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1400 
1401 	for_each_cpu(cpu, &mask)
1402 		numa_cpu_lookup_table[cpu] = index;
1403 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1404 
1405 	if (numa_debug) {
1406 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1407 		for_each_cpu(cpu, &mask)
1408 			printk("%d ", cpu);
1409 		printk("]\n");
1410 	}
1411 
1412 	return numa_attach_mlgroup(md, grp, index);
1413 }
1414 
1415 static int __init numa_parse_mdesc(void)
1416 {
1417 	struct mdesc_handle *md = mdesc_grab();
1418 	int i, j, err, count;
1419 	u64 node;
1420 
1421 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1422 	if (node == MDESC_NODE_NULL) {
1423 		mdesc_release(md);
1424 		return -ENOENT;
1425 	}
1426 
1427 	err = grab_mblocks(md);
1428 	if (err < 0)
1429 		goto out;
1430 
1431 	err = grab_mlgroups(md);
1432 	if (err < 0)
1433 		goto out;
1434 
1435 	count = 0;
1436 	mdesc_for_each_node_by_name(md, node, "group") {
1437 		err = numa_parse_mdesc_group(md, node, count);
1438 		if (err < 0)
1439 			break;
1440 		count++;
1441 	}
1442 
1443 	count = 0;
1444 	mdesc_for_each_node_by_name(md, node, "group") {
1445 		find_numa_latencies_for_group(md, node, count);
1446 		count++;
1447 	}
1448 
1449 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1450 	for (i = 0; i < MAX_NUMNODES; i++) {
1451 		u64 self_latency = numa_latency[i][i];
1452 
1453 		for (j = 0; j < MAX_NUMNODES; j++) {
1454 			numa_latency[i][j] =
1455 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1456 				self_latency;
1457 		}
1458 	}
1459 
1460 	add_node_ranges();
1461 
1462 	for (i = 0; i < num_node_masks; i++) {
1463 		allocate_node_data(i);
1464 		node_set_online(i);
1465 	}
1466 
1467 	err = 0;
1468 out:
1469 	mdesc_release(md);
1470 	return err;
1471 }
1472 
1473 static int __init numa_parse_jbus(void)
1474 {
1475 	unsigned long cpu, index;
1476 
1477 	/* NUMA node id is encoded in bits 36 and higher, and there is
1478 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1479 	 */
1480 	index = 0;
1481 	for_each_present_cpu(cpu) {
1482 		numa_cpu_lookup_table[cpu] = index;
1483 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1484 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1485 		node_masks[index].match = cpu << 36UL;
1486 
1487 		index++;
1488 	}
1489 	num_node_masks = index;
1490 
1491 	add_node_ranges();
1492 
1493 	for (index = 0; index < num_node_masks; index++) {
1494 		allocate_node_data(index);
1495 		node_set_online(index);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int __init numa_parse_sun4u(void)
1502 {
1503 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1504 		unsigned long ver;
1505 
1506 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1507 		if ((ver >> 32UL) == __JALAPENO_ID ||
1508 		    (ver >> 32UL) == __SERRANO_ID)
1509 			return numa_parse_jbus();
1510 	}
1511 	return -1;
1512 }
1513 
1514 static int __init bootmem_init_numa(void)
1515 {
1516 	int i, j;
1517 	int err = -1;
1518 
1519 	numadbg("bootmem_init_numa()\n");
1520 
1521 	/* Some sane defaults for numa latency values */
1522 	for (i = 0; i < MAX_NUMNODES; i++) {
1523 		for (j = 0; j < MAX_NUMNODES; j++)
1524 			numa_latency[i][j] = (i == j) ?
1525 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1526 	}
1527 
1528 	if (numa_enabled) {
1529 		if (tlb_type == hypervisor)
1530 			err = numa_parse_mdesc();
1531 		else
1532 			err = numa_parse_sun4u();
1533 	}
1534 	return err;
1535 }
1536 
1537 #else
1538 
1539 static int bootmem_init_numa(void)
1540 {
1541 	return -1;
1542 }
1543 
1544 #endif
1545 
1546 static void __init bootmem_init_nonnuma(void)
1547 {
1548 	unsigned long top_of_ram = memblock_end_of_DRAM();
1549 	unsigned long total_ram = memblock_phys_mem_size();
1550 
1551 	numadbg("bootmem_init_nonnuma()\n");
1552 
1553 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1554 	       top_of_ram, total_ram);
1555 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1556 	       (top_of_ram - total_ram) >> 20);
1557 
1558 	init_node_masks_nonnuma();
1559 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1560 	allocate_node_data(0);
1561 	node_set_online(0);
1562 }
1563 
1564 static unsigned long __init bootmem_init(unsigned long phys_base)
1565 {
1566 	unsigned long end_pfn;
1567 
1568 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1569 	max_pfn = max_low_pfn = end_pfn;
1570 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1571 
1572 	if (bootmem_init_numa() < 0)
1573 		bootmem_init_nonnuma();
1574 
1575 	/* Dump memblock with node info. */
1576 	memblock_dump_all();
1577 
1578 	/* XXX cpu notifier XXX */
1579 
1580 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1581 	sparse_init();
1582 
1583 	return end_pfn;
1584 }
1585 
1586 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1587 static int pall_ents __initdata;
1588 
1589 static unsigned long max_phys_bits = 40;
1590 
1591 bool kern_addr_valid(unsigned long addr)
1592 {
1593 	pgd_t *pgd;
1594 	pud_t *pud;
1595 	pmd_t *pmd;
1596 	pte_t *pte;
1597 
1598 	if ((long)addr < 0L) {
1599 		unsigned long pa = __pa(addr);
1600 
1601 		if ((pa >> max_phys_bits) != 0UL)
1602 			return false;
1603 
1604 		return pfn_valid(pa >> PAGE_SHIFT);
1605 	}
1606 
1607 	if (addr >= (unsigned long) KERNBASE &&
1608 	    addr < (unsigned long)&_end)
1609 		return true;
1610 
1611 	pgd = pgd_offset_k(addr);
1612 	if (pgd_none(*pgd))
1613 		return 0;
1614 
1615 	pud = pud_offset(pgd, addr);
1616 	if (pud_none(*pud))
1617 		return 0;
1618 
1619 	if (pud_large(*pud))
1620 		return pfn_valid(pud_pfn(*pud));
1621 
1622 	pmd = pmd_offset(pud, addr);
1623 	if (pmd_none(*pmd))
1624 		return 0;
1625 
1626 	if (pmd_large(*pmd))
1627 		return pfn_valid(pmd_pfn(*pmd));
1628 
1629 	pte = pte_offset_kernel(pmd, addr);
1630 	if (pte_none(*pte))
1631 		return 0;
1632 
1633 	return pfn_valid(pte_pfn(*pte));
1634 }
1635 EXPORT_SYMBOL(kern_addr_valid);
1636 
1637 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1638 					      unsigned long vend,
1639 					      pud_t *pud)
1640 {
1641 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1642 	u64 pte_val = vstart;
1643 
1644 	/* Each PUD is 8GB */
1645 	if ((vstart & mask16gb) ||
1646 	    (vend - vstart <= mask16gb)) {
1647 		pte_val ^= kern_linear_pte_xor[2];
1648 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1649 
1650 		return vstart + PUD_SIZE;
1651 	}
1652 
1653 	pte_val ^= kern_linear_pte_xor[3];
1654 	pte_val |= _PAGE_PUD_HUGE;
1655 
1656 	vend = vstart + mask16gb + 1UL;
1657 	while (vstart < vend) {
1658 		pud_val(*pud) = pte_val;
1659 
1660 		pte_val += PUD_SIZE;
1661 		vstart += PUD_SIZE;
1662 		pud++;
1663 	}
1664 	return vstart;
1665 }
1666 
1667 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1668 				   bool guard)
1669 {
1670 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1671 		return true;
1672 
1673 	return false;
1674 }
1675 
1676 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1677 					      unsigned long vend,
1678 					      pmd_t *pmd)
1679 {
1680 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1681 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1682 	u64 pte_val = vstart;
1683 
1684 	/* Each PMD is 8MB */
1685 	if ((vstart & mask256mb) ||
1686 	    (vend - vstart <= mask256mb)) {
1687 		pte_val ^= kern_linear_pte_xor[0];
1688 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1689 
1690 		return vstart + PMD_SIZE;
1691 	}
1692 
1693 	if ((vstart & mask2gb) ||
1694 	    (vend - vstart <= mask2gb)) {
1695 		pte_val ^= kern_linear_pte_xor[1];
1696 		pte_val |= _PAGE_PMD_HUGE;
1697 		vend = vstart + mask256mb + 1UL;
1698 	} else {
1699 		pte_val ^= kern_linear_pte_xor[2];
1700 		pte_val |= _PAGE_PMD_HUGE;
1701 		vend = vstart + mask2gb + 1UL;
1702 	}
1703 
1704 	while (vstart < vend) {
1705 		pmd_val(*pmd) = pte_val;
1706 
1707 		pte_val += PMD_SIZE;
1708 		vstart += PMD_SIZE;
1709 		pmd++;
1710 	}
1711 
1712 	return vstart;
1713 }
1714 
1715 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1716 				   bool guard)
1717 {
1718 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1719 		return true;
1720 
1721 	return false;
1722 }
1723 
1724 static unsigned long __ref kernel_map_range(unsigned long pstart,
1725 					    unsigned long pend, pgprot_t prot,
1726 					    bool use_huge)
1727 {
1728 	unsigned long vstart = PAGE_OFFSET + pstart;
1729 	unsigned long vend = PAGE_OFFSET + pend;
1730 	unsigned long alloc_bytes = 0UL;
1731 
1732 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1733 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1734 			    vstart, vend);
1735 		prom_halt();
1736 	}
1737 
1738 	while (vstart < vend) {
1739 		unsigned long this_end, paddr = __pa(vstart);
1740 		pgd_t *pgd = pgd_offset_k(vstart);
1741 		pud_t *pud;
1742 		pmd_t *pmd;
1743 		pte_t *pte;
1744 
1745 		if (pgd_none(*pgd)) {
1746 			pud_t *new;
1747 
1748 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1749 			alloc_bytes += PAGE_SIZE;
1750 			pgd_populate(&init_mm, pgd, new);
1751 		}
1752 		pud = pud_offset(pgd, vstart);
1753 		if (pud_none(*pud)) {
1754 			pmd_t *new;
1755 
1756 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1757 				vstart = kernel_map_hugepud(vstart, vend, pud);
1758 				continue;
1759 			}
1760 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1761 			alloc_bytes += PAGE_SIZE;
1762 			pud_populate(&init_mm, pud, new);
1763 		}
1764 
1765 		pmd = pmd_offset(pud, vstart);
1766 		if (pmd_none(*pmd)) {
1767 			pte_t *new;
1768 
1769 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1770 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1771 				continue;
1772 			}
1773 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1774 			alloc_bytes += PAGE_SIZE;
1775 			pmd_populate_kernel(&init_mm, pmd, new);
1776 		}
1777 
1778 		pte = pte_offset_kernel(pmd, vstart);
1779 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1780 		if (this_end > vend)
1781 			this_end = vend;
1782 
1783 		while (vstart < this_end) {
1784 			pte_val(*pte) = (paddr | pgprot_val(prot));
1785 
1786 			vstart += PAGE_SIZE;
1787 			paddr += PAGE_SIZE;
1788 			pte++;
1789 		}
1790 	}
1791 
1792 	return alloc_bytes;
1793 }
1794 
1795 static void __init flush_all_kernel_tsbs(void)
1796 {
1797 	int i;
1798 
1799 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1800 		struct tsb *ent = &swapper_tsb[i];
1801 
1802 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1803 	}
1804 #ifndef CONFIG_DEBUG_PAGEALLOC
1805 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1806 		struct tsb *ent = &swapper_4m_tsb[i];
1807 
1808 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1809 	}
1810 #endif
1811 }
1812 
1813 extern unsigned int kvmap_linear_patch[1];
1814 
1815 static void __init kernel_physical_mapping_init(void)
1816 {
1817 	unsigned long i, mem_alloced = 0UL;
1818 	bool use_huge = true;
1819 
1820 #ifdef CONFIG_DEBUG_PAGEALLOC
1821 	use_huge = false;
1822 #endif
1823 	for (i = 0; i < pall_ents; i++) {
1824 		unsigned long phys_start, phys_end;
1825 
1826 		phys_start = pall[i].phys_addr;
1827 		phys_end = phys_start + pall[i].reg_size;
1828 
1829 		mem_alloced += kernel_map_range(phys_start, phys_end,
1830 						PAGE_KERNEL, use_huge);
1831 	}
1832 
1833 	printk("Allocated %ld bytes for kernel page tables.\n",
1834 	       mem_alloced);
1835 
1836 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1837 	flushi(&kvmap_linear_patch[0]);
1838 
1839 	flush_all_kernel_tsbs();
1840 
1841 	__flush_tlb_all();
1842 }
1843 
1844 #ifdef CONFIG_DEBUG_PAGEALLOC
1845 void __kernel_map_pages(struct page *page, int numpages, int enable)
1846 {
1847 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1848 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1849 
1850 	kernel_map_range(phys_start, phys_end,
1851 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1852 
1853 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1854 			       PAGE_OFFSET + phys_end);
1855 
1856 	/* we should perform an IPI and flush all tlbs,
1857 	 * but that can deadlock->flush only current cpu.
1858 	 */
1859 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1860 				 PAGE_OFFSET + phys_end);
1861 }
1862 #endif
1863 
1864 unsigned long __init find_ecache_flush_span(unsigned long size)
1865 {
1866 	int i;
1867 
1868 	for (i = 0; i < pavail_ents; i++) {
1869 		if (pavail[i].reg_size >= size)
1870 			return pavail[i].phys_addr;
1871 	}
1872 
1873 	return ~0UL;
1874 }
1875 
1876 unsigned long PAGE_OFFSET;
1877 EXPORT_SYMBOL(PAGE_OFFSET);
1878 
1879 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1880 EXPORT_SYMBOL(VMALLOC_END);
1881 
1882 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1883 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1884 
1885 static void __init setup_page_offset(void)
1886 {
1887 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1888 		/* Cheetah/Panther support a full 64-bit virtual
1889 		 * address, so we can use all that our page tables
1890 		 * support.
1891 		 */
1892 		sparc64_va_hole_top =    0xfff0000000000000UL;
1893 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1894 
1895 		max_phys_bits = 42;
1896 	} else if (tlb_type == hypervisor) {
1897 		switch (sun4v_chip_type) {
1898 		case SUN4V_CHIP_NIAGARA1:
1899 		case SUN4V_CHIP_NIAGARA2:
1900 			/* T1 and T2 support 48-bit virtual addresses.  */
1901 			sparc64_va_hole_top =    0xffff800000000000UL;
1902 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1903 
1904 			max_phys_bits = 39;
1905 			break;
1906 		case SUN4V_CHIP_NIAGARA3:
1907 			/* T3 supports 48-bit virtual addresses.  */
1908 			sparc64_va_hole_top =    0xffff800000000000UL;
1909 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1910 
1911 			max_phys_bits = 43;
1912 			break;
1913 		case SUN4V_CHIP_NIAGARA4:
1914 		case SUN4V_CHIP_NIAGARA5:
1915 		case SUN4V_CHIP_SPARC64X:
1916 		case SUN4V_CHIP_SPARC_M6:
1917 			/* T4 and later support 52-bit virtual addresses.  */
1918 			sparc64_va_hole_top =    0xfff8000000000000UL;
1919 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1920 			max_phys_bits = 47;
1921 			break;
1922 		case SUN4V_CHIP_SPARC_M7:
1923 		case SUN4V_CHIP_SPARC_SN:
1924 		default:
1925 			/* M7 and later support 52-bit virtual addresses.  */
1926 			sparc64_va_hole_top =    0xfff8000000000000UL;
1927 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1928 			max_phys_bits = 49;
1929 			break;
1930 		}
1931 	}
1932 
1933 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1934 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1935 			    max_phys_bits);
1936 		prom_halt();
1937 	}
1938 
1939 	PAGE_OFFSET = sparc64_va_hole_top;
1940 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1941 		       (sparc64_va_hole_bottom >> 2));
1942 
1943 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1944 		PAGE_OFFSET, max_phys_bits);
1945 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1946 		VMALLOC_START, VMALLOC_END);
1947 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1948 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1949 }
1950 
1951 static void __init tsb_phys_patch(void)
1952 {
1953 	struct tsb_ldquad_phys_patch_entry *pquad;
1954 	struct tsb_phys_patch_entry *p;
1955 
1956 	pquad = &__tsb_ldquad_phys_patch;
1957 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1958 		unsigned long addr = pquad->addr;
1959 
1960 		if (tlb_type == hypervisor)
1961 			*(unsigned int *) addr = pquad->sun4v_insn;
1962 		else
1963 			*(unsigned int *) addr = pquad->sun4u_insn;
1964 		wmb();
1965 		__asm__ __volatile__("flush	%0"
1966 				     : /* no outputs */
1967 				     : "r" (addr));
1968 
1969 		pquad++;
1970 	}
1971 
1972 	p = &__tsb_phys_patch;
1973 	while (p < &__tsb_phys_patch_end) {
1974 		unsigned long addr = p->addr;
1975 
1976 		*(unsigned int *) addr = p->insn;
1977 		wmb();
1978 		__asm__ __volatile__("flush	%0"
1979 				     : /* no outputs */
1980 				     : "r" (addr));
1981 
1982 		p++;
1983 	}
1984 }
1985 
1986 /* Don't mark as init, we give this to the Hypervisor.  */
1987 #ifndef CONFIG_DEBUG_PAGEALLOC
1988 #define NUM_KTSB_DESCR	2
1989 #else
1990 #define NUM_KTSB_DESCR	1
1991 #endif
1992 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1993 
1994 /* The swapper TSBs are loaded with a base sequence of:
1995  *
1996  *	sethi	%uhi(SYMBOL), REG1
1997  *	sethi	%hi(SYMBOL), REG2
1998  *	or	REG1, %ulo(SYMBOL), REG1
1999  *	or	REG2, %lo(SYMBOL), REG2
2000  *	sllx	REG1, 32, REG1
2001  *	or	REG1, REG2, REG1
2002  *
2003  * When we use physical addressing for the TSB accesses, we patch the
2004  * first four instructions in the above sequence.
2005  */
2006 
2007 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2008 {
2009 	unsigned long high_bits, low_bits;
2010 
2011 	high_bits = (pa >> 32) & 0xffffffff;
2012 	low_bits = (pa >> 0) & 0xffffffff;
2013 
2014 	while (start < end) {
2015 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2016 
2017 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2018 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2019 
2020 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2021 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2022 
2023 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2024 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2025 
2026 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2027 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2028 
2029 		start++;
2030 	}
2031 }
2032 
2033 static void ktsb_phys_patch(void)
2034 {
2035 	extern unsigned int __swapper_tsb_phys_patch;
2036 	extern unsigned int __swapper_tsb_phys_patch_end;
2037 	unsigned long ktsb_pa;
2038 
2039 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2040 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2041 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2042 #ifndef CONFIG_DEBUG_PAGEALLOC
2043 	{
2044 	extern unsigned int __swapper_4m_tsb_phys_patch;
2045 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2046 	ktsb_pa = (kern_base +
2047 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2048 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2049 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2050 	}
2051 #endif
2052 }
2053 
2054 static void __init sun4v_ktsb_init(void)
2055 {
2056 	unsigned long ktsb_pa;
2057 
2058 	/* First KTSB for PAGE_SIZE mappings.  */
2059 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2060 
2061 	switch (PAGE_SIZE) {
2062 	case 8 * 1024:
2063 	default:
2064 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2065 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2066 		break;
2067 
2068 	case 64 * 1024:
2069 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2070 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2071 		break;
2072 
2073 	case 512 * 1024:
2074 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2075 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2076 		break;
2077 
2078 	case 4 * 1024 * 1024:
2079 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2080 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2081 		break;
2082 	}
2083 
2084 	ktsb_descr[0].assoc = 1;
2085 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2086 	ktsb_descr[0].ctx_idx = 0;
2087 	ktsb_descr[0].tsb_base = ktsb_pa;
2088 	ktsb_descr[0].resv = 0;
2089 
2090 #ifndef CONFIG_DEBUG_PAGEALLOC
2091 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2092 	ktsb_pa = (kern_base +
2093 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2094 
2095 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2096 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2097 				    HV_PGSZ_MASK_256MB |
2098 				    HV_PGSZ_MASK_2GB |
2099 				    HV_PGSZ_MASK_16GB) &
2100 				   cpu_pgsz_mask);
2101 	ktsb_descr[1].assoc = 1;
2102 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2103 	ktsb_descr[1].ctx_idx = 0;
2104 	ktsb_descr[1].tsb_base = ktsb_pa;
2105 	ktsb_descr[1].resv = 0;
2106 #endif
2107 }
2108 
2109 void sun4v_ktsb_register(void)
2110 {
2111 	unsigned long pa, ret;
2112 
2113 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2114 
2115 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2116 	if (ret != 0) {
2117 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2118 			    "errors with %lx\n", pa, ret);
2119 		prom_halt();
2120 	}
2121 }
2122 
2123 static void __init sun4u_linear_pte_xor_finalize(void)
2124 {
2125 #ifndef CONFIG_DEBUG_PAGEALLOC
2126 	/* This is where we would add Panther support for
2127 	 * 32MB and 256MB pages.
2128 	 */
2129 #endif
2130 }
2131 
2132 static void __init sun4v_linear_pte_xor_finalize(void)
2133 {
2134 	unsigned long pagecv_flag;
2135 
2136 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2137 	 * enables MCD error. Do not set bit 9 on M7 processor.
2138 	 */
2139 	switch (sun4v_chip_type) {
2140 	case SUN4V_CHIP_SPARC_M7:
2141 	case SUN4V_CHIP_SPARC_SN:
2142 		pagecv_flag = 0x00;
2143 		break;
2144 	default:
2145 		pagecv_flag = _PAGE_CV_4V;
2146 		break;
2147 	}
2148 #ifndef CONFIG_DEBUG_PAGEALLOC
2149 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2150 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2151 			PAGE_OFFSET;
2152 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2153 					   _PAGE_P_4V | _PAGE_W_4V);
2154 	} else {
2155 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2156 	}
2157 
2158 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2159 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2160 			PAGE_OFFSET;
2161 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2162 					   _PAGE_P_4V | _PAGE_W_4V);
2163 	} else {
2164 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2165 	}
2166 
2167 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2168 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2169 			PAGE_OFFSET;
2170 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2171 					   _PAGE_P_4V | _PAGE_W_4V);
2172 	} else {
2173 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2174 	}
2175 #endif
2176 }
2177 
2178 /* paging_init() sets up the page tables */
2179 
2180 static unsigned long last_valid_pfn;
2181 
2182 static void sun4u_pgprot_init(void);
2183 static void sun4v_pgprot_init(void);
2184 
2185 static phys_addr_t __init available_memory(void)
2186 {
2187 	phys_addr_t available = 0ULL;
2188 	phys_addr_t pa_start, pa_end;
2189 	u64 i;
2190 
2191 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2192 				&pa_end, NULL)
2193 		available = available + (pa_end  - pa_start);
2194 
2195 	return available;
2196 }
2197 
2198 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2199 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2200 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2201 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2202 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2203 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2204 
2205 /* We need to exclude reserved regions. This exclusion will include
2206  * vmlinux and initrd. To be more precise the initrd size could be used to
2207  * compute a new lower limit because it is freed later during initialization.
2208  */
2209 static void __init reduce_memory(phys_addr_t limit_ram)
2210 {
2211 	phys_addr_t avail_ram = available_memory();
2212 	phys_addr_t pa_start, pa_end;
2213 	u64 i;
2214 
2215 	if (limit_ram >= avail_ram)
2216 		return;
2217 
2218 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2219 				&pa_end, NULL) {
2220 		phys_addr_t region_size = pa_end - pa_start;
2221 		phys_addr_t clip_start = pa_start;
2222 
2223 		avail_ram = avail_ram - region_size;
2224 		/* Are we consuming too much? */
2225 		if (avail_ram < limit_ram) {
2226 			phys_addr_t give_back = limit_ram - avail_ram;
2227 
2228 			region_size = region_size - give_back;
2229 			clip_start = clip_start + give_back;
2230 		}
2231 
2232 		memblock_remove(clip_start, region_size);
2233 
2234 		if (avail_ram <= limit_ram)
2235 			break;
2236 		i = 0UL;
2237 	}
2238 }
2239 
2240 void __init paging_init(void)
2241 {
2242 	unsigned long end_pfn, shift, phys_base;
2243 	unsigned long real_end, i;
2244 
2245 	setup_page_offset();
2246 
2247 	/* These build time checkes make sure that the dcache_dirty_cpu()
2248 	 * page->flags usage will work.
2249 	 *
2250 	 * When a page gets marked as dcache-dirty, we store the
2251 	 * cpu number starting at bit 32 in the page->flags.  Also,
2252 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2253 	 * in 13-bit signed-immediate instruction fields.
2254 	 */
2255 
2256 	/*
2257 	 * Page flags must not reach into upper 32 bits that are used
2258 	 * for the cpu number
2259 	 */
2260 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2261 
2262 	/*
2263 	 * The bit fields placed in the high range must not reach below
2264 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2265 	 * at the 32 bit boundary.
2266 	 */
2267 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2268 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2269 
2270 	BUILD_BUG_ON(NR_CPUS > 4096);
2271 
2272 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2273 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2274 
2275 	/* Invalidate both kernel TSBs.  */
2276 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2277 #ifndef CONFIG_DEBUG_PAGEALLOC
2278 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2279 #endif
2280 
2281 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2282 	 * bit on M7 processor. This is a conflicting usage of the same
2283 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2284 	 * Detection error on all pages and this will lead to problems
2285 	 * later. Kernel does not run with MCD enabled and hence rest
2286 	 * of the required steps to fully configure memory corruption
2287 	 * detection are not taken. We need to ensure TTE.mcde is not
2288 	 * set on M7 processor. Compute the value of cacheability
2289 	 * flag for use later taking this into consideration.
2290 	 */
2291 	switch (sun4v_chip_type) {
2292 	case SUN4V_CHIP_SPARC_M7:
2293 	case SUN4V_CHIP_SPARC_SN:
2294 		page_cache4v_flag = _PAGE_CP_4V;
2295 		break;
2296 	default:
2297 		page_cache4v_flag = _PAGE_CACHE_4V;
2298 		break;
2299 	}
2300 
2301 	if (tlb_type == hypervisor)
2302 		sun4v_pgprot_init();
2303 	else
2304 		sun4u_pgprot_init();
2305 
2306 	if (tlb_type == cheetah_plus ||
2307 	    tlb_type == hypervisor) {
2308 		tsb_phys_patch();
2309 		ktsb_phys_patch();
2310 	}
2311 
2312 	if (tlb_type == hypervisor)
2313 		sun4v_patch_tlb_handlers();
2314 
2315 	/* Find available physical memory...
2316 	 *
2317 	 * Read it twice in order to work around a bug in openfirmware.
2318 	 * The call to grab this table itself can cause openfirmware to
2319 	 * allocate memory, which in turn can take away some space from
2320 	 * the list of available memory.  Reading it twice makes sure
2321 	 * we really do get the final value.
2322 	 */
2323 	read_obp_translations();
2324 	read_obp_memory("reg", &pall[0], &pall_ents);
2325 	read_obp_memory("available", &pavail[0], &pavail_ents);
2326 	read_obp_memory("available", &pavail[0], &pavail_ents);
2327 
2328 	phys_base = 0xffffffffffffffffUL;
2329 	for (i = 0; i < pavail_ents; i++) {
2330 		phys_base = min(phys_base, pavail[i].phys_addr);
2331 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2332 	}
2333 
2334 	memblock_reserve(kern_base, kern_size);
2335 
2336 	find_ramdisk(phys_base);
2337 
2338 	if (cmdline_memory_size)
2339 		reduce_memory(cmdline_memory_size);
2340 
2341 	memblock_allow_resize();
2342 	memblock_dump_all();
2343 
2344 	set_bit(0, mmu_context_bmap);
2345 
2346 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2347 
2348 	real_end = (unsigned long)_end;
2349 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2350 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2351 	       num_kernel_image_mappings);
2352 
2353 	/* Set kernel pgd to upper alias so physical page computations
2354 	 * work.
2355 	 */
2356 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2357 
2358 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2359 
2360 	inherit_prom_mappings();
2361 
2362 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2363 	setup_tba();
2364 
2365 	__flush_tlb_all();
2366 
2367 	prom_build_devicetree();
2368 	of_populate_present_mask();
2369 #ifndef CONFIG_SMP
2370 	of_fill_in_cpu_data();
2371 #endif
2372 
2373 	if (tlb_type == hypervisor) {
2374 		sun4v_mdesc_init();
2375 		mdesc_populate_present_mask(cpu_all_mask);
2376 #ifndef CONFIG_SMP
2377 		mdesc_fill_in_cpu_data(cpu_all_mask);
2378 #endif
2379 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2380 
2381 		sun4v_linear_pte_xor_finalize();
2382 
2383 		sun4v_ktsb_init();
2384 		sun4v_ktsb_register();
2385 	} else {
2386 		unsigned long impl, ver;
2387 
2388 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2389 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2390 
2391 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2392 		impl = ((ver >> 32) & 0xffff);
2393 		if (impl == PANTHER_IMPL)
2394 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2395 					  HV_PGSZ_MASK_256MB);
2396 
2397 		sun4u_linear_pte_xor_finalize();
2398 	}
2399 
2400 	/* Flush the TLBs and the 4M TSB so that the updated linear
2401 	 * pte XOR settings are realized for all mappings.
2402 	 */
2403 	__flush_tlb_all();
2404 #ifndef CONFIG_DEBUG_PAGEALLOC
2405 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2406 #endif
2407 	__flush_tlb_all();
2408 
2409 	/* Setup bootmem... */
2410 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2411 
2412 	kernel_physical_mapping_init();
2413 
2414 	{
2415 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2416 
2417 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2418 
2419 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2420 
2421 		free_area_init_nodes(max_zone_pfns);
2422 	}
2423 
2424 	printk("Booting Linux...\n");
2425 }
2426 
2427 int page_in_phys_avail(unsigned long paddr)
2428 {
2429 	int i;
2430 
2431 	paddr &= PAGE_MASK;
2432 
2433 	for (i = 0; i < pavail_ents; i++) {
2434 		unsigned long start, end;
2435 
2436 		start = pavail[i].phys_addr;
2437 		end = start + pavail[i].reg_size;
2438 
2439 		if (paddr >= start && paddr < end)
2440 			return 1;
2441 	}
2442 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2443 		return 1;
2444 #ifdef CONFIG_BLK_DEV_INITRD
2445 	if (paddr >= __pa(initrd_start) &&
2446 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2447 		return 1;
2448 #endif
2449 
2450 	return 0;
2451 }
2452 
2453 static void __init register_page_bootmem_info(void)
2454 {
2455 #ifdef CONFIG_NEED_MULTIPLE_NODES
2456 	int i;
2457 
2458 	for_each_online_node(i)
2459 		if (NODE_DATA(i)->node_spanned_pages)
2460 			register_page_bootmem_info_node(NODE_DATA(i));
2461 #endif
2462 }
2463 void __init mem_init(void)
2464 {
2465 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2466 
2467 	register_page_bootmem_info();
2468 	free_all_bootmem();
2469 
2470 	/*
2471 	 * Set up the zero page, mark it reserved, so that page count
2472 	 * is not manipulated when freeing the page from user ptes.
2473 	 */
2474 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2475 	if (mem_map_zero == NULL) {
2476 		prom_printf("paging_init: Cannot alloc zero page.\n");
2477 		prom_halt();
2478 	}
2479 	mark_page_reserved(mem_map_zero);
2480 
2481 	mem_init_print_info(NULL);
2482 
2483 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2484 		cheetah_ecache_flush_init();
2485 }
2486 
2487 void free_initmem(void)
2488 {
2489 	unsigned long addr, initend;
2490 	int do_free = 1;
2491 
2492 	/* If the physical memory maps were trimmed by kernel command
2493 	 * line options, don't even try freeing this initmem stuff up.
2494 	 * The kernel image could have been in the trimmed out region
2495 	 * and if so the freeing below will free invalid page structs.
2496 	 */
2497 	if (cmdline_memory_size)
2498 		do_free = 0;
2499 
2500 	/*
2501 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2502 	 */
2503 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2504 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2505 	for (; addr < initend; addr += PAGE_SIZE) {
2506 		unsigned long page;
2507 
2508 		page = (addr +
2509 			((unsigned long) __va(kern_base)) -
2510 			((unsigned long) KERNBASE));
2511 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2512 
2513 		if (do_free)
2514 			free_reserved_page(virt_to_page(page));
2515 	}
2516 }
2517 
2518 #ifdef CONFIG_BLK_DEV_INITRD
2519 void free_initrd_mem(unsigned long start, unsigned long end)
2520 {
2521 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2522 			   "initrd");
2523 }
2524 #endif
2525 
2526 pgprot_t PAGE_KERNEL __read_mostly;
2527 EXPORT_SYMBOL(PAGE_KERNEL);
2528 
2529 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2530 pgprot_t PAGE_COPY __read_mostly;
2531 
2532 pgprot_t PAGE_SHARED __read_mostly;
2533 EXPORT_SYMBOL(PAGE_SHARED);
2534 
2535 unsigned long pg_iobits __read_mostly;
2536 
2537 unsigned long _PAGE_IE __read_mostly;
2538 EXPORT_SYMBOL(_PAGE_IE);
2539 
2540 unsigned long _PAGE_E __read_mostly;
2541 EXPORT_SYMBOL(_PAGE_E);
2542 
2543 unsigned long _PAGE_CACHE __read_mostly;
2544 EXPORT_SYMBOL(_PAGE_CACHE);
2545 
2546 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2547 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2548 			       int node)
2549 {
2550 	unsigned long pte_base;
2551 
2552 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2553 		    _PAGE_CP_4U | _PAGE_CV_4U |
2554 		    _PAGE_P_4U | _PAGE_W_4U);
2555 	if (tlb_type == hypervisor)
2556 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2557 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2558 
2559 	pte_base |= _PAGE_PMD_HUGE;
2560 
2561 	vstart = vstart & PMD_MASK;
2562 	vend = ALIGN(vend, PMD_SIZE);
2563 	for (; vstart < vend; vstart += PMD_SIZE) {
2564 		pgd_t *pgd = pgd_offset_k(vstart);
2565 		unsigned long pte;
2566 		pud_t *pud;
2567 		pmd_t *pmd;
2568 
2569 		if (pgd_none(*pgd)) {
2570 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2571 
2572 			if (!new)
2573 				return -ENOMEM;
2574 			pgd_populate(&init_mm, pgd, new);
2575 		}
2576 
2577 		pud = pud_offset(pgd, vstart);
2578 		if (pud_none(*pud)) {
2579 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2580 
2581 			if (!new)
2582 				return -ENOMEM;
2583 			pud_populate(&init_mm, pud, new);
2584 		}
2585 
2586 		pmd = pmd_offset(pud, vstart);
2587 
2588 		pte = pmd_val(*pmd);
2589 		if (!(pte & _PAGE_VALID)) {
2590 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2591 
2592 			if (!block)
2593 				return -ENOMEM;
2594 
2595 			pmd_val(*pmd) = pte_base | __pa(block);
2596 		}
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 void vmemmap_free(unsigned long start, unsigned long end)
2603 {
2604 }
2605 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2606 
2607 static void prot_init_common(unsigned long page_none,
2608 			     unsigned long page_shared,
2609 			     unsigned long page_copy,
2610 			     unsigned long page_readonly,
2611 			     unsigned long page_exec_bit)
2612 {
2613 	PAGE_COPY = __pgprot(page_copy);
2614 	PAGE_SHARED = __pgprot(page_shared);
2615 
2616 	protection_map[0x0] = __pgprot(page_none);
2617 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2618 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2619 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2620 	protection_map[0x4] = __pgprot(page_readonly);
2621 	protection_map[0x5] = __pgprot(page_readonly);
2622 	protection_map[0x6] = __pgprot(page_copy);
2623 	protection_map[0x7] = __pgprot(page_copy);
2624 	protection_map[0x8] = __pgprot(page_none);
2625 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2626 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2627 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2628 	protection_map[0xc] = __pgprot(page_readonly);
2629 	protection_map[0xd] = __pgprot(page_readonly);
2630 	protection_map[0xe] = __pgprot(page_shared);
2631 	protection_map[0xf] = __pgprot(page_shared);
2632 }
2633 
2634 static void __init sun4u_pgprot_init(void)
2635 {
2636 	unsigned long page_none, page_shared, page_copy, page_readonly;
2637 	unsigned long page_exec_bit;
2638 	int i;
2639 
2640 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2641 				_PAGE_CACHE_4U | _PAGE_P_4U |
2642 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2643 				_PAGE_EXEC_4U);
2644 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2645 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2646 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2647 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2648 
2649 	_PAGE_IE = _PAGE_IE_4U;
2650 	_PAGE_E = _PAGE_E_4U;
2651 	_PAGE_CACHE = _PAGE_CACHE_4U;
2652 
2653 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2654 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2655 
2656 #ifdef CONFIG_DEBUG_PAGEALLOC
2657 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2658 #else
2659 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2660 		PAGE_OFFSET;
2661 #endif
2662 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2663 				   _PAGE_P_4U | _PAGE_W_4U);
2664 
2665 	for (i = 1; i < 4; i++)
2666 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2667 
2668 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2669 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2670 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2671 
2672 
2673 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2674 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2675 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2676 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2677 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2678 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2679 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2680 
2681 	page_exec_bit = _PAGE_EXEC_4U;
2682 
2683 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2684 			 page_exec_bit);
2685 }
2686 
2687 static void __init sun4v_pgprot_init(void)
2688 {
2689 	unsigned long page_none, page_shared, page_copy, page_readonly;
2690 	unsigned long page_exec_bit;
2691 	int i;
2692 
2693 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2694 				page_cache4v_flag | _PAGE_P_4V |
2695 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2696 				_PAGE_EXEC_4V);
2697 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2698 
2699 	_PAGE_IE = _PAGE_IE_4V;
2700 	_PAGE_E = _PAGE_E_4V;
2701 	_PAGE_CACHE = page_cache4v_flag;
2702 
2703 #ifdef CONFIG_DEBUG_PAGEALLOC
2704 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2705 #else
2706 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2707 		PAGE_OFFSET;
2708 #endif
2709 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2710 				   _PAGE_W_4V);
2711 
2712 	for (i = 1; i < 4; i++)
2713 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2714 
2715 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2716 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2717 
2718 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2719 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2720 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2721 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2722 
2723 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2724 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2725 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2726 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2727 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2728 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2729 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2730 
2731 	page_exec_bit = _PAGE_EXEC_4V;
2732 
2733 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2734 			 page_exec_bit);
2735 }
2736 
2737 unsigned long pte_sz_bits(unsigned long sz)
2738 {
2739 	if (tlb_type == hypervisor) {
2740 		switch (sz) {
2741 		case 8 * 1024:
2742 		default:
2743 			return _PAGE_SZ8K_4V;
2744 		case 64 * 1024:
2745 			return _PAGE_SZ64K_4V;
2746 		case 512 * 1024:
2747 			return _PAGE_SZ512K_4V;
2748 		case 4 * 1024 * 1024:
2749 			return _PAGE_SZ4MB_4V;
2750 		}
2751 	} else {
2752 		switch (sz) {
2753 		case 8 * 1024:
2754 		default:
2755 			return _PAGE_SZ8K_4U;
2756 		case 64 * 1024:
2757 			return _PAGE_SZ64K_4U;
2758 		case 512 * 1024:
2759 			return _PAGE_SZ512K_4U;
2760 		case 4 * 1024 * 1024:
2761 			return _PAGE_SZ4MB_4U;
2762 		}
2763 	}
2764 }
2765 
2766 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2767 {
2768 	pte_t pte;
2769 
2770 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2771 	pte_val(pte) |= (((unsigned long)space) << 32);
2772 	pte_val(pte) |= pte_sz_bits(page_size);
2773 
2774 	return pte;
2775 }
2776 
2777 static unsigned long kern_large_tte(unsigned long paddr)
2778 {
2779 	unsigned long val;
2780 
2781 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2782 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2783 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2784 	if (tlb_type == hypervisor)
2785 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2786 		       page_cache4v_flag | _PAGE_P_4V |
2787 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2788 
2789 	return val | paddr;
2790 }
2791 
2792 /* If not locked, zap it. */
2793 void __flush_tlb_all(void)
2794 {
2795 	unsigned long pstate;
2796 	int i;
2797 
2798 	__asm__ __volatile__("flushw\n\t"
2799 			     "rdpr	%%pstate, %0\n\t"
2800 			     "wrpr	%0, %1, %%pstate"
2801 			     : "=r" (pstate)
2802 			     : "i" (PSTATE_IE));
2803 	if (tlb_type == hypervisor) {
2804 		sun4v_mmu_demap_all();
2805 	} else if (tlb_type == spitfire) {
2806 		for (i = 0; i < 64; i++) {
2807 			/* Spitfire Errata #32 workaround */
2808 			/* NOTE: Always runs on spitfire, so no
2809 			 *       cheetah+ page size encodings.
2810 			 */
2811 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2812 					     "flush	%%g6"
2813 					     : /* No outputs */
2814 					     : "r" (0),
2815 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2816 
2817 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2818 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2819 						     "membar #Sync"
2820 						     : /* no outputs */
2821 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2822 				spitfire_put_dtlb_data(i, 0x0UL);
2823 			}
2824 
2825 			/* Spitfire Errata #32 workaround */
2826 			/* NOTE: Always runs on spitfire, so no
2827 			 *       cheetah+ page size encodings.
2828 			 */
2829 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2830 					     "flush	%%g6"
2831 					     : /* No outputs */
2832 					     : "r" (0),
2833 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2834 
2835 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2836 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2837 						     "membar #Sync"
2838 						     : /* no outputs */
2839 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2840 				spitfire_put_itlb_data(i, 0x0UL);
2841 			}
2842 		}
2843 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2844 		cheetah_flush_dtlb_all();
2845 		cheetah_flush_itlb_all();
2846 	}
2847 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2848 			     : : "r" (pstate));
2849 }
2850 
2851 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2852 			    unsigned long address)
2853 {
2854 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2855 	pte_t *pte = NULL;
2856 
2857 	if (page)
2858 		pte = (pte_t *) page_address(page);
2859 
2860 	return pte;
2861 }
2862 
2863 pgtable_t pte_alloc_one(struct mm_struct *mm,
2864 			unsigned long address)
2865 {
2866 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2867 	if (!page)
2868 		return NULL;
2869 	if (!pgtable_page_ctor(page)) {
2870 		free_hot_cold_page(page, 0);
2871 		return NULL;
2872 	}
2873 	return (pte_t *) page_address(page);
2874 }
2875 
2876 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2877 {
2878 	free_page((unsigned long)pte);
2879 }
2880 
2881 static void __pte_free(pgtable_t pte)
2882 {
2883 	struct page *page = virt_to_page(pte);
2884 
2885 	pgtable_page_dtor(page);
2886 	__free_page(page);
2887 }
2888 
2889 void pte_free(struct mm_struct *mm, pgtable_t pte)
2890 {
2891 	__pte_free(pte);
2892 }
2893 
2894 void pgtable_free(void *table, bool is_page)
2895 {
2896 	if (is_page)
2897 		__pte_free(table);
2898 	else
2899 		kmem_cache_free(pgtable_cache, table);
2900 }
2901 
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2904 			  pmd_t *pmd)
2905 {
2906 	unsigned long pte, flags;
2907 	struct mm_struct *mm;
2908 	pmd_t entry = *pmd;
2909 
2910 	if (!pmd_large(entry) || !pmd_young(entry))
2911 		return;
2912 
2913 	pte = pmd_val(entry);
2914 
2915 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2916 	if (!(pte & _PAGE_VALID))
2917 		return;
2918 
2919 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2920 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2921 
2922 	mm = vma->vm_mm;
2923 
2924 	spin_lock_irqsave(&mm->context.lock, flags);
2925 
2926 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2927 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2928 					addr, pte);
2929 
2930 	spin_unlock_irqrestore(&mm->context.lock, flags);
2931 }
2932 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2933 
2934 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2935 static void context_reload(void *__data)
2936 {
2937 	struct mm_struct *mm = __data;
2938 
2939 	if (mm == current->mm)
2940 		load_secondary_context(mm);
2941 }
2942 
2943 void hugetlb_setup(struct pt_regs *regs)
2944 {
2945 	struct mm_struct *mm = current->mm;
2946 	struct tsb_config *tp;
2947 
2948 	if (faulthandler_disabled() || !mm) {
2949 		const struct exception_table_entry *entry;
2950 
2951 		entry = search_exception_tables(regs->tpc);
2952 		if (entry) {
2953 			regs->tpc = entry->fixup;
2954 			regs->tnpc = regs->tpc + 4;
2955 			return;
2956 		}
2957 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2958 		die_if_kernel("HugeTSB in atomic", regs);
2959 	}
2960 
2961 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2962 	if (likely(tp->tsb == NULL))
2963 		tsb_grow(mm, MM_TSB_HUGE, 0);
2964 
2965 	tsb_context_switch(mm);
2966 	smp_tsb_sync(mm);
2967 
2968 	/* On UltraSPARC-III+ and later, configure the second half of
2969 	 * the Data-TLB for huge pages.
2970 	 */
2971 	if (tlb_type == cheetah_plus) {
2972 		bool need_context_reload = false;
2973 		unsigned long ctx;
2974 
2975 		spin_lock_irq(&ctx_alloc_lock);
2976 		ctx = mm->context.sparc64_ctx_val;
2977 		ctx &= ~CTX_PGSZ_MASK;
2978 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2979 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2980 
2981 		if (ctx != mm->context.sparc64_ctx_val) {
2982 			/* When changing the page size fields, we
2983 			 * must perform a context flush so that no
2984 			 * stale entries match.  This flush must
2985 			 * occur with the original context register
2986 			 * settings.
2987 			 */
2988 			do_flush_tlb_mm(mm);
2989 
2990 			/* Reload the context register of all processors
2991 			 * also executing in this address space.
2992 			 */
2993 			mm->context.sparc64_ctx_val = ctx;
2994 			need_context_reload = true;
2995 		}
2996 		spin_unlock_irq(&ctx_alloc_lock);
2997 
2998 		if (need_context_reload)
2999 			on_each_cpu(context_reload, mm, 0);
3000 	}
3001 }
3002 #endif
3003 
3004 static struct resource code_resource = {
3005 	.name	= "Kernel code",
3006 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3007 };
3008 
3009 static struct resource data_resource = {
3010 	.name	= "Kernel data",
3011 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3012 };
3013 
3014 static struct resource bss_resource = {
3015 	.name	= "Kernel bss",
3016 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3017 };
3018 
3019 static inline resource_size_t compute_kern_paddr(void *addr)
3020 {
3021 	return (resource_size_t) (addr - KERNBASE + kern_base);
3022 }
3023 
3024 static void __init kernel_lds_init(void)
3025 {
3026 	code_resource.start = compute_kern_paddr(_text);
3027 	code_resource.end   = compute_kern_paddr(_etext - 1);
3028 	data_resource.start = compute_kern_paddr(_etext);
3029 	data_resource.end   = compute_kern_paddr(_edata - 1);
3030 	bss_resource.start  = compute_kern_paddr(__bss_start);
3031 	bss_resource.end    = compute_kern_paddr(_end - 1);
3032 }
3033 
3034 static int __init report_memory(void)
3035 {
3036 	int i;
3037 	struct resource *res;
3038 
3039 	kernel_lds_init();
3040 
3041 	for (i = 0; i < pavail_ents; i++) {
3042 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3043 
3044 		if (!res) {
3045 			pr_warn("Failed to allocate source.\n");
3046 			break;
3047 		}
3048 
3049 		res->name = "System RAM";
3050 		res->start = pavail[i].phys_addr;
3051 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3052 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3053 
3054 		if (insert_resource(&iomem_resource, res) < 0) {
3055 			pr_warn("Resource insertion failed.\n");
3056 			break;
3057 		}
3058 
3059 		insert_resource(res, &code_resource);
3060 		insert_resource(res, &data_resource);
3061 		insert_resource(res, &bss_resource);
3062 	}
3063 
3064 	return 0;
3065 }
3066 arch_initcall(report_memory);
3067 
3068 #ifdef CONFIG_SMP
3069 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3070 #else
3071 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3072 #endif
3073 
3074 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3075 {
3076 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3077 		if (start < LOW_OBP_ADDRESS) {
3078 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3079 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3080 		}
3081 		if (end > HI_OBP_ADDRESS) {
3082 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3083 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3084 		}
3085 	} else {
3086 		flush_tsb_kernel_range(start, end);
3087 		do_flush_tlb_kernel_range(start, end);
3088 	}
3089 }
3090