xref: /linux/arch/sparc/mm/init_64.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329 	struct mm_struct *mm;
330 	unsigned long flags;
331 	pte_t pte = *ptep;
332 
333 	if (tlb_type != hypervisor) {
334 		unsigned long pfn = pte_pfn(pte);
335 
336 		if (pfn_valid(pfn))
337 			flush_dcache(pfn);
338 	}
339 
340 	mm = vma->vm_mm;
341 
342 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343 	if (!pte_accessible(mm, pte))
344 		return;
345 
346 	spin_lock_irqsave(&mm->context.lock, flags);
347 
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349 	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
350 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
351 					address, pte_val(pte));
352 	else
353 #endif
354 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
355 					address, pte_val(pte));
356 
357 	spin_unlock_irqrestore(&mm->context.lock, flags);
358 }
359 
360 void flush_dcache_page(struct page *page)
361 {
362 	struct address_space *mapping;
363 	int this_cpu;
364 
365 	if (tlb_type == hypervisor)
366 		return;
367 
368 	/* Do not bother with the expensive D-cache flush if it
369 	 * is merely the zero page.  The 'bigcore' testcase in GDB
370 	 * causes this case to run millions of times.
371 	 */
372 	if (page == ZERO_PAGE(0))
373 		return;
374 
375 	this_cpu = get_cpu();
376 
377 	mapping = page_mapping(page);
378 	if (mapping && !mapping_mapped(mapping)) {
379 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
380 		if (dirty) {
381 			int dirty_cpu = dcache_dirty_cpu(page);
382 
383 			if (dirty_cpu == this_cpu)
384 				goto out;
385 			smp_flush_dcache_page_impl(page, dirty_cpu);
386 		}
387 		set_dcache_dirty(page, this_cpu);
388 	} else {
389 		/* We could delay the flush for the !page_mapping
390 		 * case too.  But that case is for exec env/arg
391 		 * pages and those are %99 certainly going to get
392 		 * faulted into the tlb (and thus flushed) anyways.
393 		 */
394 		flush_dcache_page_impl(page);
395 	}
396 
397 out:
398 	put_cpu();
399 }
400 EXPORT_SYMBOL(flush_dcache_page);
401 
402 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
403 {
404 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
405 	if (tlb_type == spitfire) {
406 		unsigned long kaddr;
407 
408 		/* This code only runs on Spitfire cpus so this is
409 		 * why we can assume _PAGE_PADDR_4U.
410 		 */
411 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
412 			unsigned long paddr, mask = _PAGE_PADDR_4U;
413 
414 			if (kaddr >= PAGE_OFFSET)
415 				paddr = kaddr & mask;
416 			else {
417 				pgd_t *pgdp = pgd_offset_k(kaddr);
418 				pud_t *pudp = pud_offset(pgdp, kaddr);
419 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
420 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
421 
422 				paddr = pte_val(*ptep) & mask;
423 			}
424 			__flush_icache_page(paddr);
425 		}
426 	}
427 }
428 EXPORT_SYMBOL(flush_icache_range);
429 
430 void mmu_info(struct seq_file *m)
431 {
432 	static const char *pgsz_strings[] = {
433 		"8K", "64K", "512K", "4MB", "32MB",
434 		"256MB", "2GB", "16GB",
435 	};
436 	int i, printed;
437 
438 	if (tlb_type == cheetah)
439 		seq_printf(m, "MMU Type\t: Cheetah\n");
440 	else if (tlb_type == cheetah_plus)
441 		seq_printf(m, "MMU Type\t: Cheetah+\n");
442 	else if (tlb_type == spitfire)
443 		seq_printf(m, "MMU Type\t: Spitfire\n");
444 	else if (tlb_type == hypervisor)
445 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
446 	else
447 		seq_printf(m, "MMU Type\t: ???\n");
448 
449 	seq_printf(m, "MMU PGSZs\t: ");
450 	printed = 0;
451 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
452 		if (cpu_pgsz_mask & (1UL << i)) {
453 			seq_printf(m, "%s%s",
454 				   printed ? "," : "", pgsz_strings[i]);
455 			printed++;
456 		}
457 	}
458 	seq_putc(m, '\n');
459 
460 #ifdef CONFIG_DEBUG_DCFLUSH
461 	seq_printf(m, "DCPageFlushes\t: %d\n",
462 		   atomic_read(&dcpage_flushes));
463 #ifdef CONFIG_SMP
464 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
465 		   atomic_read(&dcpage_flushes_xcall));
466 #endif /* CONFIG_SMP */
467 #endif /* CONFIG_DEBUG_DCFLUSH */
468 }
469 
470 struct linux_prom_translation prom_trans[512] __read_mostly;
471 unsigned int prom_trans_ents __read_mostly;
472 
473 unsigned long kern_locked_tte_data;
474 
475 /* The obp translations are saved based on 8k pagesize, since obp can
476  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477  * HI_OBP_ADDRESS range are handled in ktlb.S.
478  */
479 static inline int in_obp_range(unsigned long vaddr)
480 {
481 	return (vaddr >= LOW_OBP_ADDRESS &&
482 		vaddr < HI_OBP_ADDRESS);
483 }
484 
485 static int cmp_ptrans(const void *a, const void *b)
486 {
487 	const struct linux_prom_translation *x = a, *y = b;
488 
489 	if (x->virt > y->virt)
490 		return 1;
491 	if (x->virt < y->virt)
492 		return -1;
493 	return 0;
494 }
495 
496 /* Read OBP translations property into 'prom_trans[]'.  */
497 static void __init read_obp_translations(void)
498 {
499 	int n, node, ents, first, last, i;
500 
501 	node = prom_finddevice("/virtual-memory");
502 	n = prom_getproplen(node, "translations");
503 	if (unlikely(n == 0 || n == -1)) {
504 		prom_printf("prom_mappings: Couldn't get size.\n");
505 		prom_halt();
506 	}
507 	if (unlikely(n > sizeof(prom_trans))) {
508 		prom_printf("prom_mappings: Size %d is too big.\n", n);
509 		prom_halt();
510 	}
511 
512 	if ((n = prom_getproperty(node, "translations",
513 				  (char *)&prom_trans[0],
514 				  sizeof(prom_trans))) == -1) {
515 		prom_printf("prom_mappings: Couldn't get property.\n");
516 		prom_halt();
517 	}
518 
519 	n = n / sizeof(struct linux_prom_translation);
520 
521 	ents = n;
522 
523 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524 	     cmp_ptrans, NULL);
525 
526 	/* Now kick out all the non-OBP entries.  */
527 	for (i = 0; i < ents; i++) {
528 		if (in_obp_range(prom_trans[i].virt))
529 			break;
530 	}
531 	first = i;
532 	for (; i < ents; i++) {
533 		if (!in_obp_range(prom_trans[i].virt))
534 			break;
535 	}
536 	last = i;
537 
538 	for (i = 0; i < (last - first); i++) {
539 		struct linux_prom_translation *src = &prom_trans[i + first];
540 		struct linux_prom_translation *dest = &prom_trans[i];
541 
542 		*dest = *src;
543 	}
544 	for (; i < ents; i++) {
545 		struct linux_prom_translation *dest = &prom_trans[i];
546 		dest->virt = dest->size = dest->data = 0x0UL;
547 	}
548 
549 	prom_trans_ents = last - first;
550 
551 	if (tlb_type == spitfire) {
552 		/* Clear diag TTE bits. */
553 		for (i = 0; i < prom_trans_ents; i++)
554 			prom_trans[i].data &= ~0x0003fe0000000000UL;
555 	}
556 
557 	/* Force execute bit on.  */
558 	for (i = 0; i < prom_trans_ents; i++)
559 		prom_trans[i].data |= (tlb_type == hypervisor ?
560 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
561 }
562 
563 static void __init hypervisor_tlb_lock(unsigned long vaddr,
564 				       unsigned long pte,
565 				       unsigned long mmu)
566 {
567 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
568 
569 	if (ret != 0) {
570 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
571 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
572 		prom_halt();
573 	}
574 }
575 
576 static unsigned long kern_large_tte(unsigned long paddr);
577 
578 static void __init remap_kernel(void)
579 {
580 	unsigned long phys_page, tte_vaddr, tte_data;
581 	int i, tlb_ent = sparc64_highest_locked_tlbent();
582 
583 	tte_vaddr = (unsigned long) KERNBASE;
584 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
585 	tte_data = kern_large_tte(phys_page);
586 
587 	kern_locked_tte_data = tte_data;
588 
589 	/* Now lock us into the TLBs via Hypervisor or OBP. */
590 	if (tlb_type == hypervisor) {
591 		for (i = 0; i < num_kernel_image_mappings; i++) {
592 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
593 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
594 			tte_vaddr += 0x400000;
595 			tte_data += 0x400000;
596 		}
597 	} else {
598 		for (i = 0; i < num_kernel_image_mappings; i++) {
599 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
600 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
601 			tte_vaddr += 0x400000;
602 			tte_data += 0x400000;
603 		}
604 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
605 	}
606 	if (tlb_type == cheetah_plus) {
607 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
608 					    CTX_CHEETAH_PLUS_NUC);
609 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
610 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
611 	}
612 }
613 
614 
615 static void __init inherit_prom_mappings(void)
616 {
617 	/* Now fixup OBP's idea about where we really are mapped. */
618 	printk("Remapping the kernel... ");
619 	remap_kernel();
620 	printk("done.\n");
621 }
622 
623 void prom_world(int enter)
624 {
625 	if (!enter)
626 		set_fs(get_fs());
627 
628 	__asm__ __volatile__("flushw");
629 }
630 
631 void __flush_dcache_range(unsigned long start, unsigned long end)
632 {
633 	unsigned long va;
634 
635 	if (tlb_type == spitfire) {
636 		int n = 0;
637 
638 		for (va = start; va < end; va += 32) {
639 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
640 			if (++n >= 512)
641 				break;
642 		}
643 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
644 		start = __pa(start);
645 		end = __pa(end);
646 		for (va = start; va < end; va += 32)
647 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
648 					     "membar #Sync"
649 					     : /* no outputs */
650 					     : "r" (va),
651 					       "i" (ASI_DCACHE_INVALIDATE));
652 	}
653 }
654 EXPORT_SYMBOL(__flush_dcache_range);
655 
656 /* get_new_mmu_context() uses "cache + 1".  */
657 DEFINE_SPINLOCK(ctx_alloc_lock);
658 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
659 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
660 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
661 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
662 
663 /* Caller does TLB context flushing on local CPU if necessary.
664  * The caller also ensures that CTX_VALID(mm->context) is false.
665  *
666  * We must be careful about boundary cases so that we never
667  * let the user have CTX 0 (nucleus) or we ever use a CTX
668  * version of zero (and thus NO_CONTEXT would not be caught
669  * by version mis-match tests in mmu_context.h).
670  *
671  * Always invoked with interrupts disabled.
672  */
673 void get_new_mmu_context(struct mm_struct *mm)
674 {
675 	unsigned long ctx, new_ctx;
676 	unsigned long orig_pgsz_bits;
677 	int new_version;
678 
679 	spin_lock(&ctx_alloc_lock);
680 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
681 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
682 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
683 	new_version = 0;
684 	if (new_ctx >= (1 << CTX_NR_BITS)) {
685 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
686 		if (new_ctx >= ctx) {
687 			int i;
688 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
689 				CTX_FIRST_VERSION;
690 			if (new_ctx == 1)
691 				new_ctx = CTX_FIRST_VERSION;
692 
693 			/* Don't call memset, for 16 entries that's just
694 			 * plain silly...
695 			 */
696 			mmu_context_bmap[0] = 3;
697 			mmu_context_bmap[1] = 0;
698 			mmu_context_bmap[2] = 0;
699 			mmu_context_bmap[3] = 0;
700 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
701 				mmu_context_bmap[i + 0] = 0;
702 				mmu_context_bmap[i + 1] = 0;
703 				mmu_context_bmap[i + 2] = 0;
704 				mmu_context_bmap[i + 3] = 0;
705 			}
706 			new_version = 1;
707 			goto out;
708 		}
709 	}
710 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
711 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
712 out:
713 	tlb_context_cache = new_ctx;
714 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
715 	spin_unlock(&ctx_alloc_lock);
716 
717 	if (unlikely(new_version))
718 		smp_new_mmu_context_version();
719 }
720 
721 static int numa_enabled = 1;
722 static int numa_debug;
723 
724 static int __init early_numa(char *p)
725 {
726 	if (!p)
727 		return 0;
728 
729 	if (strstr(p, "off"))
730 		numa_enabled = 0;
731 
732 	if (strstr(p, "debug"))
733 		numa_debug = 1;
734 
735 	return 0;
736 }
737 early_param("numa", early_numa);
738 
739 #define numadbg(f, a...) \
740 do {	if (numa_debug) \
741 		printk(KERN_INFO f, ## a); \
742 } while (0)
743 
744 static void __init find_ramdisk(unsigned long phys_base)
745 {
746 #ifdef CONFIG_BLK_DEV_INITRD
747 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
748 		unsigned long ramdisk_image;
749 
750 		/* Older versions of the bootloader only supported a
751 		 * 32-bit physical address for the ramdisk image
752 		 * location, stored at sparc_ramdisk_image.  Newer
753 		 * SILO versions set sparc_ramdisk_image to zero and
754 		 * provide a full 64-bit physical address at
755 		 * sparc_ramdisk_image64.
756 		 */
757 		ramdisk_image = sparc_ramdisk_image;
758 		if (!ramdisk_image)
759 			ramdisk_image = sparc_ramdisk_image64;
760 
761 		/* Another bootloader quirk.  The bootloader normalizes
762 		 * the physical address to KERNBASE, so we have to
763 		 * factor that back out and add in the lowest valid
764 		 * physical page address to get the true physical address.
765 		 */
766 		ramdisk_image -= KERNBASE;
767 		ramdisk_image += phys_base;
768 
769 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
770 			ramdisk_image, sparc_ramdisk_size);
771 
772 		initrd_start = ramdisk_image;
773 		initrd_end = ramdisk_image + sparc_ramdisk_size;
774 
775 		memblock_reserve(initrd_start, sparc_ramdisk_size);
776 
777 		initrd_start += PAGE_OFFSET;
778 		initrd_end += PAGE_OFFSET;
779 	}
780 #endif
781 }
782 
783 struct node_mem_mask {
784 	unsigned long mask;
785 	unsigned long val;
786 };
787 static struct node_mem_mask node_masks[MAX_NUMNODES];
788 static int num_node_masks;
789 
790 #ifdef CONFIG_NEED_MULTIPLE_NODES
791 
792 int numa_cpu_lookup_table[NR_CPUS];
793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794 
795 struct mdesc_mblock {
796 	u64	base;
797 	u64	size;
798 	u64	offset; /* RA-to-PA */
799 };
800 static struct mdesc_mblock *mblocks;
801 static int num_mblocks;
802 
803 static unsigned long ra_to_pa(unsigned long addr)
804 {
805 	int i;
806 
807 	for (i = 0; i < num_mblocks; i++) {
808 		struct mdesc_mblock *m = &mblocks[i];
809 
810 		if (addr >= m->base &&
811 		    addr < (m->base + m->size)) {
812 			addr += m->offset;
813 			break;
814 		}
815 	}
816 	return addr;
817 }
818 
819 static int find_node(unsigned long addr)
820 {
821 	int i;
822 
823 	addr = ra_to_pa(addr);
824 	for (i = 0; i < num_node_masks; i++) {
825 		struct node_mem_mask *p = &node_masks[i];
826 
827 		if ((addr & p->mask) == p->val)
828 			return i;
829 	}
830 	/* The following condition has been observed on LDOM guests.*/
831 	WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
832 		" rule. Some physical memory will be owned by node 0.");
833 	return 0;
834 }
835 
836 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
837 {
838 	*nid = find_node(start);
839 	start += PAGE_SIZE;
840 	while (start < end) {
841 		int n = find_node(start);
842 
843 		if (n != *nid)
844 			break;
845 		start += PAGE_SIZE;
846 	}
847 
848 	if (start > end)
849 		start = end;
850 
851 	return start;
852 }
853 #endif
854 
855 /* This must be invoked after performing all of the necessary
856  * memblock_set_node() calls for 'nid'.  We need to be able to get
857  * correct data from get_pfn_range_for_nid().
858  */
859 static void __init allocate_node_data(int nid)
860 {
861 	struct pglist_data *p;
862 	unsigned long start_pfn, end_pfn;
863 #ifdef CONFIG_NEED_MULTIPLE_NODES
864 	unsigned long paddr;
865 
866 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
867 	if (!paddr) {
868 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
869 		prom_halt();
870 	}
871 	NODE_DATA(nid) = __va(paddr);
872 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
873 
874 	NODE_DATA(nid)->node_id = nid;
875 #endif
876 
877 	p = NODE_DATA(nid);
878 
879 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
880 	p->node_start_pfn = start_pfn;
881 	p->node_spanned_pages = end_pfn - start_pfn;
882 }
883 
884 static void init_node_masks_nonnuma(void)
885 {
886 #ifdef CONFIG_NEED_MULTIPLE_NODES
887 	int i;
888 #endif
889 
890 	numadbg("Initializing tables for non-numa.\n");
891 
892 	node_masks[0].mask = node_masks[0].val = 0;
893 	num_node_masks = 1;
894 
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896 	for (i = 0; i < NR_CPUS; i++)
897 		numa_cpu_lookup_table[i] = 0;
898 
899 	cpumask_setall(&numa_cpumask_lookup_table[0]);
900 #endif
901 }
902 
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES];
905 
906 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data);
909 
910 struct mdesc_mlgroup {
911 	u64	node;
912 	u64	latency;
913 	u64	match;
914 	u64	mask;
915 };
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
918 
919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 				   u32 cfg_handle)
921 {
922 	u64 arc;
923 
924 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 		u64 target = mdesc_arc_target(md, arc);
926 		const u64 *val;
927 
928 		val = mdesc_get_property(md, target,
929 					 "cfg-handle", NULL);
930 		if (val && *val == cfg_handle)
931 			return 0;
932 	}
933 	return -ENODEV;
934 }
935 
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 				    u32 cfg_handle)
938 {
939 	u64 arc, candidate, best_latency = ~(u64)0;
940 
941 	candidate = MDESC_NODE_NULL;
942 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 		u64 target = mdesc_arc_target(md, arc);
944 		const char *name = mdesc_node_name(md, target);
945 		const u64 *val;
946 
947 		if (strcmp(name, "pio-latency-group"))
948 			continue;
949 
950 		val = mdesc_get_property(md, target, "latency", NULL);
951 		if (!val)
952 			continue;
953 
954 		if (*val < best_latency) {
955 			candidate = target;
956 			best_latency = *val;
957 		}
958 	}
959 
960 	if (candidate == MDESC_NODE_NULL)
961 		return -ENODEV;
962 
963 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964 }
965 
966 int of_node_to_nid(struct device_node *dp)
967 {
968 	const struct linux_prom64_registers *regs;
969 	struct mdesc_handle *md;
970 	u32 cfg_handle;
971 	int count, nid;
972 	u64 grp;
973 
974 	/* This is the right thing to do on currently supported
975 	 * SUN4U NUMA platforms as well, as the PCI controller does
976 	 * not sit behind any particular memory controller.
977 	 */
978 	if (!mlgroups)
979 		return -1;
980 
981 	regs = of_get_property(dp, "reg", NULL);
982 	if (!regs)
983 		return -1;
984 
985 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986 
987 	md = mdesc_grab();
988 
989 	count = 0;
990 	nid = -1;
991 	mdesc_for_each_node_by_name(md, grp, "group") {
992 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 			nid = count;
994 			break;
995 		}
996 		count++;
997 	}
998 
999 	mdesc_release(md);
1000 
1001 	return nid;
1002 }
1003 
1004 static void __init add_node_ranges(void)
1005 {
1006 	struct memblock_region *reg;
1007 
1008 	for_each_memblock(memory, reg) {
1009 		unsigned long size = reg->size;
1010 		unsigned long start, end;
1011 
1012 		start = reg->base;
1013 		end = start + size;
1014 		while (start < end) {
1015 			unsigned long this_end;
1016 			int nid;
1017 
1018 			this_end = memblock_nid_range(start, end, &nid);
1019 
1020 			numadbg("Setting memblock NUMA node nid[%d] "
1021 				"start[%lx] end[%lx]\n",
1022 				nid, start, this_end);
1023 
1024 			memblock_set_node(start, this_end - start,
1025 					  &memblock.memory, nid);
1026 			start = this_end;
1027 		}
1028 	}
1029 }
1030 
1031 static int __init grab_mlgroups(struct mdesc_handle *md)
1032 {
1033 	unsigned long paddr;
1034 	int count = 0;
1035 	u64 node;
1036 
1037 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038 		count++;
1039 	if (!count)
1040 		return -ENOENT;
1041 
1042 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043 			  SMP_CACHE_BYTES);
1044 	if (!paddr)
1045 		return -ENOMEM;
1046 
1047 	mlgroups = __va(paddr);
1048 	num_mlgroups = count;
1049 
1050 	count = 0;
1051 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052 		struct mdesc_mlgroup *m = &mlgroups[count++];
1053 		const u64 *val;
1054 
1055 		m->node = node;
1056 
1057 		val = mdesc_get_property(md, node, "latency", NULL);
1058 		m->latency = *val;
1059 		val = mdesc_get_property(md, node, "address-match", NULL);
1060 		m->match = *val;
1061 		val = mdesc_get_property(md, node, "address-mask", NULL);
1062 		m->mask = *val;
1063 
1064 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 			"match[%llx] mask[%llx]\n",
1066 			count - 1, m->node, m->latency, m->match, m->mask);
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static int __init grab_mblocks(struct mdesc_handle *md)
1073 {
1074 	unsigned long paddr;
1075 	int count = 0;
1076 	u64 node;
1077 
1078 	mdesc_for_each_node_by_name(md, node, "mblock")
1079 		count++;
1080 	if (!count)
1081 		return -ENOENT;
1082 
1083 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084 			  SMP_CACHE_BYTES);
1085 	if (!paddr)
1086 		return -ENOMEM;
1087 
1088 	mblocks = __va(paddr);
1089 	num_mblocks = count;
1090 
1091 	count = 0;
1092 	mdesc_for_each_node_by_name(md, node, "mblock") {
1093 		struct mdesc_mblock *m = &mblocks[count++];
1094 		const u64 *val;
1095 
1096 		val = mdesc_get_property(md, node, "base", NULL);
1097 		m->base = *val;
1098 		val = mdesc_get_property(md, node, "size", NULL);
1099 		m->size = *val;
1100 		val = mdesc_get_property(md, node,
1101 					 "address-congruence-offset", NULL);
1102 
1103 		/* The address-congruence-offset property is optional.
1104 		 * Explicity zero it be identifty this.
1105 		 */
1106 		if (val)
1107 			m->offset = *val;
1108 		else
1109 			m->offset = 0UL;
1110 
1111 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112 			count - 1, m->base, m->size, m->offset);
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119 					       u64 grp, cpumask_t *mask)
1120 {
1121 	u64 arc;
1122 
1123 	cpumask_clear(mask);
1124 
1125 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126 		u64 target = mdesc_arc_target(md, arc);
1127 		const char *name = mdesc_node_name(md, target);
1128 		const u64 *id;
1129 
1130 		if (strcmp(name, "cpu"))
1131 			continue;
1132 		id = mdesc_get_property(md, target, "id", NULL);
1133 		if (*id < nr_cpu_ids)
1134 			cpumask_set_cpu(*id, mask);
1135 	}
1136 }
1137 
1138 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < num_mlgroups; i++) {
1143 		struct mdesc_mlgroup *m = &mlgroups[i];
1144 		if (m->node == node)
1145 			return m;
1146 	}
1147 	return NULL;
1148 }
1149 
1150 int __node_distance(int from, int to)
1151 {
1152 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1153 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1154 			from, to);
1155 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1156 	}
1157 	return numa_latency[from][to];
1158 }
1159 
1160 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i < MAX_NUMNODES; i++) {
1165 		struct node_mem_mask *n = &node_masks[i];
1166 
1167 		if ((grp->mask == n->mask) && (grp->match == n->val))
1168 			break;
1169 	}
1170 	return i;
1171 }
1172 
1173 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1174 					  int index)
1175 {
1176 	u64 arc;
1177 
1178 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1179 		int tnode;
1180 		u64 target = mdesc_arc_target(md, arc);
1181 		struct mdesc_mlgroup *m = find_mlgroup(target);
1182 
1183 		if (!m)
1184 			continue;
1185 		tnode = find_best_numa_node_for_mlgroup(m);
1186 		if (tnode == MAX_NUMNODES)
1187 			continue;
1188 		numa_latency[index][tnode] = m->latency;
1189 	}
1190 }
1191 
1192 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1193 				      int index)
1194 {
1195 	struct mdesc_mlgroup *candidate = NULL;
1196 	u64 arc, best_latency = ~(u64)0;
1197 	struct node_mem_mask *n;
1198 
1199 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1200 		u64 target = mdesc_arc_target(md, arc);
1201 		struct mdesc_mlgroup *m = find_mlgroup(target);
1202 		if (!m)
1203 			continue;
1204 		if (m->latency < best_latency) {
1205 			candidate = m;
1206 			best_latency = m->latency;
1207 		}
1208 	}
1209 	if (!candidate)
1210 		return -ENOENT;
1211 
1212 	if (num_node_masks != index) {
1213 		printk(KERN_ERR "Inconsistent NUMA state, "
1214 		       "index[%d] != num_node_masks[%d]\n",
1215 		       index, num_node_masks);
1216 		return -EINVAL;
1217 	}
1218 
1219 	n = &node_masks[num_node_masks++];
1220 
1221 	n->mask = candidate->mask;
1222 	n->val = candidate->match;
1223 
1224 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1225 		index, n->mask, n->val, candidate->latency);
1226 
1227 	return 0;
1228 }
1229 
1230 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1231 					 int index)
1232 {
1233 	cpumask_t mask;
1234 	int cpu;
1235 
1236 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1237 
1238 	for_each_cpu(cpu, &mask)
1239 		numa_cpu_lookup_table[cpu] = index;
1240 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1241 
1242 	if (numa_debug) {
1243 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1244 		for_each_cpu(cpu, &mask)
1245 			printk("%d ", cpu);
1246 		printk("]\n");
1247 	}
1248 
1249 	return numa_attach_mlgroup(md, grp, index);
1250 }
1251 
1252 static int __init numa_parse_mdesc(void)
1253 {
1254 	struct mdesc_handle *md = mdesc_grab();
1255 	int i, j, err, count;
1256 	u64 node;
1257 
1258 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1259 	if (node == MDESC_NODE_NULL) {
1260 		mdesc_release(md);
1261 		return -ENOENT;
1262 	}
1263 
1264 	err = grab_mblocks(md);
1265 	if (err < 0)
1266 		goto out;
1267 
1268 	err = grab_mlgroups(md);
1269 	if (err < 0)
1270 		goto out;
1271 
1272 	count = 0;
1273 	mdesc_for_each_node_by_name(md, node, "group") {
1274 		err = numa_parse_mdesc_group(md, node, count);
1275 		if (err < 0)
1276 			break;
1277 		count++;
1278 	}
1279 
1280 	count = 0;
1281 	mdesc_for_each_node_by_name(md, node, "group") {
1282 		find_numa_latencies_for_group(md, node, count);
1283 		count++;
1284 	}
1285 
1286 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1287 	for (i = 0; i < MAX_NUMNODES; i++) {
1288 		u64 self_latency = numa_latency[i][i];
1289 
1290 		for (j = 0; j < MAX_NUMNODES; j++) {
1291 			numa_latency[i][j] =
1292 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1293 				self_latency;
1294 		}
1295 	}
1296 
1297 	add_node_ranges();
1298 
1299 	for (i = 0; i < num_node_masks; i++) {
1300 		allocate_node_data(i);
1301 		node_set_online(i);
1302 	}
1303 
1304 	err = 0;
1305 out:
1306 	mdesc_release(md);
1307 	return err;
1308 }
1309 
1310 static int __init numa_parse_jbus(void)
1311 {
1312 	unsigned long cpu, index;
1313 
1314 	/* NUMA node id is encoded in bits 36 and higher, and there is
1315 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1316 	 */
1317 	index = 0;
1318 	for_each_present_cpu(cpu) {
1319 		numa_cpu_lookup_table[cpu] = index;
1320 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1321 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1322 		node_masks[index].val = cpu << 36UL;
1323 
1324 		index++;
1325 	}
1326 	num_node_masks = index;
1327 
1328 	add_node_ranges();
1329 
1330 	for (index = 0; index < num_node_masks; index++) {
1331 		allocate_node_data(index);
1332 		node_set_online(index);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static int __init numa_parse_sun4u(void)
1339 {
1340 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1341 		unsigned long ver;
1342 
1343 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1344 		if ((ver >> 32UL) == __JALAPENO_ID ||
1345 		    (ver >> 32UL) == __SERRANO_ID)
1346 			return numa_parse_jbus();
1347 	}
1348 	return -1;
1349 }
1350 
1351 static int __init bootmem_init_numa(void)
1352 {
1353 	int i, j;
1354 	int err = -1;
1355 
1356 	numadbg("bootmem_init_numa()\n");
1357 
1358 	/* Some sane defaults for numa latency values */
1359 	for (i = 0; i < MAX_NUMNODES; i++) {
1360 		for (j = 0; j < MAX_NUMNODES; j++)
1361 			numa_latency[i][j] = (i == j) ?
1362 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1363 	}
1364 
1365 	if (numa_enabled) {
1366 		if (tlb_type == hypervisor)
1367 			err = numa_parse_mdesc();
1368 		else
1369 			err = numa_parse_sun4u();
1370 	}
1371 	return err;
1372 }
1373 
1374 #else
1375 
1376 static int bootmem_init_numa(void)
1377 {
1378 	return -1;
1379 }
1380 
1381 #endif
1382 
1383 static void __init bootmem_init_nonnuma(void)
1384 {
1385 	unsigned long top_of_ram = memblock_end_of_DRAM();
1386 	unsigned long total_ram = memblock_phys_mem_size();
1387 
1388 	numadbg("bootmem_init_nonnuma()\n");
1389 
1390 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1391 	       top_of_ram, total_ram);
1392 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1393 	       (top_of_ram - total_ram) >> 20);
1394 
1395 	init_node_masks_nonnuma();
1396 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1397 	allocate_node_data(0);
1398 	node_set_online(0);
1399 }
1400 
1401 static unsigned long __init bootmem_init(unsigned long phys_base)
1402 {
1403 	unsigned long end_pfn;
1404 
1405 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1406 	max_pfn = max_low_pfn = end_pfn;
1407 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1408 
1409 	if (bootmem_init_numa() < 0)
1410 		bootmem_init_nonnuma();
1411 
1412 	/* Dump memblock with node info. */
1413 	memblock_dump_all();
1414 
1415 	/* XXX cpu notifier XXX */
1416 
1417 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1418 	sparse_init();
1419 
1420 	return end_pfn;
1421 }
1422 
1423 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1424 static int pall_ents __initdata;
1425 
1426 static unsigned long max_phys_bits = 40;
1427 
1428 bool kern_addr_valid(unsigned long addr)
1429 {
1430 	pgd_t *pgd;
1431 	pud_t *pud;
1432 	pmd_t *pmd;
1433 	pte_t *pte;
1434 
1435 	if ((long)addr < 0L) {
1436 		unsigned long pa = __pa(addr);
1437 
1438 		if ((addr >> max_phys_bits) != 0UL)
1439 			return false;
1440 
1441 		return pfn_valid(pa >> PAGE_SHIFT);
1442 	}
1443 
1444 	if (addr >= (unsigned long) KERNBASE &&
1445 	    addr < (unsigned long)&_end)
1446 		return true;
1447 
1448 	pgd = pgd_offset_k(addr);
1449 	if (pgd_none(*pgd))
1450 		return 0;
1451 
1452 	pud = pud_offset(pgd, addr);
1453 	if (pud_none(*pud))
1454 		return 0;
1455 
1456 	if (pud_large(*pud))
1457 		return pfn_valid(pud_pfn(*pud));
1458 
1459 	pmd = pmd_offset(pud, addr);
1460 	if (pmd_none(*pmd))
1461 		return 0;
1462 
1463 	if (pmd_large(*pmd))
1464 		return pfn_valid(pmd_pfn(*pmd));
1465 
1466 	pte = pte_offset_kernel(pmd, addr);
1467 	if (pte_none(*pte))
1468 		return 0;
1469 
1470 	return pfn_valid(pte_pfn(*pte));
1471 }
1472 EXPORT_SYMBOL(kern_addr_valid);
1473 
1474 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1475 					      unsigned long vend,
1476 					      pud_t *pud)
1477 {
1478 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1479 	u64 pte_val = vstart;
1480 
1481 	/* Each PUD is 8GB */
1482 	if ((vstart & mask16gb) ||
1483 	    (vend - vstart <= mask16gb)) {
1484 		pte_val ^= kern_linear_pte_xor[2];
1485 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1486 
1487 		return vstart + PUD_SIZE;
1488 	}
1489 
1490 	pte_val ^= kern_linear_pte_xor[3];
1491 	pte_val |= _PAGE_PUD_HUGE;
1492 
1493 	vend = vstart + mask16gb + 1UL;
1494 	while (vstart < vend) {
1495 		pud_val(*pud) = pte_val;
1496 
1497 		pte_val += PUD_SIZE;
1498 		vstart += PUD_SIZE;
1499 		pud++;
1500 	}
1501 	return vstart;
1502 }
1503 
1504 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1505 				   bool guard)
1506 {
1507 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1508 		return true;
1509 
1510 	return false;
1511 }
1512 
1513 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1514 					      unsigned long vend,
1515 					      pmd_t *pmd)
1516 {
1517 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1518 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1519 	u64 pte_val = vstart;
1520 
1521 	/* Each PMD is 8MB */
1522 	if ((vstart & mask256mb) ||
1523 	    (vend - vstart <= mask256mb)) {
1524 		pte_val ^= kern_linear_pte_xor[0];
1525 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1526 
1527 		return vstart + PMD_SIZE;
1528 	}
1529 
1530 	if ((vstart & mask2gb) ||
1531 	    (vend - vstart <= mask2gb)) {
1532 		pte_val ^= kern_linear_pte_xor[1];
1533 		pte_val |= _PAGE_PMD_HUGE;
1534 		vend = vstart + mask256mb + 1UL;
1535 	} else {
1536 		pte_val ^= kern_linear_pte_xor[2];
1537 		pte_val |= _PAGE_PMD_HUGE;
1538 		vend = vstart + mask2gb + 1UL;
1539 	}
1540 
1541 	while (vstart < vend) {
1542 		pmd_val(*pmd) = pte_val;
1543 
1544 		pte_val += PMD_SIZE;
1545 		vstart += PMD_SIZE;
1546 		pmd++;
1547 	}
1548 
1549 	return vstart;
1550 }
1551 
1552 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1553 				   bool guard)
1554 {
1555 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1556 		return true;
1557 
1558 	return false;
1559 }
1560 
1561 static unsigned long __ref kernel_map_range(unsigned long pstart,
1562 					    unsigned long pend, pgprot_t prot,
1563 					    bool use_huge)
1564 {
1565 	unsigned long vstart = PAGE_OFFSET + pstart;
1566 	unsigned long vend = PAGE_OFFSET + pend;
1567 	unsigned long alloc_bytes = 0UL;
1568 
1569 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1570 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1571 			    vstart, vend);
1572 		prom_halt();
1573 	}
1574 
1575 	while (vstart < vend) {
1576 		unsigned long this_end, paddr = __pa(vstart);
1577 		pgd_t *pgd = pgd_offset_k(vstart);
1578 		pud_t *pud;
1579 		pmd_t *pmd;
1580 		pte_t *pte;
1581 
1582 		if (pgd_none(*pgd)) {
1583 			pud_t *new;
1584 
1585 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1586 			alloc_bytes += PAGE_SIZE;
1587 			pgd_populate(&init_mm, pgd, new);
1588 		}
1589 		pud = pud_offset(pgd, vstart);
1590 		if (pud_none(*pud)) {
1591 			pmd_t *new;
1592 
1593 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1594 				vstart = kernel_map_hugepud(vstart, vend, pud);
1595 				continue;
1596 			}
1597 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1598 			alloc_bytes += PAGE_SIZE;
1599 			pud_populate(&init_mm, pud, new);
1600 		}
1601 
1602 		pmd = pmd_offset(pud, vstart);
1603 		if (pmd_none(*pmd)) {
1604 			pte_t *new;
1605 
1606 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1607 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1608 				continue;
1609 			}
1610 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1611 			alloc_bytes += PAGE_SIZE;
1612 			pmd_populate_kernel(&init_mm, pmd, new);
1613 		}
1614 
1615 		pte = pte_offset_kernel(pmd, vstart);
1616 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1617 		if (this_end > vend)
1618 			this_end = vend;
1619 
1620 		while (vstart < this_end) {
1621 			pte_val(*pte) = (paddr | pgprot_val(prot));
1622 
1623 			vstart += PAGE_SIZE;
1624 			paddr += PAGE_SIZE;
1625 			pte++;
1626 		}
1627 	}
1628 
1629 	return alloc_bytes;
1630 }
1631 
1632 static void __init flush_all_kernel_tsbs(void)
1633 {
1634 	int i;
1635 
1636 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1637 		struct tsb *ent = &swapper_tsb[i];
1638 
1639 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1640 	}
1641 #ifndef CONFIG_DEBUG_PAGEALLOC
1642 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1643 		struct tsb *ent = &swapper_4m_tsb[i];
1644 
1645 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1646 	}
1647 #endif
1648 }
1649 
1650 extern unsigned int kvmap_linear_patch[1];
1651 
1652 static void __init kernel_physical_mapping_init(void)
1653 {
1654 	unsigned long i, mem_alloced = 0UL;
1655 	bool use_huge = true;
1656 
1657 #ifdef CONFIG_DEBUG_PAGEALLOC
1658 	use_huge = false;
1659 #endif
1660 	for (i = 0; i < pall_ents; i++) {
1661 		unsigned long phys_start, phys_end;
1662 
1663 		phys_start = pall[i].phys_addr;
1664 		phys_end = phys_start + pall[i].reg_size;
1665 
1666 		mem_alloced += kernel_map_range(phys_start, phys_end,
1667 						PAGE_KERNEL, use_huge);
1668 	}
1669 
1670 	printk("Allocated %ld bytes for kernel page tables.\n",
1671 	       mem_alloced);
1672 
1673 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1674 	flushi(&kvmap_linear_patch[0]);
1675 
1676 	flush_all_kernel_tsbs();
1677 
1678 	__flush_tlb_all();
1679 }
1680 
1681 #ifdef CONFIG_DEBUG_PAGEALLOC
1682 void __kernel_map_pages(struct page *page, int numpages, int enable)
1683 {
1684 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1685 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1686 
1687 	kernel_map_range(phys_start, phys_end,
1688 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1689 
1690 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1691 			       PAGE_OFFSET + phys_end);
1692 
1693 	/* we should perform an IPI and flush all tlbs,
1694 	 * but that can deadlock->flush only current cpu.
1695 	 */
1696 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1697 				 PAGE_OFFSET + phys_end);
1698 }
1699 #endif
1700 
1701 unsigned long __init find_ecache_flush_span(unsigned long size)
1702 {
1703 	int i;
1704 
1705 	for (i = 0; i < pavail_ents; i++) {
1706 		if (pavail[i].reg_size >= size)
1707 			return pavail[i].phys_addr;
1708 	}
1709 
1710 	return ~0UL;
1711 }
1712 
1713 unsigned long PAGE_OFFSET;
1714 EXPORT_SYMBOL(PAGE_OFFSET);
1715 
1716 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1717 EXPORT_SYMBOL(VMALLOC_END);
1718 
1719 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1720 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1721 
1722 static void __init setup_page_offset(void)
1723 {
1724 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1725 		/* Cheetah/Panther support a full 64-bit virtual
1726 		 * address, so we can use all that our page tables
1727 		 * support.
1728 		 */
1729 		sparc64_va_hole_top =    0xfff0000000000000UL;
1730 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1731 
1732 		max_phys_bits = 42;
1733 	} else if (tlb_type == hypervisor) {
1734 		switch (sun4v_chip_type) {
1735 		case SUN4V_CHIP_NIAGARA1:
1736 		case SUN4V_CHIP_NIAGARA2:
1737 			/* T1 and T2 support 48-bit virtual addresses.  */
1738 			sparc64_va_hole_top =    0xffff800000000000UL;
1739 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1740 
1741 			max_phys_bits = 39;
1742 			break;
1743 		case SUN4V_CHIP_NIAGARA3:
1744 			/* T3 supports 48-bit virtual addresses.  */
1745 			sparc64_va_hole_top =    0xffff800000000000UL;
1746 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1747 
1748 			max_phys_bits = 43;
1749 			break;
1750 		case SUN4V_CHIP_NIAGARA4:
1751 		case SUN4V_CHIP_NIAGARA5:
1752 		case SUN4V_CHIP_SPARC64X:
1753 		case SUN4V_CHIP_SPARC_M6:
1754 			/* T4 and later support 52-bit virtual addresses.  */
1755 			sparc64_va_hole_top =    0xfff8000000000000UL;
1756 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1757 			max_phys_bits = 47;
1758 			break;
1759 		case SUN4V_CHIP_SPARC_M7:
1760 		case SUN4V_CHIP_SPARC_SN:
1761 		default:
1762 			/* M7 and later support 52-bit virtual addresses.  */
1763 			sparc64_va_hole_top =    0xfff8000000000000UL;
1764 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1765 			max_phys_bits = 49;
1766 			break;
1767 		}
1768 	}
1769 
1770 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1771 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1772 			    max_phys_bits);
1773 		prom_halt();
1774 	}
1775 
1776 	PAGE_OFFSET = sparc64_va_hole_top;
1777 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1778 		       (sparc64_va_hole_bottom >> 2));
1779 
1780 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1781 		PAGE_OFFSET, max_phys_bits);
1782 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1783 		VMALLOC_START, VMALLOC_END);
1784 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1785 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1786 }
1787 
1788 static void __init tsb_phys_patch(void)
1789 {
1790 	struct tsb_ldquad_phys_patch_entry *pquad;
1791 	struct tsb_phys_patch_entry *p;
1792 
1793 	pquad = &__tsb_ldquad_phys_patch;
1794 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1795 		unsigned long addr = pquad->addr;
1796 
1797 		if (tlb_type == hypervisor)
1798 			*(unsigned int *) addr = pquad->sun4v_insn;
1799 		else
1800 			*(unsigned int *) addr = pquad->sun4u_insn;
1801 		wmb();
1802 		__asm__ __volatile__("flush	%0"
1803 				     : /* no outputs */
1804 				     : "r" (addr));
1805 
1806 		pquad++;
1807 	}
1808 
1809 	p = &__tsb_phys_patch;
1810 	while (p < &__tsb_phys_patch_end) {
1811 		unsigned long addr = p->addr;
1812 
1813 		*(unsigned int *) addr = p->insn;
1814 		wmb();
1815 		__asm__ __volatile__("flush	%0"
1816 				     : /* no outputs */
1817 				     : "r" (addr));
1818 
1819 		p++;
1820 	}
1821 }
1822 
1823 /* Don't mark as init, we give this to the Hypervisor.  */
1824 #ifndef CONFIG_DEBUG_PAGEALLOC
1825 #define NUM_KTSB_DESCR	2
1826 #else
1827 #define NUM_KTSB_DESCR	1
1828 #endif
1829 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1830 
1831 /* The swapper TSBs are loaded with a base sequence of:
1832  *
1833  *	sethi	%uhi(SYMBOL), REG1
1834  *	sethi	%hi(SYMBOL), REG2
1835  *	or	REG1, %ulo(SYMBOL), REG1
1836  *	or	REG2, %lo(SYMBOL), REG2
1837  *	sllx	REG1, 32, REG1
1838  *	or	REG1, REG2, REG1
1839  *
1840  * When we use physical addressing for the TSB accesses, we patch the
1841  * first four instructions in the above sequence.
1842  */
1843 
1844 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1845 {
1846 	unsigned long high_bits, low_bits;
1847 
1848 	high_bits = (pa >> 32) & 0xffffffff;
1849 	low_bits = (pa >> 0) & 0xffffffff;
1850 
1851 	while (start < end) {
1852 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1853 
1854 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1855 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1856 
1857 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1858 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1859 
1860 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1861 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1862 
1863 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1864 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1865 
1866 		start++;
1867 	}
1868 }
1869 
1870 static void ktsb_phys_patch(void)
1871 {
1872 	extern unsigned int __swapper_tsb_phys_patch;
1873 	extern unsigned int __swapper_tsb_phys_patch_end;
1874 	unsigned long ktsb_pa;
1875 
1876 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1877 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1878 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1879 #ifndef CONFIG_DEBUG_PAGEALLOC
1880 	{
1881 	extern unsigned int __swapper_4m_tsb_phys_patch;
1882 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1883 	ktsb_pa = (kern_base +
1884 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1885 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1886 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1887 	}
1888 #endif
1889 }
1890 
1891 static void __init sun4v_ktsb_init(void)
1892 {
1893 	unsigned long ktsb_pa;
1894 
1895 	/* First KTSB for PAGE_SIZE mappings.  */
1896 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1897 
1898 	switch (PAGE_SIZE) {
1899 	case 8 * 1024:
1900 	default:
1901 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1902 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1903 		break;
1904 
1905 	case 64 * 1024:
1906 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1907 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1908 		break;
1909 
1910 	case 512 * 1024:
1911 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1912 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1913 		break;
1914 
1915 	case 4 * 1024 * 1024:
1916 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1917 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1918 		break;
1919 	}
1920 
1921 	ktsb_descr[0].assoc = 1;
1922 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1923 	ktsb_descr[0].ctx_idx = 0;
1924 	ktsb_descr[0].tsb_base = ktsb_pa;
1925 	ktsb_descr[0].resv = 0;
1926 
1927 #ifndef CONFIG_DEBUG_PAGEALLOC
1928 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1929 	ktsb_pa = (kern_base +
1930 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1931 
1932 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1933 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1934 				    HV_PGSZ_MASK_256MB |
1935 				    HV_PGSZ_MASK_2GB |
1936 				    HV_PGSZ_MASK_16GB) &
1937 				   cpu_pgsz_mask);
1938 	ktsb_descr[1].assoc = 1;
1939 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1940 	ktsb_descr[1].ctx_idx = 0;
1941 	ktsb_descr[1].tsb_base = ktsb_pa;
1942 	ktsb_descr[1].resv = 0;
1943 #endif
1944 }
1945 
1946 void sun4v_ktsb_register(void)
1947 {
1948 	unsigned long pa, ret;
1949 
1950 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1951 
1952 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1953 	if (ret != 0) {
1954 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1955 			    "errors with %lx\n", pa, ret);
1956 		prom_halt();
1957 	}
1958 }
1959 
1960 static void __init sun4u_linear_pte_xor_finalize(void)
1961 {
1962 #ifndef CONFIG_DEBUG_PAGEALLOC
1963 	/* This is where we would add Panther support for
1964 	 * 32MB and 256MB pages.
1965 	 */
1966 #endif
1967 }
1968 
1969 static void __init sun4v_linear_pte_xor_finalize(void)
1970 {
1971 	unsigned long pagecv_flag;
1972 
1973 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1974 	 * enables MCD error. Do not set bit 9 on M7 processor.
1975 	 */
1976 	switch (sun4v_chip_type) {
1977 	case SUN4V_CHIP_SPARC_M7:
1978 	case SUN4V_CHIP_SPARC_SN:
1979 		pagecv_flag = 0x00;
1980 		break;
1981 	default:
1982 		pagecv_flag = _PAGE_CV_4V;
1983 		break;
1984 	}
1985 #ifndef CONFIG_DEBUG_PAGEALLOC
1986 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1987 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1988 			PAGE_OFFSET;
1989 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1990 					   _PAGE_P_4V | _PAGE_W_4V);
1991 	} else {
1992 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1993 	}
1994 
1995 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1996 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1997 			PAGE_OFFSET;
1998 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
1999 					   _PAGE_P_4V | _PAGE_W_4V);
2000 	} else {
2001 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2002 	}
2003 
2004 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2005 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2006 			PAGE_OFFSET;
2007 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2008 					   _PAGE_P_4V | _PAGE_W_4V);
2009 	} else {
2010 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2011 	}
2012 #endif
2013 }
2014 
2015 /* paging_init() sets up the page tables */
2016 
2017 static unsigned long last_valid_pfn;
2018 
2019 static void sun4u_pgprot_init(void);
2020 static void sun4v_pgprot_init(void);
2021 
2022 static phys_addr_t __init available_memory(void)
2023 {
2024 	phys_addr_t available = 0ULL;
2025 	phys_addr_t pa_start, pa_end;
2026 	u64 i;
2027 
2028 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2029 				&pa_end, NULL)
2030 		available = available + (pa_end  - pa_start);
2031 
2032 	return available;
2033 }
2034 
2035 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2036 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2037 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2038 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2039 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2040 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2041 
2042 /* We need to exclude reserved regions. This exclusion will include
2043  * vmlinux and initrd. To be more precise the initrd size could be used to
2044  * compute a new lower limit because it is freed later during initialization.
2045  */
2046 static void __init reduce_memory(phys_addr_t limit_ram)
2047 {
2048 	phys_addr_t avail_ram = available_memory();
2049 	phys_addr_t pa_start, pa_end;
2050 	u64 i;
2051 
2052 	if (limit_ram >= avail_ram)
2053 		return;
2054 
2055 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2056 				&pa_end, NULL) {
2057 		phys_addr_t region_size = pa_end - pa_start;
2058 		phys_addr_t clip_start = pa_start;
2059 
2060 		avail_ram = avail_ram - region_size;
2061 		/* Are we consuming too much? */
2062 		if (avail_ram < limit_ram) {
2063 			phys_addr_t give_back = limit_ram - avail_ram;
2064 
2065 			region_size = region_size - give_back;
2066 			clip_start = clip_start + give_back;
2067 		}
2068 
2069 		memblock_remove(clip_start, region_size);
2070 
2071 		if (avail_ram <= limit_ram)
2072 			break;
2073 		i = 0UL;
2074 	}
2075 }
2076 
2077 void __init paging_init(void)
2078 {
2079 	unsigned long end_pfn, shift, phys_base;
2080 	unsigned long real_end, i;
2081 	int node;
2082 
2083 	setup_page_offset();
2084 
2085 	/* These build time checkes make sure that the dcache_dirty_cpu()
2086 	 * page->flags usage will work.
2087 	 *
2088 	 * When a page gets marked as dcache-dirty, we store the
2089 	 * cpu number starting at bit 32 in the page->flags.  Also,
2090 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2091 	 * in 13-bit signed-immediate instruction fields.
2092 	 */
2093 
2094 	/*
2095 	 * Page flags must not reach into upper 32 bits that are used
2096 	 * for the cpu number
2097 	 */
2098 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2099 
2100 	/*
2101 	 * The bit fields placed in the high range must not reach below
2102 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2103 	 * at the 32 bit boundary.
2104 	 */
2105 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2106 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2107 
2108 	BUILD_BUG_ON(NR_CPUS > 4096);
2109 
2110 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2111 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2112 
2113 	/* Invalidate both kernel TSBs.  */
2114 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2115 #ifndef CONFIG_DEBUG_PAGEALLOC
2116 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2117 #endif
2118 
2119 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2120 	 * bit on M7 processor. This is a conflicting usage of the same
2121 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2122 	 * Detection error on all pages and this will lead to problems
2123 	 * later. Kernel does not run with MCD enabled and hence rest
2124 	 * of the required steps to fully configure memory corruption
2125 	 * detection are not taken. We need to ensure TTE.mcde is not
2126 	 * set on M7 processor. Compute the value of cacheability
2127 	 * flag for use later taking this into consideration.
2128 	 */
2129 	switch (sun4v_chip_type) {
2130 	case SUN4V_CHIP_SPARC_M7:
2131 	case SUN4V_CHIP_SPARC_SN:
2132 		page_cache4v_flag = _PAGE_CP_4V;
2133 		break;
2134 	default:
2135 		page_cache4v_flag = _PAGE_CACHE_4V;
2136 		break;
2137 	}
2138 
2139 	if (tlb_type == hypervisor)
2140 		sun4v_pgprot_init();
2141 	else
2142 		sun4u_pgprot_init();
2143 
2144 	if (tlb_type == cheetah_plus ||
2145 	    tlb_type == hypervisor) {
2146 		tsb_phys_patch();
2147 		ktsb_phys_patch();
2148 	}
2149 
2150 	if (tlb_type == hypervisor)
2151 		sun4v_patch_tlb_handlers();
2152 
2153 	/* Find available physical memory...
2154 	 *
2155 	 * Read it twice in order to work around a bug in openfirmware.
2156 	 * The call to grab this table itself can cause openfirmware to
2157 	 * allocate memory, which in turn can take away some space from
2158 	 * the list of available memory.  Reading it twice makes sure
2159 	 * we really do get the final value.
2160 	 */
2161 	read_obp_translations();
2162 	read_obp_memory("reg", &pall[0], &pall_ents);
2163 	read_obp_memory("available", &pavail[0], &pavail_ents);
2164 	read_obp_memory("available", &pavail[0], &pavail_ents);
2165 
2166 	phys_base = 0xffffffffffffffffUL;
2167 	for (i = 0; i < pavail_ents; i++) {
2168 		phys_base = min(phys_base, pavail[i].phys_addr);
2169 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2170 	}
2171 
2172 	memblock_reserve(kern_base, kern_size);
2173 
2174 	find_ramdisk(phys_base);
2175 
2176 	if (cmdline_memory_size)
2177 		reduce_memory(cmdline_memory_size);
2178 
2179 	memblock_allow_resize();
2180 	memblock_dump_all();
2181 
2182 	set_bit(0, mmu_context_bmap);
2183 
2184 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2185 
2186 	real_end = (unsigned long)_end;
2187 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2188 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2189 	       num_kernel_image_mappings);
2190 
2191 	/* Set kernel pgd to upper alias so physical page computations
2192 	 * work.
2193 	 */
2194 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2195 
2196 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2197 
2198 	inherit_prom_mappings();
2199 
2200 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2201 	setup_tba();
2202 
2203 	__flush_tlb_all();
2204 
2205 	prom_build_devicetree();
2206 	of_populate_present_mask();
2207 #ifndef CONFIG_SMP
2208 	of_fill_in_cpu_data();
2209 #endif
2210 
2211 	if (tlb_type == hypervisor) {
2212 		sun4v_mdesc_init();
2213 		mdesc_populate_present_mask(cpu_all_mask);
2214 #ifndef CONFIG_SMP
2215 		mdesc_fill_in_cpu_data(cpu_all_mask);
2216 #endif
2217 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2218 
2219 		sun4v_linear_pte_xor_finalize();
2220 
2221 		sun4v_ktsb_init();
2222 		sun4v_ktsb_register();
2223 	} else {
2224 		unsigned long impl, ver;
2225 
2226 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2227 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2228 
2229 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2230 		impl = ((ver >> 32) & 0xffff);
2231 		if (impl == PANTHER_IMPL)
2232 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2233 					  HV_PGSZ_MASK_256MB);
2234 
2235 		sun4u_linear_pte_xor_finalize();
2236 	}
2237 
2238 	/* Flush the TLBs and the 4M TSB so that the updated linear
2239 	 * pte XOR settings are realized for all mappings.
2240 	 */
2241 	__flush_tlb_all();
2242 #ifndef CONFIG_DEBUG_PAGEALLOC
2243 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2244 #endif
2245 	__flush_tlb_all();
2246 
2247 	/* Setup bootmem... */
2248 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2249 
2250 	/* Once the OF device tree and MDESC have been setup, we know
2251 	 * the list of possible cpus.  Therefore we can allocate the
2252 	 * IRQ stacks.
2253 	 */
2254 	for_each_possible_cpu(i) {
2255 		node = cpu_to_node(i);
2256 
2257 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2258 							THREAD_SIZE,
2259 							THREAD_SIZE, 0);
2260 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2261 							THREAD_SIZE,
2262 							THREAD_SIZE, 0);
2263 	}
2264 
2265 	kernel_physical_mapping_init();
2266 
2267 	{
2268 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2269 
2270 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2271 
2272 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2273 
2274 		free_area_init_nodes(max_zone_pfns);
2275 	}
2276 
2277 	printk("Booting Linux...\n");
2278 }
2279 
2280 int page_in_phys_avail(unsigned long paddr)
2281 {
2282 	int i;
2283 
2284 	paddr &= PAGE_MASK;
2285 
2286 	for (i = 0; i < pavail_ents; i++) {
2287 		unsigned long start, end;
2288 
2289 		start = pavail[i].phys_addr;
2290 		end = start + pavail[i].reg_size;
2291 
2292 		if (paddr >= start && paddr < end)
2293 			return 1;
2294 	}
2295 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2296 		return 1;
2297 #ifdef CONFIG_BLK_DEV_INITRD
2298 	if (paddr >= __pa(initrd_start) &&
2299 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2300 		return 1;
2301 #endif
2302 
2303 	return 0;
2304 }
2305 
2306 static void __init register_page_bootmem_info(void)
2307 {
2308 #ifdef CONFIG_NEED_MULTIPLE_NODES
2309 	int i;
2310 
2311 	for_each_online_node(i)
2312 		if (NODE_DATA(i)->node_spanned_pages)
2313 			register_page_bootmem_info_node(NODE_DATA(i));
2314 #endif
2315 }
2316 void __init mem_init(void)
2317 {
2318 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2319 
2320 	register_page_bootmem_info();
2321 	free_all_bootmem();
2322 
2323 	/*
2324 	 * Set up the zero page, mark it reserved, so that page count
2325 	 * is not manipulated when freeing the page from user ptes.
2326 	 */
2327 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2328 	if (mem_map_zero == NULL) {
2329 		prom_printf("paging_init: Cannot alloc zero page.\n");
2330 		prom_halt();
2331 	}
2332 	mark_page_reserved(mem_map_zero);
2333 
2334 	mem_init_print_info(NULL);
2335 
2336 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2337 		cheetah_ecache_flush_init();
2338 }
2339 
2340 void free_initmem(void)
2341 {
2342 	unsigned long addr, initend;
2343 	int do_free = 1;
2344 
2345 	/* If the physical memory maps were trimmed by kernel command
2346 	 * line options, don't even try freeing this initmem stuff up.
2347 	 * The kernel image could have been in the trimmed out region
2348 	 * and if so the freeing below will free invalid page structs.
2349 	 */
2350 	if (cmdline_memory_size)
2351 		do_free = 0;
2352 
2353 	/*
2354 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2355 	 */
2356 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2357 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2358 	for (; addr < initend; addr += PAGE_SIZE) {
2359 		unsigned long page;
2360 
2361 		page = (addr +
2362 			((unsigned long) __va(kern_base)) -
2363 			((unsigned long) KERNBASE));
2364 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2365 
2366 		if (do_free)
2367 			free_reserved_page(virt_to_page(page));
2368 	}
2369 }
2370 
2371 #ifdef CONFIG_BLK_DEV_INITRD
2372 void free_initrd_mem(unsigned long start, unsigned long end)
2373 {
2374 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2375 			   "initrd");
2376 }
2377 #endif
2378 
2379 pgprot_t PAGE_KERNEL __read_mostly;
2380 EXPORT_SYMBOL(PAGE_KERNEL);
2381 
2382 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2383 pgprot_t PAGE_COPY __read_mostly;
2384 
2385 pgprot_t PAGE_SHARED __read_mostly;
2386 EXPORT_SYMBOL(PAGE_SHARED);
2387 
2388 unsigned long pg_iobits __read_mostly;
2389 
2390 unsigned long _PAGE_IE __read_mostly;
2391 EXPORT_SYMBOL(_PAGE_IE);
2392 
2393 unsigned long _PAGE_E __read_mostly;
2394 EXPORT_SYMBOL(_PAGE_E);
2395 
2396 unsigned long _PAGE_CACHE __read_mostly;
2397 EXPORT_SYMBOL(_PAGE_CACHE);
2398 
2399 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2400 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2401 			       int node)
2402 {
2403 	unsigned long pte_base;
2404 
2405 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2406 		    _PAGE_CP_4U | _PAGE_CV_4U |
2407 		    _PAGE_P_4U | _PAGE_W_4U);
2408 	if (tlb_type == hypervisor)
2409 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2410 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2411 
2412 	pte_base |= _PAGE_PMD_HUGE;
2413 
2414 	vstart = vstart & PMD_MASK;
2415 	vend = ALIGN(vend, PMD_SIZE);
2416 	for (; vstart < vend; vstart += PMD_SIZE) {
2417 		pgd_t *pgd = pgd_offset_k(vstart);
2418 		unsigned long pte;
2419 		pud_t *pud;
2420 		pmd_t *pmd;
2421 
2422 		if (pgd_none(*pgd)) {
2423 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2424 
2425 			if (!new)
2426 				return -ENOMEM;
2427 			pgd_populate(&init_mm, pgd, new);
2428 		}
2429 
2430 		pud = pud_offset(pgd, vstart);
2431 		if (pud_none(*pud)) {
2432 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2433 
2434 			if (!new)
2435 				return -ENOMEM;
2436 			pud_populate(&init_mm, pud, new);
2437 		}
2438 
2439 		pmd = pmd_offset(pud, vstart);
2440 
2441 		pte = pmd_val(*pmd);
2442 		if (!(pte & _PAGE_VALID)) {
2443 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2444 
2445 			if (!block)
2446 				return -ENOMEM;
2447 
2448 			pmd_val(*pmd) = pte_base | __pa(block);
2449 		}
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 void vmemmap_free(unsigned long start, unsigned long end)
2456 {
2457 }
2458 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2459 
2460 static void prot_init_common(unsigned long page_none,
2461 			     unsigned long page_shared,
2462 			     unsigned long page_copy,
2463 			     unsigned long page_readonly,
2464 			     unsigned long page_exec_bit)
2465 {
2466 	PAGE_COPY = __pgprot(page_copy);
2467 	PAGE_SHARED = __pgprot(page_shared);
2468 
2469 	protection_map[0x0] = __pgprot(page_none);
2470 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2471 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2472 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2473 	protection_map[0x4] = __pgprot(page_readonly);
2474 	protection_map[0x5] = __pgprot(page_readonly);
2475 	protection_map[0x6] = __pgprot(page_copy);
2476 	protection_map[0x7] = __pgprot(page_copy);
2477 	protection_map[0x8] = __pgprot(page_none);
2478 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2479 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2480 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2481 	protection_map[0xc] = __pgprot(page_readonly);
2482 	protection_map[0xd] = __pgprot(page_readonly);
2483 	protection_map[0xe] = __pgprot(page_shared);
2484 	protection_map[0xf] = __pgprot(page_shared);
2485 }
2486 
2487 static void __init sun4u_pgprot_init(void)
2488 {
2489 	unsigned long page_none, page_shared, page_copy, page_readonly;
2490 	unsigned long page_exec_bit;
2491 	int i;
2492 
2493 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2494 				_PAGE_CACHE_4U | _PAGE_P_4U |
2495 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2496 				_PAGE_EXEC_4U);
2497 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2498 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2499 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2500 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2501 
2502 	_PAGE_IE = _PAGE_IE_4U;
2503 	_PAGE_E = _PAGE_E_4U;
2504 	_PAGE_CACHE = _PAGE_CACHE_4U;
2505 
2506 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2507 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2508 
2509 #ifdef CONFIG_DEBUG_PAGEALLOC
2510 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2511 #else
2512 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2513 		PAGE_OFFSET;
2514 #endif
2515 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2516 				   _PAGE_P_4U | _PAGE_W_4U);
2517 
2518 	for (i = 1; i < 4; i++)
2519 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2520 
2521 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2522 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2523 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2524 
2525 
2526 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2527 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2528 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2529 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2530 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2531 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2532 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2533 
2534 	page_exec_bit = _PAGE_EXEC_4U;
2535 
2536 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2537 			 page_exec_bit);
2538 }
2539 
2540 static void __init sun4v_pgprot_init(void)
2541 {
2542 	unsigned long page_none, page_shared, page_copy, page_readonly;
2543 	unsigned long page_exec_bit;
2544 	int i;
2545 
2546 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2547 				page_cache4v_flag | _PAGE_P_4V |
2548 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2549 				_PAGE_EXEC_4V);
2550 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2551 
2552 	_PAGE_IE = _PAGE_IE_4V;
2553 	_PAGE_E = _PAGE_E_4V;
2554 	_PAGE_CACHE = page_cache4v_flag;
2555 
2556 #ifdef CONFIG_DEBUG_PAGEALLOC
2557 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2558 #else
2559 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2560 		PAGE_OFFSET;
2561 #endif
2562 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2563 				   _PAGE_W_4V);
2564 
2565 	for (i = 1; i < 4; i++)
2566 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2567 
2568 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2569 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2570 
2571 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2572 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2573 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2574 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2575 
2576 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2577 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2578 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2579 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2580 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2581 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2582 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2583 
2584 	page_exec_bit = _PAGE_EXEC_4V;
2585 
2586 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2587 			 page_exec_bit);
2588 }
2589 
2590 unsigned long pte_sz_bits(unsigned long sz)
2591 {
2592 	if (tlb_type == hypervisor) {
2593 		switch (sz) {
2594 		case 8 * 1024:
2595 		default:
2596 			return _PAGE_SZ8K_4V;
2597 		case 64 * 1024:
2598 			return _PAGE_SZ64K_4V;
2599 		case 512 * 1024:
2600 			return _PAGE_SZ512K_4V;
2601 		case 4 * 1024 * 1024:
2602 			return _PAGE_SZ4MB_4V;
2603 		}
2604 	} else {
2605 		switch (sz) {
2606 		case 8 * 1024:
2607 		default:
2608 			return _PAGE_SZ8K_4U;
2609 		case 64 * 1024:
2610 			return _PAGE_SZ64K_4U;
2611 		case 512 * 1024:
2612 			return _PAGE_SZ512K_4U;
2613 		case 4 * 1024 * 1024:
2614 			return _PAGE_SZ4MB_4U;
2615 		}
2616 	}
2617 }
2618 
2619 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2620 {
2621 	pte_t pte;
2622 
2623 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2624 	pte_val(pte) |= (((unsigned long)space) << 32);
2625 	pte_val(pte) |= pte_sz_bits(page_size);
2626 
2627 	return pte;
2628 }
2629 
2630 static unsigned long kern_large_tte(unsigned long paddr)
2631 {
2632 	unsigned long val;
2633 
2634 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2635 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2636 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2637 	if (tlb_type == hypervisor)
2638 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2639 		       page_cache4v_flag | _PAGE_P_4V |
2640 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2641 
2642 	return val | paddr;
2643 }
2644 
2645 /* If not locked, zap it. */
2646 void __flush_tlb_all(void)
2647 {
2648 	unsigned long pstate;
2649 	int i;
2650 
2651 	__asm__ __volatile__("flushw\n\t"
2652 			     "rdpr	%%pstate, %0\n\t"
2653 			     "wrpr	%0, %1, %%pstate"
2654 			     : "=r" (pstate)
2655 			     : "i" (PSTATE_IE));
2656 	if (tlb_type == hypervisor) {
2657 		sun4v_mmu_demap_all();
2658 	} else if (tlb_type == spitfire) {
2659 		for (i = 0; i < 64; i++) {
2660 			/* Spitfire Errata #32 workaround */
2661 			/* NOTE: Always runs on spitfire, so no
2662 			 *       cheetah+ page size encodings.
2663 			 */
2664 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2665 					     "flush	%%g6"
2666 					     : /* No outputs */
2667 					     : "r" (0),
2668 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2669 
2670 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2671 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2672 						     "membar #Sync"
2673 						     : /* no outputs */
2674 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2675 				spitfire_put_dtlb_data(i, 0x0UL);
2676 			}
2677 
2678 			/* Spitfire Errata #32 workaround */
2679 			/* NOTE: Always runs on spitfire, so no
2680 			 *       cheetah+ page size encodings.
2681 			 */
2682 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2683 					     "flush	%%g6"
2684 					     : /* No outputs */
2685 					     : "r" (0),
2686 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2687 
2688 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2689 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2690 						     "membar #Sync"
2691 						     : /* no outputs */
2692 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2693 				spitfire_put_itlb_data(i, 0x0UL);
2694 			}
2695 		}
2696 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2697 		cheetah_flush_dtlb_all();
2698 		cheetah_flush_itlb_all();
2699 	}
2700 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2701 			     : : "r" (pstate));
2702 }
2703 
2704 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2705 			    unsigned long address)
2706 {
2707 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2708 				       __GFP_REPEAT | __GFP_ZERO);
2709 	pte_t *pte = NULL;
2710 
2711 	if (page)
2712 		pte = (pte_t *) page_address(page);
2713 
2714 	return pte;
2715 }
2716 
2717 pgtable_t pte_alloc_one(struct mm_struct *mm,
2718 			unsigned long address)
2719 {
2720 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2721 				       __GFP_REPEAT | __GFP_ZERO);
2722 	if (!page)
2723 		return NULL;
2724 	if (!pgtable_page_ctor(page)) {
2725 		free_hot_cold_page(page, 0);
2726 		return NULL;
2727 	}
2728 	return (pte_t *) page_address(page);
2729 }
2730 
2731 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2732 {
2733 	free_page((unsigned long)pte);
2734 }
2735 
2736 static void __pte_free(pgtable_t pte)
2737 {
2738 	struct page *page = virt_to_page(pte);
2739 
2740 	pgtable_page_dtor(page);
2741 	__free_page(page);
2742 }
2743 
2744 void pte_free(struct mm_struct *mm, pgtable_t pte)
2745 {
2746 	__pte_free(pte);
2747 }
2748 
2749 void pgtable_free(void *table, bool is_page)
2750 {
2751 	if (is_page)
2752 		__pte_free(table);
2753 	else
2754 		kmem_cache_free(pgtable_cache, table);
2755 }
2756 
2757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2758 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2759 			  pmd_t *pmd)
2760 {
2761 	unsigned long pte, flags;
2762 	struct mm_struct *mm;
2763 	pmd_t entry = *pmd;
2764 
2765 	if (!pmd_large(entry) || !pmd_young(entry))
2766 		return;
2767 
2768 	pte = pmd_val(entry);
2769 
2770 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2771 	if (!(pte & _PAGE_VALID))
2772 		return;
2773 
2774 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2775 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2776 
2777 	mm = vma->vm_mm;
2778 
2779 	spin_lock_irqsave(&mm->context.lock, flags);
2780 
2781 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2782 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2783 					addr, pte);
2784 
2785 	spin_unlock_irqrestore(&mm->context.lock, flags);
2786 }
2787 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2788 
2789 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2790 static void context_reload(void *__data)
2791 {
2792 	struct mm_struct *mm = __data;
2793 
2794 	if (mm == current->mm)
2795 		load_secondary_context(mm);
2796 }
2797 
2798 void hugetlb_setup(struct pt_regs *regs)
2799 {
2800 	struct mm_struct *mm = current->mm;
2801 	struct tsb_config *tp;
2802 
2803 	if (faulthandler_disabled() || !mm) {
2804 		const struct exception_table_entry *entry;
2805 
2806 		entry = search_exception_tables(regs->tpc);
2807 		if (entry) {
2808 			regs->tpc = entry->fixup;
2809 			regs->tnpc = regs->tpc + 4;
2810 			return;
2811 		}
2812 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2813 		die_if_kernel("HugeTSB in atomic", regs);
2814 	}
2815 
2816 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2817 	if (likely(tp->tsb == NULL))
2818 		tsb_grow(mm, MM_TSB_HUGE, 0);
2819 
2820 	tsb_context_switch(mm);
2821 	smp_tsb_sync(mm);
2822 
2823 	/* On UltraSPARC-III+ and later, configure the second half of
2824 	 * the Data-TLB for huge pages.
2825 	 */
2826 	if (tlb_type == cheetah_plus) {
2827 		bool need_context_reload = false;
2828 		unsigned long ctx;
2829 
2830 		spin_lock_irq(&ctx_alloc_lock);
2831 		ctx = mm->context.sparc64_ctx_val;
2832 		ctx &= ~CTX_PGSZ_MASK;
2833 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2834 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2835 
2836 		if (ctx != mm->context.sparc64_ctx_val) {
2837 			/* When changing the page size fields, we
2838 			 * must perform a context flush so that no
2839 			 * stale entries match.  This flush must
2840 			 * occur with the original context register
2841 			 * settings.
2842 			 */
2843 			do_flush_tlb_mm(mm);
2844 
2845 			/* Reload the context register of all processors
2846 			 * also executing in this address space.
2847 			 */
2848 			mm->context.sparc64_ctx_val = ctx;
2849 			need_context_reload = true;
2850 		}
2851 		spin_unlock_irq(&ctx_alloc_lock);
2852 
2853 		if (need_context_reload)
2854 			on_each_cpu(context_reload, mm, 0);
2855 	}
2856 }
2857 #endif
2858 
2859 static struct resource code_resource = {
2860 	.name	= "Kernel code",
2861 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2862 };
2863 
2864 static struct resource data_resource = {
2865 	.name	= "Kernel data",
2866 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2867 };
2868 
2869 static struct resource bss_resource = {
2870 	.name	= "Kernel bss",
2871 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2872 };
2873 
2874 static inline resource_size_t compute_kern_paddr(void *addr)
2875 {
2876 	return (resource_size_t) (addr - KERNBASE + kern_base);
2877 }
2878 
2879 static void __init kernel_lds_init(void)
2880 {
2881 	code_resource.start = compute_kern_paddr(_text);
2882 	code_resource.end   = compute_kern_paddr(_etext - 1);
2883 	data_resource.start = compute_kern_paddr(_etext);
2884 	data_resource.end   = compute_kern_paddr(_edata - 1);
2885 	bss_resource.start  = compute_kern_paddr(__bss_start);
2886 	bss_resource.end    = compute_kern_paddr(_end - 1);
2887 }
2888 
2889 static int __init report_memory(void)
2890 {
2891 	int i;
2892 	struct resource *res;
2893 
2894 	kernel_lds_init();
2895 
2896 	for (i = 0; i < pavail_ents; i++) {
2897 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2898 
2899 		if (!res) {
2900 			pr_warn("Failed to allocate source.\n");
2901 			break;
2902 		}
2903 
2904 		res->name = "System RAM";
2905 		res->start = pavail[i].phys_addr;
2906 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2907 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2908 
2909 		if (insert_resource(&iomem_resource, res) < 0) {
2910 			pr_warn("Resource insertion failed.\n");
2911 			break;
2912 		}
2913 
2914 		insert_resource(res, &code_resource);
2915 		insert_resource(res, &data_resource);
2916 		insert_resource(res, &bss_resource);
2917 	}
2918 
2919 	return 0;
2920 }
2921 arch_initcall(report_memory);
2922 
2923 #ifdef CONFIG_SMP
2924 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2925 #else
2926 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2927 #endif
2928 
2929 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2930 {
2931 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2932 		if (start < LOW_OBP_ADDRESS) {
2933 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2934 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2935 		}
2936 		if (end > HI_OBP_ADDRESS) {
2937 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2938 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2939 		}
2940 	} else {
2941 		flush_tsb_kernel_range(start, end);
2942 		do_flush_tlb_kernel_range(start, end);
2943 	}
2944 }
2945