1 /* 2 * arch/sparc64/mm/init.c 3 * 4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/bootmem.h> 14 #include <linux/mm.h> 15 #include <linux/hugetlb.h> 16 #include <linux/initrd.h> 17 #include <linux/swap.h> 18 #include <linux/pagemap.h> 19 #include <linux/poison.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kprobes.h> 23 #include <linux/cache.h> 24 #include <linux/sort.h> 25 #include <linux/percpu.h> 26 #include <linux/memblock.h> 27 #include <linux/mmzone.h> 28 #include <linux/gfp.h> 29 30 #include <asm/head.h> 31 #include <asm/page.h> 32 #include <asm/pgalloc.h> 33 #include <asm/pgtable.h> 34 #include <asm/oplib.h> 35 #include <asm/iommu.h> 36 #include <asm/io.h> 37 #include <asm/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/dma.h> 41 #include <asm/starfire.h> 42 #include <asm/tlb.h> 43 #include <asm/spitfire.h> 44 #include <asm/sections.h> 45 #include <asm/tsb.h> 46 #include <asm/hypervisor.h> 47 #include <asm/prom.h> 48 #include <asm/mdesc.h> 49 #include <asm/cpudata.h> 50 #include <asm/irq.h> 51 52 #include "init_64.h" 53 54 unsigned long kern_linear_pte_xor[4] __read_mostly; 55 56 /* A bitmap, two bits for every 256MB of physical memory. These two 57 * bits determine what page size we use for kernel linear 58 * translations. They form an index into kern_linear_pte_xor[]. The 59 * value in the indexed slot is XOR'd with the TLB miss virtual 60 * address to form the resulting TTE. The mapping is: 61 * 62 * 0 ==> 4MB 63 * 1 ==> 256MB 64 * 2 ==> 2GB 65 * 3 ==> 16GB 66 * 67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later 68 * support 2GB pages, and hopefully future cpus will support the 16GB 69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there 70 * if these larger page sizes are not supported by the cpu. 71 * 72 * It would be nice to determine this from the machine description 73 * 'cpu' properties, but we need to have this table setup before the 74 * MDESC is initialized. 75 */ 76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; 77 78 #ifndef CONFIG_DEBUG_PAGEALLOC 79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. 80 * Space is allocated for this right after the trap table in 81 * arch/sparc64/kernel/head.S 82 */ 83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; 84 #endif 85 86 static unsigned long cpu_pgsz_mask; 87 88 #define MAX_BANKS 32 89 90 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata; 91 static int pavail_ents __devinitdata; 92 93 static int cmp_p64(const void *a, const void *b) 94 { 95 const struct linux_prom64_registers *x = a, *y = b; 96 97 if (x->phys_addr > y->phys_addr) 98 return 1; 99 if (x->phys_addr < y->phys_addr) 100 return -1; 101 return 0; 102 } 103 104 static void __init read_obp_memory(const char *property, 105 struct linux_prom64_registers *regs, 106 int *num_ents) 107 { 108 phandle node = prom_finddevice("/memory"); 109 int prop_size = prom_getproplen(node, property); 110 int ents, ret, i; 111 112 ents = prop_size / sizeof(struct linux_prom64_registers); 113 if (ents > MAX_BANKS) { 114 prom_printf("The machine has more %s property entries than " 115 "this kernel can support (%d).\n", 116 property, MAX_BANKS); 117 prom_halt(); 118 } 119 120 ret = prom_getproperty(node, property, (char *) regs, prop_size); 121 if (ret == -1) { 122 prom_printf("Couldn't get %s property from /memory.\n", 123 property); 124 prom_halt(); 125 } 126 127 /* Sanitize what we got from the firmware, by page aligning 128 * everything. 129 */ 130 for (i = 0; i < ents; i++) { 131 unsigned long base, size; 132 133 base = regs[i].phys_addr; 134 size = regs[i].reg_size; 135 136 size &= PAGE_MASK; 137 if (base & ~PAGE_MASK) { 138 unsigned long new_base = PAGE_ALIGN(base); 139 140 size -= new_base - base; 141 if ((long) size < 0L) 142 size = 0UL; 143 base = new_base; 144 } 145 if (size == 0UL) { 146 /* If it is empty, simply get rid of it. 147 * This simplifies the logic of the other 148 * functions that process these arrays. 149 */ 150 memmove(®s[i], ®s[i + 1], 151 (ents - i - 1) * sizeof(regs[0])); 152 i--; 153 ents--; 154 continue; 155 } 156 regs[i].phys_addr = base; 157 regs[i].reg_size = size; 158 } 159 160 *num_ents = ents; 161 162 sort(regs, ents, sizeof(struct linux_prom64_registers), 163 cmp_p64, NULL); 164 } 165 166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES / 167 sizeof(unsigned long)]; 168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap); 169 170 /* Kernel physical address base and size in bytes. */ 171 unsigned long kern_base __read_mostly; 172 unsigned long kern_size __read_mostly; 173 174 /* Initial ramdisk setup */ 175 extern unsigned long sparc_ramdisk_image64; 176 extern unsigned int sparc_ramdisk_image; 177 extern unsigned int sparc_ramdisk_size; 178 179 struct page *mem_map_zero __read_mostly; 180 EXPORT_SYMBOL(mem_map_zero); 181 182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; 183 184 unsigned long sparc64_kern_pri_context __read_mostly; 185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly; 186 unsigned long sparc64_kern_sec_context __read_mostly; 187 188 int num_kernel_image_mappings; 189 190 #ifdef CONFIG_DEBUG_DCFLUSH 191 atomic_t dcpage_flushes = ATOMIC_INIT(0); 192 #ifdef CONFIG_SMP 193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); 194 #endif 195 #endif 196 197 inline void flush_dcache_page_impl(struct page *page) 198 { 199 BUG_ON(tlb_type == hypervisor); 200 #ifdef CONFIG_DEBUG_DCFLUSH 201 atomic_inc(&dcpage_flushes); 202 #endif 203 204 #ifdef DCACHE_ALIASING_POSSIBLE 205 __flush_dcache_page(page_address(page), 206 ((tlb_type == spitfire) && 207 page_mapping(page) != NULL)); 208 #else 209 if (page_mapping(page) != NULL && 210 tlb_type == spitfire) 211 __flush_icache_page(__pa(page_address(page))); 212 #endif 213 } 214 215 #define PG_dcache_dirty PG_arch_1 216 #define PG_dcache_cpu_shift 32UL 217 #define PG_dcache_cpu_mask \ 218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) 219 220 #define dcache_dirty_cpu(page) \ 221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) 222 223 static inline void set_dcache_dirty(struct page *page, int this_cpu) 224 { 225 unsigned long mask = this_cpu; 226 unsigned long non_cpu_bits; 227 228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); 229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); 230 231 __asm__ __volatile__("1:\n\t" 232 "ldx [%2], %%g7\n\t" 233 "and %%g7, %1, %%g1\n\t" 234 "or %%g1, %0, %%g1\n\t" 235 "casx [%2], %%g7, %%g1\n\t" 236 "cmp %%g7, %%g1\n\t" 237 "bne,pn %%xcc, 1b\n\t" 238 " nop" 239 : /* no outputs */ 240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) 241 : "g1", "g7"); 242 } 243 244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) 245 { 246 unsigned long mask = (1UL << PG_dcache_dirty); 247 248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n" 249 "1:\n\t" 250 "ldx [%2], %%g7\n\t" 251 "srlx %%g7, %4, %%g1\n\t" 252 "and %%g1, %3, %%g1\n\t" 253 "cmp %%g1, %0\n\t" 254 "bne,pn %%icc, 2f\n\t" 255 " andn %%g7, %1, %%g1\n\t" 256 "casx [%2], %%g7, %%g1\n\t" 257 "cmp %%g7, %%g1\n\t" 258 "bne,pn %%xcc, 1b\n\t" 259 " nop\n" 260 "2:" 261 : /* no outputs */ 262 : "r" (cpu), "r" (mask), "r" (&page->flags), 263 "i" (PG_dcache_cpu_mask), 264 "i" (PG_dcache_cpu_shift) 265 : "g1", "g7"); 266 } 267 268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) 269 { 270 unsigned long tsb_addr = (unsigned long) ent; 271 272 if (tlb_type == cheetah_plus || tlb_type == hypervisor) 273 tsb_addr = __pa(tsb_addr); 274 275 __tsb_insert(tsb_addr, tag, pte); 276 } 277 278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly; 279 280 static void flush_dcache(unsigned long pfn) 281 { 282 struct page *page; 283 284 page = pfn_to_page(pfn); 285 if (page) { 286 unsigned long pg_flags; 287 288 pg_flags = page->flags; 289 if (pg_flags & (1UL << PG_dcache_dirty)) { 290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) & 291 PG_dcache_cpu_mask); 292 int this_cpu = get_cpu(); 293 294 /* This is just to optimize away some function calls 295 * in the SMP case. 296 */ 297 if (cpu == this_cpu) 298 flush_dcache_page_impl(page); 299 else 300 smp_flush_dcache_page_impl(page, cpu); 301 302 clear_dcache_dirty_cpu(page, cpu); 303 304 put_cpu(); 305 } 306 } 307 } 308 309 /* mm->context.lock must be held */ 310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, 311 unsigned long tsb_hash_shift, unsigned long address, 312 unsigned long tte) 313 { 314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; 315 unsigned long tag; 316 317 tsb += ((address >> tsb_hash_shift) & 318 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); 319 tag = (address >> 22UL); 320 tsb_insert(tsb, tag, tte); 321 } 322 323 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 324 { 325 unsigned long tsb_index, tsb_hash_shift, flags; 326 struct mm_struct *mm; 327 pte_t pte = *ptep; 328 329 if (tlb_type != hypervisor) { 330 unsigned long pfn = pte_pfn(pte); 331 332 if (pfn_valid(pfn)) 333 flush_dcache(pfn); 334 } 335 336 mm = vma->vm_mm; 337 338 tsb_index = MM_TSB_BASE; 339 tsb_hash_shift = PAGE_SHIFT; 340 341 spin_lock_irqsave(&mm->context.lock, flags); 342 343 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 344 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) { 345 if ((tlb_type == hypervisor && 346 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || 347 (tlb_type != hypervisor && 348 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) { 349 tsb_index = MM_TSB_HUGE; 350 tsb_hash_shift = HPAGE_SHIFT; 351 } 352 } 353 #endif 354 355 __update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift, 356 address, pte_val(pte)); 357 358 spin_unlock_irqrestore(&mm->context.lock, flags); 359 } 360 361 void flush_dcache_page(struct page *page) 362 { 363 struct address_space *mapping; 364 int this_cpu; 365 366 if (tlb_type == hypervisor) 367 return; 368 369 /* Do not bother with the expensive D-cache flush if it 370 * is merely the zero page. The 'bigcore' testcase in GDB 371 * causes this case to run millions of times. 372 */ 373 if (page == ZERO_PAGE(0)) 374 return; 375 376 this_cpu = get_cpu(); 377 378 mapping = page_mapping(page); 379 if (mapping && !mapping_mapped(mapping)) { 380 int dirty = test_bit(PG_dcache_dirty, &page->flags); 381 if (dirty) { 382 int dirty_cpu = dcache_dirty_cpu(page); 383 384 if (dirty_cpu == this_cpu) 385 goto out; 386 smp_flush_dcache_page_impl(page, dirty_cpu); 387 } 388 set_dcache_dirty(page, this_cpu); 389 } else { 390 /* We could delay the flush for the !page_mapping 391 * case too. But that case is for exec env/arg 392 * pages and those are %99 certainly going to get 393 * faulted into the tlb (and thus flushed) anyways. 394 */ 395 flush_dcache_page_impl(page); 396 } 397 398 out: 399 put_cpu(); 400 } 401 EXPORT_SYMBOL(flush_dcache_page); 402 403 void __kprobes flush_icache_range(unsigned long start, unsigned long end) 404 { 405 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ 406 if (tlb_type == spitfire) { 407 unsigned long kaddr; 408 409 /* This code only runs on Spitfire cpus so this is 410 * why we can assume _PAGE_PADDR_4U. 411 */ 412 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { 413 unsigned long paddr, mask = _PAGE_PADDR_4U; 414 415 if (kaddr >= PAGE_OFFSET) 416 paddr = kaddr & mask; 417 else { 418 pgd_t *pgdp = pgd_offset_k(kaddr); 419 pud_t *pudp = pud_offset(pgdp, kaddr); 420 pmd_t *pmdp = pmd_offset(pudp, kaddr); 421 pte_t *ptep = pte_offset_kernel(pmdp, kaddr); 422 423 paddr = pte_val(*ptep) & mask; 424 } 425 __flush_icache_page(paddr); 426 } 427 } 428 } 429 EXPORT_SYMBOL(flush_icache_range); 430 431 void mmu_info(struct seq_file *m) 432 { 433 static const char *pgsz_strings[] = { 434 "8K", "64K", "512K", "4MB", "32MB", 435 "256MB", "2GB", "16GB", 436 }; 437 int i, printed; 438 439 if (tlb_type == cheetah) 440 seq_printf(m, "MMU Type\t: Cheetah\n"); 441 else if (tlb_type == cheetah_plus) 442 seq_printf(m, "MMU Type\t: Cheetah+\n"); 443 else if (tlb_type == spitfire) 444 seq_printf(m, "MMU Type\t: Spitfire\n"); 445 else if (tlb_type == hypervisor) 446 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); 447 else 448 seq_printf(m, "MMU Type\t: ???\n"); 449 450 seq_printf(m, "MMU PGSZs\t: "); 451 printed = 0; 452 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { 453 if (cpu_pgsz_mask & (1UL << i)) { 454 seq_printf(m, "%s%s", 455 printed ? "," : "", pgsz_strings[i]); 456 printed++; 457 } 458 } 459 seq_putc(m, '\n'); 460 461 #ifdef CONFIG_DEBUG_DCFLUSH 462 seq_printf(m, "DCPageFlushes\t: %d\n", 463 atomic_read(&dcpage_flushes)); 464 #ifdef CONFIG_SMP 465 seq_printf(m, "DCPageFlushesXC\t: %d\n", 466 atomic_read(&dcpage_flushes_xcall)); 467 #endif /* CONFIG_SMP */ 468 #endif /* CONFIG_DEBUG_DCFLUSH */ 469 } 470 471 struct linux_prom_translation prom_trans[512] __read_mostly; 472 unsigned int prom_trans_ents __read_mostly; 473 474 unsigned long kern_locked_tte_data; 475 476 /* The obp translations are saved based on 8k pagesize, since obp can 477 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> 478 * HI_OBP_ADDRESS range are handled in ktlb.S. 479 */ 480 static inline int in_obp_range(unsigned long vaddr) 481 { 482 return (vaddr >= LOW_OBP_ADDRESS && 483 vaddr < HI_OBP_ADDRESS); 484 } 485 486 static int cmp_ptrans(const void *a, const void *b) 487 { 488 const struct linux_prom_translation *x = a, *y = b; 489 490 if (x->virt > y->virt) 491 return 1; 492 if (x->virt < y->virt) 493 return -1; 494 return 0; 495 } 496 497 /* Read OBP translations property into 'prom_trans[]'. */ 498 static void __init read_obp_translations(void) 499 { 500 int n, node, ents, first, last, i; 501 502 node = prom_finddevice("/virtual-memory"); 503 n = prom_getproplen(node, "translations"); 504 if (unlikely(n == 0 || n == -1)) { 505 prom_printf("prom_mappings: Couldn't get size.\n"); 506 prom_halt(); 507 } 508 if (unlikely(n > sizeof(prom_trans))) { 509 prom_printf("prom_mappings: Size %d is too big.\n", n); 510 prom_halt(); 511 } 512 513 if ((n = prom_getproperty(node, "translations", 514 (char *)&prom_trans[0], 515 sizeof(prom_trans))) == -1) { 516 prom_printf("prom_mappings: Couldn't get property.\n"); 517 prom_halt(); 518 } 519 520 n = n / sizeof(struct linux_prom_translation); 521 522 ents = n; 523 524 sort(prom_trans, ents, sizeof(struct linux_prom_translation), 525 cmp_ptrans, NULL); 526 527 /* Now kick out all the non-OBP entries. */ 528 for (i = 0; i < ents; i++) { 529 if (in_obp_range(prom_trans[i].virt)) 530 break; 531 } 532 first = i; 533 for (; i < ents; i++) { 534 if (!in_obp_range(prom_trans[i].virt)) 535 break; 536 } 537 last = i; 538 539 for (i = 0; i < (last - first); i++) { 540 struct linux_prom_translation *src = &prom_trans[i + first]; 541 struct linux_prom_translation *dest = &prom_trans[i]; 542 543 *dest = *src; 544 } 545 for (; i < ents; i++) { 546 struct linux_prom_translation *dest = &prom_trans[i]; 547 dest->virt = dest->size = dest->data = 0x0UL; 548 } 549 550 prom_trans_ents = last - first; 551 552 if (tlb_type == spitfire) { 553 /* Clear diag TTE bits. */ 554 for (i = 0; i < prom_trans_ents; i++) 555 prom_trans[i].data &= ~0x0003fe0000000000UL; 556 } 557 558 /* Force execute bit on. */ 559 for (i = 0; i < prom_trans_ents; i++) 560 prom_trans[i].data |= (tlb_type == hypervisor ? 561 _PAGE_EXEC_4V : _PAGE_EXEC_4U); 562 } 563 564 static void __init hypervisor_tlb_lock(unsigned long vaddr, 565 unsigned long pte, 566 unsigned long mmu) 567 { 568 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); 569 570 if (ret != 0) { 571 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " 572 "errors with %lx\n", vaddr, 0, pte, mmu, ret); 573 prom_halt(); 574 } 575 } 576 577 static unsigned long kern_large_tte(unsigned long paddr); 578 579 static void __init remap_kernel(void) 580 { 581 unsigned long phys_page, tte_vaddr, tte_data; 582 int i, tlb_ent = sparc64_highest_locked_tlbent(); 583 584 tte_vaddr = (unsigned long) KERNBASE; 585 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 586 tte_data = kern_large_tte(phys_page); 587 588 kern_locked_tte_data = tte_data; 589 590 /* Now lock us into the TLBs via Hypervisor or OBP. */ 591 if (tlb_type == hypervisor) { 592 for (i = 0; i < num_kernel_image_mappings; i++) { 593 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); 594 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); 595 tte_vaddr += 0x400000; 596 tte_data += 0x400000; 597 } 598 } else { 599 for (i = 0; i < num_kernel_image_mappings; i++) { 600 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); 601 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); 602 tte_vaddr += 0x400000; 603 tte_data += 0x400000; 604 } 605 sparc64_highest_unlocked_tlb_ent = tlb_ent - i; 606 } 607 if (tlb_type == cheetah_plus) { 608 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | 609 CTX_CHEETAH_PLUS_NUC); 610 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; 611 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; 612 } 613 } 614 615 616 static void __init inherit_prom_mappings(void) 617 { 618 /* Now fixup OBP's idea about where we really are mapped. */ 619 printk("Remapping the kernel... "); 620 remap_kernel(); 621 printk("done.\n"); 622 } 623 624 void prom_world(int enter) 625 { 626 if (!enter) 627 set_fs(get_fs()); 628 629 __asm__ __volatile__("flushw"); 630 } 631 632 void __flush_dcache_range(unsigned long start, unsigned long end) 633 { 634 unsigned long va; 635 636 if (tlb_type == spitfire) { 637 int n = 0; 638 639 for (va = start; va < end; va += 32) { 640 spitfire_put_dcache_tag(va & 0x3fe0, 0x0); 641 if (++n >= 512) 642 break; 643 } 644 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 645 start = __pa(start); 646 end = __pa(end); 647 for (va = start; va < end; va += 32) 648 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 649 "membar #Sync" 650 : /* no outputs */ 651 : "r" (va), 652 "i" (ASI_DCACHE_INVALIDATE)); 653 } 654 } 655 EXPORT_SYMBOL(__flush_dcache_range); 656 657 /* get_new_mmu_context() uses "cache + 1". */ 658 DEFINE_SPINLOCK(ctx_alloc_lock); 659 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; 660 #define MAX_CTX_NR (1UL << CTX_NR_BITS) 661 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) 662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); 663 664 /* Caller does TLB context flushing on local CPU if necessary. 665 * The caller also ensures that CTX_VALID(mm->context) is false. 666 * 667 * We must be careful about boundary cases so that we never 668 * let the user have CTX 0 (nucleus) or we ever use a CTX 669 * version of zero (and thus NO_CONTEXT would not be caught 670 * by version mis-match tests in mmu_context.h). 671 * 672 * Always invoked with interrupts disabled. 673 */ 674 void get_new_mmu_context(struct mm_struct *mm) 675 { 676 unsigned long ctx, new_ctx; 677 unsigned long orig_pgsz_bits; 678 unsigned long flags; 679 int new_version; 680 681 spin_lock_irqsave(&ctx_alloc_lock, flags); 682 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); 683 ctx = (tlb_context_cache + 1) & CTX_NR_MASK; 684 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); 685 new_version = 0; 686 if (new_ctx >= (1 << CTX_NR_BITS)) { 687 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); 688 if (new_ctx >= ctx) { 689 int i; 690 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + 691 CTX_FIRST_VERSION; 692 if (new_ctx == 1) 693 new_ctx = CTX_FIRST_VERSION; 694 695 /* Don't call memset, for 16 entries that's just 696 * plain silly... 697 */ 698 mmu_context_bmap[0] = 3; 699 mmu_context_bmap[1] = 0; 700 mmu_context_bmap[2] = 0; 701 mmu_context_bmap[3] = 0; 702 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { 703 mmu_context_bmap[i + 0] = 0; 704 mmu_context_bmap[i + 1] = 0; 705 mmu_context_bmap[i + 2] = 0; 706 mmu_context_bmap[i + 3] = 0; 707 } 708 new_version = 1; 709 goto out; 710 } 711 } 712 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); 713 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); 714 out: 715 tlb_context_cache = new_ctx; 716 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; 717 spin_unlock_irqrestore(&ctx_alloc_lock, flags); 718 719 if (unlikely(new_version)) 720 smp_new_mmu_context_version(); 721 } 722 723 static int numa_enabled = 1; 724 static int numa_debug; 725 726 static int __init early_numa(char *p) 727 { 728 if (!p) 729 return 0; 730 731 if (strstr(p, "off")) 732 numa_enabled = 0; 733 734 if (strstr(p, "debug")) 735 numa_debug = 1; 736 737 return 0; 738 } 739 early_param("numa", early_numa); 740 741 #define numadbg(f, a...) \ 742 do { if (numa_debug) \ 743 printk(KERN_INFO f, ## a); \ 744 } while (0) 745 746 static void __init find_ramdisk(unsigned long phys_base) 747 { 748 #ifdef CONFIG_BLK_DEV_INITRD 749 if (sparc_ramdisk_image || sparc_ramdisk_image64) { 750 unsigned long ramdisk_image; 751 752 /* Older versions of the bootloader only supported a 753 * 32-bit physical address for the ramdisk image 754 * location, stored at sparc_ramdisk_image. Newer 755 * SILO versions set sparc_ramdisk_image to zero and 756 * provide a full 64-bit physical address at 757 * sparc_ramdisk_image64. 758 */ 759 ramdisk_image = sparc_ramdisk_image; 760 if (!ramdisk_image) 761 ramdisk_image = sparc_ramdisk_image64; 762 763 /* Another bootloader quirk. The bootloader normalizes 764 * the physical address to KERNBASE, so we have to 765 * factor that back out and add in the lowest valid 766 * physical page address to get the true physical address. 767 */ 768 ramdisk_image -= KERNBASE; 769 ramdisk_image += phys_base; 770 771 numadbg("Found ramdisk at physical address 0x%lx, size %u\n", 772 ramdisk_image, sparc_ramdisk_size); 773 774 initrd_start = ramdisk_image; 775 initrd_end = ramdisk_image + sparc_ramdisk_size; 776 777 memblock_reserve(initrd_start, sparc_ramdisk_size); 778 779 initrd_start += PAGE_OFFSET; 780 initrd_end += PAGE_OFFSET; 781 } 782 #endif 783 } 784 785 struct node_mem_mask { 786 unsigned long mask; 787 unsigned long val; 788 }; 789 static struct node_mem_mask node_masks[MAX_NUMNODES]; 790 static int num_node_masks; 791 792 int numa_cpu_lookup_table[NR_CPUS]; 793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 794 795 #ifdef CONFIG_NEED_MULTIPLE_NODES 796 797 struct mdesc_mblock { 798 u64 base; 799 u64 size; 800 u64 offset; /* RA-to-PA */ 801 }; 802 static struct mdesc_mblock *mblocks; 803 static int num_mblocks; 804 805 static unsigned long ra_to_pa(unsigned long addr) 806 { 807 int i; 808 809 for (i = 0; i < num_mblocks; i++) { 810 struct mdesc_mblock *m = &mblocks[i]; 811 812 if (addr >= m->base && 813 addr < (m->base + m->size)) { 814 addr += m->offset; 815 break; 816 } 817 } 818 return addr; 819 } 820 821 static int find_node(unsigned long addr) 822 { 823 int i; 824 825 addr = ra_to_pa(addr); 826 for (i = 0; i < num_node_masks; i++) { 827 struct node_mem_mask *p = &node_masks[i]; 828 829 if ((addr & p->mask) == p->val) 830 return i; 831 } 832 return -1; 833 } 834 835 static u64 memblock_nid_range(u64 start, u64 end, int *nid) 836 { 837 *nid = find_node(start); 838 start += PAGE_SIZE; 839 while (start < end) { 840 int n = find_node(start); 841 842 if (n != *nid) 843 break; 844 start += PAGE_SIZE; 845 } 846 847 if (start > end) 848 start = end; 849 850 return start; 851 } 852 #endif 853 854 /* This must be invoked after performing all of the necessary 855 * memblock_set_node() calls for 'nid'. We need to be able to get 856 * correct data from get_pfn_range_for_nid(). 857 */ 858 static void __init allocate_node_data(int nid) 859 { 860 struct pglist_data *p; 861 unsigned long start_pfn, end_pfn; 862 #ifdef CONFIG_NEED_MULTIPLE_NODES 863 unsigned long paddr; 864 865 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); 866 if (!paddr) { 867 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); 868 prom_halt(); 869 } 870 NODE_DATA(nid) = __va(paddr); 871 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 872 873 NODE_DATA(nid)->node_id = nid; 874 #endif 875 876 p = NODE_DATA(nid); 877 878 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 879 p->node_start_pfn = start_pfn; 880 p->node_spanned_pages = end_pfn - start_pfn; 881 } 882 883 static void init_node_masks_nonnuma(void) 884 { 885 int i; 886 887 numadbg("Initializing tables for non-numa.\n"); 888 889 node_masks[0].mask = node_masks[0].val = 0; 890 num_node_masks = 1; 891 892 for (i = 0; i < NR_CPUS; i++) 893 numa_cpu_lookup_table[i] = 0; 894 895 cpumask_setall(&numa_cpumask_lookup_table[0]); 896 } 897 898 #ifdef CONFIG_NEED_MULTIPLE_NODES 899 struct pglist_data *node_data[MAX_NUMNODES]; 900 901 EXPORT_SYMBOL(numa_cpu_lookup_table); 902 EXPORT_SYMBOL(numa_cpumask_lookup_table); 903 EXPORT_SYMBOL(node_data); 904 905 struct mdesc_mlgroup { 906 u64 node; 907 u64 latency; 908 u64 match; 909 u64 mask; 910 }; 911 static struct mdesc_mlgroup *mlgroups; 912 static int num_mlgroups; 913 914 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, 915 u32 cfg_handle) 916 { 917 u64 arc; 918 919 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { 920 u64 target = mdesc_arc_target(md, arc); 921 const u64 *val; 922 923 val = mdesc_get_property(md, target, 924 "cfg-handle", NULL); 925 if (val && *val == cfg_handle) 926 return 0; 927 } 928 return -ENODEV; 929 } 930 931 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, 932 u32 cfg_handle) 933 { 934 u64 arc, candidate, best_latency = ~(u64)0; 935 936 candidate = MDESC_NODE_NULL; 937 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 938 u64 target = mdesc_arc_target(md, arc); 939 const char *name = mdesc_node_name(md, target); 940 const u64 *val; 941 942 if (strcmp(name, "pio-latency-group")) 943 continue; 944 945 val = mdesc_get_property(md, target, "latency", NULL); 946 if (!val) 947 continue; 948 949 if (*val < best_latency) { 950 candidate = target; 951 best_latency = *val; 952 } 953 } 954 955 if (candidate == MDESC_NODE_NULL) 956 return -ENODEV; 957 958 return scan_pio_for_cfg_handle(md, candidate, cfg_handle); 959 } 960 961 int of_node_to_nid(struct device_node *dp) 962 { 963 const struct linux_prom64_registers *regs; 964 struct mdesc_handle *md; 965 u32 cfg_handle; 966 int count, nid; 967 u64 grp; 968 969 /* This is the right thing to do on currently supported 970 * SUN4U NUMA platforms as well, as the PCI controller does 971 * not sit behind any particular memory controller. 972 */ 973 if (!mlgroups) 974 return -1; 975 976 regs = of_get_property(dp, "reg", NULL); 977 if (!regs) 978 return -1; 979 980 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; 981 982 md = mdesc_grab(); 983 984 count = 0; 985 nid = -1; 986 mdesc_for_each_node_by_name(md, grp, "group") { 987 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { 988 nid = count; 989 break; 990 } 991 count++; 992 } 993 994 mdesc_release(md); 995 996 return nid; 997 } 998 999 static void __init add_node_ranges(void) 1000 { 1001 struct memblock_region *reg; 1002 1003 for_each_memblock(memory, reg) { 1004 unsigned long size = reg->size; 1005 unsigned long start, end; 1006 1007 start = reg->base; 1008 end = start + size; 1009 while (start < end) { 1010 unsigned long this_end; 1011 int nid; 1012 1013 this_end = memblock_nid_range(start, end, &nid); 1014 1015 numadbg("Setting memblock NUMA node nid[%d] " 1016 "start[%lx] end[%lx]\n", 1017 nid, start, this_end); 1018 1019 memblock_set_node(start, this_end - start, nid); 1020 start = this_end; 1021 } 1022 } 1023 } 1024 1025 static int __init grab_mlgroups(struct mdesc_handle *md) 1026 { 1027 unsigned long paddr; 1028 int count = 0; 1029 u64 node; 1030 1031 mdesc_for_each_node_by_name(md, node, "memory-latency-group") 1032 count++; 1033 if (!count) 1034 return -ENOENT; 1035 1036 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), 1037 SMP_CACHE_BYTES); 1038 if (!paddr) 1039 return -ENOMEM; 1040 1041 mlgroups = __va(paddr); 1042 num_mlgroups = count; 1043 1044 count = 0; 1045 mdesc_for_each_node_by_name(md, node, "memory-latency-group") { 1046 struct mdesc_mlgroup *m = &mlgroups[count++]; 1047 const u64 *val; 1048 1049 m->node = node; 1050 1051 val = mdesc_get_property(md, node, "latency", NULL); 1052 m->latency = *val; 1053 val = mdesc_get_property(md, node, "address-match", NULL); 1054 m->match = *val; 1055 val = mdesc_get_property(md, node, "address-mask", NULL); 1056 m->mask = *val; 1057 1058 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " 1059 "match[%llx] mask[%llx]\n", 1060 count - 1, m->node, m->latency, m->match, m->mask); 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int __init grab_mblocks(struct mdesc_handle *md) 1067 { 1068 unsigned long paddr; 1069 int count = 0; 1070 u64 node; 1071 1072 mdesc_for_each_node_by_name(md, node, "mblock") 1073 count++; 1074 if (!count) 1075 return -ENOENT; 1076 1077 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), 1078 SMP_CACHE_BYTES); 1079 if (!paddr) 1080 return -ENOMEM; 1081 1082 mblocks = __va(paddr); 1083 num_mblocks = count; 1084 1085 count = 0; 1086 mdesc_for_each_node_by_name(md, node, "mblock") { 1087 struct mdesc_mblock *m = &mblocks[count++]; 1088 const u64 *val; 1089 1090 val = mdesc_get_property(md, node, "base", NULL); 1091 m->base = *val; 1092 val = mdesc_get_property(md, node, "size", NULL); 1093 m->size = *val; 1094 val = mdesc_get_property(md, node, 1095 "address-congruence-offset", NULL); 1096 m->offset = *val; 1097 1098 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", 1099 count - 1, m->base, m->size, m->offset); 1100 } 1101 1102 return 0; 1103 } 1104 1105 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, 1106 u64 grp, cpumask_t *mask) 1107 { 1108 u64 arc; 1109 1110 cpumask_clear(mask); 1111 1112 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { 1113 u64 target = mdesc_arc_target(md, arc); 1114 const char *name = mdesc_node_name(md, target); 1115 const u64 *id; 1116 1117 if (strcmp(name, "cpu")) 1118 continue; 1119 id = mdesc_get_property(md, target, "id", NULL); 1120 if (*id < nr_cpu_ids) 1121 cpumask_set_cpu(*id, mask); 1122 } 1123 } 1124 1125 static struct mdesc_mlgroup * __init find_mlgroup(u64 node) 1126 { 1127 int i; 1128 1129 for (i = 0; i < num_mlgroups; i++) { 1130 struct mdesc_mlgroup *m = &mlgroups[i]; 1131 if (m->node == node) 1132 return m; 1133 } 1134 return NULL; 1135 } 1136 1137 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, 1138 int index) 1139 { 1140 struct mdesc_mlgroup *candidate = NULL; 1141 u64 arc, best_latency = ~(u64)0; 1142 struct node_mem_mask *n; 1143 1144 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { 1145 u64 target = mdesc_arc_target(md, arc); 1146 struct mdesc_mlgroup *m = find_mlgroup(target); 1147 if (!m) 1148 continue; 1149 if (m->latency < best_latency) { 1150 candidate = m; 1151 best_latency = m->latency; 1152 } 1153 } 1154 if (!candidate) 1155 return -ENOENT; 1156 1157 if (num_node_masks != index) { 1158 printk(KERN_ERR "Inconsistent NUMA state, " 1159 "index[%d] != num_node_masks[%d]\n", 1160 index, num_node_masks); 1161 return -EINVAL; 1162 } 1163 1164 n = &node_masks[num_node_masks++]; 1165 1166 n->mask = candidate->mask; 1167 n->val = candidate->match; 1168 1169 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", 1170 index, n->mask, n->val, candidate->latency); 1171 1172 return 0; 1173 } 1174 1175 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, 1176 int index) 1177 { 1178 cpumask_t mask; 1179 int cpu; 1180 1181 numa_parse_mdesc_group_cpus(md, grp, &mask); 1182 1183 for_each_cpu(cpu, &mask) 1184 numa_cpu_lookup_table[cpu] = index; 1185 cpumask_copy(&numa_cpumask_lookup_table[index], &mask); 1186 1187 if (numa_debug) { 1188 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); 1189 for_each_cpu(cpu, &mask) 1190 printk("%d ", cpu); 1191 printk("]\n"); 1192 } 1193 1194 return numa_attach_mlgroup(md, grp, index); 1195 } 1196 1197 static int __init numa_parse_mdesc(void) 1198 { 1199 struct mdesc_handle *md = mdesc_grab(); 1200 int i, err, count; 1201 u64 node; 1202 1203 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); 1204 if (node == MDESC_NODE_NULL) { 1205 mdesc_release(md); 1206 return -ENOENT; 1207 } 1208 1209 err = grab_mblocks(md); 1210 if (err < 0) 1211 goto out; 1212 1213 err = grab_mlgroups(md); 1214 if (err < 0) 1215 goto out; 1216 1217 count = 0; 1218 mdesc_for_each_node_by_name(md, node, "group") { 1219 err = numa_parse_mdesc_group(md, node, count); 1220 if (err < 0) 1221 break; 1222 count++; 1223 } 1224 1225 add_node_ranges(); 1226 1227 for (i = 0; i < num_node_masks; i++) { 1228 allocate_node_data(i); 1229 node_set_online(i); 1230 } 1231 1232 err = 0; 1233 out: 1234 mdesc_release(md); 1235 return err; 1236 } 1237 1238 static int __init numa_parse_jbus(void) 1239 { 1240 unsigned long cpu, index; 1241 1242 /* NUMA node id is encoded in bits 36 and higher, and there is 1243 * a 1-to-1 mapping from CPU ID to NUMA node ID. 1244 */ 1245 index = 0; 1246 for_each_present_cpu(cpu) { 1247 numa_cpu_lookup_table[cpu] = index; 1248 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); 1249 node_masks[index].mask = ~((1UL << 36UL) - 1UL); 1250 node_masks[index].val = cpu << 36UL; 1251 1252 index++; 1253 } 1254 num_node_masks = index; 1255 1256 add_node_ranges(); 1257 1258 for (index = 0; index < num_node_masks; index++) { 1259 allocate_node_data(index); 1260 node_set_online(index); 1261 } 1262 1263 return 0; 1264 } 1265 1266 static int __init numa_parse_sun4u(void) 1267 { 1268 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 1269 unsigned long ver; 1270 1271 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 1272 if ((ver >> 32UL) == __JALAPENO_ID || 1273 (ver >> 32UL) == __SERRANO_ID) 1274 return numa_parse_jbus(); 1275 } 1276 return -1; 1277 } 1278 1279 static int __init bootmem_init_numa(void) 1280 { 1281 int err = -1; 1282 1283 numadbg("bootmem_init_numa()\n"); 1284 1285 if (numa_enabled) { 1286 if (tlb_type == hypervisor) 1287 err = numa_parse_mdesc(); 1288 else 1289 err = numa_parse_sun4u(); 1290 } 1291 return err; 1292 } 1293 1294 #else 1295 1296 static int bootmem_init_numa(void) 1297 { 1298 return -1; 1299 } 1300 1301 #endif 1302 1303 static void __init bootmem_init_nonnuma(void) 1304 { 1305 unsigned long top_of_ram = memblock_end_of_DRAM(); 1306 unsigned long total_ram = memblock_phys_mem_size(); 1307 1308 numadbg("bootmem_init_nonnuma()\n"); 1309 1310 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 1311 top_of_ram, total_ram); 1312 printk(KERN_INFO "Memory hole size: %ldMB\n", 1313 (top_of_ram - total_ram) >> 20); 1314 1315 init_node_masks_nonnuma(); 1316 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); 1317 allocate_node_data(0); 1318 node_set_online(0); 1319 } 1320 1321 static unsigned long __init bootmem_init(unsigned long phys_base) 1322 { 1323 unsigned long end_pfn; 1324 1325 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1326 max_pfn = max_low_pfn = end_pfn; 1327 min_low_pfn = (phys_base >> PAGE_SHIFT); 1328 1329 if (bootmem_init_numa() < 0) 1330 bootmem_init_nonnuma(); 1331 1332 /* Dump memblock with node info. */ 1333 memblock_dump_all(); 1334 1335 /* XXX cpu notifier XXX */ 1336 1337 sparse_memory_present_with_active_regions(MAX_NUMNODES); 1338 sparse_init(); 1339 1340 return end_pfn; 1341 } 1342 1343 static struct linux_prom64_registers pall[MAX_BANKS] __initdata; 1344 static int pall_ents __initdata; 1345 1346 #ifdef CONFIG_DEBUG_PAGEALLOC 1347 static unsigned long __ref kernel_map_range(unsigned long pstart, 1348 unsigned long pend, pgprot_t prot) 1349 { 1350 unsigned long vstart = PAGE_OFFSET + pstart; 1351 unsigned long vend = PAGE_OFFSET + pend; 1352 unsigned long alloc_bytes = 0UL; 1353 1354 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { 1355 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", 1356 vstart, vend); 1357 prom_halt(); 1358 } 1359 1360 while (vstart < vend) { 1361 unsigned long this_end, paddr = __pa(vstart); 1362 pgd_t *pgd = pgd_offset_k(vstart); 1363 pud_t *pud; 1364 pmd_t *pmd; 1365 pte_t *pte; 1366 1367 pud = pud_offset(pgd, vstart); 1368 if (pud_none(*pud)) { 1369 pmd_t *new; 1370 1371 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1372 alloc_bytes += PAGE_SIZE; 1373 pud_populate(&init_mm, pud, new); 1374 } 1375 1376 pmd = pmd_offset(pud, vstart); 1377 if (!pmd_present(*pmd)) { 1378 pte_t *new; 1379 1380 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1381 alloc_bytes += PAGE_SIZE; 1382 pmd_populate_kernel(&init_mm, pmd, new); 1383 } 1384 1385 pte = pte_offset_kernel(pmd, vstart); 1386 this_end = (vstart + PMD_SIZE) & PMD_MASK; 1387 if (this_end > vend) 1388 this_end = vend; 1389 1390 while (vstart < this_end) { 1391 pte_val(*pte) = (paddr | pgprot_val(prot)); 1392 1393 vstart += PAGE_SIZE; 1394 paddr += PAGE_SIZE; 1395 pte++; 1396 } 1397 } 1398 1399 return alloc_bytes; 1400 } 1401 1402 extern unsigned int kvmap_linear_patch[1]; 1403 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1404 1405 static void __init kpte_set_val(unsigned long index, unsigned long val) 1406 { 1407 unsigned long *ptr = kpte_linear_bitmap; 1408 1409 val <<= ((index % (BITS_PER_LONG / 2)) * 2); 1410 ptr += (index / (BITS_PER_LONG / 2)); 1411 1412 *ptr |= val; 1413 } 1414 1415 static const unsigned long kpte_shift_min = 28; /* 256MB */ 1416 static const unsigned long kpte_shift_max = 34; /* 16GB */ 1417 static const unsigned long kpte_shift_incr = 3; 1418 1419 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end, 1420 unsigned long shift) 1421 { 1422 unsigned long size = (1UL << shift); 1423 unsigned long mask = (size - 1UL); 1424 unsigned long remains = end - start; 1425 unsigned long val; 1426 1427 if (remains < size || (start & mask)) 1428 return start; 1429 1430 /* VAL maps: 1431 * 1432 * shift 28 --> kern_linear_pte_xor index 1 1433 * shift 31 --> kern_linear_pte_xor index 2 1434 * shift 34 --> kern_linear_pte_xor index 3 1435 */ 1436 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1; 1437 1438 remains &= ~mask; 1439 if (shift != kpte_shift_max) 1440 remains = size; 1441 1442 while (remains) { 1443 unsigned long index = start >> kpte_shift_min; 1444 1445 kpte_set_val(index, val); 1446 1447 start += 1UL << kpte_shift_min; 1448 remains -= 1UL << kpte_shift_min; 1449 } 1450 1451 return start; 1452 } 1453 1454 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) 1455 { 1456 unsigned long smallest_size, smallest_mask; 1457 unsigned long s; 1458 1459 smallest_size = (1UL << kpte_shift_min); 1460 smallest_mask = (smallest_size - 1UL); 1461 1462 while (start < end) { 1463 unsigned long orig_start = start; 1464 1465 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) { 1466 start = kpte_mark_using_shift(start, end, s); 1467 1468 if (start != orig_start) 1469 break; 1470 } 1471 1472 if (start == orig_start) 1473 start = (start + smallest_size) & ~smallest_mask; 1474 } 1475 } 1476 1477 static void __init init_kpte_bitmap(void) 1478 { 1479 unsigned long i; 1480 1481 for (i = 0; i < pall_ents; i++) { 1482 unsigned long phys_start, phys_end; 1483 1484 phys_start = pall[i].phys_addr; 1485 phys_end = phys_start + pall[i].reg_size; 1486 1487 mark_kpte_bitmap(phys_start, phys_end); 1488 } 1489 } 1490 1491 static void __init kernel_physical_mapping_init(void) 1492 { 1493 #ifdef CONFIG_DEBUG_PAGEALLOC 1494 unsigned long i, mem_alloced = 0UL; 1495 1496 for (i = 0; i < pall_ents; i++) { 1497 unsigned long phys_start, phys_end; 1498 1499 phys_start = pall[i].phys_addr; 1500 phys_end = phys_start + pall[i].reg_size; 1501 1502 mem_alloced += kernel_map_range(phys_start, phys_end, 1503 PAGE_KERNEL); 1504 } 1505 1506 printk("Allocated %ld bytes for kernel page tables.\n", 1507 mem_alloced); 1508 1509 kvmap_linear_patch[0] = 0x01000000; /* nop */ 1510 flushi(&kvmap_linear_patch[0]); 1511 1512 __flush_tlb_all(); 1513 #endif 1514 } 1515 1516 #ifdef CONFIG_DEBUG_PAGEALLOC 1517 void kernel_map_pages(struct page *page, int numpages, int enable) 1518 { 1519 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; 1520 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); 1521 1522 kernel_map_range(phys_start, phys_end, 1523 (enable ? PAGE_KERNEL : __pgprot(0))); 1524 1525 flush_tsb_kernel_range(PAGE_OFFSET + phys_start, 1526 PAGE_OFFSET + phys_end); 1527 1528 /* we should perform an IPI and flush all tlbs, 1529 * but that can deadlock->flush only current cpu. 1530 */ 1531 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, 1532 PAGE_OFFSET + phys_end); 1533 } 1534 #endif 1535 1536 unsigned long __init find_ecache_flush_span(unsigned long size) 1537 { 1538 int i; 1539 1540 for (i = 0; i < pavail_ents; i++) { 1541 if (pavail[i].reg_size >= size) 1542 return pavail[i].phys_addr; 1543 } 1544 1545 return ~0UL; 1546 } 1547 1548 static void __init tsb_phys_patch(void) 1549 { 1550 struct tsb_ldquad_phys_patch_entry *pquad; 1551 struct tsb_phys_patch_entry *p; 1552 1553 pquad = &__tsb_ldquad_phys_patch; 1554 while (pquad < &__tsb_ldquad_phys_patch_end) { 1555 unsigned long addr = pquad->addr; 1556 1557 if (tlb_type == hypervisor) 1558 *(unsigned int *) addr = pquad->sun4v_insn; 1559 else 1560 *(unsigned int *) addr = pquad->sun4u_insn; 1561 wmb(); 1562 __asm__ __volatile__("flush %0" 1563 : /* no outputs */ 1564 : "r" (addr)); 1565 1566 pquad++; 1567 } 1568 1569 p = &__tsb_phys_patch; 1570 while (p < &__tsb_phys_patch_end) { 1571 unsigned long addr = p->addr; 1572 1573 *(unsigned int *) addr = p->insn; 1574 wmb(); 1575 __asm__ __volatile__("flush %0" 1576 : /* no outputs */ 1577 : "r" (addr)); 1578 1579 p++; 1580 } 1581 } 1582 1583 /* Don't mark as init, we give this to the Hypervisor. */ 1584 #ifndef CONFIG_DEBUG_PAGEALLOC 1585 #define NUM_KTSB_DESCR 2 1586 #else 1587 #define NUM_KTSB_DESCR 1 1588 #endif 1589 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; 1590 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; 1591 1592 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) 1593 { 1594 pa >>= KTSB_PHYS_SHIFT; 1595 1596 while (start < end) { 1597 unsigned int *ia = (unsigned int *)(unsigned long)*start; 1598 1599 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10); 1600 __asm__ __volatile__("flush %0" : : "r" (ia)); 1601 1602 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff); 1603 __asm__ __volatile__("flush %0" : : "r" (ia + 1)); 1604 1605 start++; 1606 } 1607 } 1608 1609 static void ktsb_phys_patch(void) 1610 { 1611 extern unsigned int __swapper_tsb_phys_patch; 1612 extern unsigned int __swapper_tsb_phys_patch_end; 1613 unsigned long ktsb_pa; 1614 1615 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1616 patch_one_ktsb_phys(&__swapper_tsb_phys_patch, 1617 &__swapper_tsb_phys_patch_end, ktsb_pa); 1618 #ifndef CONFIG_DEBUG_PAGEALLOC 1619 { 1620 extern unsigned int __swapper_4m_tsb_phys_patch; 1621 extern unsigned int __swapper_4m_tsb_phys_patch_end; 1622 ktsb_pa = (kern_base + 1623 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1624 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, 1625 &__swapper_4m_tsb_phys_patch_end, ktsb_pa); 1626 } 1627 #endif 1628 } 1629 1630 static void __init sun4v_ktsb_init(void) 1631 { 1632 unsigned long ktsb_pa; 1633 1634 /* First KTSB for PAGE_SIZE mappings. */ 1635 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); 1636 1637 switch (PAGE_SIZE) { 1638 case 8 * 1024: 1639 default: 1640 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; 1641 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; 1642 break; 1643 1644 case 64 * 1024: 1645 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; 1646 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; 1647 break; 1648 1649 case 512 * 1024: 1650 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; 1651 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; 1652 break; 1653 1654 case 4 * 1024 * 1024: 1655 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; 1656 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; 1657 break; 1658 } 1659 1660 ktsb_descr[0].assoc = 1; 1661 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; 1662 ktsb_descr[0].ctx_idx = 0; 1663 ktsb_descr[0].tsb_base = ktsb_pa; 1664 ktsb_descr[0].resv = 0; 1665 1666 #ifndef CONFIG_DEBUG_PAGEALLOC 1667 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ 1668 ktsb_pa = (kern_base + 1669 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); 1670 1671 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; 1672 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | 1673 HV_PGSZ_MASK_256MB | 1674 HV_PGSZ_MASK_2GB | 1675 HV_PGSZ_MASK_16GB) & 1676 cpu_pgsz_mask); 1677 ktsb_descr[1].assoc = 1; 1678 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; 1679 ktsb_descr[1].ctx_idx = 0; 1680 ktsb_descr[1].tsb_base = ktsb_pa; 1681 ktsb_descr[1].resv = 0; 1682 #endif 1683 } 1684 1685 void __cpuinit sun4v_ktsb_register(void) 1686 { 1687 unsigned long pa, ret; 1688 1689 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); 1690 1691 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); 1692 if (ret != 0) { 1693 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " 1694 "errors with %lx\n", pa, ret); 1695 prom_halt(); 1696 } 1697 } 1698 1699 static void __init sun4u_linear_pte_xor_finalize(void) 1700 { 1701 #ifndef CONFIG_DEBUG_PAGEALLOC 1702 /* This is where we would add Panther support for 1703 * 32MB and 256MB pages. 1704 */ 1705 #endif 1706 } 1707 1708 static void __init sun4v_linear_pte_xor_finalize(void) 1709 { 1710 #ifndef CONFIG_DEBUG_PAGEALLOC 1711 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { 1712 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ 1713 0xfffff80000000000UL; 1714 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1715 _PAGE_P_4V | _PAGE_W_4V); 1716 } else { 1717 kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; 1718 } 1719 1720 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { 1721 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ 1722 0xfffff80000000000UL; 1723 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1724 _PAGE_P_4V | _PAGE_W_4V); 1725 } else { 1726 kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; 1727 } 1728 1729 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { 1730 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ 1731 0xfffff80000000000UL; 1732 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V | 1733 _PAGE_P_4V | _PAGE_W_4V); 1734 } else { 1735 kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; 1736 } 1737 #endif 1738 } 1739 1740 /* paging_init() sets up the page tables */ 1741 1742 static unsigned long last_valid_pfn; 1743 pgd_t swapper_pg_dir[2048]; 1744 1745 static void sun4u_pgprot_init(void); 1746 static void sun4v_pgprot_init(void); 1747 1748 void __init paging_init(void) 1749 { 1750 unsigned long end_pfn, shift, phys_base; 1751 unsigned long real_end, i; 1752 int node; 1753 1754 /* These build time checkes make sure that the dcache_dirty_cpu() 1755 * page->flags usage will work. 1756 * 1757 * When a page gets marked as dcache-dirty, we store the 1758 * cpu number starting at bit 32 in the page->flags. Also, 1759 * functions like clear_dcache_dirty_cpu use the cpu mask 1760 * in 13-bit signed-immediate instruction fields. 1761 */ 1762 1763 /* 1764 * Page flags must not reach into upper 32 bits that are used 1765 * for the cpu number 1766 */ 1767 BUILD_BUG_ON(NR_PAGEFLAGS > 32); 1768 1769 /* 1770 * The bit fields placed in the high range must not reach below 1771 * the 32 bit boundary. Otherwise we cannot place the cpu field 1772 * at the 32 bit boundary. 1773 */ 1774 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + 1775 ilog2(roundup_pow_of_two(NR_CPUS)) > 32); 1776 1777 BUILD_BUG_ON(NR_CPUS > 4096); 1778 1779 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; 1780 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; 1781 1782 /* Invalidate both kernel TSBs. */ 1783 memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); 1784 #ifndef CONFIG_DEBUG_PAGEALLOC 1785 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1786 #endif 1787 1788 if (tlb_type == hypervisor) 1789 sun4v_pgprot_init(); 1790 else 1791 sun4u_pgprot_init(); 1792 1793 if (tlb_type == cheetah_plus || 1794 tlb_type == hypervisor) { 1795 tsb_phys_patch(); 1796 ktsb_phys_patch(); 1797 } 1798 1799 if (tlb_type == hypervisor) 1800 sun4v_patch_tlb_handlers(); 1801 1802 /* Find available physical memory... 1803 * 1804 * Read it twice in order to work around a bug in openfirmware. 1805 * The call to grab this table itself can cause openfirmware to 1806 * allocate memory, which in turn can take away some space from 1807 * the list of available memory. Reading it twice makes sure 1808 * we really do get the final value. 1809 */ 1810 read_obp_translations(); 1811 read_obp_memory("reg", &pall[0], &pall_ents); 1812 read_obp_memory("available", &pavail[0], &pavail_ents); 1813 read_obp_memory("available", &pavail[0], &pavail_ents); 1814 1815 phys_base = 0xffffffffffffffffUL; 1816 for (i = 0; i < pavail_ents; i++) { 1817 phys_base = min(phys_base, pavail[i].phys_addr); 1818 memblock_add(pavail[i].phys_addr, pavail[i].reg_size); 1819 } 1820 1821 memblock_reserve(kern_base, kern_size); 1822 1823 find_ramdisk(phys_base); 1824 1825 memblock_enforce_memory_limit(cmdline_memory_size); 1826 1827 memblock_allow_resize(); 1828 memblock_dump_all(); 1829 1830 set_bit(0, mmu_context_bmap); 1831 1832 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); 1833 1834 real_end = (unsigned long)_end; 1835 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22); 1836 printk("Kernel: Using %d locked TLB entries for main kernel image.\n", 1837 num_kernel_image_mappings); 1838 1839 /* Set kernel pgd to upper alias so physical page computations 1840 * work. 1841 */ 1842 init_mm.pgd += ((shift) / (sizeof(pgd_t))); 1843 1844 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); 1845 1846 /* Now can init the kernel/bad page tables. */ 1847 pud_set(pud_offset(&swapper_pg_dir[0], 0), 1848 swapper_low_pmd_dir + (shift / sizeof(pgd_t))); 1849 1850 inherit_prom_mappings(); 1851 1852 init_kpte_bitmap(); 1853 1854 /* Ok, we can use our TLB miss and window trap handlers safely. */ 1855 setup_tba(); 1856 1857 __flush_tlb_all(); 1858 1859 prom_build_devicetree(); 1860 of_populate_present_mask(); 1861 #ifndef CONFIG_SMP 1862 of_fill_in_cpu_data(); 1863 #endif 1864 1865 if (tlb_type == hypervisor) { 1866 sun4v_mdesc_init(); 1867 mdesc_populate_present_mask(cpu_all_mask); 1868 #ifndef CONFIG_SMP 1869 mdesc_fill_in_cpu_data(cpu_all_mask); 1870 #endif 1871 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); 1872 1873 sun4v_linear_pte_xor_finalize(); 1874 1875 sun4v_ktsb_init(); 1876 sun4v_ktsb_register(); 1877 } else { 1878 unsigned long impl, ver; 1879 1880 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | 1881 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); 1882 1883 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 1884 impl = ((ver >> 32) & 0xffff); 1885 if (impl == PANTHER_IMPL) 1886 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | 1887 HV_PGSZ_MASK_256MB); 1888 1889 sun4u_linear_pte_xor_finalize(); 1890 } 1891 1892 /* Flush the TLBs and the 4M TSB so that the updated linear 1893 * pte XOR settings are realized for all mappings. 1894 */ 1895 __flush_tlb_all(); 1896 #ifndef CONFIG_DEBUG_PAGEALLOC 1897 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); 1898 #endif 1899 __flush_tlb_all(); 1900 1901 /* Setup bootmem... */ 1902 last_valid_pfn = end_pfn = bootmem_init(phys_base); 1903 1904 /* Once the OF device tree and MDESC have been setup, we know 1905 * the list of possible cpus. Therefore we can allocate the 1906 * IRQ stacks. 1907 */ 1908 for_each_possible_cpu(i) { 1909 node = cpu_to_node(i); 1910 1911 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 1912 THREAD_SIZE, 1913 THREAD_SIZE, 0); 1914 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), 1915 THREAD_SIZE, 1916 THREAD_SIZE, 0); 1917 } 1918 1919 kernel_physical_mapping_init(); 1920 1921 { 1922 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1923 1924 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1925 1926 max_zone_pfns[ZONE_NORMAL] = end_pfn; 1927 1928 free_area_init_nodes(max_zone_pfns); 1929 } 1930 1931 printk("Booting Linux...\n"); 1932 } 1933 1934 int __devinit page_in_phys_avail(unsigned long paddr) 1935 { 1936 int i; 1937 1938 paddr &= PAGE_MASK; 1939 1940 for (i = 0; i < pavail_ents; i++) { 1941 unsigned long start, end; 1942 1943 start = pavail[i].phys_addr; 1944 end = start + pavail[i].reg_size; 1945 1946 if (paddr >= start && paddr < end) 1947 return 1; 1948 } 1949 if (paddr >= kern_base && paddr < (kern_base + kern_size)) 1950 return 1; 1951 #ifdef CONFIG_BLK_DEV_INITRD 1952 if (paddr >= __pa(initrd_start) && 1953 paddr < __pa(PAGE_ALIGN(initrd_end))) 1954 return 1; 1955 #endif 1956 1957 return 0; 1958 } 1959 1960 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; 1961 static int pavail_rescan_ents __initdata; 1962 1963 /* Certain OBP calls, such as fetching "available" properties, can 1964 * claim physical memory. So, along with initializing the valid 1965 * address bitmap, what we do here is refetch the physical available 1966 * memory list again, and make sure it provides at least as much 1967 * memory as 'pavail' does. 1968 */ 1969 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap) 1970 { 1971 int i; 1972 1973 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); 1974 1975 for (i = 0; i < pavail_ents; i++) { 1976 unsigned long old_start, old_end; 1977 1978 old_start = pavail[i].phys_addr; 1979 old_end = old_start + pavail[i].reg_size; 1980 while (old_start < old_end) { 1981 int n; 1982 1983 for (n = 0; n < pavail_rescan_ents; n++) { 1984 unsigned long new_start, new_end; 1985 1986 new_start = pavail_rescan[n].phys_addr; 1987 new_end = new_start + 1988 pavail_rescan[n].reg_size; 1989 1990 if (new_start <= old_start && 1991 new_end >= (old_start + PAGE_SIZE)) { 1992 set_bit(old_start >> 22, bitmap); 1993 goto do_next_page; 1994 } 1995 } 1996 1997 prom_printf("mem_init: Lost memory in pavail\n"); 1998 prom_printf("mem_init: OLD start[%lx] size[%lx]\n", 1999 pavail[i].phys_addr, 2000 pavail[i].reg_size); 2001 prom_printf("mem_init: NEW start[%lx] size[%lx]\n", 2002 pavail_rescan[i].phys_addr, 2003 pavail_rescan[i].reg_size); 2004 prom_printf("mem_init: Cannot continue, aborting.\n"); 2005 prom_halt(); 2006 2007 do_next_page: 2008 old_start += PAGE_SIZE; 2009 } 2010 } 2011 } 2012 2013 static void __init patch_tlb_miss_handler_bitmap(void) 2014 { 2015 extern unsigned int valid_addr_bitmap_insn[]; 2016 extern unsigned int valid_addr_bitmap_patch[]; 2017 2018 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1]; 2019 mb(); 2020 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0]; 2021 flushi(&valid_addr_bitmap_insn[0]); 2022 } 2023 2024 void __init mem_init(void) 2025 { 2026 unsigned long codepages, datapages, initpages; 2027 unsigned long addr, last; 2028 2029 addr = PAGE_OFFSET + kern_base; 2030 last = PAGE_ALIGN(kern_size) + addr; 2031 while (addr < last) { 2032 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); 2033 addr += PAGE_SIZE; 2034 } 2035 2036 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap); 2037 patch_tlb_miss_handler_bitmap(); 2038 2039 high_memory = __va(last_valid_pfn << PAGE_SHIFT); 2040 2041 #ifdef CONFIG_NEED_MULTIPLE_NODES 2042 { 2043 int i; 2044 for_each_online_node(i) { 2045 if (NODE_DATA(i)->node_spanned_pages != 0) { 2046 totalram_pages += 2047 free_all_bootmem_node(NODE_DATA(i)); 2048 } 2049 } 2050 totalram_pages += free_low_memory_core_early(MAX_NUMNODES); 2051 } 2052 #else 2053 totalram_pages = free_all_bootmem(); 2054 #endif 2055 2056 /* We subtract one to account for the mem_map_zero page 2057 * allocated below. 2058 */ 2059 totalram_pages -= 1; 2060 num_physpages = totalram_pages; 2061 2062 /* 2063 * Set up the zero page, mark it reserved, so that page count 2064 * is not manipulated when freeing the page from user ptes. 2065 */ 2066 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); 2067 if (mem_map_zero == NULL) { 2068 prom_printf("paging_init: Cannot alloc zero page.\n"); 2069 prom_halt(); 2070 } 2071 SetPageReserved(mem_map_zero); 2072 2073 codepages = (((unsigned long) _etext) - ((unsigned long) _start)); 2074 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; 2075 datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); 2076 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; 2077 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); 2078 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; 2079 2080 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", 2081 nr_free_pages() << (PAGE_SHIFT-10), 2082 codepages << (PAGE_SHIFT-10), 2083 datapages << (PAGE_SHIFT-10), 2084 initpages << (PAGE_SHIFT-10), 2085 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); 2086 2087 if (tlb_type == cheetah || tlb_type == cheetah_plus) 2088 cheetah_ecache_flush_init(); 2089 } 2090 2091 void free_initmem(void) 2092 { 2093 unsigned long addr, initend; 2094 int do_free = 1; 2095 2096 /* If the physical memory maps were trimmed by kernel command 2097 * line options, don't even try freeing this initmem stuff up. 2098 * The kernel image could have been in the trimmed out region 2099 * and if so the freeing below will free invalid page structs. 2100 */ 2101 if (cmdline_memory_size) 2102 do_free = 0; 2103 2104 /* 2105 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. 2106 */ 2107 addr = PAGE_ALIGN((unsigned long)(__init_begin)); 2108 initend = (unsigned long)(__init_end) & PAGE_MASK; 2109 for (; addr < initend; addr += PAGE_SIZE) { 2110 unsigned long page; 2111 struct page *p; 2112 2113 page = (addr + 2114 ((unsigned long) __va(kern_base)) - 2115 ((unsigned long) KERNBASE)); 2116 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 2117 2118 if (do_free) { 2119 p = virt_to_page(page); 2120 2121 ClearPageReserved(p); 2122 init_page_count(p); 2123 __free_page(p); 2124 num_physpages++; 2125 totalram_pages++; 2126 } 2127 } 2128 } 2129 2130 #ifdef CONFIG_BLK_DEV_INITRD 2131 void free_initrd_mem(unsigned long start, unsigned long end) 2132 { 2133 if (start < end) 2134 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 2135 for (; start < end; start += PAGE_SIZE) { 2136 struct page *p = virt_to_page(start); 2137 2138 ClearPageReserved(p); 2139 init_page_count(p); 2140 __free_page(p); 2141 num_physpages++; 2142 totalram_pages++; 2143 } 2144 } 2145 #endif 2146 2147 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) 2148 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) 2149 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) 2150 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) 2151 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) 2152 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) 2153 2154 pgprot_t PAGE_KERNEL __read_mostly; 2155 EXPORT_SYMBOL(PAGE_KERNEL); 2156 2157 pgprot_t PAGE_KERNEL_LOCKED __read_mostly; 2158 pgprot_t PAGE_COPY __read_mostly; 2159 2160 pgprot_t PAGE_SHARED __read_mostly; 2161 EXPORT_SYMBOL(PAGE_SHARED); 2162 2163 unsigned long pg_iobits __read_mostly; 2164 2165 unsigned long _PAGE_IE __read_mostly; 2166 EXPORT_SYMBOL(_PAGE_IE); 2167 2168 unsigned long _PAGE_E __read_mostly; 2169 EXPORT_SYMBOL(_PAGE_E); 2170 2171 unsigned long _PAGE_CACHE __read_mostly; 2172 EXPORT_SYMBOL(_PAGE_CACHE); 2173 2174 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2175 unsigned long vmemmap_table[VMEMMAP_SIZE]; 2176 2177 static long __meminitdata addr_start, addr_end; 2178 static int __meminitdata node_start; 2179 2180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) 2181 { 2182 unsigned long vstart = (unsigned long) start; 2183 unsigned long vend = (unsigned long) (start + nr); 2184 unsigned long phys_start = (vstart - VMEMMAP_BASE); 2185 unsigned long phys_end = (vend - VMEMMAP_BASE); 2186 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; 2187 unsigned long end = VMEMMAP_ALIGN(phys_end); 2188 unsigned long pte_base; 2189 2190 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2191 _PAGE_CP_4U | _PAGE_CV_4U | 2192 _PAGE_P_4U | _PAGE_W_4U); 2193 if (tlb_type == hypervisor) 2194 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2195 _PAGE_CP_4V | _PAGE_CV_4V | 2196 _PAGE_P_4V | _PAGE_W_4V); 2197 2198 for (; addr < end; addr += VMEMMAP_CHUNK) { 2199 unsigned long *vmem_pp = 2200 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); 2201 void *block; 2202 2203 if (!(*vmem_pp & _PAGE_VALID)) { 2204 block = vmemmap_alloc_block(1UL << 22, node); 2205 if (!block) 2206 return -ENOMEM; 2207 2208 *vmem_pp = pte_base | __pa(block); 2209 2210 /* check to see if we have contiguous blocks */ 2211 if (addr_end != addr || node_start != node) { 2212 if (addr_start) 2213 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2214 addr_start, addr_end-1, node_start); 2215 addr_start = addr; 2216 node_start = node; 2217 } 2218 addr_end = addr + VMEMMAP_CHUNK; 2219 } 2220 } 2221 return 0; 2222 } 2223 2224 void __meminit vmemmap_populate_print_last(void) 2225 { 2226 if (addr_start) { 2227 printk(KERN_DEBUG " [%lx-%lx] on node %d\n", 2228 addr_start, addr_end-1, node_start); 2229 addr_start = 0; 2230 addr_end = 0; 2231 node_start = 0; 2232 } 2233 } 2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 2235 2236 static void prot_init_common(unsigned long page_none, 2237 unsigned long page_shared, 2238 unsigned long page_copy, 2239 unsigned long page_readonly, 2240 unsigned long page_exec_bit) 2241 { 2242 PAGE_COPY = __pgprot(page_copy); 2243 PAGE_SHARED = __pgprot(page_shared); 2244 2245 protection_map[0x0] = __pgprot(page_none); 2246 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); 2247 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); 2248 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); 2249 protection_map[0x4] = __pgprot(page_readonly); 2250 protection_map[0x5] = __pgprot(page_readonly); 2251 protection_map[0x6] = __pgprot(page_copy); 2252 protection_map[0x7] = __pgprot(page_copy); 2253 protection_map[0x8] = __pgprot(page_none); 2254 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); 2255 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); 2256 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); 2257 protection_map[0xc] = __pgprot(page_readonly); 2258 protection_map[0xd] = __pgprot(page_readonly); 2259 protection_map[0xe] = __pgprot(page_shared); 2260 protection_map[0xf] = __pgprot(page_shared); 2261 } 2262 2263 static void __init sun4u_pgprot_init(void) 2264 { 2265 unsigned long page_none, page_shared, page_copy, page_readonly; 2266 unsigned long page_exec_bit; 2267 int i; 2268 2269 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2270 _PAGE_CACHE_4U | _PAGE_P_4U | 2271 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2272 _PAGE_EXEC_4U); 2273 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | 2274 _PAGE_CACHE_4U | _PAGE_P_4U | 2275 __ACCESS_BITS_4U | __DIRTY_BITS_4U | 2276 _PAGE_EXEC_4U | _PAGE_L_4U); 2277 2278 _PAGE_IE = _PAGE_IE_4U; 2279 _PAGE_E = _PAGE_E_4U; 2280 _PAGE_CACHE = _PAGE_CACHE_4U; 2281 2282 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | 2283 __ACCESS_BITS_4U | _PAGE_E_4U); 2284 2285 #ifdef CONFIG_DEBUG_PAGEALLOC 2286 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL; 2287 #else 2288 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ 2289 0xfffff80000000000UL; 2290 #endif 2291 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | 2292 _PAGE_P_4U | _PAGE_W_4U); 2293 2294 for (i = 1; i < 4; i++) 2295 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2296 2297 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | 2298 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | 2299 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); 2300 2301 2302 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; 2303 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2304 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); 2305 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2306 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2307 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | 2308 __ACCESS_BITS_4U | _PAGE_EXEC_4U); 2309 2310 page_exec_bit = _PAGE_EXEC_4U; 2311 2312 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2313 page_exec_bit); 2314 } 2315 2316 static void __init sun4v_pgprot_init(void) 2317 { 2318 unsigned long page_none, page_shared, page_copy, page_readonly; 2319 unsigned long page_exec_bit; 2320 int i; 2321 2322 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | 2323 _PAGE_CACHE_4V | _PAGE_P_4V | 2324 __ACCESS_BITS_4V | __DIRTY_BITS_4V | 2325 _PAGE_EXEC_4V); 2326 PAGE_KERNEL_LOCKED = PAGE_KERNEL; 2327 2328 _PAGE_IE = _PAGE_IE_4V; 2329 _PAGE_E = _PAGE_E_4V; 2330 _PAGE_CACHE = _PAGE_CACHE_4V; 2331 2332 #ifdef CONFIG_DEBUG_PAGEALLOC 2333 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL; 2334 #else 2335 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ 2336 0xfffff80000000000UL; 2337 #endif 2338 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | 2339 _PAGE_P_4V | _PAGE_W_4V); 2340 2341 for (i = 1; i < 4; i++) 2342 kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; 2343 2344 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | 2345 __ACCESS_BITS_4V | _PAGE_E_4V); 2346 2347 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | 2348 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | 2349 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | 2350 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); 2351 2352 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; 2353 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2354 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); 2355 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2356 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2357 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | 2358 __ACCESS_BITS_4V | _PAGE_EXEC_4V); 2359 2360 page_exec_bit = _PAGE_EXEC_4V; 2361 2362 prot_init_common(page_none, page_shared, page_copy, page_readonly, 2363 page_exec_bit); 2364 } 2365 2366 unsigned long pte_sz_bits(unsigned long sz) 2367 { 2368 if (tlb_type == hypervisor) { 2369 switch (sz) { 2370 case 8 * 1024: 2371 default: 2372 return _PAGE_SZ8K_4V; 2373 case 64 * 1024: 2374 return _PAGE_SZ64K_4V; 2375 case 512 * 1024: 2376 return _PAGE_SZ512K_4V; 2377 case 4 * 1024 * 1024: 2378 return _PAGE_SZ4MB_4V; 2379 } 2380 } else { 2381 switch (sz) { 2382 case 8 * 1024: 2383 default: 2384 return _PAGE_SZ8K_4U; 2385 case 64 * 1024: 2386 return _PAGE_SZ64K_4U; 2387 case 512 * 1024: 2388 return _PAGE_SZ512K_4U; 2389 case 4 * 1024 * 1024: 2390 return _PAGE_SZ4MB_4U; 2391 } 2392 } 2393 } 2394 2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) 2396 { 2397 pte_t pte; 2398 2399 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); 2400 pte_val(pte) |= (((unsigned long)space) << 32); 2401 pte_val(pte) |= pte_sz_bits(page_size); 2402 2403 return pte; 2404 } 2405 2406 static unsigned long kern_large_tte(unsigned long paddr) 2407 { 2408 unsigned long val; 2409 2410 val = (_PAGE_VALID | _PAGE_SZ4MB_4U | 2411 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | 2412 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); 2413 if (tlb_type == hypervisor) 2414 val = (_PAGE_VALID | _PAGE_SZ4MB_4V | 2415 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | 2416 _PAGE_EXEC_4V | _PAGE_W_4V); 2417 2418 return val | paddr; 2419 } 2420 2421 /* If not locked, zap it. */ 2422 void __flush_tlb_all(void) 2423 { 2424 unsigned long pstate; 2425 int i; 2426 2427 __asm__ __volatile__("flushw\n\t" 2428 "rdpr %%pstate, %0\n\t" 2429 "wrpr %0, %1, %%pstate" 2430 : "=r" (pstate) 2431 : "i" (PSTATE_IE)); 2432 if (tlb_type == hypervisor) { 2433 sun4v_mmu_demap_all(); 2434 } else if (tlb_type == spitfire) { 2435 for (i = 0; i < 64; i++) { 2436 /* Spitfire Errata #32 workaround */ 2437 /* NOTE: Always runs on spitfire, so no 2438 * cheetah+ page size encodings. 2439 */ 2440 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2441 "flush %%g6" 2442 : /* No outputs */ 2443 : "r" (0), 2444 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2445 2446 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { 2447 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2448 "membar #Sync" 2449 : /* no outputs */ 2450 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); 2451 spitfire_put_dtlb_data(i, 0x0UL); 2452 } 2453 2454 /* Spitfire Errata #32 workaround */ 2455 /* NOTE: Always runs on spitfire, so no 2456 * cheetah+ page size encodings. 2457 */ 2458 __asm__ __volatile__("stxa %0, [%1] %2\n\t" 2459 "flush %%g6" 2460 : /* No outputs */ 2461 : "r" (0), 2462 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); 2463 2464 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { 2465 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 2466 "membar #Sync" 2467 : /* no outputs */ 2468 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); 2469 spitfire_put_itlb_data(i, 0x0UL); 2470 } 2471 } 2472 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 2473 cheetah_flush_dtlb_all(); 2474 cheetah_flush_itlb_all(); 2475 } 2476 __asm__ __volatile__("wrpr %0, 0, %%pstate" 2477 : : "r" (pstate)); 2478 } 2479 2480 static pte_t *get_from_cache(struct mm_struct *mm) 2481 { 2482 struct page *page; 2483 pte_t *ret; 2484 2485 spin_lock(&mm->page_table_lock); 2486 page = mm->context.pgtable_page; 2487 ret = NULL; 2488 if (page) { 2489 void *p = page_address(page); 2490 2491 mm->context.pgtable_page = NULL; 2492 2493 ret = (pte_t *) (p + (PAGE_SIZE / 2)); 2494 } 2495 spin_unlock(&mm->page_table_lock); 2496 2497 return ret; 2498 } 2499 2500 static struct page *__alloc_for_cache(struct mm_struct *mm) 2501 { 2502 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 2503 __GFP_REPEAT | __GFP_ZERO); 2504 2505 if (page) { 2506 spin_lock(&mm->page_table_lock); 2507 if (!mm->context.pgtable_page) { 2508 atomic_set(&page->_count, 2); 2509 mm->context.pgtable_page = page; 2510 } 2511 spin_unlock(&mm->page_table_lock); 2512 } 2513 return page; 2514 } 2515 2516 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, 2517 unsigned long address) 2518 { 2519 struct page *page; 2520 pte_t *pte; 2521 2522 pte = get_from_cache(mm); 2523 if (pte) 2524 return pte; 2525 2526 page = __alloc_for_cache(mm); 2527 if (page) 2528 pte = (pte_t *) page_address(page); 2529 2530 return pte; 2531 } 2532 2533 pgtable_t pte_alloc_one(struct mm_struct *mm, 2534 unsigned long address) 2535 { 2536 struct page *page; 2537 pte_t *pte; 2538 2539 pte = get_from_cache(mm); 2540 if (pte) 2541 return pte; 2542 2543 page = __alloc_for_cache(mm); 2544 if (page) { 2545 pgtable_page_ctor(page); 2546 pte = (pte_t *) page_address(page); 2547 } 2548 2549 return pte; 2550 } 2551 2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte) 2553 { 2554 struct page *page = virt_to_page(pte); 2555 if (put_page_testzero(page)) 2556 free_hot_cold_page(page, 0); 2557 } 2558 2559 static void __pte_free(pgtable_t pte) 2560 { 2561 struct page *page = virt_to_page(pte); 2562 if (put_page_testzero(page)) { 2563 pgtable_page_dtor(page); 2564 free_hot_cold_page(page, 0); 2565 } 2566 } 2567 2568 void pte_free(struct mm_struct *mm, pgtable_t pte) 2569 { 2570 __pte_free(pte); 2571 } 2572 2573 void pgtable_free(void *table, bool is_page) 2574 { 2575 if (is_page) 2576 __pte_free(table); 2577 else 2578 kmem_cache_free(pgtable_cache, table); 2579 } 2580 2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify) 2583 { 2584 if (pgprot_val(pgprot) & _PAGE_VALID) 2585 pmd_val(pmd) |= PMD_HUGE_PRESENT; 2586 if (tlb_type == hypervisor) { 2587 if (pgprot_val(pgprot) & _PAGE_WRITE_4V) 2588 pmd_val(pmd) |= PMD_HUGE_WRITE; 2589 if (pgprot_val(pgprot) & _PAGE_EXEC_4V) 2590 pmd_val(pmd) |= PMD_HUGE_EXEC; 2591 2592 if (!for_modify) { 2593 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V) 2594 pmd_val(pmd) |= PMD_HUGE_ACCESSED; 2595 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V) 2596 pmd_val(pmd) |= PMD_HUGE_DIRTY; 2597 } 2598 } else { 2599 if (pgprot_val(pgprot) & _PAGE_WRITE_4U) 2600 pmd_val(pmd) |= PMD_HUGE_WRITE; 2601 if (pgprot_val(pgprot) & _PAGE_EXEC_4U) 2602 pmd_val(pmd) |= PMD_HUGE_EXEC; 2603 2604 if (!for_modify) { 2605 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U) 2606 pmd_val(pmd) |= PMD_HUGE_ACCESSED; 2607 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U) 2608 pmd_val(pmd) |= PMD_HUGE_DIRTY; 2609 } 2610 } 2611 2612 return pmd; 2613 } 2614 2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 2616 { 2617 pmd_t pmd; 2618 2619 pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT))); 2620 pmd_val(pmd) |= PMD_ISHUGE; 2621 pmd = pmd_set_protbits(pmd, pgprot, false); 2622 return pmd; 2623 } 2624 2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 2626 { 2627 pmd_val(pmd) &= ~(PMD_HUGE_PRESENT | 2628 PMD_HUGE_WRITE | 2629 PMD_HUGE_EXEC); 2630 pmd = pmd_set_protbits(pmd, newprot, true); 2631 return pmd; 2632 } 2633 2634 pgprot_t pmd_pgprot(pmd_t entry) 2635 { 2636 unsigned long pte = 0; 2637 2638 if (pmd_val(entry) & PMD_HUGE_PRESENT) 2639 pte |= _PAGE_VALID; 2640 2641 if (tlb_type == hypervisor) { 2642 if (pmd_val(entry) & PMD_HUGE_PRESENT) 2643 pte |= _PAGE_PRESENT_4V; 2644 if (pmd_val(entry) & PMD_HUGE_EXEC) 2645 pte |= _PAGE_EXEC_4V; 2646 if (pmd_val(entry) & PMD_HUGE_WRITE) 2647 pte |= _PAGE_W_4V; 2648 if (pmd_val(entry) & PMD_HUGE_ACCESSED) 2649 pte |= _PAGE_ACCESSED_4V; 2650 if (pmd_val(entry) & PMD_HUGE_DIRTY) 2651 pte |= _PAGE_MODIFIED_4V; 2652 pte |= _PAGE_CP_4V|_PAGE_CV_4V; 2653 } else { 2654 if (pmd_val(entry) & PMD_HUGE_PRESENT) 2655 pte |= _PAGE_PRESENT_4U; 2656 if (pmd_val(entry) & PMD_HUGE_EXEC) 2657 pte |= _PAGE_EXEC_4U; 2658 if (pmd_val(entry) & PMD_HUGE_WRITE) 2659 pte |= _PAGE_W_4U; 2660 if (pmd_val(entry) & PMD_HUGE_ACCESSED) 2661 pte |= _PAGE_ACCESSED_4U; 2662 if (pmd_val(entry) & PMD_HUGE_DIRTY) 2663 pte |= _PAGE_MODIFIED_4U; 2664 pte |= _PAGE_CP_4U|_PAGE_CV_4U; 2665 } 2666 2667 return __pgprot(pte); 2668 } 2669 2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 2671 pmd_t *pmd) 2672 { 2673 unsigned long pte, flags; 2674 struct mm_struct *mm; 2675 pmd_t entry = *pmd; 2676 pgprot_t prot; 2677 2678 if (!pmd_large(entry) || !pmd_young(entry)) 2679 return; 2680 2681 pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS); 2682 pte <<= PMD_PADDR_SHIFT; 2683 pte |= _PAGE_VALID; 2684 2685 prot = pmd_pgprot(entry); 2686 2687 if (tlb_type == hypervisor) 2688 pgprot_val(prot) |= _PAGE_SZHUGE_4V; 2689 else 2690 pgprot_val(prot) |= _PAGE_SZHUGE_4U; 2691 2692 pte |= pgprot_val(prot); 2693 2694 mm = vma->vm_mm; 2695 2696 spin_lock_irqsave(&mm->context.lock, flags); 2697 2698 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) 2699 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT, 2700 addr, pte); 2701 2702 spin_unlock_irqrestore(&mm->context.lock, flags); 2703 } 2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2705 2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 2707 static void context_reload(void *__data) 2708 { 2709 struct mm_struct *mm = __data; 2710 2711 if (mm == current->mm) 2712 load_secondary_context(mm); 2713 } 2714 2715 void hugetlb_setup(struct mm_struct *mm) 2716 { 2717 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE]; 2718 2719 if (likely(tp->tsb != NULL)) 2720 return; 2721 2722 tsb_grow(mm, MM_TSB_HUGE, 0); 2723 tsb_context_switch(mm); 2724 smp_tsb_sync(mm); 2725 2726 /* On UltraSPARC-III+ and later, configure the second half of 2727 * the Data-TLB for huge pages. 2728 */ 2729 if (tlb_type == cheetah_plus) { 2730 unsigned long ctx; 2731 2732 spin_lock(&ctx_alloc_lock); 2733 ctx = mm->context.sparc64_ctx_val; 2734 ctx &= ~CTX_PGSZ_MASK; 2735 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; 2736 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; 2737 2738 if (ctx != mm->context.sparc64_ctx_val) { 2739 /* When changing the page size fields, we 2740 * must perform a context flush so that no 2741 * stale entries match. This flush must 2742 * occur with the original context register 2743 * settings. 2744 */ 2745 do_flush_tlb_mm(mm); 2746 2747 /* Reload the context register of all processors 2748 * also executing in this address space. 2749 */ 2750 mm->context.sparc64_ctx_val = ctx; 2751 on_each_cpu(context_reload, mm, 0); 2752 } 2753 spin_unlock(&ctx_alloc_lock); 2754 } 2755 } 2756 #endif 2757