xref: /linux/arch/sparc/mm/init_64.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51 
52 #include "init_64.h"
53 
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55 
56 /* A bitmap, two bits for every 256MB of physical memory.  These two
57  * bits determine what page size we use for kernel linear
58  * translations.  They form an index into kern_linear_pte_xor[].  The
59  * value in the indexed slot is XOR'd with the TLB miss virtual
60  * address to form the resulting TTE.  The mapping is:
61  *
62  *	0	==>	4MB
63  *	1	==>	256MB
64  *	2	==>	2GB
65  *	3	==>	16GB
66  *
67  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
68  * support 2GB pages, and hopefully future cpus will support the 16GB
69  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
70  * if these larger page sizes are not supported by the cpu.
71  *
72  * It would be nice to determine this from the machine description
73  * 'cpu' properties, but we need to have this table setup before the
74  * MDESC is initialized.
75  */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77 
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80  * Space is allocated for this right after the trap table in
81  * arch/sparc64/kernel/head.S
82  */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85 
86 static unsigned long cpu_pgsz_mask;
87 
88 #define MAX_BANKS	32
89 
90 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
91 static int pavail_ents __devinitdata;
92 
93 static int cmp_p64(const void *a, const void *b)
94 {
95 	const struct linux_prom64_registers *x = a, *y = b;
96 
97 	if (x->phys_addr > y->phys_addr)
98 		return 1;
99 	if (x->phys_addr < y->phys_addr)
100 		return -1;
101 	return 0;
102 }
103 
104 static void __init read_obp_memory(const char *property,
105 				   struct linux_prom64_registers *regs,
106 				   int *num_ents)
107 {
108 	phandle node = prom_finddevice("/memory");
109 	int prop_size = prom_getproplen(node, property);
110 	int ents, ret, i;
111 
112 	ents = prop_size / sizeof(struct linux_prom64_registers);
113 	if (ents > MAX_BANKS) {
114 		prom_printf("The machine has more %s property entries than "
115 			    "this kernel can support (%d).\n",
116 			    property, MAX_BANKS);
117 		prom_halt();
118 	}
119 
120 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 	if (ret == -1) {
122 		prom_printf("Couldn't get %s property from /memory.\n",
123 				property);
124 		prom_halt();
125 	}
126 
127 	/* Sanitize what we got from the firmware, by page aligning
128 	 * everything.
129 	 */
130 	for (i = 0; i < ents; i++) {
131 		unsigned long base, size;
132 
133 		base = regs[i].phys_addr;
134 		size = regs[i].reg_size;
135 
136 		size &= PAGE_MASK;
137 		if (base & ~PAGE_MASK) {
138 			unsigned long new_base = PAGE_ALIGN(base);
139 
140 			size -= new_base - base;
141 			if ((long) size < 0L)
142 				size = 0UL;
143 			base = new_base;
144 		}
145 		if (size == 0UL) {
146 			/* If it is empty, simply get rid of it.
147 			 * This simplifies the logic of the other
148 			 * functions that process these arrays.
149 			 */
150 			memmove(&regs[i], &regs[i + 1],
151 				(ents - i - 1) * sizeof(regs[0]));
152 			i--;
153 			ents--;
154 			continue;
155 		}
156 		regs[i].phys_addr = base;
157 		regs[i].reg_size = size;
158 	}
159 
160 	*num_ents = ents;
161 
162 	sort(regs, ents, sizeof(struct linux_prom64_registers),
163 	     cmp_p64, NULL);
164 }
165 
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 					sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169 
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173 
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178 
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181 
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183 
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187 
188 int num_kernel_image_mappings;
189 
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196 
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 	BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 	atomic_inc(&dcpage_flushes);
202 #endif
203 
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 	__flush_dcache_page(page_address(page),
206 			    ((tlb_type == spitfire) &&
207 			     page_mapping(page) != NULL));
208 #else
209 	if (page_mapping(page) != NULL &&
210 	    tlb_type == spitfire)
211 		__flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214 
215 #define PG_dcache_dirty		PG_arch_1
216 #define PG_dcache_cpu_shift	32UL
217 #define PG_dcache_cpu_mask	\
218 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 
220 #define dcache_dirty_cpu(page) \
221 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 	unsigned long mask = this_cpu;
226 	unsigned long non_cpu_bits;
227 
228 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 
231 	__asm__ __volatile__("1:\n\t"
232 			     "ldx	[%2], %%g7\n\t"
233 			     "and	%%g7, %1, %%g1\n\t"
234 			     "or	%%g1, %0, %%g1\n\t"
235 			     "casx	[%2], %%g7, %%g1\n\t"
236 			     "cmp	%%g7, %%g1\n\t"
237 			     "bne,pn	%%xcc, 1b\n\t"
238 			     " nop"
239 			     : /* no outputs */
240 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 			     : "g1", "g7");
242 }
243 
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 	unsigned long mask = (1UL << PG_dcache_dirty);
247 
248 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 			     "1:\n\t"
250 			     "ldx	[%2], %%g7\n\t"
251 			     "srlx	%%g7, %4, %%g1\n\t"
252 			     "and	%%g1, %3, %%g1\n\t"
253 			     "cmp	%%g1, %0\n\t"
254 			     "bne,pn	%%icc, 2f\n\t"
255 			     " andn	%%g7, %1, %%g1\n\t"
256 			     "casx	[%2], %%g7, %%g1\n\t"
257 			     "cmp	%%g7, %%g1\n\t"
258 			     "bne,pn	%%xcc, 1b\n\t"
259 			     " nop\n"
260 			     "2:"
261 			     : /* no outputs */
262 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
263 			       "i" (PG_dcache_cpu_mask),
264 			       "i" (PG_dcache_cpu_shift)
265 			     : "g1", "g7");
266 }
267 
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 	unsigned long tsb_addr = (unsigned long) ent;
271 
272 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 		tsb_addr = __pa(tsb_addr);
274 
275 	__tsb_insert(tsb_addr, tag, pte);
276 }
277 
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 
280 static void flush_dcache(unsigned long pfn)
281 {
282 	struct page *page;
283 
284 	page = pfn_to_page(pfn);
285 	if (page) {
286 		unsigned long pg_flags;
287 
288 		pg_flags = page->flags;
289 		if (pg_flags & (1UL << PG_dcache_dirty)) {
290 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 				   PG_dcache_cpu_mask);
292 			int this_cpu = get_cpu();
293 
294 			/* This is just to optimize away some function calls
295 			 * in the SMP case.
296 			 */
297 			if (cpu == this_cpu)
298 				flush_dcache_page_impl(page);
299 			else
300 				smp_flush_dcache_page_impl(page, cpu);
301 
302 			clear_dcache_dirty_cpu(page, cpu);
303 
304 			put_cpu();
305 		}
306 	}
307 }
308 
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 				    unsigned long tsb_hash_shift, unsigned long address,
312 				    unsigned long tte)
313 {
314 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 	unsigned long tag;
316 
317 	tsb += ((address >> tsb_hash_shift) &
318 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319 	tag = (address >> 22UL);
320 	tsb_insert(tsb, tag, tte);
321 }
322 
323 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
324 {
325 	unsigned long tsb_index, tsb_hash_shift, flags;
326 	struct mm_struct *mm;
327 	pte_t pte = *ptep;
328 
329 	if (tlb_type != hypervisor) {
330 		unsigned long pfn = pte_pfn(pte);
331 
332 		if (pfn_valid(pfn))
333 			flush_dcache(pfn);
334 	}
335 
336 	mm = vma->vm_mm;
337 
338 	tsb_index = MM_TSB_BASE;
339 	tsb_hash_shift = PAGE_SHIFT;
340 
341 	spin_lock_irqsave(&mm->context.lock, flags);
342 
343 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
344 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
345 		if ((tlb_type == hypervisor &&
346 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
347 		    (tlb_type != hypervisor &&
348 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
349 			tsb_index = MM_TSB_HUGE;
350 			tsb_hash_shift = HPAGE_SHIFT;
351 		}
352 	}
353 #endif
354 
355 	__update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift,
356 				address, pte_val(pte));
357 
358 	spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360 
361 void flush_dcache_page(struct page *page)
362 {
363 	struct address_space *mapping;
364 	int this_cpu;
365 
366 	if (tlb_type == hypervisor)
367 		return;
368 
369 	/* Do not bother with the expensive D-cache flush if it
370 	 * is merely the zero page.  The 'bigcore' testcase in GDB
371 	 * causes this case to run millions of times.
372 	 */
373 	if (page == ZERO_PAGE(0))
374 		return;
375 
376 	this_cpu = get_cpu();
377 
378 	mapping = page_mapping(page);
379 	if (mapping && !mapping_mapped(mapping)) {
380 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
381 		if (dirty) {
382 			int dirty_cpu = dcache_dirty_cpu(page);
383 
384 			if (dirty_cpu == this_cpu)
385 				goto out;
386 			smp_flush_dcache_page_impl(page, dirty_cpu);
387 		}
388 		set_dcache_dirty(page, this_cpu);
389 	} else {
390 		/* We could delay the flush for the !page_mapping
391 		 * case too.  But that case is for exec env/arg
392 		 * pages and those are %99 certainly going to get
393 		 * faulted into the tlb (and thus flushed) anyways.
394 		 */
395 		flush_dcache_page_impl(page);
396 	}
397 
398 out:
399 	put_cpu();
400 }
401 EXPORT_SYMBOL(flush_dcache_page);
402 
403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406 	if (tlb_type == spitfire) {
407 		unsigned long kaddr;
408 
409 		/* This code only runs on Spitfire cpus so this is
410 		 * why we can assume _PAGE_PADDR_4U.
411 		 */
412 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413 			unsigned long paddr, mask = _PAGE_PADDR_4U;
414 
415 			if (kaddr >= PAGE_OFFSET)
416 				paddr = kaddr & mask;
417 			else {
418 				pgd_t *pgdp = pgd_offset_k(kaddr);
419 				pud_t *pudp = pud_offset(pgdp, kaddr);
420 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
421 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422 
423 				paddr = pte_val(*ptep) & mask;
424 			}
425 			__flush_icache_page(paddr);
426 		}
427 	}
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430 
431 void mmu_info(struct seq_file *m)
432 {
433 	static const char *pgsz_strings[] = {
434 		"8K", "64K", "512K", "4MB", "32MB",
435 		"256MB", "2GB", "16GB",
436 	};
437 	int i, printed;
438 
439 	if (tlb_type == cheetah)
440 		seq_printf(m, "MMU Type\t: Cheetah\n");
441 	else if (tlb_type == cheetah_plus)
442 		seq_printf(m, "MMU Type\t: Cheetah+\n");
443 	else if (tlb_type == spitfire)
444 		seq_printf(m, "MMU Type\t: Spitfire\n");
445 	else if (tlb_type == hypervisor)
446 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447 	else
448 		seq_printf(m, "MMU Type\t: ???\n");
449 
450 	seq_printf(m, "MMU PGSZs\t: ");
451 	printed = 0;
452 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453 		if (cpu_pgsz_mask & (1UL << i)) {
454 			seq_printf(m, "%s%s",
455 				   printed ? "," : "", pgsz_strings[i]);
456 			printed++;
457 		}
458 	}
459 	seq_putc(m, '\n');
460 
461 #ifdef CONFIG_DEBUG_DCFLUSH
462 	seq_printf(m, "DCPageFlushes\t: %d\n",
463 		   atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
466 		   atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470 
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473 
474 unsigned long kern_locked_tte_data;
475 
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482 	return (vaddr >= LOW_OBP_ADDRESS &&
483 		vaddr < HI_OBP_ADDRESS);
484 }
485 
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488 	const struct linux_prom_translation *x = a, *y = b;
489 
490 	if (x->virt > y->virt)
491 		return 1;
492 	if (x->virt < y->virt)
493 		return -1;
494 	return 0;
495 }
496 
497 /* Read OBP translations property into 'prom_trans[]'.  */
498 static void __init read_obp_translations(void)
499 {
500 	int n, node, ents, first, last, i;
501 
502 	node = prom_finddevice("/virtual-memory");
503 	n = prom_getproplen(node, "translations");
504 	if (unlikely(n == 0 || n == -1)) {
505 		prom_printf("prom_mappings: Couldn't get size.\n");
506 		prom_halt();
507 	}
508 	if (unlikely(n > sizeof(prom_trans))) {
509 		prom_printf("prom_mappings: Size %d is too big.\n", n);
510 		prom_halt();
511 	}
512 
513 	if ((n = prom_getproperty(node, "translations",
514 				  (char *)&prom_trans[0],
515 				  sizeof(prom_trans))) == -1) {
516 		prom_printf("prom_mappings: Couldn't get property.\n");
517 		prom_halt();
518 	}
519 
520 	n = n / sizeof(struct linux_prom_translation);
521 
522 	ents = n;
523 
524 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525 	     cmp_ptrans, NULL);
526 
527 	/* Now kick out all the non-OBP entries.  */
528 	for (i = 0; i < ents; i++) {
529 		if (in_obp_range(prom_trans[i].virt))
530 			break;
531 	}
532 	first = i;
533 	for (; i < ents; i++) {
534 		if (!in_obp_range(prom_trans[i].virt))
535 			break;
536 	}
537 	last = i;
538 
539 	for (i = 0; i < (last - first); i++) {
540 		struct linux_prom_translation *src = &prom_trans[i + first];
541 		struct linux_prom_translation *dest = &prom_trans[i];
542 
543 		*dest = *src;
544 	}
545 	for (; i < ents; i++) {
546 		struct linux_prom_translation *dest = &prom_trans[i];
547 		dest->virt = dest->size = dest->data = 0x0UL;
548 	}
549 
550 	prom_trans_ents = last - first;
551 
552 	if (tlb_type == spitfire) {
553 		/* Clear diag TTE bits. */
554 		for (i = 0; i < prom_trans_ents; i++)
555 			prom_trans[i].data &= ~0x0003fe0000000000UL;
556 	}
557 
558 	/* Force execute bit on.  */
559 	for (i = 0; i < prom_trans_ents; i++)
560 		prom_trans[i].data |= (tlb_type == hypervisor ?
561 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
562 }
563 
564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565 				       unsigned long pte,
566 				       unsigned long mmu)
567 {
568 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569 
570 	if (ret != 0) {
571 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573 		prom_halt();
574 	}
575 }
576 
577 static unsigned long kern_large_tte(unsigned long paddr);
578 
579 static void __init remap_kernel(void)
580 {
581 	unsigned long phys_page, tte_vaddr, tte_data;
582 	int i, tlb_ent = sparc64_highest_locked_tlbent();
583 
584 	tte_vaddr = (unsigned long) KERNBASE;
585 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
586 	tte_data = kern_large_tte(phys_page);
587 
588 	kern_locked_tte_data = tte_data;
589 
590 	/* Now lock us into the TLBs via Hypervisor or OBP. */
591 	if (tlb_type == hypervisor) {
592 		for (i = 0; i < num_kernel_image_mappings; i++) {
593 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595 			tte_vaddr += 0x400000;
596 			tte_data += 0x400000;
597 		}
598 	} else {
599 		for (i = 0; i < num_kernel_image_mappings; i++) {
600 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602 			tte_vaddr += 0x400000;
603 			tte_data += 0x400000;
604 		}
605 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
606 	}
607 	if (tlb_type == cheetah_plus) {
608 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609 					    CTX_CHEETAH_PLUS_NUC);
610 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612 	}
613 }
614 
615 
616 static void __init inherit_prom_mappings(void)
617 {
618 	/* Now fixup OBP's idea about where we really are mapped. */
619 	printk("Remapping the kernel... ");
620 	remap_kernel();
621 	printk("done.\n");
622 }
623 
624 void prom_world(int enter)
625 {
626 	if (!enter)
627 		set_fs(get_fs());
628 
629 	__asm__ __volatile__("flushw");
630 }
631 
632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634 	unsigned long va;
635 
636 	if (tlb_type == spitfire) {
637 		int n = 0;
638 
639 		for (va = start; va < end; va += 32) {
640 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641 			if (++n >= 512)
642 				break;
643 		}
644 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645 		start = __pa(start);
646 		end = __pa(end);
647 		for (va = start; va < end; va += 32)
648 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649 					     "membar #Sync"
650 					     : /* no outputs */
651 					     : "r" (va),
652 					       "i" (ASI_DCACHE_INVALIDATE));
653 	}
654 }
655 EXPORT_SYMBOL(__flush_dcache_range);
656 
657 /* get_new_mmu_context() uses "cache + 1".  */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
659 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
660 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663 
664 /* Caller does TLB context flushing on local CPU if necessary.
665  * The caller also ensures that CTX_VALID(mm->context) is false.
666  *
667  * We must be careful about boundary cases so that we never
668  * let the user have CTX 0 (nucleus) or we ever use a CTX
669  * version of zero (and thus NO_CONTEXT would not be caught
670  * by version mis-match tests in mmu_context.h).
671  *
672  * Always invoked with interrupts disabled.
673  */
674 void get_new_mmu_context(struct mm_struct *mm)
675 {
676 	unsigned long ctx, new_ctx;
677 	unsigned long orig_pgsz_bits;
678 	unsigned long flags;
679 	int new_version;
680 
681 	spin_lock_irqsave(&ctx_alloc_lock, flags);
682 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
683 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
684 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
685 	new_version = 0;
686 	if (new_ctx >= (1 << CTX_NR_BITS)) {
687 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
688 		if (new_ctx >= ctx) {
689 			int i;
690 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
691 				CTX_FIRST_VERSION;
692 			if (new_ctx == 1)
693 				new_ctx = CTX_FIRST_VERSION;
694 
695 			/* Don't call memset, for 16 entries that's just
696 			 * plain silly...
697 			 */
698 			mmu_context_bmap[0] = 3;
699 			mmu_context_bmap[1] = 0;
700 			mmu_context_bmap[2] = 0;
701 			mmu_context_bmap[3] = 0;
702 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
703 				mmu_context_bmap[i + 0] = 0;
704 				mmu_context_bmap[i + 1] = 0;
705 				mmu_context_bmap[i + 2] = 0;
706 				mmu_context_bmap[i + 3] = 0;
707 			}
708 			new_version = 1;
709 			goto out;
710 		}
711 	}
712 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
713 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
714 out:
715 	tlb_context_cache = new_ctx;
716 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
717 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
718 
719 	if (unlikely(new_version))
720 		smp_new_mmu_context_version();
721 }
722 
723 static int numa_enabled = 1;
724 static int numa_debug;
725 
726 static int __init early_numa(char *p)
727 {
728 	if (!p)
729 		return 0;
730 
731 	if (strstr(p, "off"))
732 		numa_enabled = 0;
733 
734 	if (strstr(p, "debug"))
735 		numa_debug = 1;
736 
737 	return 0;
738 }
739 early_param("numa", early_numa);
740 
741 #define numadbg(f, a...) \
742 do {	if (numa_debug) \
743 		printk(KERN_INFO f, ## a); \
744 } while (0)
745 
746 static void __init find_ramdisk(unsigned long phys_base)
747 {
748 #ifdef CONFIG_BLK_DEV_INITRD
749 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
750 		unsigned long ramdisk_image;
751 
752 		/* Older versions of the bootloader only supported a
753 		 * 32-bit physical address for the ramdisk image
754 		 * location, stored at sparc_ramdisk_image.  Newer
755 		 * SILO versions set sparc_ramdisk_image to zero and
756 		 * provide a full 64-bit physical address at
757 		 * sparc_ramdisk_image64.
758 		 */
759 		ramdisk_image = sparc_ramdisk_image;
760 		if (!ramdisk_image)
761 			ramdisk_image = sparc_ramdisk_image64;
762 
763 		/* Another bootloader quirk.  The bootloader normalizes
764 		 * the physical address to KERNBASE, so we have to
765 		 * factor that back out and add in the lowest valid
766 		 * physical page address to get the true physical address.
767 		 */
768 		ramdisk_image -= KERNBASE;
769 		ramdisk_image += phys_base;
770 
771 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
772 			ramdisk_image, sparc_ramdisk_size);
773 
774 		initrd_start = ramdisk_image;
775 		initrd_end = ramdisk_image + sparc_ramdisk_size;
776 
777 		memblock_reserve(initrd_start, sparc_ramdisk_size);
778 
779 		initrd_start += PAGE_OFFSET;
780 		initrd_end += PAGE_OFFSET;
781 	}
782 #endif
783 }
784 
785 struct node_mem_mask {
786 	unsigned long mask;
787 	unsigned long val;
788 };
789 static struct node_mem_mask node_masks[MAX_NUMNODES];
790 static int num_node_masks;
791 
792 int numa_cpu_lookup_table[NR_CPUS];
793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794 
795 #ifdef CONFIG_NEED_MULTIPLE_NODES
796 
797 struct mdesc_mblock {
798 	u64	base;
799 	u64	size;
800 	u64	offset; /* RA-to-PA */
801 };
802 static struct mdesc_mblock *mblocks;
803 static int num_mblocks;
804 
805 static unsigned long ra_to_pa(unsigned long addr)
806 {
807 	int i;
808 
809 	for (i = 0; i < num_mblocks; i++) {
810 		struct mdesc_mblock *m = &mblocks[i];
811 
812 		if (addr >= m->base &&
813 		    addr < (m->base + m->size)) {
814 			addr += m->offset;
815 			break;
816 		}
817 	}
818 	return addr;
819 }
820 
821 static int find_node(unsigned long addr)
822 {
823 	int i;
824 
825 	addr = ra_to_pa(addr);
826 	for (i = 0; i < num_node_masks; i++) {
827 		struct node_mem_mask *p = &node_masks[i];
828 
829 		if ((addr & p->mask) == p->val)
830 			return i;
831 	}
832 	return -1;
833 }
834 
835 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
836 {
837 	*nid = find_node(start);
838 	start += PAGE_SIZE;
839 	while (start < end) {
840 		int n = find_node(start);
841 
842 		if (n != *nid)
843 			break;
844 		start += PAGE_SIZE;
845 	}
846 
847 	if (start > end)
848 		start = end;
849 
850 	return start;
851 }
852 #endif
853 
854 /* This must be invoked after performing all of the necessary
855  * memblock_set_node() calls for 'nid'.  We need to be able to get
856  * correct data from get_pfn_range_for_nid().
857  */
858 static void __init allocate_node_data(int nid)
859 {
860 	struct pglist_data *p;
861 	unsigned long start_pfn, end_pfn;
862 #ifdef CONFIG_NEED_MULTIPLE_NODES
863 	unsigned long paddr;
864 
865 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
866 	if (!paddr) {
867 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
868 		prom_halt();
869 	}
870 	NODE_DATA(nid) = __va(paddr);
871 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
872 
873 	NODE_DATA(nid)->node_id = nid;
874 #endif
875 
876 	p = NODE_DATA(nid);
877 
878 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
879 	p->node_start_pfn = start_pfn;
880 	p->node_spanned_pages = end_pfn - start_pfn;
881 }
882 
883 static void init_node_masks_nonnuma(void)
884 {
885 	int i;
886 
887 	numadbg("Initializing tables for non-numa.\n");
888 
889 	node_masks[0].mask = node_masks[0].val = 0;
890 	num_node_masks = 1;
891 
892 	for (i = 0; i < NR_CPUS; i++)
893 		numa_cpu_lookup_table[i] = 0;
894 
895 	cpumask_setall(&numa_cpumask_lookup_table[0]);
896 }
897 
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 struct pglist_data *node_data[MAX_NUMNODES];
900 
901 EXPORT_SYMBOL(numa_cpu_lookup_table);
902 EXPORT_SYMBOL(numa_cpumask_lookup_table);
903 EXPORT_SYMBOL(node_data);
904 
905 struct mdesc_mlgroup {
906 	u64	node;
907 	u64	latency;
908 	u64	match;
909 	u64	mask;
910 };
911 static struct mdesc_mlgroup *mlgroups;
912 static int num_mlgroups;
913 
914 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
915 				   u32 cfg_handle)
916 {
917 	u64 arc;
918 
919 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
920 		u64 target = mdesc_arc_target(md, arc);
921 		const u64 *val;
922 
923 		val = mdesc_get_property(md, target,
924 					 "cfg-handle", NULL);
925 		if (val && *val == cfg_handle)
926 			return 0;
927 	}
928 	return -ENODEV;
929 }
930 
931 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
932 				    u32 cfg_handle)
933 {
934 	u64 arc, candidate, best_latency = ~(u64)0;
935 
936 	candidate = MDESC_NODE_NULL;
937 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
938 		u64 target = mdesc_arc_target(md, arc);
939 		const char *name = mdesc_node_name(md, target);
940 		const u64 *val;
941 
942 		if (strcmp(name, "pio-latency-group"))
943 			continue;
944 
945 		val = mdesc_get_property(md, target, "latency", NULL);
946 		if (!val)
947 			continue;
948 
949 		if (*val < best_latency) {
950 			candidate = target;
951 			best_latency = *val;
952 		}
953 	}
954 
955 	if (candidate == MDESC_NODE_NULL)
956 		return -ENODEV;
957 
958 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
959 }
960 
961 int of_node_to_nid(struct device_node *dp)
962 {
963 	const struct linux_prom64_registers *regs;
964 	struct mdesc_handle *md;
965 	u32 cfg_handle;
966 	int count, nid;
967 	u64 grp;
968 
969 	/* This is the right thing to do on currently supported
970 	 * SUN4U NUMA platforms as well, as the PCI controller does
971 	 * not sit behind any particular memory controller.
972 	 */
973 	if (!mlgroups)
974 		return -1;
975 
976 	regs = of_get_property(dp, "reg", NULL);
977 	if (!regs)
978 		return -1;
979 
980 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
981 
982 	md = mdesc_grab();
983 
984 	count = 0;
985 	nid = -1;
986 	mdesc_for_each_node_by_name(md, grp, "group") {
987 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
988 			nid = count;
989 			break;
990 		}
991 		count++;
992 	}
993 
994 	mdesc_release(md);
995 
996 	return nid;
997 }
998 
999 static void __init add_node_ranges(void)
1000 {
1001 	struct memblock_region *reg;
1002 
1003 	for_each_memblock(memory, reg) {
1004 		unsigned long size = reg->size;
1005 		unsigned long start, end;
1006 
1007 		start = reg->base;
1008 		end = start + size;
1009 		while (start < end) {
1010 			unsigned long this_end;
1011 			int nid;
1012 
1013 			this_end = memblock_nid_range(start, end, &nid);
1014 
1015 			numadbg("Setting memblock NUMA node nid[%d] "
1016 				"start[%lx] end[%lx]\n",
1017 				nid, start, this_end);
1018 
1019 			memblock_set_node(start, this_end - start, nid);
1020 			start = this_end;
1021 		}
1022 	}
1023 }
1024 
1025 static int __init grab_mlgroups(struct mdesc_handle *md)
1026 {
1027 	unsigned long paddr;
1028 	int count = 0;
1029 	u64 node;
1030 
1031 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1032 		count++;
1033 	if (!count)
1034 		return -ENOENT;
1035 
1036 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1037 			  SMP_CACHE_BYTES);
1038 	if (!paddr)
1039 		return -ENOMEM;
1040 
1041 	mlgroups = __va(paddr);
1042 	num_mlgroups = count;
1043 
1044 	count = 0;
1045 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1046 		struct mdesc_mlgroup *m = &mlgroups[count++];
1047 		const u64 *val;
1048 
1049 		m->node = node;
1050 
1051 		val = mdesc_get_property(md, node, "latency", NULL);
1052 		m->latency = *val;
1053 		val = mdesc_get_property(md, node, "address-match", NULL);
1054 		m->match = *val;
1055 		val = mdesc_get_property(md, node, "address-mask", NULL);
1056 		m->mask = *val;
1057 
1058 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1059 			"match[%llx] mask[%llx]\n",
1060 			count - 1, m->node, m->latency, m->match, m->mask);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int __init grab_mblocks(struct mdesc_handle *md)
1067 {
1068 	unsigned long paddr;
1069 	int count = 0;
1070 	u64 node;
1071 
1072 	mdesc_for_each_node_by_name(md, node, "mblock")
1073 		count++;
1074 	if (!count)
1075 		return -ENOENT;
1076 
1077 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1078 			  SMP_CACHE_BYTES);
1079 	if (!paddr)
1080 		return -ENOMEM;
1081 
1082 	mblocks = __va(paddr);
1083 	num_mblocks = count;
1084 
1085 	count = 0;
1086 	mdesc_for_each_node_by_name(md, node, "mblock") {
1087 		struct mdesc_mblock *m = &mblocks[count++];
1088 		const u64 *val;
1089 
1090 		val = mdesc_get_property(md, node, "base", NULL);
1091 		m->base = *val;
1092 		val = mdesc_get_property(md, node, "size", NULL);
1093 		m->size = *val;
1094 		val = mdesc_get_property(md, node,
1095 					 "address-congruence-offset", NULL);
1096 		m->offset = *val;
1097 
1098 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1099 			count - 1, m->base, m->size, m->offset);
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1106 					       u64 grp, cpumask_t *mask)
1107 {
1108 	u64 arc;
1109 
1110 	cpumask_clear(mask);
1111 
1112 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1113 		u64 target = mdesc_arc_target(md, arc);
1114 		const char *name = mdesc_node_name(md, target);
1115 		const u64 *id;
1116 
1117 		if (strcmp(name, "cpu"))
1118 			continue;
1119 		id = mdesc_get_property(md, target, "id", NULL);
1120 		if (*id < nr_cpu_ids)
1121 			cpumask_set_cpu(*id, mask);
1122 	}
1123 }
1124 
1125 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < num_mlgroups; i++) {
1130 		struct mdesc_mlgroup *m = &mlgroups[i];
1131 		if (m->node == node)
1132 			return m;
1133 	}
1134 	return NULL;
1135 }
1136 
1137 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1138 				      int index)
1139 {
1140 	struct mdesc_mlgroup *candidate = NULL;
1141 	u64 arc, best_latency = ~(u64)0;
1142 	struct node_mem_mask *n;
1143 
1144 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1145 		u64 target = mdesc_arc_target(md, arc);
1146 		struct mdesc_mlgroup *m = find_mlgroup(target);
1147 		if (!m)
1148 			continue;
1149 		if (m->latency < best_latency) {
1150 			candidate = m;
1151 			best_latency = m->latency;
1152 		}
1153 	}
1154 	if (!candidate)
1155 		return -ENOENT;
1156 
1157 	if (num_node_masks != index) {
1158 		printk(KERN_ERR "Inconsistent NUMA state, "
1159 		       "index[%d] != num_node_masks[%d]\n",
1160 		       index, num_node_masks);
1161 		return -EINVAL;
1162 	}
1163 
1164 	n = &node_masks[num_node_masks++];
1165 
1166 	n->mask = candidate->mask;
1167 	n->val = candidate->match;
1168 
1169 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1170 		index, n->mask, n->val, candidate->latency);
1171 
1172 	return 0;
1173 }
1174 
1175 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1176 					 int index)
1177 {
1178 	cpumask_t mask;
1179 	int cpu;
1180 
1181 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1182 
1183 	for_each_cpu(cpu, &mask)
1184 		numa_cpu_lookup_table[cpu] = index;
1185 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1186 
1187 	if (numa_debug) {
1188 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1189 		for_each_cpu(cpu, &mask)
1190 			printk("%d ", cpu);
1191 		printk("]\n");
1192 	}
1193 
1194 	return numa_attach_mlgroup(md, grp, index);
1195 }
1196 
1197 static int __init numa_parse_mdesc(void)
1198 {
1199 	struct mdesc_handle *md = mdesc_grab();
1200 	int i, err, count;
1201 	u64 node;
1202 
1203 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1204 	if (node == MDESC_NODE_NULL) {
1205 		mdesc_release(md);
1206 		return -ENOENT;
1207 	}
1208 
1209 	err = grab_mblocks(md);
1210 	if (err < 0)
1211 		goto out;
1212 
1213 	err = grab_mlgroups(md);
1214 	if (err < 0)
1215 		goto out;
1216 
1217 	count = 0;
1218 	mdesc_for_each_node_by_name(md, node, "group") {
1219 		err = numa_parse_mdesc_group(md, node, count);
1220 		if (err < 0)
1221 			break;
1222 		count++;
1223 	}
1224 
1225 	add_node_ranges();
1226 
1227 	for (i = 0; i < num_node_masks; i++) {
1228 		allocate_node_data(i);
1229 		node_set_online(i);
1230 	}
1231 
1232 	err = 0;
1233 out:
1234 	mdesc_release(md);
1235 	return err;
1236 }
1237 
1238 static int __init numa_parse_jbus(void)
1239 {
1240 	unsigned long cpu, index;
1241 
1242 	/* NUMA node id is encoded in bits 36 and higher, and there is
1243 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1244 	 */
1245 	index = 0;
1246 	for_each_present_cpu(cpu) {
1247 		numa_cpu_lookup_table[cpu] = index;
1248 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1249 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1250 		node_masks[index].val = cpu << 36UL;
1251 
1252 		index++;
1253 	}
1254 	num_node_masks = index;
1255 
1256 	add_node_ranges();
1257 
1258 	for (index = 0; index < num_node_masks; index++) {
1259 		allocate_node_data(index);
1260 		node_set_online(index);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static int __init numa_parse_sun4u(void)
1267 {
1268 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1269 		unsigned long ver;
1270 
1271 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1272 		if ((ver >> 32UL) == __JALAPENO_ID ||
1273 		    (ver >> 32UL) == __SERRANO_ID)
1274 			return numa_parse_jbus();
1275 	}
1276 	return -1;
1277 }
1278 
1279 static int __init bootmem_init_numa(void)
1280 {
1281 	int err = -1;
1282 
1283 	numadbg("bootmem_init_numa()\n");
1284 
1285 	if (numa_enabled) {
1286 		if (tlb_type == hypervisor)
1287 			err = numa_parse_mdesc();
1288 		else
1289 			err = numa_parse_sun4u();
1290 	}
1291 	return err;
1292 }
1293 
1294 #else
1295 
1296 static int bootmem_init_numa(void)
1297 {
1298 	return -1;
1299 }
1300 
1301 #endif
1302 
1303 static void __init bootmem_init_nonnuma(void)
1304 {
1305 	unsigned long top_of_ram = memblock_end_of_DRAM();
1306 	unsigned long total_ram = memblock_phys_mem_size();
1307 
1308 	numadbg("bootmem_init_nonnuma()\n");
1309 
1310 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1311 	       top_of_ram, total_ram);
1312 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1313 	       (top_of_ram - total_ram) >> 20);
1314 
1315 	init_node_masks_nonnuma();
1316 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1317 	allocate_node_data(0);
1318 	node_set_online(0);
1319 }
1320 
1321 static unsigned long __init bootmem_init(unsigned long phys_base)
1322 {
1323 	unsigned long end_pfn;
1324 
1325 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1326 	max_pfn = max_low_pfn = end_pfn;
1327 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1328 
1329 	if (bootmem_init_numa() < 0)
1330 		bootmem_init_nonnuma();
1331 
1332 	/* Dump memblock with node info. */
1333 	memblock_dump_all();
1334 
1335 	/* XXX cpu notifier XXX */
1336 
1337 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1338 	sparse_init();
1339 
1340 	return end_pfn;
1341 }
1342 
1343 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1344 static int pall_ents __initdata;
1345 
1346 #ifdef CONFIG_DEBUG_PAGEALLOC
1347 static unsigned long __ref kernel_map_range(unsigned long pstart,
1348 					    unsigned long pend, pgprot_t prot)
1349 {
1350 	unsigned long vstart = PAGE_OFFSET + pstart;
1351 	unsigned long vend = PAGE_OFFSET + pend;
1352 	unsigned long alloc_bytes = 0UL;
1353 
1354 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1355 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1356 			    vstart, vend);
1357 		prom_halt();
1358 	}
1359 
1360 	while (vstart < vend) {
1361 		unsigned long this_end, paddr = __pa(vstart);
1362 		pgd_t *pgd = pgd_offset_k(vstart);
1363 		pud_t *pud;
1364 		pmd_t *pmd;
1365 		pte_t *pte;
1366 
1367 		pud = pud_offset(pgd, vstart);
1368 		if (pud_none(*pud)) {
1369 			pmd_t *new;
1370 
1371 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1372 			alloc_bytes += PAGE_SIZE;
1373 			pud_populate(&init_mm, pud, new);
1374 		}
1375 
1376 		pmd = pmd_offset(pud, vstart);
1377 		if (!pmd_present(*pmd)) {
1378 			pte_t *new;
1379 
1380 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1381 			alloc_bytes += PAGE_SIZE;
1382 			pmd_populate_kernel(&init_mm, pmd, new);
1383 		}
1384 
1385 		pte = pte_offset_kernel(pmd, vstart);
1386 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1387 		if (this_end > vend)
1388 			this_end = vend;
1389 
1390 		while (vstart < this_end) {
1391 			pte_val(*pte) = (paddr | pgprot_val(prot));
1392 
1393 			vstart += PAGE_SIZE;
1394 			paddr += PAGE_SIZE;
1395 			pte++;
1396 		}
1397 	}
1398 
1399 	return alloc_bytes;
1400 }
1401 
1402 extern unsigned int kvmap_linear_patch[1];
1403 #endif /* CONFIG_DEBUG_PAGEALLOC */
1404 
1405 static void __init kpte_set_val(unsigned long index, unsigned long val)
1406 {
1407 	unsigned long *ptr = kpte_linear_bitmap;
1408 
1409 	val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1410 	ptr += (index / (BITS_PER_LONG / 2));
1411 
1412 	*ptr |= val;
1413 }
1414 
1415 static const unsigned long kpte_shift_min = 28; /* 256MB */
1416 static const unsigned long kpte_shift_max = 34; /* 16GB */
1417 static const unsigned long kpte_shift_incr = 3;
1418 
1419 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1420 					   unsigned long shift)
1421 {
1422 	unsigned long size = (1UL << shift);
1423 	unsigned long mask = (size - 1UL);
1424 	unsigned long remains = end - start;
1425 	unsigned long val;
1426 
1427 	if (remains < size || (start & mask))
1428 		return start;
1429 
1430 	/* VAL maps:
1431 	 *
1432 	 *	shift 28 --> kern_linear_pte_xor index 1
1433 	 *	shift 31 --> kern_linear_pte_xor index 2
1434 	 *	shift 34 --> kern_linear_pte_xor index 3
1435 	 */
1436 	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1437 
1438 	remains &= ~mask;
1439 	if (shift != kpte_shift_max)
1440 		remains = size;
1441 
1442 	while (remains) {
1443 		unsigned long index = start >> kpte_shift_min;
1444 
1445 		kpte_set_val(index, val);
1446 
1447 		start += 1UL << kpte_shift_min;
1448 		remains -= 1UL << kpte_shift_min;
1449 	}
1450 
1451 	return start;
1452 }
1453 
1454 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1455 {
1456 	unsigned long smallest_size, smallest_mask;
1457 	unsigned long s;
1458 
1459 	smallest_size = (1UL << kpte_shift_min);
1460 	smallest_mask = (smallest_size - 1UL);
1461 
1462 	while (start < end) {
1463 		unsigned long orig_start = start;
1464 
1465 		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1466 			start = kpte_mark_using_shift(start, end, s);
1467 
1468 			if (start != orig_start)
1469 				break;
1470 		}
1471 
1472 		if (start == orig_start)
1473 			start = (start + smallest_size) & ~smallest_mask;
1474 	}
1475 }
1476 
1477 static void __init init_kpte_bitmap(void)
1478 {
1479 	unsigned long i;
1480 
1481 	for (i = 0; i < pall_ents; i++) {
1482 		unsigned long phys_start, phys_end;
1483 
1484 		phys_start = pall[i].phys_addr;
1485 		phys_end = phys_start + pall[i].reg_size;
1486 
1487 		mark_kpte_bitmap(phys_start, phys_end);
1488 	}
1489 }
1490 
1491 static void __init kernel_physical_mapping_init(void)
1492 {
1493 #ifdef CONFIG_DEBUG_PAGEALLOC
1494 	unsigned long i, mem_alloced = 0UL;
1495 
1496 	for (i = 0; i < pall_ents; i++) {
1497 		unsigned long phys_start, phys_end;
1498 
1499 		phys_start = pall[i].phys_addr;
1500 		phys_end = phys_start + pall[i].reg_size;
1501 
1502 		mem_alloced += kernel_map_range(phys_start, phys_end,
1503 						PAGE_KERNEL);
1504 	}
1505 
1506 	printk("Allocated %ld bytes for kernel page tables.\n",
1507 	       mem_alloced);
1508 
1509 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1510 	flushi(&kvmap_linear_patch[0]);
1511 
1512 	__flush_tlb_all();
1513 #endif
1514 }
1515 
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 void kernel_map_pages(struct page *page, int numpages, int enable)
1518 {
1519 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1520 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1521 
1522 	kernel_map_range(phys_start, phys_end,
1523 			 (enable ? PAGE_KERNEL : __pgprot(0)));
1524 
1525 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1526 			       PAGE_OFFSET + phys_end);
1527 
1528 	/* we should perform an IPI and flush all tlbs,
1529 	 * but that can deadlock->flush only current cpu.
1530 	 */
1531 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1532 				 PAGE_OFFSET + phys_end);
1533 }
1534 #endif
1535 
1536 unsigned long __init find_ecache_flush_span(unsigned long size)
1537 {
1538 	int i;
1539 
1540 	for (i = 0; i < pavail_ents; i++) {
1541 		if (pavail[i].reg_size >= size)
1542 			return pavail[i].phys_addr;
1543 	}
1544 
1545 	return ~0UL;
1546 }
1547 
1548 static void __init tsb_phys_patch(void)
1549 {
1550 	struct tsb_ldquad_phys_patch_entry *pquad;
1551 	struct tsb_phys_patch_entry *p;
1552 
1553 	pquad = &__tsb_ldquad_phys_patch;
1554 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1555 		unsigned long addr = pquad->addr;
1556 
1557 		if (tlb_type == hypervisor)
1558 			*(unsigned int *) addr = pquad->sun4v_insn;
1559 		else
1560 			*(unsigned int *) addr = pquad->sun4u_insn;
1561 		wmb();
1562 		__asm__ __volatile__("flush	%0"
1563 				     : /* no outputs */
1564 				     : "r" (addr));
1565 
1566 		pquad++;
1567 	}
1568 
1569 	p = &__tsb_phys_patch;
1570 	while (p < &__tsb_phys_patch_end) {
1571 		unsigned long addr = p->addr;
1572 
1573 		*(unsigned int *) addr = p->insn;
1574 		wmb();
1575 		__asm__ __volatile__("flush	%0"
1576 				     : /* no outputs */
1577 				     : "r" (addr));
1578 
1579 		p++;
1580 	}
1581 }
1582 
1583 /* Don't mark as init, we give this to the Hypervisor.  */
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585 #define NUM_KTSB_DESCR	2
1586 #else
1587 #define NUM_KTSB_DESCR	1
1588 #endif
1589 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1590 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1591 
1592 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1593 {
1594 	pa >>= KTSB_PHYS_SHIFT;
1595 
1596 	while (start < end) {
1597 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1598 
1599 		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1600 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1601 
1602 		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1603 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1604 
1605 		start++;
1606 	}
1607 }
1608 
1609 static void ktsb_phys_patch(void)
1610 {
1611 	extern unsigned int __swapper_tsb_phys_patch;
1612 	extern unsigned int __swapper_tsb_phys_patch_end;
1613 	unsigned long ktsb_pa;
1614 
1615 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1617 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1618 #ifndef CONFIG_DEBUG_PAGEALLOC
1619 	{
1620 	extern unsigned int __swapper_4m_tsb_phys_patch;
1621 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1622 	ktsb_pa = (kern_base +
1623 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1624 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1625 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1626 	}
1627 #endif
1628 }
1629 
1630 static void __init sun4v_ktsb_init(void)
1631 {
1632 	unsigned long ktsb_pa;
1633 
1634 	/* First KTSB for PAGE_SIZE mappings.  */
1635 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1636 
1637 	switch (PAGE_SIZE) {
1638 	case 8 * 1024:
1639 	default:
1640 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1641 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1642 		break;
1643 
1644 	case 64 * 1024:
1645 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1646 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1647 		break;
1648 
1649 	case 512 * 1024:
1650 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1651 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1652 		break;
1653 
1654 	case 4 * 1024 * 1024:
1655 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1656 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1657 		break;
1658 	}
1659 
1660 	ktsb_descr[0].assoc = 1;
1661 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1662 	ktsb_descr[0].ctx_idx = 0;
1663 	ktsb_descr[0].tsb_base = ktsb_pa;
1664 	ktsb_descr[0].resv = 0;
1665 
1666 #ifndef CONFIG_DEBUG_PAGEALLOC
1667 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1668 	ktsb_pa = (kern_base +
1669 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1670 
1671 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1672 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1673 				    HV_PGSZ_MASK_256MB |
1674 				    HV_PGSZ_MASK_2GB |
1675 				    HV_PGSZ_MASK_16GB) &
1676 				   cpu_pgsz_mask);
1677 	ktsb_descr[1].assoc = 1;
1678 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1679 	ktsb_descr[1].ctx_idx = 0;
1680 	ktsb_descr[1].tsb_base = ktsb_pa;
1681 	ktsb_descr[1].resv = 0;
1682 #endif
1683 }
1684 
1685 void __cpuinit sun4v_ktsb_register(void)
1686 {
1687 	unsigned long pa, ret;
1688 
1689 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1690 
1691 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1692 	if (ret != 0) {
1693 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1694 			    "errors with %lx\n", pa, ret);
1695 		prom_halt();
1696 	}
1697 }
1698 
1699 static void __init sun4u_linear_pte_xor_finalize(void)
1700 {
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702 	/* This is where we would add Panther support for
1703 	 * 32MB and 256MB pages.
1704 	 */
1705 #endif
1706 }
1707 
1708 static void __init sun4v_linear_pte_xor_finalize(void)
1709 {
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1712 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1713 			0xfffff80000000000UL;
1714 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1715 					   _PAGE_P_4V | _PAGE_W_4V);
1716 	} else {
1717 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1718 	}
1719 
1720 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1721 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1722 			0xfffff80000000000UL;
1723 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1724 					   _PAGE_P_4V | _PAGE_W_4V);
1725 	} else {
1726 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1727 	}
1728 
1729 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1730 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1731 			0xfffff80000000000UL;
1732 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1733 					   _PAGE_P_4V | _PAGE_W_4V);
1734 	} else {
1735 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1736 	}
1737 #endif
1738 }
1739 
1740 /* paging_init() sets up the page tables */
1741 
1742 static unsigned long last_valid_pfn;
1743 pgd_t swapper_pg_dir[2048];
1744 
1745 static void sun4u_pgprot_init(void);
1746 static void sun4v_pgprot_init(void);
1747 
1748 void __init paging_init(void)
1749 {
1750 	unsigned long end_pfn, shift, phys_base;
1751 	unsigned long real_end, i;
1752 	int node;
1753 
1754 	/* These build time checkes make sure that the dcache_dirty_cpu()
1755 	 * page->flags usage will work.
1756 	 *
1757 	 * When a page gets marked as dcache-dirty, we store the
1758 	 * cpu number starting at bit 32 in the page->flags.  Also,
1759 	 * functions like clear_dcache_dirty_cpu use the cpu mask
1760 	 * in 13-bit signed-immediate instruction fields.
1761 	 */
1762 
1763 	/*
1764 	 * Page flags must not reach into upper 32 bits that are used
1765 	 * for the cpu number
1766 	 */
1767 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1768 
1769 	/*
1770 	 * The bit fields placed in the high range must not reach below
1771 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1772 	 * at the 32 bit boundary.
1773 	 */
1774 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1775 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1776 
1777 	BUILD_BUG_ON(NR_CPUS > 4096);
1778 
1779 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1780 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1781 
1782 	/* Invalidate both kernel TSBs.  */
1783 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1784 #ifndef CONFIG_DEBUG_PAGEALLOC
1785 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1786 #endif
1787 
1788 	if (tlb_type == hypervisor)
1789 		sun4v_pgprot_init();
1790 	else
1791 		sun4u_pgprot_init();
1792 
1793 	if (tlb_type == cheetah_plus ||
1794 	    tlb_type == hypervisor) {
1795 		tsb_phys_patch();
1796 		ktsb_phys_patch();
1797 	}
1798 
1799 	if (tlb_type == hypervisor)
1800 		sun4v_patch_tlb_handlers();
1801 
1802 	/* Find available physical memory...
1803 	 *
1804 	 * Read it twice in order to work around a bug in openfirmware.
1805 	 * The call to grab this table itself can cause openfirmware to
1806 	 * allocate memory, which in turn can take away some space from
1807 	 * the list of available memory.  Reading it twice makes sure
1808 	 * we really do get the final value.
1809 	 */
1810 	read_obp_translations();
1811 	read_obp_memory("reg", &pall[0], &pall_ents);
1812 	read_obp_memory("available", &pavail[0], &pavail_ents);
1813 	read_obp_memory("available", &pavail[0], &pavail_ents);
1814 
1815 	phys_base = 0xffffffffffffffffUL;
1816 	for (i = 0; i < pavail_ents; i++) {
1817 		phys_base = min(phys_base, pavail[i].phys_addr);
1818 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1819 	}
1820 
1821 	memblock_reserve(kern_base, kern_size);
1822 
1823 	find_ramdisk(phys_base);
1824 
1825 	memblock_enforce_memory_limit(cmdline_memory_size);
1826 
1827 	memblock_allow_resize();
1828 	memblock_dump_all();
1829 
1830 	set_bit(0, mmu_context_bmap);
1831 
1832 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1833 
1834 	real_end = (unsigned long)_end;
1835 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1836 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1837 	       num_kernel_image_mappings);
1838 
1839 	/* Set kernel pgd to upper alias so physical page computations
1840 	 * work.
1841 	 */
1842 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1843 
1844 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1845 
1846 	/* Now can init the kernel/bad page tables. */
1847 	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1848 		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1849 
1850 	inherit_prom_mappings();
1851 
1852 	init_kpte_bitmap();
1853 
1854 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1855 	setup_tba();
1856 
1857 	__flush_tlb_all();
1858 
1859 	prom_build_devicetree();
1860 	of_populate_present_mask();
1861 #ifndef CONFIG_SMP
1862 	of_fill_in_cpu_data();
1863 #endif
1864 
1865 	if (tlb_type == hypervisor) {
1866 		sun4v_mdesc_init();
1867 		mdesc_populate_present_mask(cpu_all_mask);
1868 #ifndef CONFIG_SMP
1869 		mdesc_fill_in_cpu_data(cpu_all_mask);
1870 #endif
1871 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1872 
1873 		sun4v_linear_pte_xor_finalize();
1874 
1875 		sun4v_ktsb_init();
1876 		sun4v_ktsb_register();
1877 	} else {
1878 		unsigned long impl, ver;
1879 
1880 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1881 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1882 
1883 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1884 		impl = ((ver >> 32) & 0xffff);
1885 		if (impl == PANTHER_IMPL)
1886 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1887 					  HV_PGSZ_MASK_256MB);
1888 
1889 		sun4u_linear_pte_xor_finalize();
1890 	}
1891 
1892 	/* Flush the TLBs and the 4M TSB so that the updated linear
1893 	 * pte XOR settings are realized for all mappings.
1894 	 */
1895 	__flush_tlb_all();
1896 #ifndef CONFIG_DEBUG_PAGEALLOC
1897 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1898 #endif
1899 	__flush_tlb_all();
1900 
1901 	/* Setup bootmem... */
1902 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1903 
1904 	/* Once the OF device tree and MDESC have been setup, we know
1905 	 * the list of possible cpus.  Therefore we can allocate the
1906 	 * IRQ stacks.
1907 	 */
1908 	for_each_possible_cpu(i) {
1909 		node = cpu_to_node(i);
1910 
1911 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1912 							THREAD_SIZE,
1913 							THREAD_SIZE, 0);
1914 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1915 							THREAD_SIZE,
1916 							THREAD_SIZE, 0);
1917 	}
1918 
1919 	kernel_physical_mapping_init();
1920 
1921 	{
1922 		unsigned long max_zone_pfns[MAX_NR_ZONES];
1923 
1924 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1925 
1926 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1927 
1928 		free_area_init_nodes(max_zone_pfns);
1929 	}
1930 
1931 	printk("Booting Linux...\n");
1932 }
1933 
1934 int __devinit page_in_phys_avail(unsigned long paddr)
1935 {
1936 	int i;
1937 
1938 	paddr &= PAGE_MASK;
1939 
1940 	for (i = 0; i < pavail_ents; i++) {
1941 		unsigned long start, end;
1942 
1943 		start = pavail[i].phys_addr;
1944 		end = start + pavail[i].reg_size;
1945 
1946 		if (paddr >= start && paddr < end)
1947 			return 1;
1948 	}
1949 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1950 		return 1;
1951 #ifdef CONFIG_BLK_DEV_INITRD
1952 	if (paddr >= __pa(initrd_start) &&
1953 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1954 		return 1;
1955 #endif
1956 
1957 	return 0;
1958 }
1959 
1960 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1961 static int pavail_rescan_ents __initdata;
1962 
1963 /* Certain OBP calls, such as fetching "available" properties, can
1964  * claim physical memory.  So, along with initializing the valid
1965  * address bitmap, what we do here is refetch the physical available
1966  * memory list again, and make sure it provides at least as much
1967  * memory as 'pavail' does.
1968  */
1969 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1970 {
1971 	int i;
1972 
1973 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1974 
1975 	for (i = 0; i < pavail_ents; i++) {
1976 		unsigned long old_start, old_end;
1977 
1978 		old_start = pavail[i].phys_addr;
1979 		old_end = old_start + pavail[i].reg_size;
1980 		while (old_start < old_end) {
1981 			int n;
1982 
1983 			for (n = 0; n < pavail_rescan_ents; n++) {
1984 				unsigned long new_start, new_end;
1985 
1986 				new_start = pavail_rescan[n].phys_addr;
1987 				new_end = new_start +
1988 					pavail_rescan[n].reg_size;
1989 
1990 				if (new_start <= old_start &&
1991 				    new_end >= (old_start + PAGE_SIZE)) {
1992 					set_bit(old_start >> 22, bitmap);
1993 					goto do_next_page;
1994 				}
1995 			}
1996 
1997 			prom_printf("mem_init: Lost memory in pavail\n");
1998 			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1999 				    pavail[i].phys_addr,
2000 				    pavail[i].reg_size);
2001 			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2002 				    pavail_rescan[i].phys_addr,
2003 				    pavail_rescan[i].reg_size);
2004 			prom_printf("mem_init: Cannot continue, aborting.\n");
2005 			prom_halt();
2006 
2007 		do_next_page:
2008 			old_start += PAGE_SIZE;
2009 		}
2010 	}
2011 }
2012 
2013 static void __init patch_tlb_miss_handler_bitmap(void)
2014 {
2015 	extern unsigned int valid_addr_bitmap_insn[];
2016 	extern unsigned int valid_addr_bitmap_patch[];
2017 
2018 	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2019 	mb();
2020 	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2021 	flushi(&valid_addr_bitmap_insn[0]);
2022 }
2023 
2024 void __init mem_init(void)
2025 {
2026 	unsigned long codepages, datapages, initpages;
2027 	unsigned long addr, last;
2028 
2029 	addr = PAGE_OFFSET + kern_base;
2030 	last = PAGE_ALIGN(kern_size) + addr;
2031 	while (addr < last) {
2032 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2033 		addr += PAGE_SIZE;
2034 	}
2035 
2036 	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2037 	patch_tlb_miss_handler_bitmap();
2038 
2039 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2040 
2041 #ifdef CONFIG_NEED_MULTIPLE_NODES
2042 	{
2043 		int i;
2044 		for_each_online_node(i) {
2045 			if (NODE_DATA(i)->node_spanned_pages != 0) {
2046 				totalram_pages +=
2047 					free_all_bootmem_node(NODE_DATA(i));
2048 			}
2049 		}
2050 		totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
2051 	}
2052 #else
2053 	totalram_pages = free_all_bootmem();
2054 #endif
2055 
2056 	/* We subtract one to account for the mem_map_zero page
2057 	 * allocated below.
2058 	 */
2059 	totalram_pages -= 1;
2060 	num_physpages = totalram_pages;
2061 
2062 	/*
2063 	 * Set up the zero page, mark it reserved, so that page count
2064 	 * is not manipulated when freeing the page from user ptes.
2065 	 */
2066 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2067 	if (mem_map_zero == NULL) {
2068 		prom_printf("paging_init: Cannot alloc zero page.\n");
2069 		prom_halt();
2070 	}
2071 	SetPageReserved(mem_map_zero);
2072 
2073 	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2074 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2075 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2076 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2077 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2078 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2079 
2080 	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2081 	       nr_free_pages() << (PAGE_SHIFT-10),
2082 	       codepages << (PAGE_SHIFT-10),
2083 	       datapages << (PAGE_SHIFT-10),
2084 	       initpages << (PAGE_SHIFT-10),
2085 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2086 
2087 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2088 		cheetah_ecache_flush_init();
2089 }
2090 
2091 void free_initmem(void)
2092 {
2093 	unsigned long addr, initend;
2094 	int do_free = 1;
2095 
2096 	/* If the physical memory maps were trimmed by kernel command
2097 	 * line options, don't even try freeing this initmem stuff up.
2098 	 * The kernel image could have been in the trimmed out region
2099 	 * and if so the freeing below will free invalid page structs.
2100 	 */
2101 	if (cmdline_memory_size)
2102 		do_free = 0;
2103 
2104 	/*
2105 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2106 	 */
2107 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2108 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2109 	for (; addr < initend; addr += PAGE_SIZE) {
2110 		unsigned long page;
2111 		struct page *p;
2112 
2113 		page = (addr +
2114 			((unsigned long) __va(kern_base)) -
2115 			((unsigned long) KERNBASE));
2116 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2117 
2118 		if (do_free) {
2119 			p = virt_to_page(page);
2120 
2121 			ClearPageReserved(p);
2122 			init_page_count(p);
2123 			__free_page(p);
2124 			num_physpages++;
2125 			totalram_pages++;
2126 		}
2127 	}
2128 }
2129 
2130 #ifdef CONFIG_BLK_DEV_INITRD
2131 void free_initrd_mem(unsigned long start, unsigned long end)
2132 {
2133 	if (start < end)
2134 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2135 	for (; start < end; start += PAGE_SIZE) {
2136 		struct page *p = virt_to_page(start);
2137 
2138 		ClearPageReserved(p);
2139 		init_page_count(p);
2140 		__free_page(p);
2141 		num_physpages++;
2142 		totalram_pages++;
2143 	}
2144 }
2145 #endif
2146 
2147 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2148 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2149 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2150 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2151 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2152 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2153 
2154 pgprot_t PAGE_KERNEL __read_mostly;
2155 EXPORT_SYMBOL(PAGE_KERNEL);
2156 
2157 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2158 pgprot_t PAGE_COPY __read_mostly;
2159 
2160 pgprot_t PAGE_SHARED __read_mostly;
2161 EXPORT_SYMBOL(PAGE_SHARED);
2162 
2163 unsigned long pg_iobits __read_mostly;
2164 
2165 unsigned long _PAGE_IE __read_mostly;
2166 EXPORT_SYMBOL(_PAGE_IE);
2167 
2168 unsigned long _PAGE_E __read_mostly;
2169 EXPORT_SYMBOL(_PAGE_E);
2170 
2171 unsigned long _PAGE_CACHE __read_mostly;
2172 EXPORT_SYMBOL(_PAGE_CACHE);
2173 
2174 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2175 unsigned long vmemmap_table[VMEMMAP_SIZE];
2176 
2177 static long __meminitdata addr_start, addr_end;
2178 static int __meminitdata node_start;
2179 
2180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2181 {
2182 	unsigned long vstart = (unsigned long) start;
2183 	unsigned long vend = (unsigned long) (start + nr);
2184 	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2185 	unsigned long phys_end = (vend - VMEMMAP_BASE);
2186 	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2187 	unsigned long end = VMEMMAP_ALIGN(phys_end);
2188 	unsigned long pte_base;
2189 
2190 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2191 		    _PAGE_CP_4U | _PAGE_CV_4U |
2192 		    _PAGE_P_4U | _PAGE_W_4U);
2193 	if (tlb_type == hypervisor)
2194 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2195 			    _PAGE_CP_4V | _PAGE_CV_4V |
2196 			    _PAGE_P_4V | _PAGE_W_4V);
2197 
2198 	for (; addr < end; addr += VMEMMAP_CHUNK) {
2199 		unsigned long *vmem_pp =
2200 			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2201 		void *block;
2202 
2203 		if (!(*vmem_pp & _PAGE_VALID)) {
2204 			block = vmemmap_alloc_block(1UL << 22, node);
2205 			if (!block)
2206 				return -ENOMEM;
2207 
2208 			*vmem_pp = pte_base | __pa(block);
2209 
2210 			/* check to see if we have contiguous blocks */
2211 			if (addr_end != addr || node_start != node) {
2212 				if (addr_start)
2213 					printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2214 					       addr_start, addr_end-1, node_start);
2215 				addr_start = addr;
2216 				node_start = node;
2217 			}
2218 			addr_end = addr + VMEMMAP_CHUNK;
2219 		}
2220 	}
2221 	return 0;
2222 }
2223 
2224 void __meminit vmemmap_populate_print_last(void)
2225 {
2226 	if (addr_start) {
2227 		printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2228 		       addr_start, addr_end-1, node_start);
2229 		addr_start = 0;
2230 		addr_end = 0;
2231 		node_start = 0;
2232 	}
2233 }
2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2235 
2236 static void prot_init_common(unsigned long page_none,
2237 			     unsigned long page_shared,
2238 			     unsigned long page_copy,
2239 			     unsigned long page_readonly,
2240 			     unsigned long page_exec_bit)
2241 {
2242 	PAGE_COPY = __pgprot(page_copy);
2243 	PAGE_SHARED = __pgprot(page_shared);
2244 
2245 	protection_map[0x0] = __pgprot(page_none);
2246 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2247 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2248 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2249 	protection_map[0x4] = __pgprot(page_readonly);
2250 	protection_map[0x5] = __pgprot(page_readonly);
2251 	protection_map[0x6] = __pgprot(page_copy);
2252 	protection_map[0x7] = __pgprot(page_copy);
2253 	protection_map[0x8] = __pgprot(page_none);
2254 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2255 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2256 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2257 	protection_map[0xc] = __pgprot(page_readonly);
2258 	protection_map[0xd] = __pgprot(page_readonly);
2259 	protection_map[0xe] = __pgprot(page_shared);
2260 	protection_map[0xf] = __pgprot(page_shared);
2261 }
2262 
2263 static void __init sun4u_pgprot_init(void)
2264 {
2265 	unsigned long page_none, page_shared, page_copy, page_readonly;
2266 	unsigned long page_exec_bit;
2267 	int i;
2268 
2269 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2270 				_PAGE_CACHE_4U | _PAGE_P_4U |
2271 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2272 				_PAGE_EXEC_4U);
2273 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2274 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2275 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2276 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2277 
2278 	_PAGE_IE = _PAGE_IE_4U;
2279 	_PAGE_E = _PAGE_E_4U;
2280 	_PAGE_CACHE = _PAGE_CACHE_4U;
2281 
2282 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2283 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2284 
2285 #ifdef CONFIG_DEBUG_PAGEALLOC
2286 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2287 #else
2288 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2289 		0xfffff80000000000UL;
2290 #endif
2291 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2292 				   _PAGE_P_4U | _PAGE_W_4U);
2293 
2294 	for (i = 1; i < 4; i++)
2295 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2296 
2297 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2298 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2299 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2300 
2301 
2302 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2303 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2304 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2305 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2306 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2307 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2308 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2309 
2310 	page_exec_bit = _PAGE_EXEC_4U;
2311 
2312 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2313 			 page_exec_bit);
2314 }
2315 
2316 static void __init sun4v_pgprot_init(void)
2317 {
2318 	unsigned long page_none, page_shared, page_copy, page_readonly;
2319 	unsigned long page_exec_bit;
2320 	int i;
2321 
2322 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2323 				_PAGE_CACHE_4V | _PAGE_P_4V |
2324 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2325 				_PAGE_EXEC_4V);
2326 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2327 
2328 	_PAGE_IE = _PAGE_IE_4V;
2329 	_PAGE_E = _PAGE_E_4V;
2330 	_PAGE_CACHE = _PAGE_CACHE_4V;
2331 
2332 #ifdef CONFIG_DEBUG_PAGEALLOC
2333 	kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2334 #else
2335 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2336 		0xfffff80000000000UL;
2337 #endif
2338 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2339 				   _PAGE_P_4V | _PAGE_W_4V);
2340 
2341 	for (i = 1; i < 4; i++)
2342 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2343 
2344 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2345 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2346 
2347 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2348 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2349 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2350 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2351 
2352 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2353 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2354 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2355 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2356 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2357 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2358 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2359 
2360 	page_exec_bit = _PAGE_EXEC_4V;
2361 
2362 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2363 			 page_exec_bit);
2364 }
2365 
2366 unsigned long pte_sz_bits(unsigned long sz)
2367 {
2368 	if (tlb_type == hypervisor) {
2369 		switch (sz) {
2370 		case 8 * 1024:
2371 		default:
2372 			return _PAGE_SZ8K_4V;
2373 		case 64 * 1024:
2374 			return _PAGE_SZ64K_4V;
2375 		case 512 * 1024:
2376 			return _PAGE_SZ512K_4V;
2377 		case 4 * 1024 * 1024:
2378 			return _PAGE_SZ4MB_4V;
2379 		}
2380 	} else {
2381 		switch (sz) {
2382 		case 8 * 1024:
2383 		default:
2384 			return _PAGE_SZ8K_4U;
2385 		case 64 * 1024:
2386 			return _PAGE_SZ64K_4U;
2387 		case 512 * 1024:
2388 			return _PAGE_SZ512K_4U;
2389 		case 4 * 1024 * 1024:
2390 			return _PAGE_SZ4MB_4U;
2391 		}
2392 	}
2393 }
2394 
2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2396 {
2397 	pte_t pte;
2398 
2399 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2400 	pte_val(pte) |= (((unsigned long)space) << 32);
2401 	pte_val(pte) |= pte_sz_bits(page_size);
2402 
2403 	return pte;
2404 }
2405 
2406 static unsigned long kern_large_tte(unsigned long paddr)
2407 {
2408 	unsigned long val;
2409 
2410 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2411 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2412 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2413 	if (tlb_type == hypervisor)
2414 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2415 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2416 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2417 
2418 	return val | paddr;
2419 }
2420 
2421 /* If not locked, zap it. */
2422 void __flush_tlb_all(void)
2423 {
2424 	unsigned long pstate;
2425 	int i;
2426 
2427 	__asm__ __volatile__("flushw\n\t"
2428 			     "rdpr	%%pstate, %0\n\t"
2429 			     "wrpr	%0, %1, %%pstate"
2430 			     : "=r" (pstate)
2431 			     : "i" (PSTATE_IE));
2432 	if (tlb_type == hypervisor) {
2433 		sun4v_mmu_demap_all();
2434 	} else if (tlb_type == spitfire) {
2435 		for (i = 0; i < 64; i++) {
2436 			/* Spitfire Errata #32 workaround */
2437 			/* NOTE: Always runs on spitfire, so no
2438 			 *       cheetah+ page size encodings.
2439 			 */
2440 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2441 					     "flush	%%g6"
2442 					     : /* No outputs */
2443 					     : "r" (0),
2444 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2445 
2446 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2447 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2448 						     "membar #Sync"
2449 						     : /* no outputs */
2450 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2451 				spitfire_put_dtlb_data(i, 0x0UL);
2452 			}
2453 
2454 			/* Spitfire Errata #32 workaround */
2455 			/* NOTE: Always runs on spitfire, so no
2456 			 *       cheetah+ page size encodings.
2457 			 */
2458 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2459 					     "flush	%%g6"
2460 					     : /* No outputs */
2461 					     : "r" (0),
2462 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2463 
2464 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2465 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2466 						     "membar #Sync"
2467 						     : /* no outputs */
2468 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2469 				spitfire_put_itlb_data(i, 0x0UL);
2470 			}
2471 		}
2472 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2473 		cheetah_flush_dtlb_all();
2474 		cheetah_flush_itlb_all();
2475 	}
2476 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2477 			     : : "r" (pstate));
2478 }
2479 
2480 static pte_t *get_from_cache(struct mm_struct *mm)
2481 {
2482 	struct page *page;
2483 	pte_t *ret;
2484 
2485 	spin_lock(&mm->page_table_lock);
2486 	page = mm->context.pgtable_page;
2487 	ret = NULL;
2488 	if (page) {
2489 		void *p = page_address(page);
2490 
2491 		mm->context.pgtable_page = NULL;
2492 
2493 		ret = (pte_t *) (p + (PAGE_SIZE / 2));
2494 	}
2495 	spin_unlock(&mm->page_table_lock);
2496 
2497 	return ret;
2498 }
2499 
2500 static struct page *__alloc_for_cache(struct mm_struct *mm)
2501 {
2502 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2503 				       __GFP_REPEAT | __GFP_ZERO);
2504 
2505 	if (page) {
2506 		spin_lock(&mm->page_table_lock);
2507 		if (!mm->context.pgtable_page) {
2508 			atomic_set(&page->_count, 2);
2509 			mm->context.pgtable_page = page;
2510 		}
2511 		spin_unlock(&mm->page_table_lock);
2512 	}
2513 	return page;
2514 }
2515 
2516 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2517 			    unsigned long address)
2518 {
2519 	struct page *page;
2520 	pte_t *pte;
2521 
2522 	pte = get_from_cache(mm);
2523 	if (pte)
2524 		return pte;
2525 
2526 	page = __alloc_for_cache(mm);
2527 	if (page)
2528 		pte = (pte_t *) page_address(page);
2529 
2530 	return pte;
2531 }
2532 
2533 pgtable_t pte_alloc_one(struct mm_struct *mm,
2534 			unsigned long address)
2535 {
2536 	struct page *page;
2537 	pte_t *pte;
2538 
2539 	pte = get_from_cache(mm);
2540 	if (pte)
2541 		return pte;
2542 
2543 	page = __alloc_for_cache(mm);
2544 	if (page) {
2545 		pgtable_page_ctor(page);
2546 		pte = (pte_t *) page_address(page);
2547 	}
2548 
2549 	return pte;
2550 }
2551 
2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2553 {
2554 	struct page *page = virt_to_page(pte);
2555 	if (put_page_testzero(page))
2556 		free_hot_cold_page(page, 0);
2557 }
2558 
2559 static void __pte_free(pgtable_t pte)
2560 {
2561 	struct page *page = virt_to_page(pte);
2562 	if (put_page_testzero(page)) {
2563 		pgtable_page_dtor(page);
2564 		free_hot_cold_page(page, 0);
2565 	}
2566 }
2567 
2568 void pte_free(struct mm_struct *mm, pgtable_t pte)
2569 {
2570 	__pte_free(pte);
2571 }
2572 
2573 void pgtable_free(void *table, bool is_page)
2574 {
2575 	if (is_page)
2576 		__pte_free(table);
2577 	else
2578 		kmem_cache_free(pgtable_cache, table);
2579 }
2580 
2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2583 {
2584 	if (pgprot_val(pgprot) & _PAGE_VALID)
2585 		pmd_val(pmd) |= PMD_HUGE_PRESENT;
2586 	if (tlb_type == hypervisor) {
2587 		if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2588 			pmd_val(pmd) |= PMD_HUGE_WRITE;
2589 		if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2590 			pmd_val(pmd) |= PMD_HUGE_EXEC;
2591 
2592 		if (!for_modify) {
2593 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2594 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2595 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2596 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
2597 		}
2598 	} else {
2599 		if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2600 			pmd_val(pmd) |= PMD_HUGE_WRITE;
2601 		if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2602 			pmd_val(pmd) |= PMD_HUGE_EXEC;
2603 
2604 		if (!for_modify) {
2605 			if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2606 				pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2607 			if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2608 				pmd_val(pmd) |= PMD_HUGE_DIRTY;
2609 		}
2610 	}
2611 
2612 	return pmd;
2613 }
2614 
2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2616 {
2617 	pmd_t pmd;
2618 
2619 	pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2620 	pmd_val(pmd) |= PMD_ISHUGE;
2621 	pmd = pmd_set_protbits(pmd, pgprot, false);
2622 	return pmd;
2623 }
2624 
2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2626 {
2627 	pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2628 			  PMD_HUGE_WRITE |
2629 			  PMD_HUGE_EXEC);
2630 	pmd = pmd_set_protbits(pmd, newprot, true);
2631 	return pmd;
2632 }
2633 
2634 pgprot_t pmd_pgprot(pmd_t entry)
2635 {
2636 	unsigned long pte = 0;
2637 
2638 	if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639 		pte |= _PAGE_VALID;
2640 
2641 	if (tlb_type == hypervisor) {
2642 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
2643 			pte |= _PAGE_PRESENT_4V;
2644 		if (pmd_val(entry) & PMD_HUGE_EXEC)
2645 			pte |= _PAGE_EXEC_4V;
2646 		if (pmd_val(entry) & PMD_HUGE_WRITE)
2647 			pte |= _PAGE_W_4V;
2648 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2649 			pte |= _PAGE_ACCESSED_4V;
2650 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
2651 			pte |= _PAGE_MODIFIED_4V;
2652 		pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2653 	} else {
2654 		if (pmd_val(entry) & PMD_HUGE_PRESENT)
2655 			pte |= _PAGE_PRESENT_4U;
2656 		if (pmd_val(entry) & PMD_HUGE_EXEC)
2657 			pte |= _PAGE_EXEC_4U;
2658 		if (pmd_val(entry) & PMD_HUGE_WRITE)
2659 			pte |= _PAGE_W_4U;
2660 		if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2661 			pte |= _PAGE_ACCESSED_4U;
2662 		if (pmd_val(entry) & PMD_HUGE_DIRTY)
2663 			pte |= _PAGE_MODIFIED_4U;
2664 		pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2665 	}
2666 
2667 	return __pgprot(pte);
2668 }
2669 
2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2671 			  pmd_t *pmd)
2672 {
2673 	unsigned long pte, flags;
2674 	struct mm_struct *mm;
2675 	pmd_t entry = *pmd;
2676 	pgprot_t prot;
2677 
2678 	if (!pmd_large(entry) || !pmd_young(entry))
2679 		return;
2680 
2681 	pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2682 	pte <<= PMD_PADDR_SHIFT;
2683 	pte |= _PAGE_VALID;
2684 
2685 	prot = pmd_pgprot(entry);
2686 
2687 	if (tlb_type == hypervisor)
2688 		pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2689 	else
2690 		pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2691 
2692 	pte |= pgprot_val(prot);
2693 
2694 	mm = vma->vm_mm;
2695 
2696 	spin_lock_irqsave(&mm->context.lock, flags);
2697 
2698 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2699 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2700 					addr, pte);
2701 
2702 	spin_unlock_irqrestore(&mm->context.lock, flags);
2703 }
2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2705 
2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2707 static void context_reload(void *__data)
2708 {
2709 	struct mm_struct *mm = __data;
2710 
2711 	if (mm == current->mm)
2712 		load_secondary_context(mm);
2713 }
2714 
2715 void hugetlb_setup(struct mm_struct *mm)
2716 {
2717 	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
2718 
2719 	if (likely(tp->tsb != NULL))
2720 		return;
2721 
2722 	tsb_grow(mm, MM_TSB_HUGE, 0);
2723 	tsb_context_switch(mm);
2724 	smp_tsb_sync(mm);
2725 
2726 	/* On UltraSPARC-III+ and later, configure the second half of
2727 	 * the Data-TLB for huge pages.
2728 	 */
2729 	if (tlb_type == cheetah_plus) {
2730 		unsigned long ctx;
2731 
2732 		spin_lock(&ctx_alloc_lock);
2733 		ctx = mm->context.sparc64_ctx_val;
2734 		ctx &= ~CTX_PGSZ_MASK;
2735 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2736 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2737 
2738 		if (ctx != mm->context.sparc64_ctx_val) {
2739 			/* When changing the page size fields, we
2740 			 * must perform a context flush so that no
2741 			 * stale entries match.  This flush must
2742 			 * occur with the original context register
2743 			 * settings.
2744 			 */
2745 			do_flush_tlb_mm(mm);
2746 
2747 			/* Reload the context register of all processors
2748 			 * also executing in this address space.
2749 			 */
2750 			mm->context.sparc64_ctx_val = ctx;
2751 			on_each_cpu(context_reload, mm, 0);
2752 		}
2753 		spin_unlock(&ctx_alloc_lock);
2754 	}
2755 }
2756 #endif
2757