1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/init.c 4 * 5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 #include <linux/extable.h> 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/string.h> 13 #include <linux/init.h> 14 #include <linux/memblock.h> 15 #include <linux/mm.h> 16 #include <linux/hugetlb.h> 17 #include <linux/initrd.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/poison.h> 21 #include <linux/fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kprobes.h> 24 #include <linux/cache.h> 25 #include <linux/sort.h> 26 #include <linux/ioport.h> 27 #include <linux/percpu.h> 28 #include <linux/mmzone.h> 29 #include <linux/gfp.h> 30 #include <linux/bootmem_info.h> 31 32 #include <asm/head.h> 33 #include <asm/page.h> 34 #include <asm/pgalloc.h> 35 #include <asm/oplib.h> 36 #include <asm/iommu.h> 37 #include <asm/io.h> 38 #include <linux/uaccess.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/dma.h> 42 #include <asm/starfire.h> 43 #include <asm/tlb.h> 44 #include <asm/spitfire.h> 45 #include <asm/sections.h> 46 #include <asm/tsb.h> 47 #include <asm/hypervisor.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/cpudata.h> 51 #include <asm/setup.h> 52 #include <asm/irq.h> 53 54 #include "init_64.h" 55 56 unsigned long kern_linear_pte_xor[4] __read_mostly; 57 static unsigned long page_cache4v_flag; 58 59 /* A bitmap, two bits for every 256MB of physical memory. These two 60 * bits determine what page size we use for kernel linear 61 * translations. They form an index into kern_linear_pte_xor[]. The 62 * value in the indexed slot is XOR'd with the TLB miss virtual 63 * address to form the resulting TTE. The mapping is: 64 * 65 * 0 ==> 4MB 66 * 1 ==> 256MB 67 * 2 ==> 2GB 68 * 3 ==> 16GB 69 * 70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 71 * support 2GB pages, and hopefully future cpus will support the 16GB 72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 73 * if these larger page sizes are not supported by the cpu. 74 * 75 * It would be nice to determine this from the machine description 76 * 'cpu' properties, but we need to have this table setup before the 77 * MDESC is initialized. 78 */ 79 80 #ifndef CONFIG_DEBUG_PAGEALLOC 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 82 * Space is allocated for this right after the trap table in 83 * arch/sparc64/kernel/head.S 84 */ 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 86 #endif 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 88 89 static unsigned long cpu_pgsz_mask; 90 91 #define MAX_BANKS 1024 92 93 static struct linux_prom64_registers pavail[MAX_BANKS]; 94 static int pavail_ents; 95 96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; 97 98 static int cmp_p64(const void *a, const void *b) 99 { 100 const struct linux_prom64_registers *x = a, *y = b; 101 102 if (x->phys_addr > y->phys_addr) 103 return 1; 104 if (x->phys_addr < y->phys_addr) 105 return -1; 106 return 0; 107 } 108 109 static void __init read_obp_memory(const char *property, 110 struct linux_prom64_registers *regs, 111 int *num_ents) 112 { 113 phandle node = prom_finddevice("/memory"); 114 int prop_size = prom_getproplen(node, property); 115 int ents, ret, i; 116 117 ents = prop_size / sizeof(struct linux_prom64_registers); 118 if (ents > MAX_BANKS) { 119 prom_printf("The machine has more %s property entries than " 120 "this kernel can support (%d).\n", 121 property, MAX_BANKS); 122 prom_halt(); 123 } 124 125 ret = prom_getproperty(node, property, (char *) regs, prop_size); 126 if (ret == -1) { 127 prom_printf("Couldn't get %s property from /memory.\n", 128 property); 129 prom_halt(); 130 } 131 132 /* Sanitize what we got from the firmware, by page aligning 133 * everything. 134 */ 135 for (i = 0; i < ents; i++) { 136 unsigned long base, size; 137 138 base = regs[i].phys_addr; 139 size = regs[i].reg_size; 140 141 size &= PAGE_MASK; 142 if (base & ~PAGE_MASK) { 143 unsigned long new_base = PAGE_ALIGN(base); 144 145 size -= new_base - base; 146 if ((long) size < 0L) 147 size = 0UL; 148 base = new_base; 149 } 150 if (size == 0UL) { 151 /* If it is empty, simply get rid of it. 152 * This simplifies the logic of the other 153 * functions that process these arrays. 154 */ 155 memmove(®s[i], ®s[i + 1], 156 (ents - i - 1) * sizeof(regs[0])); 157 i--; 158 ents--; 159 continue; 160 } 161 regs[i].phys_addr = base; 162 regs[i].reg_size = size; 163 } 164 165 *num_ents = ents; 166 167 sort(regs, ents, sizeof(struct linux_prom64_registers), 168 cmp_p64, NULL); 169 } 170 171 /* Kernel physical address base and size in bytes. */ 172 unsigned long kern_base __read_mostly; 173 unsigned long kern_size __read_mostly; 174 175 /* Initial ramdisk setup */ 176 extern unsigned long sparc_ramdisk_image64; 177 extern unsigned int sparc_ramdisk_image; 178 extern unsigned int sparc_ramdisk_size; 179 180 struct page *mem_map_zero __read_mostly; 181 EXPORT_SYMBOL(mem_map_zero); 182 183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 184 185 unsigned long sparc64_kern_pri_context __read_mostly; 186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 187 unsigned long sparc64_kern_sec_context __read_mostly; 188 189 int num_kernel_image_mappings; 190 191 #ifdef CONFIG_DEBUG_DCFLUSH 192 atomic_t dcpage_flushes = ATOMIC_INIT(0); 193 #ifdef CONFIG_SMP 194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 195 #endif 196 #endif 197 198 inline void flush_dcache_page_impl(struct page *page) 199 { 200 BUG_ON(tlb_type == hypervisor); 201 #ifdef CONFIG_DEBUG_DCFLUSH 202 atomic_inc(&dcpage_flushes); 203 #endif 204 205 #ifdef DCACHE_ALIASING_POSSIBLE 206 __flush_dcache_page(page_address(page), 207 ((tlb_type == spitfire) && 208 page_mapping_file(page) != NULL)); 209 #else 210 if (page_mapping_file(page) != NULL && 211 tlb_type == spitfire) 212 __flush_icache_page(__pa(page_address(page))); 213 #endif 214 } 215 216 #define PG_dcache_dirty PG_arch_1 217 #define PG_dcache_cpu_shift 32UL 218 #define PG_dcache_cpu_mask \ 219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 220 221 #define dcache_dirty_cpu(page) \ 222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 223 224 static inline void set_dcache_dirty(struct page *page, int this_cpu) 225 { 226 unsigned long mask = this_cpu; 227 unsigned long non_cpu_bits; 228 229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 231 232 __asm__ __volatile__("1:\n\t" 233 "ldx [%2], %%g7\n\t" 234 "and %%g7, %1, %%g1\n\t" 235 "or %%g1, %0, %%g1\n\t" 236 "casx [%2], %%g7, %%g1\n\t" 237 "cmp %%g7, %%g1\n\t" 238 "bne,pn %%xcc, 1b\n\t" 239 " nop" 240 : /* no outputs */ 241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 242 : "g1", "g7"); 243 } 244 245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 246 { 247 unsigned long mask = (1UL << PG_dcache_dirty); 248 249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 250 "1:\n\t" 251 "ldx [%2], %%g7\n\t" 252 "srlx %%g7, %4, %%g1\n\t" 253 "and %%g1, %3, %%g1\n\t" 254 "cmp %%g1, %0\n\t" 255 "bne,pn %%icc, 2f\n\t" 256 " andn %%g7, %1, %%g1\n\t" 257 "casx [%2], %%g7, %%g1\n\t" 258 "cmp %%g7, %%g1\n\t" 259 "bne,pn %%xcc, 1b\n\t" 260 " nop\n" 261 "2:" 262 : /* no outputs */ 263 : "r" (cpu), "r" (mask), "r" (&page->flags), 264 "i" (PG_dcache_cpu_mask), 265 "i" (PG_dcache_cpu_shift) 266 : "g1", "g7"); 267 } 268 269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 270 { 271 unsigned long tsb_addr = (unsigned long) ent; 272 273 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 274 tsb_addr = __pa(tsb_addr); 275 276 __tsb_insert(tsb_addr, tag, pte); 277 } 278 279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 280 281 static void flush_dcache(unsigned long pfn) 282 { 283 struct page *page; 284 285 page = pfn_to_page(pfn); 286 if (page) { 287 unsigned long pg_flags; 288 289 pg_flags = page->flags; 290 if (pg_flags & (1UL << PG_dcache_dirty)) { 291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 292 PG_dcache_cpu_mask); 293 int this_cpu = get_cpu(); 294 295 /* This is just to optimize away some function calls 296 * in the SMP case. 297 */ 298 if (cpu == this_cpu) 299 flush_dcache_page_impl(page); 300 else 301 smp_flush_dcache_page_impl(page, cpu); 302 303 clear_dcache_dirty_cpu(page, cpu); 304 305 put_cpu(); 306 } 307 } 308 } 309 310 /* mm->context.lock must be held */ 311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 312 unsigned long tsb_hash_shift, unsigned long address, 313 unsigned long tte) 314 { 315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 316 unsigned long tag; 317 318 if (unlikely(!tsb)) 319 return; 320 321 tsb += ((address >> tsb_hash_shift) & 322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 323 tag = (address >> 22UL); 324 tsb_insert(tsb, tag, tte); 325 } 326 327 #ifdef CONFIG_HUGETLB_PAGE 328 static int __init hugetlbpage_init(void) 329 { 330 hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT); 331 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT); 332 hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT); 333 hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT); 334 335 return 0; 336 } 337 338 arch_initcall(hugetlbpage_init); 339 340 static void __init pud_huge_patch(void) 341 { 342 struct pud_huge_patch_entry *p; 343 unsigned long addr; 344 345 p = &__pud_huge_patch; 346 addr = p->addr; 347 *(unsigned int *)addr = p->insn; 348 349 __asm__ __volatile__("flush %0" : : "r" (addr)); 350 } 351 352 bool __init arch_hugetlb_valid_size(unsigned long size) 353 { 354 unsigned int hugepage_shift = ilog2(size); 355 unsigned short hv_pgsz_idx; 356 unsigned int hv_pgsz_mask; 357 358 switch (hugepage_shift) { 359 case HPAGE_16GB_SHIFT: 360 hv_pgsz_mask = HV_PGSZ_MASK_16GB; 361 hv_pgsz_idx = HV_PGSZ_IDX_16GB; 362 pud_huge_patch(); 363 break; 364 case HPAGE_2GB_SHIFT: 365 hv_pgsz_mask = HV_PGSZ_MASK_2GB; 366 hv_pgsz_idx = HV_PGSZ_IDX_2GB; 367 break; 368 case HPAGE_256MB_SHIFT: 369 hv_pgsz_mask = HV_PGSZ_MASK_256MB; 370 hv_pgsz_idx = HV_PGSZ_IDX_256MB; 371 break; 372 case HPAGE_SHIFT: 373 hv_pgsz_mask = HV_PGSZ_MASK_4MB; 374 hv_pgsz_idx = HV_PGSZ_IDX_4MB; 375 break; 376 case HPAGE_64K_SHIFT: 377 hv_pgsz_mask = HV_PGSZ_MASK_64K; 378 hv_pgsz_idx = HV_PGSZ_IDX_64K; 379 break; 380 default: 381 hv_pgsz_mask = 0; 382 } 383 384 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) 385 return false; 386 387 return true; 388 } 389 #endif /* CONFIG_HUGETLB_PAGE */ 390 391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 392 { 393 struct mm_struct *mm; 394 unsigned long flags; 395 bool is_huge_tsb; 396 pte_t pte = *ptep; 397 398 if (tlb_type != hypervisor) { 399 unsigned long pfn = pte_pfn(pte); 400 401 if (pfn_valid(pfn)) 402 flush_dcache(pfn); 403 } 404 405 mm = vma->vm_mm; 406 407 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ 408 if (!pte_accessible(mm, pte)) 409 return; 410 411 spin_lock_irqsave(&mm->context.lock, flags); 412 413 is_huge_tsb = false; 414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 415 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) { 416 unsigned long hugepage_size = PAGE_SIZE; 417 418 if (is_vm_hugetlb_page(vma)) 419 hugepage_size = huge_page_size(hstate_vma(vma)); 420 421 if (hugepage_size >= PUD_SIZE) { 422 unsigned long mask = 0x1ffc00000UL; 423 424 /* Transfer bits [32:22] from address to resolve 425 * at 4M granularity. 426 */ 427 pte_val(pte) &= ~mask; 428 pte_val(pte) |= (address & mask); 429 } else if (hugepage_size >= PMD_SIZE) { 430 /* We are fabricating 8MB pages using 4MB 431 * real hw pages. 432 */ 433 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); 434 } 435 436 if (hugepage_size >= PMD_SIZE) { 437 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, 438 REAL_HPAGE_SHIFT, address, pte_val(pte)); 439 is_huge_tsb = true; 440 } 441 } 442 #endif 443 if (!is_huge_tsb) 444 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, 445 address, pte_val(pte)); 446 447 spin_unlock_irqrestore(&mm->context.lock, flags); 448 } 449 450 void flush_dcache_page(struct page *page) 451 { 452 struct address_space *mapping; 453 int this_cpu; 454 455 if (tlb_type == hypervisor) 456 return; 457 458 /* Do not bother with the expensive D-cache flush if it 459 * is merely the zero page. The 'bigcore' testcase in GDB 460 * causes this case to run millions of times. 461 */ 462 if (page == ZERO_PAGE(0)) 463 return; 464 465 this_cpu = get_cpu(); 466 467 mapping = page_mapping_file(page); 468 if (mapping && !mapping_mapped(mapping)) { 469 int dirty = test_bit(PG_dcache_dirty, &page->flags); 470 if (dirty) { 471 int dirty_cpu = dcache_dirty_cpu(page); 472 473 if (dirty_cpu == this_cpu) 474 goto out; 475 smp_flush_dcache_page_impl(page, dirty_cpu); 476 } 477 set_dcache_dirty(page, this_cpu); 478 } else { 479 /* We could delay the flush for the !page_mapping 480 * case too. But that case is for exec env/arg 481 * pages and those are %99 certainly going to get 482 * faulted into the tlb (and thus flushed) anyways. 483 */ 484 flush_dcache_page_impl(page); 485 } 486 487 out: 488 put_cpu(); 489 } 490 EXPORT_SYMBOL(flush_dcache_page); 491 492 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 493 { 494 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 495 if (tlb_type == spitfire) { 496 unsigned long kaddr; 497 498 /* This code only runs on Spitfire cpus so this is 499 * why we can assume _PAGE_PADDR_4U. 500 */ 501 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 502 unsigned long paddr, mask = _PAGE_PADDR_4U; 503 504 if (kaddr >= PAGE_OFFSET) 505 paddr = kaddr & mask; 506 else { 507 pte_t *ptep = virt_to_kpte(kaddr); 508 509 paddr = pte_val(*ptep) & mask; 510 } 511 __flush_icache_page(paddr); 512 } 513 } 514 } 515 EXPORT_SYMBOL(flush_icache_range); 516 517 void mmu_info(struct seq_file *m) 518 { 519 static const char *pgsz_strings[] = { 520 "8K", "64K", "512K", "4MB", "32MB", 521 "256MB", "2GB", "16GB", 522 }; 523 int i, printed; 524 525 if (tlb_type == cheetah) 526 seq_printf(m, "MMU Type\t: Cheetah\n"); 527 else if (tlb_type == cheetah_plus) 528 seq_printf(m, "MMU Type\t: Cheetah+\n"); 529 else if (tlb_type == spitfire) 530 seq_printf(m, "MMU Type\t: Spitfire\n"); 531 else if (tlb_type == hypervisor) 532 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 533 else 534 seq_printf(m, "MMU Type\t: ???\n"); 535 536 seq_printf(m, "MMU PGSZs\t: "); 537 printed = 0; 538 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 539 if (cpu_pgsz_mask & (1UL << i)) { 540 seq_printf(m, "%s%s", 541 printed ? "," : "", pgsz_strings[i]); 542 printed++; 543 } 544 } 545 seq_putc(m, '\n'); 546 547 #ifdef CONFIG_DEBUG_DCFLUSH 548 seq_printf(m, "DCPageFlushes\t: %d\n", 549 atomic_read(&dcpage_flushes)); 550 #ifdef CONFIG_SMP 551 seq_printf(m, "DCPageFlushesXC\t: %d\n", 552 atomic_read(&dcpage_flushes_xcall)); 553 #endif /* CONFIG_SMP */ 554 #endif /* CONFIG_DEBUG_DCFLUSH */ 555 } 556 557 struct linux_prom_translation prom_trans[512] __read_mostly; 558 unsigned int prom_trans_ents __read_mostly; 559 560 unsigned long kern_locked_tte_data; 561 562 /* The obp translations are saved based on 8k pagesize, since obp can 563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 564 * HI_OBP_ADDRESS range are handled in ktlb.S. 565 */ 566 static inline int in_obp_range(unsigned long vaddr) 567 { 568 return (vaddr >= LOW_OBP_ADDRESS && 569 vaddr < HI_OBP_ADDRESS); 570 } 571 572 static int cmp_ptrans(const void *a, const void *b) 573 { 574 const struct linux_prom_translation *x = a, *y = b; 575 576 if (x->virt > y->virt) 577 return 1; 578 if (x->virt < y->virt) 579 return -1; 580 return 0; 581 } 582 583 /* Read OBP translations property into 'prom_trans[]'. */ 584 static void __init read_obp_translations(void) 585 { 586 int n, node, ents, first, last, i; 587 588 node = prom_finddevice("/virtual-memory"); 589 n = prom_getproplen(node, "translations"); 590 if (unlikely(n == 0 || n == -1)) { 591 prom_printf("prom_mappings: Couldn't get size.\n"); 592 prom_halt(); 593 } 594 if (unlikely(n > sizeof(prom_trans))) { 595 prom_printf("prom_mappings: Size %d is too big.\n", n); 596 prom_halt(); 597 } 598 599 if ((n = prom_getproperty(node, "translations", 600 (char *)&prom_trans[0], 601 sizeof(prom_trans))) == -1) { 602 prom_printf("prom_mappings: Couldn't get property.\n"); 603 prom_halt(); 604 } 605 606 n = n / sizeof(struct linux_prom_translation); 607 608 ents = n; 609 610 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 611 cmp_ptrans, NULL); 612 613 /* Now kick out all the non-OBP entries. */ 614 for (i = 0; i < ents; i++) { 615 if (in_obp_range(prom_trans[i].virt)) 616 break; 617 } 618 first = i; 619 for (; i < ents; i++) { 620 if (!in_obp_range(prom_trans[i].virt)) 621 break; 622 } 623 last = i; 624 625 for (i = 0; i < (last - first); i++) { 626 struct linux_prom_translation *src = &prom_trans[i + first]; 627 struct linux_prom_translation *dest = &prom_trans[i]; 628 629 *dest = *src; 630 } 631 for (; i < ents; i++) { 632 struct linux_prom_translation *dest = &prom_trans[i]; 633 dest->virt = dest->size = dest->data = 0x0UL; 634 } 635 636 prom_trans_ents = last - first; 637 638 if (tlb_type == spitfire) { 639 /* Clear diag TTE bits. */ 640 for (i = 0; i < prom_trans_ents; i++) 641 prom_trans[i].data &= ~0x0003fe0000000000UL; 642 } 643 644 /* Force execute bit on. */ 645 for (i = 0; i < prom_trans_ents; i++) 646 prom_trans[i].data |= (tlb_type == hypervisor ? 647 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 648 } 649 650 static void __init hypervisor_tlb_lock(unsigned long vaddr, 651 unsigned long pte, 652 unsigned long mmu) 653 { 654 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 655 656 if (ret != 0) { 657 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 658 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 659 prom_halt(); 660 } 661 } 662 663 static unsigned long kern_large_tte(unsigned long paddr); 664 665 static void __init remap_kernel(void) 666 { 667 unsigned long phys_page, tte_vaddr, tte_data; 668 int i, tlb_ent = sparc64_highest_locked_tlbent(); 669 670 tte_vaddr = (unsigned long) KERNBASE; 671 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 672 tte_data = kern_large_tte(phys_page); 673 674 kern_locked_tte_data = tte_data; 675 676 /* Now lock us into the TLBs via Hypervisor or OBP. */ 677 if (tlb_type == hypervisor) { 678 for (i = 0; i < num_kernel_image_mappings; i++) { 679 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 680 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 681 tte_vaddr += 0x400000; 682 tte_data += 0x400000; 683 } 684 } else { 685 for (i = 0; i < num_kernel_image_mappings; i++) { 686 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 687 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 688 tte_vaddr += 0x400000; 689 tte_data += 0x400000; 690 } 691 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 692 } 693 if (tlb_type == cheetah_plus) { 694 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 695 CTX_CHEETAH_PLUS_NUC); 696 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 697 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 698 } 699 } 700 701 702 static void __init inherit_prom_mappings(void) 703 { 704 /* Now fixup OBP's idea about where we really are mapped. */ 705 printk("Remapping the kernel... "); 706 remap_kernel(); 707 printk("done.\n"); 708 } 709 710 void prom_world(int enter) 711 { 712 /* 713 * No need to change the address space any more, just flush 714 * the register windows 715 */ 716 __asm__ __volatile__("flushw"); 717 } 718 719 void __flush_dcache_range(unsigned long start, unsigned long end) 720 { 721 unsigned long va; 722 723 if (tlb_type == spitfire) { 724 int n = 0; 725 726 for (va = start; va < end; va += 32) { 727 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 728 if (++n >= 512) 729 break; 730 } 731 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 732 start = __pa(start); 733 end = __pa(end); 734 for (va = start; va < end; va += 32) 735 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 736 "membar #Sync" 737 : /* no outputs */ 738 : "r" (va), 739 "i" (ASI_DCACHE_INVALIDATE)); 740 } 741 } 742 EXPORT_SYMBOL(__flush_dcache_range); 743 744 /* get_new_mmu_context() uses "cache + 1". */ 745 DEFINE_SPINLOCK(ctx_alloc_lock); 746 unsigned long tlb_context_cache = CTX_FIRST_VERSION; 747 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 748 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 749 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 750 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0}; 751 752 static void mmu_context_wrap(void) 753 { 754 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK; 755 unsigned long new_ver, new_ctx, old_ctx; 756 struct mm_struct *mm; 757 int cpu; 758 759 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS); 760 761 /* Reserve kernel context */ 762 set_bit(0, mmu_context_bmap); 763 764 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; 765 if (unlikely(new_ver == 0)) 766 new_ver = CTX_FIRST_VERSION; 767 tlb_context_cache = new_ver; 768 769 /* 770 * Make sure that any new mm that are added into per_cpu_secondary_mm, 771 * are going to go through get_new_mmu_context() path. 772 */ 773 mb(); 774 775 /* 776 * Updated versions to current on those CPUs that had valid secondary 777 * contexts 778 */ 779 for_each_online_cpu(cpu) { 780 /* 781 * If a new mm is stored after we took this mm from the array, 782 * it will go into get_new_mmu_context() path, because we 783 * already bumped the version in tlb_context_cache. 784 */ 785 mm = per_cpu(per_cpu_secondary_mm, cpu); 786 787 if (unlikely(!mm || mm == &init_mm)) 788 continue; 789 790 old_ctx = mm->context.sparc64_ctx_val; 791 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) { 792 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver; 793 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap); 794 mm->context.sparc64_ctx_val = new_ctx; 795 } 796 } 797 } 798 799 /* Caller does TLB context flushing on local CPU if necessary. 800 * The caller also ensures that CTX_VALID(mm->context) is false. 801 * 802 * We must be careful about boundary cases so that we never 803 * let the user have CTX 0 (nucleus) or we ever use a CTX 804 * version of zero (and thus NO_CONTEXT would not be caught 805 * by version mis-match tests in mmu_context.h). 806 * 807 * Always invoked with interrupts disabled. 808 */ 809 void get_new_mmu_context(struct mm_struct *mm) 810 { 811 unsigned long ctx, new_ctx; 812 unsigned long orig_pgsz_bits; 813 814 spin_lock(&ctx_alloc_lock); 815 retry: 816 /* wrap might have happened, test again if our context became valid */ 817 if (unlikely(CTX_VALID(mm->context))) 818 goto out; 819 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 820 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 821 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 822 if (new_ctx >= (1 << CTX_NR_BITS)) { 823 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 824 if (new_ctx >= ctx) { 825 mmu_context_wrap(); 826 goto retry; 827 } 828 } 829 if (mm->context.sparc64_ctx_val) 830 cpumask_clear(mm_cpumask(mm)); 831 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 832 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 833 tlb_context_cache = new_ctx; 834 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 835 out: 836 spin_unlock(&ctx_alloc_lock); 837 } 838 839 static int numa_enabled = 1; 840 static int numa_debug; 841 842 static int __init early_numa(char *p) 843 { 844 if (!p) 845 return 0; 846 847 if (strstr(p, "off")) 848 numa_enabled = 0; 849 850 if (strstr(p, "debug")) 851 numa_debug = 1; 852 853 return 0; 854 } 855 early_param("numa", early_numa); 856 857 #define numadbg(f, a...) \ 858 do { if (numa_debug) \ 859 printk(KERN_INFO f, ## a); \ 860 } while (0) 861 862 static void __init find_ramdisk(unsigned long phys_base) 863 { 864 #ifdef CONFIG_BLK_DEV_INITRD 865 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 866 unsigned long ramdisk_image; 867 868 /* Older versions of the bootloader only supported a 869 * 32-bit physical address for the ramdisk image 870 * location, stored at sparc_ramdisk_image. Newer 871 * SILO versions set sparc_ramdisk_image to zero and 872 * provide a full 64-bit physical address at 873 * sparc_ramdisk_image64. 874 */ 875 ramdisk_image = sparc_ramdisk_image; 876 if (!ramdisk_image) 877 ramdisk_image = sparc_ramdisk_image64; 878 879 /* Another bootloader quirk. The bootloader normalizes 880 * the physical address to KERNBASE, so we have to 881 * factor that back out and add in the lowest valid 882 * physical page address to get the true physical address. 883 */ 884 ramdisk_image -= KERNBASE; 885 ramdisk_image += phys_base; 886 887 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 888 ramdisk_image, sparc_ramdisk_size); 889 890 initrd_start = ramdisk_image; 891 initrd_end = ramdisk_image + sparc_ramdisk_size; 892 893 memblock_reserve(initrd_start, sparc_ramdisk_size); 894 895 initrd_start += PAGE_OFFSET; 896 initrd_end += PAGE_OFFSET; 897 } 898 #endif 899 } 900 901 struct node_mem_mask { 902 unsigned long mask; 903 unsigned long match; 904 }; 905 static struct node_mem_mask node_masks[MAX_NUMNODES]; 906 static int num_node_masks; 907 908 #ifdef CONFIG_NUMA 909 910 struct mdesc_mlgroup { 911 u64 node; 912 u64 latency; 913 u64 match; 914 u64 mask; 915 }; 916 917 static struct mdesc_mlgroup *mlgroups; 918 static int num_mlgroups; 919 920 int numa_cpu_lookup_table[NR_CPUS]; 921 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 922 923 struct mdesc_mblock { 924 u64 base; 925 u64 size; 926 u64 offset; /* RA-to-PA */ 927 }; 928 static struct mdesc_mblock *mblocks; 929 static int num_mblocks; 930 931 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr) 932 { 933 struct mdesc_mblock *m = NULL; 934 int i; 935 936 for (i = 0; i < num_mblocks; i++) { 937 m = &mblocks[i]; 938 939 if (addr >= m->base && 940 addr < (m->base + m->size)) { 941 break; 942 } 943 } 944 945 return m; 946 } 947 948 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid) 949 { 950 int prev_nid, new_nid; 951 952 prev_nid = NUMA_NO_NODE; 953 for ( ; start < end; start += PAGE_SIZE) { 954 for (new_nid = 0; new_nid < num_node_masks; new_nid++) { 955 struct node_mem_mask *p = &node_masks[new_nid]; 956 957 if ((start & p->mask) == p->match) { 958 if (prev_nid == NUMA_NO_NODE) 959 prev_nid = new_nid; 960 break; 961 } 962 } 963 964 if (new_nid == num_node_masks) { 965 prev_nid = 0; 966 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.", 967 start); 968 break; 969 } 970 971 if (prev_nid != new_nid) 972 break; 973 } 974 *nid = prev_nid; 975 976 return start > end ? end : start; 977 } 978 979 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) 980 { 981 u64 ret_end, pa_start, m_mask, m_match, m_end; 982 struct mdesc_mblock *mblock; 983 int _nid, i; 984 985 if (tlb_type != hypervisor) 986 return memblock_nid_range_sun4u(start, end, nid); 987 988 mblock = addr_to_mblock(start); 989 if (!mblock) { 990 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]", 991 start); 992 993 _nid = 0; 994 ret_end = end; 995 goto done; 996 } 997 998 pa_start = start + mblock->offset; 999 m_match = 0; 1000 m_mask = 0; 1001 1002 for (_nid = 0; _nid < num_node_masks; _nid++) { 1003 struct node_mem_mask *const m = &node_masks[_nid]; 1004 1005 if ((pa_start & m->mask) == m->match) { 1006 m_match = m->match; 1007 m_mask = m->mask; 1008 break; 1009 } 1010 } 1011 1012 if (num_node_masks == _nid) { 1013 /* We could not find NUMA group, so default to 0, but lets 1014 * search for latency group, so we could calculate the correct 1015 * end address that we return 1016 */ 1017 _nid = 0; 1018 1019 for (i = 0; i < num_mlgroups; i++) { 1020 struct mdesc_mlgroup *const m = &mlgroups[i]; 1021 1022 if ((pa_start & m->mask) == m->match) { 1023 m_match = m->match; 1024 m_mask = m->mask; 1025 break; 1026 } 1027 } 1028 1029 if (i == num_mlgroups) { 1030 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]", 1031 start); 1032 1033 ret_end = end; 1034 goto done; 1035 } 1036 } 1037 1038 /* 1039 * Each latency group has match and mask, and each memory block has an 1040 * offset. An address belongs to a latency group if its address matches 1041 * the following formula: ((addr + offset) & mask) == match 1042 * It is, however, slow to check every single page if it matches a 1043 * particular latency group. As optimization we calculate end value by 1044 * using bit arithmetics. 1045 */ 1046 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset; 1047 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1); 1048 ret_end = m_end > end ? end : m_end; 1049 1050 done: 1051 *nid = _nid; 1052 return ret_end; 1053 } 1054 #endif 1055 1056 /* This must be invoked after performing all of the necessary 1057 * memblock_set_node() calls for 'nid'. We need to be able to get 1058 * correct data from get_pfn_range_for_nid(). 1059 */ 1060 static void __init allocate_node_data(int nid) 1061 { 1062 struct pglist_data *p; 1063 unsigned long start_pfn, end_pfn; 1064 #ifdef CONFIG_NUMA 1065 1066 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data), 1067 SMP_CACHE_BYTES, nid); 1068 if (!NODE_DATA(nid)) { 1069 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 1070 prom_halt(); 1071 } 1072 1073 NODE_DATA(nid)->node_id = nid; 1074 #endif 1075 1076 p = NODE_DATA(nid); 1077 1078 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1079 p->node_start_pfn = start_pfn; 1080 p->node_spanned_pages = end_pfn - start_pfn; 1081 } 1082 1083 static void init_node_masks_nonnuma(void) 1084 { 1085 #ifdef CONFIG_NUMA 1086 int i; 1087 #endif 1088 1089 numadbg("Initializing tables for non-numa.\n"); 1090 1091 node_masks[0].mask = 0; 1092 node_masks[0].match = 0; 1093 num_node_masks = 1; 1094 1095 #ifdef CONFIG_NUMA 1096 for (i = 0; i < NR_CPUS; i++) 1097 numa_cpu_lookup_table[i] = 0; 1098 1099 cpumask_setall(&numa_cpumask_lookup_table[0]); 1100 #endif 1101 } 1102 1103 #ifdef CONFIG_NUMA 1104 struct pglist_data *node_data[MAX_NUMNODES]; 1105 1106 EXPORT_SYMBOL(numa_cpu_lookup_table); 1107 EXPORT_SYMBOL(numa_cpumask_lookup_table); 1108 EXPORT_SYMBOL(node_data); 1109 1110 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 1111 u32 cfg_handle) 1112 { 1113 u64 arc; 1114 1115 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 1116 u64 target = mdesc_arc_target(md, arc); 1117 const u64 *val; 1118 1119 val = mdesc_get_property(md, target, 1120 "cfg-handle", NULL); 1121 if (val && *val == cfg_handle) 1122 return 0; 1123 } 1124 return -ENODEV; 1125 } 1126 1127 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 1128 u32 cfg_handle) 1129 { 1130 u64 arc, candidate, best_latency = ~(u64)0; 1131 1132 candidate = MDESC_NODE_NULL; 1133 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1134 u64 target = mdesc_arc_target(md, arc); 1135 const char *name = mdesc_node_name(md, target); 1136 const u64 *val; 1137 1138 if (strcmp(name, "pio-latency-group")) 1139 continue; 1140 1141 val = mdesc_get_property(md, target, "latency", NULL); 1142 if (!val) 1143 continue; 1144 1145 if (*val < best_latency) { 1146 candidate = target; 1147 best_latency = *val; 1148 } 1149 } 1150 1151 if (candidate == MDESC_NODE_NULL) 1152 return -ENODEV; 1153 1154 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 1155 } 1156 1157 int of_node_to_nid(struct device_node *dp) 1158 { 1159 const struct linux_prom64_registers *regs; 1160 struct mdesc_handle *md; 1161 u32 cfg_handle; 1162 int count, nid; 1163 u64 grp; 1164 1165 /* This is the right thing to do on currently supported 1166 * SUN4U NUMA platforms as well, as the PCI controller does 1167 * not sit behind any particular memory controller. 1168 */ 1169 if (!mlgroups) 1170 return -1; 1171 1172 regs = of_get_property(dp, "reg", NULL); 1173 if (!regs) 1174 return -1; 1175 1176 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 1177 1178 md = mdesc_grab(); 1179 1180 count = 0; 1181 nid = NUMA_NO_NODE; 1182 mdesc_for_each_node_by_name(md, grp, "group") { 1183 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 1184 nid = count; 1185 break; 1186 } 1187 count++; 1188 } 1189 1190 mdesc_release(md); 1191 1192 return nid; 1193 } 1194 1195 static void __init add_node_ranges(void) 1196 { 1197 phys_addr_t start, end; 1198 unsigned long prev_max; 1199 u64 i; 1200 1201 memblock_resized: 1202 prev_max = memblock.memory.max; 1203 1204 for_each_mem_range(i, &start, &end) { 1205 while (start < end) { 1206 unsigned long this_end; 1207 int nid; 1208 1209 this_end = memblock_nid_range(start, end, &nid); 1210 1211 numadbg("Setting memblock NUMA node nid[%d] " 1212 "start[%llx] end[%lx]\n", 1213 nid, start, this_end); 1214 1215 memblock_set_node(start, this_end - start, 1216 &memblock.memory, nid); 1217 if (memblock.memory.max != prev_max) 1218 goto memblock_resized; 1219 start = this_end; 1220 } 1221 } 1222 } 1223 1224 static int __init grab_mlgroups(struct mdesc_handle *md) 1225 { 1226 unsigned long paddr; 1227 int count = 0; 1228 u64 node; 1229 1230 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1231 count++; 1232 if (!count) 1233 return -ENOENT; 1234 1235 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup), 1236 SMP_CACHE_BYTES); 1237 if (!paddr) 1238 return -ENOMEM; 1239 1240 mlgroups = __va(paddr); 1241 num_mlgroups = count; 1242 1243 count = 0; 1244 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1245 struct mdesc_mlgroup *m = &mlgroups[count++]; 1246 const u64 *val; 1247 1248 m->node = node; 1249 1250 val = mdesc_get_property(md, node, "latency", NULL); 1251 m->latency = *val; 1252 val = mdesc_get_property(md, node, "address-match", NULL); 1253 m->match = *val; 1254 val = mdesc_get_property(md, node, "address-mask", NULL); 1255 m->mask = *val; 1256 1257 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1258 "match[%llx] mask[%llx]\n", 1259 count - 1, m->node, m->latency, m->match, m->mask); 1260 } 1261 1262 return 0; 1263 } 1264 1265 static int __init grab_mblocks(struct mdesc_handle *md) 1266 { 1267 unsigned long paddr; 1268 int count = 0; 1269 u64 node; 1270 1271 mdesc_for_each_node_by_name(md, node, "mblock") 1272 count++; 1273 if (!count) 1274 return -ENOENT; 1275 1276 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock), 1277 SMP_CACHE_BYTES); 1278 if (!paddr) 1279 return -ENOMEM; 1280 1281 mblocks = __va(paddr); 1282 num_mblocks = count; 1283 1284 count = 0; 1285 mdesc_for_each_node_by_name(md, node, "mblock") { 1286 struct mdesc_mblock *m = &mblocks[count++]; 1287 const u64 *val; 1288 1289 val = mdesc_get_property(md, node, "base", NULL); 1290 m->base = *val; 1291 val = mdesc_get_property(md, node, "size", NULL); 1292 m->size = *val; 1293 val = mdesc_get_property(md, node, 1294 "address-congruence-offset", NULL); 1295 1296 /* The address-congruence-offset property is optional. 1297 * Explicity zero it be identifty this. 1298 */ 1299 if (val) 1300 m->offset = *val; 1301 else 1302 m->offset = 0UL; 1303 1304 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1305 count - 1, m->base, m->size, m->offset); 1306 } 1307 1308 return 0; 1309 } 1310 1311 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1312 u64 grp, cpumask_t *mask) 1313 { 1314 u64 arc; 1315 1316 cpumask_clear(mask); 1317 1318 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1319 u64 target = mdesc_arc_target(md, arc); 1320 const char *name = mdesc_node_name(md, target); 1321 const u64 *id; 1322 1323 if (strcmp(name, "cpu")) 1324 continue; 1325 id = mdesc_get_property(md, target, "id", NULL); 1326 if (*id < nr_cpu_ids) 1327 cpumask_set_cpu(*id, mask); 1328 } 1329 } 1330 1331 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1332 { 1333 int i; 1334 1335 for (i = 0; i < num_mlgroups; i++) { 1336 struct mdesc_mlgroup *m = &mlgroups[i]; 1337 if (m->node == node) 1338 return m; 1339 } 1340 return NULL; 1341 } 1342 1343 int __node_distance(int from, int to) 1344 { 1345 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { 1346 pr_warn("Returning default NUMA distance value for %d->%d\n", 1347 from, to); 1348 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; 1349 } 1350 return numa_latency[from][to]; 1351 } 1352 EXPORT_SYMBOL(__node_distance); 1353 1354 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) 1355 { 1356 int i; 1357 1358 for (i = 0; i < MAX_NUMNODES; i++) { 1359 struct node_mem_mask *n = &node_masks[i]; 1360 1361 if ((grp->mask == n->mask) && (grp->match == n->match)) 1362 break; 1363 } 1364 return i; 1365 } 1366 1367 static void __init find_numa_latencies_for_group(struct mdesc_handle *md, 1368 u64 grp, int index) 1369 { 1370 u64 arc; 1371 1372 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1373 int tnode; 1374 u64 target = mdesc_arc_target(md, arc); 1375 struct mdesc_mlgroup *m = find_mlgroup(target); 1376 1377 if (!m) 1378 continue; 1379 tnode = find_best_numa_node_for_mlgroup(m); 1380 if (tnode == MAX_NUMNODES) 1381 continue; 1382 numa_latency[index][tnode] = m->latency; 1383 } 1384 } 1385 1386 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1387 int index) 1388 { 1389 struct mdesc_mlgroup *candidate = NULL; 1390 u64 arc, best_latency = ~(u64)0; 1391 struct node_mem_mask *n; 1392 1393 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1394 u64 target = mdesc_arc_target(md, arc); 1395 struct mdesc_mlgroup *m = find_mlgroup(target); 1396 if (!m) 1397 continue; 1398 if (m->latency < best_latency) { 1399 candidate = m; 1400 best_latency = m->latency; 1401 } 1402 } 1403 if (!candidate) 1404 return -ENOENT; 1405 1406 if (num_node_masks != index) { 1407 printk(KERN_ERR "Inconsistent NUMA state, " 1408 "index[%d] != num_node_masks[%d]\n", 1409 index, num_node_masks); 1410 return -EINVAL; 1411 } 1412 1413 n = &node_masks[num_node_masks++]; 1414 1415 n->mask = candidate->mask; 1416 n->match = candidate->match; 1417 1418 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n", 1419 index, n->mask, n->match, candidate->latency); 1420 1421 return 0; 1422 } 1423 1424 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1425 int index) 1426 { 1427 cpumask_t mask; 1428 int cpu; 1429 1430 numa_parse_mdesc_group_cpus(md, grp, &mask); 1431 1432 for_each_cpu(cpu, &mask) 1433 numa_cpu_lookup_table[cpu] = index; 1434 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1435 1436 if (numa_debug) { 1437 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1438 for_each_cpu(cpu, &mask) 1439 printk("%d ", cpu); 1440 printk("]\n"); 1441 } 1442 1443 return numa_attach_mlgroup(md, grp, index); 1444 } 1445 1446 static int __init numa_parse_mdesc(void) 1447 { 1448 struct mdesc_handle *md = mdesc_grab(); 1449 int i, j, err, count; 1450 u64 node; 1451 1452 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1453 if (node == MDESC_NODE_NULL) { 1454 mdesc_release(md); 1455 return -ENOENT; 1456 } 1457 1458 err = grab_mblocks(md); 1459 if (err < 0) 1460 goto out; 1461 1462 err = grab_mlgroups(md); 1463 if (err < 0) 1464 goto out; 1465 1466 count = 0; 1467 mdesc_for_each_node_by_name(md, node, "group") { 1468 err = numa_parse_mdesc_group(md, node, count); 1469 if (err < 0) 1470 break; 1471 count++; 1472 } 1473 1474 count = 0; 1475 mdesc_for_each_node_by_name(md, node, "group") { 1476 find_numa_latencies_for_group(md, node, count); 1477 count++; 1478 } 1479 1480 /* Normalize numa latency matrix according to ACPI SLIT spec. */ 1481 for (i = 0; i < MAX_NUMNODES; i++) { 1482 u64 self_latency = numa_latency[i][i]; 1483 1484 for (j = 0; j < MAX_NUMNODES; j++) { 1485 numa_latency[i][j] = 1486 (numa_latency[i][j] * LOCAL_DISTANCE) / 1487 self_latency; 1488 } 1489 } 1490 1491 add_node_ranges(); 1492 1493 for (i = 0; i < num_node_masks; i++) { 1494 allocate_node_data(i); 1495 node_set_online(i); 1496 } 1497 1498 err = 0; 1499 out: 1500 mdesc_release(md); 1501 return err; 1502 } 1503 1504 static int __init numa_parse_jbus(void) 1505 { 1506 unsigned long cpu, index; 1507 1508 /* NUMA node id is encoded in bits 36 and higher, and there is 1509 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1510 */ 1511 index = 0; 1512 for_each_present_cpu(cpu) { 1513 numa_cpu_lookup_table[cpu] = index; 1514 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1515 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1516 node_masks[index].match = cpu << 36UL; 1517 1518 index++; 1519 } 1520 num_node_masks = index; 1521 1522 add_node_ranges(); 1523 1524 for (index = 0; index < num_node_masks; index++) { 1525 allocate_node_data(index); 1526 node_set_online(index); 1527 } 1528 1529 return 0; 1530 } 1531 1532 static int __init numa_parse_sun4u(void) 1533 { 1534 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1535 unsigned long ver; 1536 1537 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1538 if ((ver >> 32UL) == __JALAPENO_ID || 1539 (ver >> 32UL) == __SERRANO_ID) 1540 return numa_parse_jbus(); 1541 } 1542 return -1; 1543 } 1544 1545 static int __init bootmem_init_numa(void) 1546 { 1547 int i, j; 1548 int err = -1; 1549 1550 numadbg("bootmem_init_numa()\n"); 1551 1552 /* Some sane defaults for numa latency values */ 1553 for (i = 0; i < MAX_NUMNODES; i++) { 1554 for (j = 0; j < MAX_NUMNODES; j++) 1555 numa_latency[i][j] = (i == j) ? 1556 LOCAL_DISTANCE : REMOTE_DISTANCE; 1557 } 1558 1559 if (numa_enabled) { 1560 if (tlb_type == hypervisor) 1561 err = numa_parse_mdesc(); 1562 else 1563 err = numa_parse_sun4u(); 1564 } 1565 return err; 1566 } 1567 1568 #else 1569 1570 static int bootmem_init_numa(void) 1571 { 1572 return -1; 1573 } 1574 1575 #endif 1576 1577 static void __init bootmem_init_nonnuma(void) 1578 { 1579 unsigned long top_of_ram = memblock_end_of_DRAM(); 1580 unsigned long total_ram = memblock_phys_mem_size(); 1581 1582 numadbg("bootmem_init_nonnuma()\n"); 1583 1584 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1585 top_of_ram, total_ram); 1586 printk(KERN_INFO "Memory hole size: %ldMB\n", 1587 (top_of_ram - total_ram) >> 20); 1588 1589 init_node_masks_nonnuma(); 1590 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 1591 allocate_node_data(0); 1592 node_set_online(0); 1593 } 1594 1595 static unsigned long __init bootmem_init(unsigned long phys_base) 1596 { 1597 unsigned long end_pfn; 1598 1599 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1600 max_pfn = max_low_pfn = end_pfn; 1601 min_low_pfn = (phys_base >> PAGE_SHIFT); 1602 1603 if (bootmem_init_numa() < 0) 1604 bootmem_init_nonnuma(); 1605 1606 /* Dump memblock with node info. */ 1607 memblock_dump_all(); 1608 1609 /* XXX cpu notifier XXX */ 1610 1611 sparse_init(); 1612 1613 return end_pfn; 1614 } 1615 1616 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1617 static int pall_ents __initdata; 1618 1619 static unsigned long max_phys_bits = 40; 1620 1621 bool kern_addr_valid(unsigned long addr) 1622 { 1623 pgd_t *pgd; 1624 p4d_t *p4d; 1625 pud_t *pud; 1626 pmd_t *pmd; 1627 pte_t *pte; 1628 1629 if ((long)addr < 0L) { 1630 unsigned long pa = __pa(addr); 1631 1632 if ((pa >> max_phys_bits) != 0UL) 1633 return false; 1634 1635 return pfn_valid(pa >> PAGE_SHIFT); 1636 } 1637 1638 if (addr >= (unsigned long) KERNBASE && 1639 addr < (unsigned long)&_end) 1640 return true; 1641 1642 pgd = pgd_offset_k(addr); 1643 if (pgd_none(*pgd)) 1644 return false; 1645 1646 p4d = p4d_offset(pgd, addr); 1647 if (p4d_none(*p4d)) 1648 return false; 1649 1650 pud = pud_offset(p4d, addr); 1651 if (pud_none(*pud)) 1652 return false; 1653 1654 if (pud_large(*pud)) 1655 return pfn_valid(pud_pfn(*pud)); 1656 1657 pmd = pmd_offset(pud, addr); 1658 if (pmd_none(*pmd)) 1659 return false; 1660 1661 if (pmd_large(*pmd)) 1662 return pfn_valid(pmd_pfn(*pmd)); 1663 1664 pte = pte_offset_kernel(pmd, addr); 1665 if (pte_none(*pte)) 1666 return false; 1667 1668 return pfn_valid(pte_pfn(*pte)); 1669 } 1670 EXPORT_SYMBOL(kern_addr_valid); 1671 1672 static unsigned long __ref kernel_map_hugepud(unsigned long vstart, 1673 unsigned long vend, 1674 pud_t *pud) 1675 { 1676 const unsigned long mask16gb = (1UL << 34) - 1UL; 1677 u64 pte_val = vstart; 1678 1679 /* Each PUD is 8GB */ 1680 if ((vstart & mask16gb) || 1681 (vend - vstart <= mask16gb)) { 1682 pte_val ^= kern_linear_pte_xor[2]; 1683 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; 1684 1685 return vstart + PUD_SIZE; 1686 } 1687 1688 pte_val ^= kern_linear_pte_xor[3]; 1689 pte_val |= _PAGE_PUD_HUGE; 1690 1691 vend = vstart + mask16gb + 1UL; 1692 while (vstart < vend) { 1693 pud_val(*pud) = pte_val; 1694 1695 pte_val += PUD_SIZE; 1696 vstart += PUD_SIZE; 1697 pud++; 1698 } 1699 return vstart; 1700 } 1701 1702 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, 1703 bool guard) 1704 { 1705 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) 1706 return true; 1707 1708 return false; 1709 } 1710 1711 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, 1712 unsigned long vend, 1713 pmd_t *pmd) 1714 { 1715 const unsigned long mask256mb = (1UL << 28) - 1UL; 1716 const unsigned long mask2gb = (1UL << 31) - 1UL; 1717 u64 pte_val = vstart; 1718 1719 /* Each PMD is 8MB */ 1720 if ((vstart & mask256mb) || 1721 (vend - vstart <= mask256mb)) { 1722 pte_val ^= kern_linear_pte_xor[0]; 1723 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; 1724 1725 return vstart + PMD_SIZE; 1726 } 1727 1728 if ((vstart & mask2gb) || 1729 (vend - vstart <= mask2gb)) { 1730 pte_val ^= kern_linear_pte_xor[1]; 1731 pte_val |= _PAGE_PMD_HUGE; 1732 vend = vstart + mask256mb + 1UL; 1733 } else { 1734 pte_val ^= kern_linear_pte_xor[2]; 1735 pte_val |= _PAGE_PMD_HUGE; 1736 vend = vstart + mask2gb + 1UL; 1737 } 1738 1739 while (vstart < vend) { 1740 pmd_val(*pmd) = pte_val; 1741 1742 pte_val += PMD_SIZE; 1743 vstart += PMD_SIZE; 1744 pmd++; 1745 } 1746 1747 return vstart; 1748 } 1749 1750 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, 1751 bool guard) 1752 { 1753 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) 1754 return true; 1755 1756 return false; 1757 } 1758 1759 static unsigned long __ref kernel_map_range(unsigned long pstart, 1760 unsigned long pend, pgprot_t prot, 1761 bool use_huge) 1762 { 1763 unsigned long vstart = PAGE_OFFSET + pstart; 1764 unsigned long vend = PAGE_OFFSET + pend; 1765 unsigned long alloc_bytes = 0UL; 1766 1767 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1768 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1769 vstart, vend); 1770 prom_halt(); 1771 } 1772 1773 while (vstart < vend) { 1774 unsigned long this_end, paddr = __pa(vstart); 1775 pgd_t *pgd = pgd_offset_k(vstart); 1776 p4d_t *p4d; 1777 pud_t *pud; 1778 pmd_t *pmd; 1779 pte_t *pte; 1780 1781 if (pgd_none(*pgd)) { 1782 pud_t *new; 1783 1784 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1785 PAGE_SIZE); 1786 if (!new) 1787 goto err_alloc; 1788 alloc_bytes += PAGE_SIZE; 1789 pgd_populate(&init_mm, pgd, new); 1790 } 1791 1792 p4d = p4d_offset(pgd, vstart); 1793 if (p4d_none(*p4d)) { 1794 pud_t *new; 1795 1796 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1797 PAGE_SIZE); 1798 if (!new) 1799 goto err_alloc; 1800 alloc_bytes += PAGE_SIZE; 1801 p4d_populate(&init_mm, p4d, new); 1802 } 1803 1804 pud = pud_offset(p4d, vstart); 1805 if (pud_none(*pud)) { 1806 pmd_t *new; 1807 1808 if (kernel_can_map_hugepud(vstart, vend, use_huge)) { 1809 vstart = kernel_map_hugepud(vstart, vend, pud); 1810 continue; 1811 } 1812 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1813 PAGE_SIZE); 1814 if (!new) 1815 goto err_alloc; 1816 alloc_bytes += PAGE_SIZE; 1817 pud_populate(&init_mm, pud, new); 1818 } 1819 1820 pmd = pmd_offset(pud, vstart); 1821 if (pmd_none(*pmd)) { 1822 pte_t *new; 1823 1824 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { 1825 vstart = kernel_map_hugepmd(vstart, vend, pmd); 1826 continue; 1827 } 1828 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, 1829 PAGE_SIZE); 1830 if (!new) 1831 goto err_alloc; 1832 alloc_bytes += PAGE_SIZE; 1833 pmd_populate_kernel(&init_mm, pmd, new); 1834 } 1835 1836 pte = pte_offset_kernel(pmd, vstart); 1837 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1838 if (this_end > vend) 1839 this_end = vend; 1840 1841 while (vstart < this_end) { 1842 pte_val(*pte) = (paddr | pgprot_val(prot)); 1843 1844 vstart += PAGE_SIZE; 1845 paddr += PAGE_SIZE; 1846 pte++; 1847 } 1848 } 1849 1850 return alloc_bytes; 1851 1852 err_alloc: 1853 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 1854 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1855 return -ENOMEM; 1856 } 1857 1858 static void __init flush_all_kernel_tsbs(void) 1859 { 1860 int i; 1861 1862 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { 1863 struct tsb *ent = &swapper_tsb[i]; 1864 1865 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1866 } 1867 #ifndef CONFIG_DEBUG_PAGEALLOC 1868 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { 1869 struct tsb *ent = &swapper_4m_tsb[i]; 1870 1871 ent->tag = (1UL << TSB_TAG_INVALID_BIT); 1872 } 1873 #endif 1874 } 1875 1876 extern unsigned int kvmap_linear_patch[1]; 1877 1878 static void __init kernel_physical_mapping_init(void) 1879 { 1880 unsigned long i, mem_alloced = 0UL; 1881 bool use_huge = true; 1882 1883 #ifdef CONFIG_DEBUG_PAGEALLOC 1884 use_huge = false; 1885 #endif 1886 for (i = 0; i < pall_ents; i++) { 1887 unsigned long phys_start, phys_end; 1888 1889 phys_start = pall[i].phys_addr; 1890 phys_end = phys_start + pall[i].reg_size; 1891 1892 mem_alloced += kernel_map_range(phys_start, phys_end, 1893 PAGE_KERNEL, use_huge); 1894 } 1895 1896 printk("Allocated %ld bytes for kernel page tables.\n", 1897 mem_alloced); 1898 1899 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1900 flushi(&kvmap_linear_patch[0]); 1901 1902 flush_all_kernel_tsbs(); 1903 1904 __flush_tlb_all(); 1905 } 1906 1907 #ifdef CONFIG_DEBUG_PAGEALLOC 1908 void __kernel_map_pages(struct page *page, int numpages, int enable) 1909 { 1910 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1911 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1912 1913 kernel_map_range(phys_start, phys_end, 1914 (enable ? PAGE_KERNEL : __pgprot(0)), false); 1915 1916 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1917 PAGE_OFFSET + phys_end); 1918 1919 /* we should perform an IPI and flush all tlbs, 1920 * but that can deadlock->flush only current cpu. 1921 */ 1922 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1923 PAGE_OFFSET + phys_end); 1924 } 1925 #endif 1926 1927 unsigned long __init find_ecache_flush_span(unsigned long size) 1928 { 1929 int i; 1930 1931 for (i = 0; i < pavail_ents; i++) { 1932 if (pavail[i].reg_size >= size) 1933 return pavail[i].phys_addr; 1934 } 1935 1936 return ~0UL; 1937 } 1938 1939 unsigned long PAGE_OFFSET; 1940 EXPORT_SYMBOL(PAGE_OFFSET); 1941 1942 unsigned long VMALLOC_END = 0x0000010000000000UL; 1943 EXPORT_SYMBOL(VMALLOC_END); 1944 1945 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; 1946 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; 1947 1948 static void __init setup_page_offset(void) 1949 { 1950 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1951 /* Cheetah/Panther support a full 64-bit virtual 1952 * address, so we can use all that our page tables 1953 * support. 1954 */ 1955 sparc64_va_hole_top = 0xfff0000000000000UL; 1956 sparc64_va_hole_bottom = 0x0010000000000000UL; 1957 1958 max_phys_bits = 42; 1959 } else if (tlb_type == hypervisor) { 1960 switch (sun4v_chip_type) { 1961 case SUN4V_CHIP_NIAGARA1: 1962 case SUN4V_CHIP_NIAGARA2: 1963 /* T1 and T2 support 48-bit virtual addresses. */ 1964 sparc64_va_hole_top = 0xffff800000000000UL; 1965 sparc64_va_hole_bottom = 0x0000800000000000UL; 1966 1967 max_phys_bits = 39; 1968 break; 1969 case SUN4V_CHIP_NIAGARA3: 1970 /* T3 supports 48-bit virtual addresses. */ 1971 sparc64_va_hole_top = 0xffff800000000000UL; 1972 sparc64_va_hole_bottom = 0x0000800000000000UL; 1973 1974 max_phys_bits = 43; 1975 break; 1976 case SUN4V_CHIP_NIAGARA4: 1977 case SUN4V_CHIP_NIAGARA5: 1978 case SUN4V_CHIP_SPARC64X: 1979 case SUN4V_CHIP_SPARC_M6: 1980 /* T4 and later support 52-bit virtual addresses. */ 1981 sparc64_va_hole_top = 0xfff8000000000000UL; 1982 sparc64_va_hole_bottom = 0x0008000000000000UL; 1983 max_phys_bits = 47; 1984 break; 1985 case SUN4V_CHIP_SPARC_M7: 1986 case SUN4V_CHIP_SPARC_SN: 1987 /* M7 and later support 52-bit virtual addresses. */ 1988 sparc64_va_hole_top = 0xfff8000000000000UL; 1989 sparc64_va_hole_bottom = 0x0008000000000000UL; 1990 max_phys_bits = 49; 1991 break; 1992 case SUN4V_CHIP_SPARC_M8: 1993 default: 1994 /* M8 and later support 54-bit virtual addresses. 1995 * However, restricting M8 and above VA bits to 53 1996 * as 4-level page table cannot support more than 1997 * 53 VA bits. 1998 */ 1999 sparc64_va_hole_top = 0xfff0000000000000UL; 2000 sparc64_va_hole_bottom = 0x0010000000000000UL; 2001 max_phys_bits = 51; 2002 break; 2003 } 2004 } 2005 2006 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { 2007 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", 2008 max_phys_bits); 2009 prom_halt(); 2010 } 2011 2012 PAGE_OFFSET = sparc64_va_hole_top; 2013 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + 2014 (sparc64_va_hole_bottom >> 2)); 2015 2016 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", 2017 PAGE_OFFSET, max_phys_bits); 2018 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", 2019 VMALLOC_START, VMALLOC_END); 2020 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", 2021 VMEMMAP_BASE, VMEMMAP_BASE << 1); 2022 } 2023 2024 static void __init tsb_phys_patch(void) 2025 { 2026 struct tsb_ldquad_phys_patch_entry *pquad; 2027 struct tsb_phys_patch_entry *p; 2028 2029 pquad = &__tsb_ldquad_phys_patch; 2030 while (pquad < &__tsb_ldquad_phys_patch_end) { 2031 unsigned long addr = pquad->addr; 2032 2033 if (tlb_type == hypervisor) 2034 *(unsigned int *) addr = pquad->sun4v_insn; 2035 else 2036 *(unsigned int *) addr = pquad->sun4u_insn; 2037 wmb(); 2038 __asm__ __volatile__("flush %0" 2039 : /* no outputs */ 2040 : "r" (addr)); 2041 2042 pquad++; 2043 } 2044 2045 p = &__tsb_phys_patch; 2046 while (p < &__tsb_phys_patch_end) { 2047 unsigned long addr = p->addr; 2048 2049 *(unsigned int *) addr = p->insn; 2050 wmb(); 2051 __asm__ __volatile__("flush %0" 2052 : /* no outputs */ 2053 : "r" (addr)); 2054 2055 p++; 2056 } 2057 } 2058 2059 /* Don't mark as init, we give this to the Hypervisor. */ 2060 #ifndef CONFIG_DEBUG_PAGEALLOC 2061 #define NUM_KTSB_DESCR 2 2062 #else 2063 #define NUM_KTSB_DESCR 1 2064 #endif 2065 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 2066 2067 /* The swapper TSBs are loaded with a base sequence of: 2068 * 2069 * sethi %uhi(SYMBOL), REG1 2070 * sethi %hi(SYMBOL), REG2 2071 * or REG1, %ulo(SYMBOL), REG1 2072 * or REG2, %lo(SYMBOL), REG2 2073 * sllx REG1, 32, REG1 2074 * or REG1, REG2, REG1 2075 * 2076 * When we use physical addressing for the TSB accesses, we patch the 2077 * first four instructions in the above sequence. 2078 */ 2079 2080 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 2081 { 2082 unsigned long high_bits, low_bits; 2083 2084 high_bits = (pa >> 32) & 0xffffffff; 2085 low_bits = (pa >> 0) & 0xffffffff; 2086 2087 while (start < end) { 2088 unsigned int *ia = (unsigned int *)(unsigned long)*start; 2089 2090 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); 2091 __asm__ __volatile__("flush %0" : : "r" (ia)); 2092 2093 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); 2094 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 2095 2096 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); 2097 __asm__ __volatile__("flush %0" : : "r" (ia + 2)); 2098 2099 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); 2100 __asm__ __volatile__("flush %0" : : "r" (ia + 3)); 2101 2102 start++; 2103 } 2104 } 2105 2106 static void ktsb_phys_patch(void) 2107 { 2108 extern unsigned int __swapper_tsb_phys_patch; 2109 extern unsigned int __swapper_tsb_phys_patch_end; 2110 unsigned long ktsb_pa; 2111 2112 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2113 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 2114 &__swapper_tsb_phys_patch_end, ktsb_pa); 2115 #ifndef CONFIG_DEBUG_PAGEALLOC 2116 { 2117 extern unsigned int __swapper_4m_tsb_phys_patch; 2118 extern unsigned int __swapper_4m_tsb_phys_patch_end; 2119 ktsb_pa = (kern_base + 2120 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2121 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 2122 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 2123 } 2124 #endif 2125 } 2126 2127 static void __init sun4v_ktsb_init(void) 2128 { 2129 unsigned long ktsb_pa; 2130 2131 /* First KTSB for PAGE_SIZE mappings. */ 2132 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 2133 2134 switch (PAGE_SIZE) { 2135 case 8 * 1024: 2136 default: 2137 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 2138 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 2139 break; 2140 2141 case 64 * 1024: 2142 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 2143 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 2144 break; 2145 2146 case 512 * 1024: 2147 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 2148 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 2149 break; 2150 2151 case 4 * 1024 * 1024: 2152 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 2153 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 2154 break; 2155 } 2156 2157 ktsb_descr[0].assoc = 1; 2158 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 2159 ktsb_descr[0].ctx_idx = 0; 2160 ktsb_descr[0].tsb_base = ktsb_pa; 2161 ktsb_descr[0].resv = 0; 2162 2163 #ifndef CONFIG_DEBUG_PAGEALLOC 2164 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 2165 ktsb_pa = (kern_base + 2166 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 2167 2168 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 2169 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 2170 HV_PGSZ_MASK_256MB | 2171 HV_PGSZ_MASK_2GB | 2172 HV_PGSZ_MASK_16GB) & 2173 cpu_pgsz_mask); 2174 ktsb_descr[1].assoc = 1; 2175 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 2176 ktsb_descr[1].ctx_idx = 0; 2177 ktsb_descr[1].tsb_base = ktsb_pa; 2178 ktsb_descr[1].resv = 0; 2179 #endif 2180 } 2181 2182 void sun4v_ktsb_register(void) 2183 { 2184 unsigned long pa, ret; 2185 2186 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 2187 2188 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 2189 if (ret != 0) { 2190 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 2191 "errors with %lx\n", pa, ret); 2192 prom_halt(); 2193 } 2194 } 2195 2196 static void __init sun4u_linear_pte_xor_finalize(void) 2197 { 2198 #ifndef CONFIG_DEBUG_PAGEALLOC 2199 /* This is where we would add Panther support for 2200 * 32MB and 256MB pages. 2201 */ 2202 #endif 2203 } 2204 2205 static void __init sun4v_linear_pte_xor_finalize(void) 2206 { 2207 unsigned long pagecv_flag; 2208 2209 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead 2210 * enables MCD error. Do not set bit 9 on M7 processor. 2211 */ 2212 switch (sun4v_chip_type) { 2213 case SUN4V_CHIP_SPARC_M7: 2214 case SUN4V_CHIP_SPARC_M8: 2215 case SUN4V_CHIP_SPARC_SN: 2216 pagecv_flag = 0x00; 2217 break; 2218 default: 2219 pagecv_flag = _PAGE_CV_4V; 2220 break; 2221 } 2222 #ifndef CONFIG_DEBUG_PAGEALLOC 2223 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 2224 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 2225 PAGE_OFFSET; 2226 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | 2227 _PAGE_P_4V | _PAGE_W_4V); 2228 } else { 2229 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 2230 } 2231 2232 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 2233 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 2234 PAGE_OFFSET; 2235 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | 2236 _PAGE_P_4V | _PAGE_W_4V); 2237 } else { 2238 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 2239 } 2240 2241 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 2242 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 2243 PAGE_OFFSET; 2244 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | 2245 _PAGE_P_4V | _PAGE_W_4V); 2246 } else { 2247 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 2248 } 2249 #endif 2250 } 2251 2252 /* paging_init() sets up the page tables */ 2253 2254 static unsigned long last_valid_pfn; 2255 2256 static void sun4u_pgprot_init(void); 2257 static void sun4v_pgprot_init(void); 2258 2259 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2260 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2261 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2262 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2263 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2264 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2265 2266 /* We need to exclude reserved regions. This exclusion will include 2267 * vmlinux and initrd. To be more precise the initrd size could be used to 2268 * compute a new lower limit because it is freed later during initialization. 2269 */ 2270 static void __init reduce_memory(phys_addr_t limit_ram) 2271 { 2272 limit_ram += memblock_reserved_size(); 2273 memblock_enforce_memory_limit(limit_ram); 2274 } 2275 2276 void __init paging_init(void) 2277 { 2278 unsigned long end_pfn, shift, phys_base; 2279 unsigned long real_end, i; 2280 2281 setup_page_offset(); 2282 2283 /* These build time checkes make sure that the dcache_dirty_cpu() 2284 * page->flags usage will work. 2285 * 2286 * When a page gets marked as dcache-dirty, we store the 2287 * cpu number starting at bit 32 in the page->flags. Also, 2288 * functions like clear_dcache_dirty_cpu use the cpu mask 2289 * in 13-bit signed-immediate instruction fields. 2290 */ 2291 2292 /* 2293 * Page flags must not reach into upper 32 bits that are used 2294 * for the cpu number 2295 */ 2296 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 2297 2298 /* 2299 * The bit fields placed in the high range must not reach below 2300 * the 32 bit boundary. Otherwise we cannot place the cpu field 2301 * at the 32 bit boundary. 2302 */ 2303 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 2304 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 2305 2306 BUILD_BUG_ON(NR_CPUS > 4096); 2307 2308 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; 2309 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 2310 2311 /* Invalidate both kernel TSBs. */ 2312 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 2313 #ifndef CONFIG_DEBUG_PAGEALLOC 2314 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2315 #endif 2316 2317 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde 2318 * bit on M7 processor. This is a conflicting usage of the same 2319 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption 2320 * Detection error on all pages and this will lead to problems 2321 * later. Kernel does not run with MCD enabled and hence rest 2322 * of the required steps to fully configure memory corruption 2323 * detection are not taken. We need to ensure TTE.mcde is not 2324 * set on M7 processor. Compute the value of cacheability 2325 * flag for use later taking this into consideration. 2326 */ 2327 switch (sun4v_chip_type) { 2328 case SUN4V_CHIP_SPARC_M7: 2329 case SUN4V_CHIP_SPARC_M8: 2330 case SUN4V_CHIP_SPARC_SN: 2331 page_cache4v_flag = _PAGE_CP_4V; 2332 break; 2333 default: 2334 page_cache4v_flag = _PAGE_CACHE_4V; 2335 break; 2336 } 2337 2338 if (tlb_type == hypervisor) 2339 sun4v_pgprot_init(); 2340 else 2341 sun4u_pgprot_init(); 2342 2343 if (tlb_type == cheetah_plus || 2344 tlb_type == hypervisor) { 2345 tsb_phys_patch(); 2346 ktsb_phys_patch(); 2347 } 2348 2349 if (tlb_type == hypervisor) 2350 sun4v_patch_tlb_handlers(); 2351 2352 /* Find available physical memory... 2353 * 2354 * Read it twice in order to work around a bug in openfirmware. 2355 * The call to grab this table itself can cause openfirmware to 2356 * allocate memory, which in turn can take away some space from 2357 * the list of available memory. Reading it twice makes sure 2358 * we really do get the final value. 2359 */ 2360 read_obp_translations(); 2361 read_obp_memory("reg", &pall[0], &pall_ents); 2362 read_obp_memory("available", &pavail[0], &pavail_ents); 2363 read_obp_memory("available", &pavail[0], &pavail_ents); 2364 2365 phys_base = 0xffffffffffffffffUL; 2366 for (i = 0; i < pavail_ents; i++) { 2367 phys_base = min(phys_base, pavail[i].phys_addr); 2368 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 2369 } 2370 2371 memblock_reserve(kern_base, kern_size); 2372 2373 find_ramdisk(phys_base); 2374 2375 if (cmdline_memory_size) 2376 reduce_memory(cmdline_memory_size); 2377 2378 memblock_allow_resize(); 2379 memblock_dump_all(); 2380 2381 set_bit(0, mmu_context_bmap); 2382 2383 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 2384 2385 real_end = (unsigned long)_end; 2386 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); 2387 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 2388 num_kernel_image_mappings); 2389 2390 /* Set kernel pgd to upper alias so physical page computations 2391 * work. 2392 */ 2393 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 2394 2395 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); 2396 2397 inherit_prom_mappings(); 2398 2399 /* Ok, we can use our TLB miss and window trap handlers safely. */ 2400 setup_tba(); 2401 2402 __flush_tlb_all(); 2403 2404 prom_build_devicetree(); 2405 of_populate_present_mask(); 2406 #ifndef CONFIG_SMP 2407 of_fill_in_cpu_data(); 2408 #endif 2409 2410 if (tlb_type == hypervisor) { 2411 sun4v_mdesc_init(); 2412 mdesc_populate_present_mask(cpu_all_mask); 2413 #ifndef CONFIG_SMP 2414 mdesc_fill_in_cpu_data(cpu_all_mask); 2415 #endif 2416 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 2417 2418 sun4v_linear_pte_xor_finalize(); 2419 2420 sun4v_ktsb_init(); 2421 sun4v_ktsb_register(); 2422 } else { 2423 unsigned long impl, ver; 2424 2425 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 2426 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 2427 2428 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 2429 impl = ((ver >> 32) & 0xffff); 2430 if (impl == PANTHER_IMPL) 2431 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 2432 HV_PGSZ_MASK_256MB); 2433 2434 sun4u_linear_pte_xor_finalize(); 2435 } 2436 2437 /* Flush the TLBs and the 4M TSB so that the updated linear 2438 * pte XOR settings are realized for all mappings. 2439 */ 2440 __flush_tlb_all(); 2441 #ifndef CONFIG_DEBUG_PAGEALLOC 2442 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 2443 #endif 2444 __flush_tlb_all(); 2445 2446 /* Setup bootmem... */ 2447 last_valid_pfn = end_pfn = bootmem_init(phys_base); 2448 2449 kernel_physical_mapping_init(); 2450 2451 { 2452 unsigned long max_zone_pfns[MAX_NR_ZONES]; 2453 2454 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 2455 2456 max_zone_pfns[ZONE_NORMAL] = end_pfn; 2457 2458 free_area_init(max_zone_pfns); 2459 } 2460 2461 printk("Booting Linux...\n"); 2462 } 2463 2464 int page_in_phys_avail(unsigned long paddr) 2465 { 2466 int i; 2467 2468 paddr &= PAGE_MASK; 2469 2470 for (i = 0; i < pavail_ents; i++) { 2471 unsigned long start, end; 2472 2473 start = pavail[i].phys_addr; 2474 end = start + pavail[i].reg_size; 2475 2476 if (paddr >= start && paddr < end) 2477 return 1; 2478 } 2479 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 2480 return 1; 2481 #ifdef CONFIG_BLK_DEV_INITRD 2482 if (paddr >= __pa(initrd_start) && 2483 paddr < __pa(PAGE_ALIGN(initrd_end))) 2484 return 1; 2485 #endif 2486 2487 return 0; 2488 } 2489 2490 static void __init register_page_bootmem_info(void) 2491 { 2492 #ifdef CONFIG_NUMA 2493 int i; 2494 2495 for_each_online_node(i) 2496 if (NODE_DATA(i)->node_spanned_pages) 2497 register_page_bootmem_info_node(NODE_DATA(i)); 2498 #endif 2499 } 2500 void __init mem_init(void) 2501 { 2502 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2503 2504 memblock_free_all(); 2505 2506 /* 2507 * Must be done after boot memory is put on freelist, because here we 2508 * might set fields in deferred struct pages that have not yet been 2509 * initialized, and memblock_free_all() initializes all the reserved 2510 * deferred pages for us. 2511 */ 2512 register_page_bootmem_info(); 2513 2514 /* 2515 * Set up the zero page, mark it reserved, so that page count 2516 * is not manipulated when freeing the page from user ptes. 2517 */ 2518 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2519 if (mem_map_zero == NULL) { 2520 prom_printf("paging_init: Cannot alloc zero page.\n"); 2521 prom_halt(); 2522 } 2523 mark_page_reserved(mem_map_zero); 2524 2525 2526 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2527 cheetah_ecache_flush_init(); 2528 } 2529 2530 void free_initmem(void) 2531 { 2532 unsigned long addr, initend; 2533 int do_free = 1; 2534 2535 /* If the physical memory maps were trimmed by kernel command 2536 * line options, don't even try freeing this initmem stuff up. 2537 * The kernel image could have been in the trimmed out region 2538 * and if so the freeing below will free invalid page structs. 2539 */ 2540 if (cmdline_memory_size) 2541 do_free = 0; 2542 2543 /* 2544 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2545 */ 2546 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2547 initend = (unsigned long)(__init_end) & PAGE_MASK; 2548 for (; addr < initend; addr += PAGE_SIZE) { 2549 unsigned long page; 2550 2551 page = (addr + 2552 ((unsigned long) __va(kern_base)) - 2553 ((unsigned long) KERNBASE)); 2554 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2555 2556 if (do_free) 2557 free_reserved_page(virt_to_page(page)); 2558 } 2559 } 2560 2561 pgprot_t PAGE_KERNEL __read_mostly; 2562 EXPORT_SYMBOL(PAGE_KERNEL); 2563 2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2565 pgprot_t PAGE_COPY __read_mostly; 2566 2567 pgprot_t PAGE_SHARED __read_mostly; 2568 EXPORT_SYMBOL(PAGE_SHARED); 2569 2570 unsigned long pg_iobits __read_mostly; 2571 2572 unsigned long _PAGE_IE __read_mostly; 2573 EXPORT_SYMBOL(_PAGE_IE); 2574 2575 unsigned long _PAGE_E __read_mostly; 2576 EXPORT_SYMBOL(_PAGE_E); 2577 2578 unsigned long _PAGE_CACHE __read_mostly; 2579 EXPORT_SYMBOL(_PAGE_CACHE); 2580 2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, 2583 int node, struct vmem_altmap *altmap) 2584 { 2585 unsigned long pte_base; 2586 2587 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2588 _PAGE_CP_4U | _PAGE_CV_4U | 2589 _PAGE_P_4U | _PAGE_W_4U); 2590 if (tlb_type == hypervisor) 2591 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2592 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); 2593 2594 pte_base |= _PAGE_PMD_HUGE; 2595 2596 vstart = vstart & PMD_MASK; 2597 vend = ALIGN(vend, PMD_SIZE); 2598 for (; vstart < vend; vstart += PMD_SIZE) { 2599 pgd_t *pgd = vmemmap_pgd_populate(vstart, node); 2600 unsigned long pte; 2601 p4d_t *p4d; 2602 pud_t *pud; 2603 pmd_t *pmd; 2604 2605 if (!pgd) 2606 return -ENOMEM; 2607 2608 p4d = vmemmap_p4d_populate(pgd, vstart, node); 2609 if (!p4d) 2610 return -ENOMEM; 2611 2612 pud = vmemmap_pud_populate(p4d, vstart, node); 2613 if (!pud) 2614 return -ENOMEM; 2615 2616 pmd = pmd_offset(pud, vstart); 2617 pte = pmd_val(*pmd); 2618 if (!(pte & _PAGE_VALID)) { 2619 void *block = vmemmap_alloc_block(PMD_SIZE, node); 2620 2621 if (!block) 2622 return -ENOMEM; 2623 2624 pmd_val(*pmd) = pte_base | __pa(block); 2625 } 2626 } 2627 2628 return 0; 2629 } 2630 2631 void vmemmap_free(unsigned long start, unsigned long end, 2632 struct vmem_altmap *altmap) 2633 { 2634 } 2635 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2636 2637 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */ 2638 static pgprot_t protection_map[16] __ro_after_init; 2639 2640 static void prot_init_common(unsigned long page_none, 2641 unsigned long page_shared, 2642 unsigned long page_copy, 2643 unsigned long page_readonly, 2644 unsigned long page_exec_bit) 2645 { 2646 PAGE_COPY = __pgprot(page_copy); 2647 PAGE_SHARED = __pgprot(page_shared); 2648 2649 protection_map[0x0] = __pgprot(page_none); 2650 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2651 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2652 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2653 protection_map[0x4] = __pgprot(page_readonly); 2654 protection_map[0x5] = __pgprot(page_readonly); 2655 protection_map[0x6] = __pgprot(page_copy); 2656 protection_map[0x7] = __pgprot(page_copy); 2657 protection_map[0x8] = __pgprot(page_none); 2658 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2659 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2660 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2661 protection_map[0xc] = __pgprot(page_readonly); 2662 protection_map[0xd] = __pgprot(page_readonly); 2663 protection_map[0xe] = __pgprot(page_shared); 2664 protection_map[0xf] = __pgprot(page_shared); 2665 } 2666 2667 static void __init sun4u_pgprot_init(void) 2668 { 2669 unsigned long page_none, page_shared, page_copy, page_readonly; 2670 unsigned long page_exec_bit; 2671 int i; 2672 2673 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2674 _PAGE_CACHE_4U | _PAGE_P_4U | 2675 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2676 _PAGE_EXEC_4U); 2677 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2678 _PAGE_CACHE_4U | _PAGE_P_4U | 2679 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2680 _PAGE_EXEC_4U | _PAGE_L_4U); 2681 2682 _PAGE_IE = _PAGE_IE_4U; 2683 _PAGE_E = _PAGE_E_4U; 2684 _PAGE_CACHE = _PAGE_CACHE_4U; 2685 2686 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2687 __ACCESS_BITS_4U | _PAGE_E_4U); 2688 2689 #ifdef CONFIG_DEBUG_PAGEALLOC 2690 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2691 #else 2692 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2693 PAGE_OFFSET; 2694 #endif 2695 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2696 _PAGE_P_4U | _PAGE_W_4U); 2697 2698 for (i = 1; i < 4; i++) 2699 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2700 2701 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2702 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2703 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2704 2705 2706 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2707 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2708 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2709 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2710 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2711 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2712 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2713 2714 page_exec_bit = _PAGE_EXEC_4U; 2715 2716 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2717 page_exec_bit); 2718 } 2719 2720 static void __init sun4v_pgprot_init(void) 2721 { 2722 unsigned long page_none, page_shared, page_copy, page_readonly; 2723 unsigned long page_exec_bit; 2724 int i; 2725 2726 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2727 page_cache4v_flag | _PAGE_P_4V | 2728 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2729 _PAGE_EXEC_4V); 2730 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2731 2732 _PAGE_IE = _PAGE_IE_4V; 2733 _PAGE_E = _PAGE_E_4V; 2734 _PAGE_CACHE = page_cache4v_flag; 2735 2736 #ifdef CONFIG_DEBUG_PAGEALLOC 2737 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; 2738 #else 2739 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2740 PAGE_OFFSET; 2741 #endif 2742 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | 2743 _PAGE_W_4V); 2744 2745 for (i = 1; i < 4; i++) 2746 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2747 2748 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2749 __ACCESS_BITS_4V | _PAGE_E_4V); 2750 2751 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2752 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2753 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2754 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2755 2756 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; 2757 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2758 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2759 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2760 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2761 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | 2762 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2763 2764 page_exec_bit = _PAGE_EXEC_4V; 2765 2766 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2767 page_exec_bit); 2768 } 2769 2770 unsigned long pte_sz_bits(unsigned long sz) 2771 { 2772 if (tlb_type == hypervisor) { 2773 switch (sz) { 2774 case 8 * 1024: 2775 default: 2776 return _PAGE_SZ8K_4V; 2777 case 64 * 1024: 2778 return _PAGE_SZ64K_4V; 2779 case 512 * 1024: 2780 return _PAGE_SZ512K_4V; 2781 case 4 * 1024 * 1024: 2782 return _PAGE_SZ4MB_4V; 2783 } 2784 } else { 2785 switch (sz) { 2786 case 8 * 1024: 2787 default: 2788 return _PAGE_SZ8K_4U; 2789 case 64 * 1024: 2790 return _PAGE_SZ64K_4U; 2791 case 512 * 1024: 2792 return _PAGE_SZ512K_4U; 2793 case 4 * 1024 * 1024: 2794 return _PAGE_SZ4MB_4U; 2795 } 2796 } 2797 } 2798 2799 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2800 { 2801 pte_t pte; 2802 2803 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2804 pte_val(pte) |= (((unsigned long)space) << 32); 2805 pte_val(pte) |= pte_sz_bits(page_size); 2806 2807 return pte; 2808 } 2809 2810 static unsigned long kern_large_tte(unsigned long paddr) 2811 { 2812 unsigned long val; 2813 2814 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2815 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2816 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2817 if (tlb_type == hypervisor) 2818 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2819 page_cache4v_flag | _PAGE_P_4V | 2820 _PAGE_EXEC_4V | _PAGE_W_4V); 2821 2822 return val | paddr; 2823 } 2824 2825 /* If not locked, zap it. */ 2826 void __flush_tlb_all(void) 2827 { 2828 unsigned long pstate; 2829 int i; 2830 2831 __asm__ __volatile__("flushw\n\t" 2832 "rdpr %%pstate, %0\n\t" 2833 "wrpr %0, %1, %%pstate" 2834 : "=r" (pstate) 2835 : "i" (PSTATE_IE)); 2836 if (tlb_type == hypervisor) { 2837 sun4v_mmu_demap_all(); 2838 } else if (tlb_type == spitfire) { 2839 for (i = 0; i < 64; i++) { 2840 /* Spitfire Errata #32 workaround */ 2841 /* NOTE: Always runs on spitfire, so no 2842 * cheetah+ page size encodings. 2843 */ 2844 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2845 "flush %%g6" 2846 : /* No outputs */ 2847 : "r" (0), 2848 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2849 2850 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2851 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2852 "membar #Sync" 2853 : /* no outputs */ 2854 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2855 spitfire_put_dtlb_data(i, 0x0UL); 2856 } 2857 2858 /* Spitfire Errata #32 workaround */ 2859 /* NOTE: Always runs on spitfire, so no 2860 * cheetah+ page size encodings. 2861 */ 2862 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2863 "flush %%g6" 2864 : /* No outputs */ 2865 : "r" (0), 2866 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2867 2868 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2869 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2870 "membar #Sync" 2871 : /* no outputs */ 2872 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2873 spitfire_put_itlb_data(i, 0x0UL); 2874 } 2875 } 2876 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2877 cheetah_flush_dtlb_all(); 2878 cheetah_flush_itlb_all(); 2879 } 2880 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2881 : : "r" (pstate)); 2882 } 2883 2884 pte_t *pte_alloc_one_kernel(struct mm_struct *mm) 2885 { 2886 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2887 pte_t *pte = NULL; 2888 2889 if (page) 2890 pte = (pte_t *) page_address(page); 2891 2892 return pte; 2893 } 2894 2895 pgtable_t pte_alloc_one(struct mm_struct *mm) 2896 { 2897 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2898 if (!page) 2899 return NULL; 2900 if (!pgtable_pte_page_ctor(page)) { 2901 __free_page(page); 2902 return NULL; 2903 } 2904 return (pte_t *) page_address(page); 2905 } 2906 2907 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2908 { 2909 free_page((unsigned long)pte); 2910 } 2911 2912 static void __pte_free(pgtable_t pte) 2913 { 2914 struct page *page = virt_to_page(pte); 2915 2916 pgtable_pte_page_dtor(page); 2917 __free_page(page); 2918 } 2919 2920 void pte_free(struct mm_struct *mm, pgtable_t pte) 2921 { 2922 __pte_free(pte); 2923 } 2924 2925 void pgtable_free(void *table, bool is_page) 2926 { 2927 if (is_page) 2928 __pte_free(table); 2929 else 2930 kmem_cache_free(pgtable_cache, table); 2931 } 2932 2933 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2934 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2935 pmd_t *pmd) 2936 { 2937 unsigned long pte, flags; 2938 struct mm_struct *mm; 2939 pmd_t entry = *pmd; 2940 2941 if (!pmd_large(entry) || !pmd_young(entry)) 2942 return; 2943 2944 pte = pmd_val(entry); 2945 2946 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ 2947 if (!(pte & _PAGE_VALID)) 2948 return; 2949 2950 /* We are fabricating 8MB pages using 4MB real hw pages. */ 2951 pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); 2952 2953 mm = vma->vm_mm; 2954 2955 spin_lock_irqsave(&mm->context.lock, flags); 2956 2957 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2958 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, 2959 addr, pte); 2960 2961 spin_unlock_irqrestore(&mm->context.lock, flags); 2962 } 2963 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2964 2965 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2966 static void context_reload(void *__data) 2967 { 2968 struct mm_struct *mm = __data; 2969 2970 if (mm == current->mm) 2971 load_secondary_context(mm); 2972 } 2973 2974 void hugetlb_setup(struct pt_regs *regs) 2975 { 2976 struct mm_struct *mm = current->mm; 2977 struct tsb_config *tp; 2978 2979 if (faulthandler_disabled() || !mm) { 2980 const struct exception_table_entry *entry; 2981 2982 entry = search_exception_tables(regs->tpc); 2983 if (entry) { 2984 regs->tpc = entry->fixup; 2985 regs->tnpc = regs->tpc + 4; 2986 return; 2987 } 2988 pr_alert("Unexpected HugeTLB setup in atomic context.\n"); 2989 die_if_kernel("HugeTSB in atomic", regs); 2990 } 2991 2992 tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2993 if (likely(tp->tsb == NULL)) 2994 tsb_grow(mm, MM_TSB_HUGE, 0); 2995 2996 tsb_context_switch(mm); 2997 smp_tsb_sync(mm); 2998 2999 /* On UltraSPARC-III+ and later, configure the second half of 3000 * the Data-TLB for huge pages. 3001 */ 3002 if (tlb_type == cheetah_plus) { 3003 bool need_context_reload = false; 3004 unsigned long ctx; 3005 3006 spin_lock_irq(&ctx_alloc_lock); 3007 ctx = mm->context.sparc64_ctx_val; 3008 ctx &= ~CTX_PGSZ_MASK; 3009 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 3010 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 3011 3012 if (ctx != mm->context.sparc64_ctx_val) { 3013 /* When changing the page size fields, we 3014 * must perform a context flush so that no 3015 * stale entries match. This flush must 3016 * occur with the original context register 3017 * settings. 3018 */ 3019 do_flush_tlb_mm(mm); 3020 3021 /* Reload the context register of all processors 3022 * also executing in this address space. 3023 */ 3024 mm->context.sparc64_ctx_val = ctx; 3025 need_context_reload = true; 3026 } 3027 spin_unlock_irq(&ctx_alloc_lock); 3028 3029 if (need_context_reload) 3030 on_each_cpu(context_reload, mm, 0); 3031 } 3032 } 3033 #endif 3034 3035 static struct resource code_resource = { 3036 .name = "Kernel code", 3037 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3038 }; 3039 3040 static struct resource data_resource = { 3041 .name = "Kernel data", 3042 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3043 }; 3044 3045 static struct resource bss_resource = { 3046 .name = "Kernel bss", 3047 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 3048 }; 3049 3050 static inline resource_size_t compute_kern_paddr(void *addr) 3051 { 3052 return (resource_size_t) (addr - KERNBASE + kern_base); 3053 } 3054 3055 static void __init kernel_lds_init(void) 3056 { 3057 code_resource.start = compute_kern_paddr(_text); 3058 code_resource.end = compute_kern_paddr(_etext - 1); 3059 data_resource.start = compute_kern_paddr(_etext); 3060 data_resource.end = compute_kern_paddr(_edata - 1); 3061 bss_resource.start = compute_kern_paddr(__bss_start); 3062 bss_resource.end = compute_kern_paddr(_end - 1); 3063 } 3064 3065 static int __init report_memory(void) 3066 { 3067 int i; 3068 struct resource *res; 3069 3070 kernel_lds_init(); 3071 3072 for (i = 0; i < pavail_ents; i++) { 3073 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 3074 3075 if (!res) { 3076 pr_warn("Failed to allocate source.\n"); 3077 break; 3078 } 3079 3080 res->name = "System RAM"; 3081 res->start = pavail[i].phys_addr; 3082 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; 3083 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 3084 3085 if (insert_resource(&iomem_resource, res) < 0) { 3086 pr_warn("Resource insertion failed.\n"); 3087 break; 3088 } 3089 3090 insert_resource(res, &code_resource); 3091 insert_resource(res, &data_resource); 3092 insert_resource(res, &bss_resource); 3093 } 3094 3095 return 0; 3096 } 3097 arch_initcall(report_memory); 3098 3099 #ifdef CONFIG_SMP 3100 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range 3101 #else 3102 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range 3103 #endif 3104 3105 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 3106 { 3107 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { 3108 if (start < LOW_OBP_ADDRESS) { 3109 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); 3110 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); 3111 } 3112 if (end > HI_OBP_ADDRESS) { 3113 flush_tsb_kernel_range(HI_OBP_ADDRESS, end); 3114 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); 3115 } 3116 } else { 3117 flush_tsb_kernel_range(start, end); 3118 do_flush_tlb_kernel_range(start, end); 3119 } 3120 } 3121 3122 void copy_user_highpage(struct page *to, struct page *from, 3123 unsigned long vaddr, struct vm_area_struct *vma) 3124 { 3125 char *vfrom, *vto; 3126 3127 vfrom = kmap_atomic(from); 3128 vto = kmap_atomic(to); 3129 copy_user_page(vto, vfrom, vaddr, to); 3130 kunmap_atomic(vto); 3131 kunmap_atomic(vfrom); 3132 3133 /* If this page has ADI enabled, copy over any ADI tags 3134 * as well 3135 */ 3136 if (vma->vm_flags & VM_SPARC_ADI) { 3137 unsigned long pfrom, pto, i, adi_tag; 3138 3139 pfrom = page_to_phys(from); 3140 pto = page_to_phys(to); 3141 3142 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3143 asm volatile("ldxa [%1] %2, %0\n\t" 3144 : "=r" (adi_tag) 3145 : "r" (i), "i" (ASI_MCD_REAL)); 3146 asm volatile("stxa %0, [%1] %2\n\t" 3147 : 3148 : "r" (adi_tag), "r" (pto), 3149 "i" (ASI_MCD_REAL)); 3150 pto += adi_blksize(); 3151 } 3152 asm volatile("membar #Sync\n\t"); 3153 } 3154 } 3155 EXPORT_SYMBOL(copy_user_highpage); 3156 3157 void copy_highpage(struct page *to, struct page *from) 3158 { 3159 char *vfrom, *vto; 3160 3161 vfrom = kmap_atomic(from); 3162 vto = kmap_atomic(to); 3163 copy_page(vto, vfrom); 3164 kunmap_atomic(vto); 3165 kunmap_atomic(vfrom); 3166 3167 /* If this platform is ADI enabled, copy any ADI tags 3168 * as well 3169 */ 3170 if (adi_capable()) { 3171 unsigned long pfrom, pto, i, adi_tag; 3172 3173 pfrom = page_to_phys(from); 3174 pto = page_to_phys(to); 3175 3176 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { 3177 asm volatile("ldxa [%1] %2, %0\n\t" 3178 : "=r" (adi_tag) 3179 : "r" (i), "i" (ASI_MCD_REAL)); 3180 asm volatile("stxa %0, [%1] %2\n\t" 3181 : 3182 : "r" (adi_tag), "r" (pto), 3183 "i" (ASI_MCD_REAL)); 3184 pto += adi_blksize(); 3185 } 3186 asm volatile("membar #Sync\n\t"); 3187 } 3188 } 3189 EXPORT_SYMBOL(copy_highpage); 3190 3191 pgprot_t vm_get_page_prot(unsigned long vm_flags) 3192 { 3193 unsigned long prot = pgprot_val(protection_map[vm_flags & 3194 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]); 3195 3196 if (vm_flags & VM_SPARC_ADI) 3197 prot |= _PAGE_MCD_4V; 3198 3199 return __pgprot(prot); 3200 } 3201 EXPORT_SYMBOL(vm_get_page_prot); 3202