xref: /linux/arch/sparc/mm/init_64.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31 
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_folio_impl(struct folio *folio)
199 {
200 	unsigned int i, nr = folio_nr_pages(folio);
201 
202 	BUG_ON(tlb_type == hypervisor);
203 #ifdef CONFIG_DEBUG_DCFLUSH
204 	atomic_inc(&dcpage_flushes);
205 #endif
206 
207 #ifdef DCACHE_ALIASING_POSSIBLE
208 	for (i = 0; i < nr; i++)
209 		__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
210 				    ((tlb_type == spitfire) &&
211 				     folio_flush_mapping(folio) != NULL));
212 #else
213 	if (folio_flush_mapping(folio) != NULL &&
214 	    tlb_type == spitfire) {
215 		for (i = 0; i < nr; i++)
216 			__flush_icache_page((pfn + i) * PAGE_SIZE);
217 	}
218 #endif
219 }
220 
221 #define PG_dcache_dirty		PG_arch_1
222 #define PG_dcache_cpu_shift	32UL
223 #define PG_dcache_cpu_mask	\
224 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
225 
226 #define dcache_dirty_cpu(folio) \
227 	(((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
228 
229 static inline void set_dcache_dirty(struct folio *folio, int this_cpu)
230 {
231 	unsigned long mask = this_cpu;
232 	unsigned long non_cpu_bits;
233 
234 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
235 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
236 
237 	__asm__ __volatile__("1:\n\t"
238 			     "ldx	[%2], %%g7\n\t"
239 			     "and	%%g7, %1, %%g1\n\t"
240 			     "or	%%g1, %0, %%g1\n\t"
241 			     "casx	[%2], %%g7, %%g1\n\t"
242 			     "cmp	%%g7, %%g1\n\t"
243 			     "bne,pn	%%xcc, 1b\n\t"
244 			     " nop"
245 			     : /* no outputs */
246 			     : "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags)
247 			     : "g1", "g7");
248 }
249 
250 static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu)
251 {
252 	unsigned long mask = (1UL << PG_dcache_dirty);
253 
254 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
255 			     "1:\n\t"
256 			     "ldx	[%2], %%g7\n\t"
257 			     "srlx	%%g7, %4, %%g1\n\t"
258 			     "and	%%g1, %3, %%g1\n\t"
259 			     "cmp	%%g1, %0\n\t"
260 			     "bne,pn	%%icc, 2f\n\t"
261 			     " andn	%%g7, %1, %%g1\n\t"
262 			     "casx	[%2], %%g7, %%g1\n\t"
263 			     "cmp	%%g7, %%g1\n\t"
264 			     "bne,pn	%%xcc, 1b\n\t"
265 			     " nop\n"
266 			     "2:"
267 			     : /* no outputs */
268 			     : "r" (cpu), "r" (mask), "r" (&folio->flags),
269 			       "i" (PG_dcache_cpu_mask),
270 			       "i" (PG_dcache_cpu_shift)
271 			     : "g1", "g7");
272 }
273 
274 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275 {
276 	unsigned long tsb_addr = (unsigned long) ent;
277 
278 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279 		tsb_addr = __pa(tsb_addr);
280 
281 	__tsb_insert(tsb_addr, tag, pte);
282 }
283 
284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285 
286 static void flush_dcache(unsigned long pfn)
287 {
288 	struct page *page;
289 
290 	page = pfn_to_page(pfn);
291 	if (page) {
292 		struct folio *folio = page_folio(page);
293 		unsigned long pg_flags;
294 
295 		pg_flags = folio->flags;
296 		if (pg_flags & (1UL << PG_dcache_dirty)) {
297 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298 				   PG_dcache_cpu_mask);
299 			int this_cpu = get_cpu();
300 
301 			/* This is just to optimize away some function calls
302 			 * in the SMP case.
303 			 */
304 			if (cpu == this_cpu)
305 				flush_dcache_folio_impl(folio);
306 			else
307 				smp_flush_dcache_folio_impl(folio, cpu);
308 
309 			clear_dcache_dirty_cpu(folio, cpu);
310 
311 			put_cpu();
312 		}
313 	}
314 }
315 
316 /* mm->context.lock must be held */
317 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
318 				    unsigned long tsb_hash_shift, unsigned long address,
319 				    unsigned long tte)
320 {
321 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
322 	unsigned long tag;
323 
324 	if (unlikely(!tsb))
325 		return;
326 
327 	tsb += ((address >> tsb_hash_shift) &
328 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 	tag = (address >> 22UL);
330 	tsb_insert(tsb, tag, tte);
331 }
332 
333 #ifdef CONFIG_HUGETLB_PAGE
334 static int __init hugetlbpage_init(void)
335 {
336 	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
337 	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
338 	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
339 	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
340 
341 	return 0;
342 }
343 
344 arch_initcall(hugetlbpage_init);
345 
346 static void __init pud_huge_patch(void)
347 {
348 	struct pud_huge_patch_entry *p;
349 	unsigned long addr;
350 
351 	p = &__pud_huge_patch;
352 	addr = p->addr;
353 	*(unsigned int *)addr = p->insn;
354 
355 	__asm__ __volatile__("flush %0" : : "r" (addr));
356 }
357 
358 bool __init arch_hugetlb_valid_size(unsigned long size)
359 {
360 	unsigned int hugepage_shift = ilog2(size);
361 	unsigned short hv_pgsz_idx;
362 	unsigned int hv_pgsz_mask;
363 
364 	switch (hugepage_shift) {
365 	case HPAGE_16GB_SHIFT:
366 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
367 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
368 		pud_huge_patch();
369 		break;
370 	case HPAGE_2GB_SHIFT:
371 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
372 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
373 		break;
374 	case HPAGE_256MB_SHIFT:
375 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
376 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
377 		break;
378 	case HPAGE_SHIFT:
379 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
380 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
381 		break;
382 	case HPAGE_64K_SHIFT:
383 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
384 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
385 		break;
386 	default:
387 		hv_pgsz_mask = 0;
388 	}
389 
390 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
391 		return false;
392 
393 	return true;
394 }
395 #endif	/* CONFIG_HUGETLB_PAGE */
396 
397 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
398 		unsigned long address, pte_t *ptep, unsigned int nr)
399 {
400 	struct mm_struct *mm;
401 	unsigned long flags;
402 	bool is_huge_tsb;
403 	pte_t pte = *ptep;
404 	unsigned int i;
405 
406 	if (tlb_type != hypervisor) {
407 		unsigned long pfn = pte_pfn(pte);
408 
409 		if (pfn_valid(pfn))
410 			flush_dcache(pfn);
411 	}
412 
413 	mm = vma->vm_mm;
414 
415 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
416 	if (!pte_accessible(mm, pte))
417 		return;
418 
419 	spin_lock_irqsave(&mm->context.lock, flags);
420 
421 	is_huge_tsb = false;
422 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
423 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
424 		unsigned long hugepage_size = PAGE_SIZE;
425 
426 		if (is_vm_hugetlb_page(vma))
427 			hugepage_size = huge_page_size(hstate_vma(vma));
428 
429 		if (hugepage_size >= PUD_SIZE) {
430 			unsigned long mask = 0x1ffc00000UL;
431 
432 			/* Transfer bits [32:22] from address to resolve
433 			 * at 4M granularity.
434 			 */
435 			pte_val(pte) &= ~mask;
436 			pte_val(pte) |= (address & mask);
437 		} else if (hugepage_size >= PMD_SIZE) {
438 			/* We are fabricating 8MB pages using 4MB
439 			 * real hw pages.
440 			 */
441 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
442 		}
443 
444 		if (hugepage_size >= PMD_SIZE) {
445 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
446 				REAL_HPAGE_SHIFT, address, pte_val(pte));
447 			is_huge_tsb = true;
448 		}
449 	}
450 #endif
451 	if (!is_huge_tsb) {
452 		for (i = 0; i < nr; i++) {
453 			__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
454 						address, pte_val(pte));
455 			address += PAGE_SIZE;
456 			pte_val(pte) += PAGE_SIZE;
457 		}
458 	}
459 
460 	spin_unlock_irqrestore(&mm->context.lock, flags);
461 }
462 
463 void flush_dcache_folio(struct folio *folio)
464 {
465 	unsigned long pfn = folio_pfn(folio);
466 	struct address_space *mapping;
467 	int this_cpu;
468 
469 	if (tlb_type == hypervisor)
470 		return;
471 
472 	/* Do not bother with the expensive D-cache flush if it
473 	 * is merely the zero page.  The 'bigcore' testcase in GDB
474 	 * causes this case to run millions of times.
475 	 */
476 	if (is_zero_pfn(pfn))
477 		return;
478 
479 	this_cpu = get_cpu();
480 
481 	mapping = folio_flush_mapping(folio);
482 	if (mapping && !mapping_mapped(mapping)) {
483 		bool dirty = test_bit(PG_dcache_dirty, &folio->flags);
484 		if (dirty) {
485 			int dirty_cpu = dcache_dirty_cpu(folio);
486 
487 			if (dirty_cpu == this_cpu)
488 				goto out;
489 			smp_flush_dcache_folio_impl(folio, dirty_cpu);
490 		}
491 		set_dcache_dirty(folio, this_cpu);
492 	} else {
493 		/* We could delay the flush for the !page_mapping
494 		 * case too.  But that case is for exec env/arg
495 		 * pages and those are %99 certainly going to get
496 		 * faulted into the tlb (and thus flushed) anyways.
497 		 */
498 		flush_dcache_folio_impl(folio);
499 	}
500 
501 out:
502 	put_cpu();
503 }
504 EXPORT_SYMBOL(flush_dcache_folio);
505 
506 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
507 {
508 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
509 	if (tlb_type == spitfire) {
510 		unsigned long kaddr;
511 
512 		/* This code only runs on Spitfire cpus so this is
513 		 * why we can assume _PAGE_PADDR_4U.
514 		 */
515 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
516 			unsigned long paddr, mask = _PAGE_PADDR_4U;
517 
518 			if (kaddr >= PAGE_OFFSET)
519 				paddr = kaddr & mask;
520 			else {
521 				pte_t *ptep = virt_to_kpte(kaddr);
522 
523 				paddr = pte_val(*ptep) & mask;
524 			}
525 			__flush_icache_page(paddr);
526 		}
527 	}
528 }
529 EXPORT_SYMBOL(flush_icache_range);
530 
531 void mmu_info(struct seq_file *m)
532 {
533 	static const char *pgsz_strings[] = {
534 		"8K", "64K", "512K", "4MB", "32MB",
535 		"256MB", "2GB", "16GB",
536 	};
537 	int i, printed;
538 
539 	if (tlb_type == cheetah)
540 		seq_printf(m, "MMU Type\t: Cheetah\n");
541 	else if (tlb_type == cheetah_plus)
542 		seq_printf(m, "MMU Type\t: Cheetah+\n");
543 	else if (tlb_type == spitfire)
544 		seq_printf(m, "MMU Type\t: Spitfire\n");
545 	else if (tlb_type == hypervisor)
546 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
547 	else
548 		seq_printf(m, "MMU Type\t: ???\n");
549 
550 	seq_printf(m, "MMU PGSZs\t: ");
551 	printed = 0;
552 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
553 		if (cpu_pgsz_mask & (1UL << i)) {
554 			seq_printf(m, "%s%s",
555 				   printed ? "," : "", pgsz_strings[i]);
556 			printed++;
557 		}
558 	}
559 	seq_putc(m, '\n');
560 
561 #ifdef CONFIG_DEBUG_DCFLUSH
562 	seq_printf(m, "DCPageFlushes\t: %d\n",
563 		   atomic_read(&dcpage_flushes));
564 #ifdef CONFIG_SMP
565 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
566 		   atomic_read(&dcpage_flushes_xcall));
567 #endif /* CONFIG_SMP */
568 #endif /* CONFIG_DEBUG_DCFLUSH */
569 }
570 
571 struct linux_prom_translation prom_trans[512] __read_mostly;
572 unsigned int prom_trans_ents __read_mostly;
573 
574 unsigned long kern_locked_tte_data;
575 
576 /* The obp translations are saved based on 8k pagesize, since obp can
577  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
578  * HI_OBP_ADDRESS range are handled in ktlb.S.
579  */
580 static inline int in_obp_range(unsigned long vaddr)
581 {
582 	return (vaddr >= LOW_OBP_ADDRESS &&
583 		vaddr < HI_OBP_ADDRESS);
584 }
585 
586 static int cmp_ptrans(const void *a, const void *b)
587 {
588 	const struct linux_prom_translation *x = a, *y = b;
589 
590 	if (x->virt > y->virt)
591 		return 1;
592 	if (x->virt < y->virt)
593 		return -1;
594 	return 0;
595 }
596 
597 /* Read OBP translations property into 'prom_trans[]'.  */
598 static void __init read_obp_translations(void)
599 {
600 	int n, node, ents, first, last, i;
601 
602 	node = prom_finddevice("/virtual-memory");
603 	n = prom_getproplen(node, "translations");
604 	if (unlikely(n == 0 || n == -1)) {
605 		prom_printf("prom_mappings: Couldn't get size.\n");
606 		prom_halt();
607 	}
608 	if (unlikely(n > sizeof(prom_trans))) {
609 		prom_printf("prom_mappings: Size %d is too big.\n", n);
610 		prom_halt();
611 	}
612 
613 	if ((n = prom_getproperty(node, "translations",
614 				  (char *)&prom_trans[0],
615 				  sizeof(prom_trans))) == -1) {
616 		prom_printf("prom_mappings: Couldn't get property.\n");
617 		prom_halt();
618 	}
619 
620 	n = n / sizeof(struct linux_prom_translation);
621 
622 	ents = n;
623 
624 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
625 	     cmp_ptrans, NULL);
626 
627 	/* Now kick out all the non-OBP entries.  */
628 	for (i = 0; i < ents; i++) {
629 		if (in_obp_range(prom_trans[i].virt))
630 			break;
631 	}
632 	first = i;
633 	for (; i < ents; i++) {
634 		if (!in_obp_range(prom_trans[i].virt))
635 			break;
636 	}
637 	last = i;
638 
639 	for (i = 0; i < (last - first); i++) {
640 		struct linux_prom_translation *src = &prom_trans[i + first];
641 		struct linux_prom_translation *dest = &prom_trans[i];
642 
643 		*dest = *src;
644 	}
645 	for (; i < ents; i++) {
646 		struct linux_prom_translation *dest = &prom_trans[i];
647 		dest->virt = dest->size = dest->data = 0x0UL;
648 	}
649 
650 	prom_trans_ents = last - first;
651 
652 	if (tlb_type == spitfire) {
653 		/* Clear diag TTE bits. */
654 		for (i = 0; i < prom_trans_ents; i++)
655 			prom_trans[i].data &= ~0x0003fe0000000000UL;
656 	}
657 
658 	/* Force execute bit on.  */
659 	for (i = 0; i < prom_trans_ents; i++)
660 		prom_trans[i].data |= (tlb_type == hypervisor ?
661 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
662 }
663 
664 static void __init hypervisor_tlb_lock(unsigned long vaddr,
665 				       unsigned long pte,
666 				       unsigned long mmu)
667 {
668 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
669 
670 	if (ret != 0) {
671 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
672 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
673 		prom_halt();
674 	}
675 }
676 
677 static unsigned long kern_large_tte(unsigned long paddr);
678 
679 static void __init remap_kernel(void)
680 {
681 	unsigned long phys_page, tte_vaddr, tte_data;
682 	int i, tlb_ent = sparc64_highest_locked_tlbent();
683 
684 	tte_vaddr = (unsigned long) KERNBASE;
685 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
686 	tte_data = kern_large_tte(phys_page);
687 
688 	kern_locked_tte_data = tte_data;
689 
690 	/* Now lock us into the TLBs via Hypervisor or OBP. */
691 	if (tlb_type == hypervisor) {
692 		for (i = 0; i < num_kernel_image_mappings; i++) {
693 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
694 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
695 			tte_vaddr += 0x400000;
696 			tte_data += 0x400000;
697 		}
698 	} else {
699 		for (i = 0; i < num_kernel_image_mappings; i++) {
700 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
701 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
702 			tte_vaddr += 0x400000;
703 			tte_data += 0x400000;
704 		}
705 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
706 	}
707 	if (tlb_type == cheetah_plus) {
708 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
709 					    CTX_CHEETAH_PLUS_NUC);
710 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
711 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
712 	}
713 }
714 
715 
716 static void __init inherit_prom_mappings(void)
717 {
718 	/* Now fixup OBP's idea about where we really are mapped. */
719 	printk("Remapping the kernel... ");
720 	remap_kernel();
721 	printk("done.\n");
722 }
723 
724 void prom_world(int enter)
725 {
726 	/*
727 	 * No need to change the address space any more, just flush
728 	 * the register windows
729 	 */
730 	__asm__ __volatile__("flushw");
731 }
732 
733 void __flush_dcache_range(unsigned long start, unsigned long end)
734 {
735 	unsigned long va;
736 
737 	if (tlb_type == spitfire) {
738 		int n = 0;
739 
740 		for (va = start; va < end; va += 32) {
741 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
742 			if (++n >= 512)
743 				break;
744 		}
745 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
746 		start = __pa(start);
747 		end = __pa(end);
748 		for (va = start; va < end; va += 32)
749 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
750 					     "membar #Sync"
751 					     : /* no outputs */
752 					     : "r" (va),
753 					       "i" (ASI_DCACHE_INVALIDATE));
754 	}
755 }
756 EXPORT_SYMBOL(__flush_dcache_range);
757 
758 /* get_new_mmu_context() uses "cache + 1".  */
759 DEFINE_SPINLOCK(ctx_alloc_lock);
760 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
761 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
762 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
763 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
764 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
765 
766 static void mmu_context_wrap(void)
767 {
768 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
769 	unsigned long new_ver, new_ctx, old_ctx;
770 	struct mm_struct *mm;
771 	int cpu;
772 
773 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
774 
775 	/* Reserve kernel context */
776 	set_bit(0, mmu_context_bmap);
777 
778 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
779 	if (unlikely(new_ver == 0))
780 		new_ver = CTX_FIRST_VERSION;
781 	tlb_context_cache = new_ver;
782 
783 	/*
784 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
785 	 * are going to go through get_new_mmu_context() path.
786 	 */
787 	mb();
788 
789 	/*
790 	 * Updated versions to current on those CPUs that had valid secondary
791 	 * contexts
792 	 */
793 	for_each_online_cpu(cpu) {
794 		/*
795 		 * If a new mm is stored after we took this mm from the array,
796 		 * it will go into get_new_mmu_context() path, because we
797 		 * already bumped the version in tlb_context_cache.
798 		 */
799 		mm = per_cpu(per_cpu_secondary_mm, cpu);
800 
801 		if (unlikely(!mm || mm == &init_mm))
802 			continue;
803 
804 		old_ctx = mm->context.sparc64_ctx_val;
805 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
806 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
807 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
808 			mm->context.sparc64_ctx_val = new_ctx;
809 		}
810 	}
811 }
812 
813 /* Caller does TLB context flushing on local CPU if necessary.
814  * The caller also ensures that CTX_VALID(mm->context) is false.
815  *
816  * We must be careful about boundary cases so that we never
817  * let the user have CTX 0 (nucleus) or we ever use a CTX
818  * version of zero (and thus NO_CONTEXT would not be caught
819  * by version mis-match tests in mmu_context.h).
820  *
821  * Always invoked with interrupts disabled.
822  */
823 void get_new_mmu_context(struct mm_struct *mm)
824 {
825 	unsigned long ctx, new_ctx;
826 	unsigned long orig_pgsz_bits;
827 
828 	spin_lock(&ctx_alloc_lock);
829 retry:
830 	/* wrap might have happened, test again if our context became valid */
831 	if (unlikely(CTX_VALID(mm->context)))
832 		goto out;
833 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
834 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
835 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
836 	if (new_ctx >= (1 << CTX_NR_BITS)) {
837 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
838 		if (new_ctx >= ctx) {
839 			mmu_context_wrap();
840 			goto retry;
841 		}
842 	}
843 	if (mm->context.sparc64_ctx_val)
844 		cpumask_clear(mm_cpumask(mm));
845 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
846 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
847 	tlb_context_cache = new_ctx;
848 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
849 out:
850 	spin_unlock(&ctx_alloc_lock);
851 }
852 
853 static int numa_enabled = 1;
854 static int numa_debug;
855 
856 static int __init early_numa(char *p)
857 {
858 	if (!p)
859 		return 0;
860 
861 	if (strstr(p, "off"))
862 		numa_enabled = 0;
863 
864 	if (strstr(p, "debug"))
865 		numa_debug = 1;
866 
867 	return 0;
868 }
869 early_param("numa", early_numa);
870 
871 #define numadbg(f, a...) \
872 do {	if (numa_debug) \
873 		printk(KERN_INFO f, ## a); \
874 } while (0)
875 
876 static void __init find_ramdisk(unsigned long phys_base)
877 {
878 #ifdef CONFIG_BLK_DEV_INITRD
879 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
880 		unsigned long ramdisk_image;
881 
882 		/* Older versions of the bootloader only supported a
883 		 * 32-bit physical address for the ramdisk image
884 		 * location, stored at sparc_ramdisk_image.  Newer
885 		 * SILO versions set sparc_ramdisk_image to zero and
886 		 * provide a full 64-bit physical address at
887 		 * sparc_ramdisk_image64.
888 		 */
889 		ramdisk_image = sparc_ramdisk_image;
890 		if (!ramdisk_image)
891 			ramdisk_image = sparc_ramdisk_image64;
892 
893 		/* Another bootloader quirk.  The bootloader normalizes
894 		 * the physical address to KERNBASE, so we have to
895 		 * factor that back out and add in the lowest valid
896 		 * physical page address to get the true physical address.
897 		 */
898 		ramdisk_image -= KERNBASE;
899 		ramdisk_image += phys_base;
900 
901 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
902 			ramdisk_image, sparc_ramdisk_size);
903 
904 		initrd_start = ramdisk_image;
905 		initrd_end = ramdisk_image + sparc_ramdisk_size;
906 
907 		memblock_reserve(initrd_start, sparc_ramdisk_size);
908 
909 		initrd_start += PAGE_OFFSET;
910 		initrd_end += PAGE_OFFSET;
911 	}
912 #endif
913 }
914 
915 struct node_mem_mask {
916 	unsigned long mask;
917 	unsigned long match;
918 };
919 static struct node_mem_mask node_masks[MAX_NUMNODES];
920 static int num_node_masks;
921 
922 #ifdef CONFIG_NUMA
923 
924 struct mdesc_mlgroup {
925 	u64	node;
926 	u64	latency;
927 	u64	match;
928 	u64	mask;
929 };
930 
931 static struct mdesc_mlgroup *mlgroups;
932 static int num_mlgroups;
933 
934 int numa_cpu_lookup_table[NR_CPUS];
935 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
936 
937 struct mdesc_mblock {
938 	u64	base;
939 	u64	size;
940 	u64	offset; /* RA-to-PA */
941 };
942 static struct mdesc_mblock *mblocks;
943 static int num_mblocks;
944 
945 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
946 {
947 	struct mdesc_mblock *m = NULL;
948 	int i;
949 
950 	for (i = 0; i < num_mblocks; i++) {
951 		m = &mblocks[i];
952 
953 		if (addr >= m->base &&
954 		    addr < (m->base + m->size)) {
955 			break;
956 		}
957 	}
958 
959 	return m;
960 }
961 
962 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
963 {
964 	int prev_nid, new_nid;
965 
966 	prev_nid = NUMA_NO_NODE;
967 	for ( ; start < end; start += PAGE_SIZE) {
968 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
969 			struct node_mem_mask *p = &node_masks[new_nid];
970 
971 			if ((start & p->mask) == p->match) {
972 				if (prev_nid == NUMA_NO_NODE)
973 					prev_nid = new_nid;
974 				break;
975 			}
976 		}
977 
978 		if (new_nid == num_node_masks) {
979 			prev_nid = 0;
980 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
981 				  start);
982 			break;
983 		}
984 
985 		if (prev_nid != new_nid)
986 			break;
987 	}
988 	*nid = prev_nid;
989 
990 	return start > end ? end : start;
991 }
992 
993 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
994 {
995 	u64 ret_end, pa_start, m_mask, m_match, m_end;
996 	struct mdesc_mblock *mblock;
997 	int _nid, i;
998 
999 	if (tlb_type != hypervisor)
1000 		return memblock_nid_range_sun4u(start, end, nid);
1001 
1002 	mblock = addr_to_mblock(start);
1003 	if (!mblock) {
1004 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1005 			  start);
1006 
1007 		_nid = 0;
1008 		ret_end = end;
1009 		goto done;
1010 	}
1011 
1012 	pa_start = start + mblock->offset;
1013 	m_match = 0;
1014 	m_mask = 0;
1015 
1016 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1017 		struct node_mem_mask *const m = &node_masks[_nid];
1018 
1019 		if ((pa_start & m->mask) == m->match) {
1020 			m_match = m->match;
1021 			m_mask = m->mask;
1022 			break;
1023 		}
1024 	}
1025 
1026 	if (num_node_masks == _nid) {
1027 		/* We could not find NUMA group, so default to 0, but lets
1028 		 * search for latency group, so we could calculate the correct
1029 		 * end address that we return
1030 		 */
1031 		_nid = 0;
1032 
1033 		for (i = 0; i < num_mlgroups; i++) {
1034 			struct mdesc_mlgroup *const m = &mlgroups[i];
1035 
1036 			if ((pa_start & m->mask) == m->match) {
1037 				m_match = m->match;
1038 				m_mask = m->mask;
1039 				break;
1040 			}
1041 		}
1042 
1043 		if (i == num_mlgroups) {
1044 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1045 				  start);
1046 
1047 			ret_end = end;
1048 			goto done;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * Each latency group has match and mask, and each memory block has an
1054 	 * offset.  An address belongs to a latency group if its address matches
1055 	 * the following formula: ((addr + offset) & mask) == match
1056 	 * It is, however, slow to check every single page if it matches a
1057 	 * particular latency group. As optimization we calculate end value by
1058 	 * using bit arithmetics.
1059 	 */
1060 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1061 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1062 	ret_end = m_end > end ? end : m_end;
1063 
1064 done:
1065 	*nid = _nid;
1066 	return ret_end;
1067 }
1068 #endif
1069 
1070 /* This must be invoked after performing all of the necessary
1071  * memblock_set_node() calls for 'nid'.  We need to be able to get
1072  * correct data from get_pfn_range_for_nid().
1073  */
1074 static void __init allocate_node_data(int nid)
1075 {
1076 	struct pglist_data *p;
1077 	unsigned long start_pfn, end_pfn;
1078 #ifdef CONFIG_NUMA
1079 
1080 	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1081 					     SMP_CACHE_BYTES, nid);
1082 	if (!NODE_DATA(nid)) {
1083 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1084 		prom_halt();
1085 	}
1086 
1087 	NODE_DATA(nid)->node_id = nid;
1088 #endif
1089 
1090 	p = NODE_DATA(nid);
1091 
1092 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1093 	p->node_start_pfn = start_pfn;
1094 	p->node_spanned_pages = end_pfn - start_pfn;
1095 }
1096 
1097 static void init_node_masks_nonnuma(void)
1098 {
1099 #ifdef CONFIG_NUMA
1100 	int i;
1101 #endif
1102 
1103 	numadbg("Initializing tables for non-numa.\n");
1104 
1105 	node_masks[0].mask = 0;
1106 	node_masks[0].match = 0;
1107 	num_node_masks = 1;
1108 
1109 #ifdef CONFIG_NUMA
1110 	for (i = 0; i < NR_CPUS; i++)
1111 		numa_cpu_lookup_table[i] = 0;
1112 
1113 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1114 #endif
1115 }
1116 
1117 #ifdef CONFIG_NUMA
1118 struct pglist_data *node_data[MAX_NUMNODES];
1119 
1120 EXPORT_SYMBOL(numa_cpu_lookup_table);
1121 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1122 EXPORT_SYMBOL(node_data);
1123 
1124 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1125 				   u32 cfg_handle)
1126 {
1127 	u64 arc;
1128 
1129 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1130 		u64 target = mdesc_arc_target(md, arc);
1131 		const u64 *val;
1132 
1133 		val = mdesc_get_property(md, target,
1134 					 "cfg-handle", NULL);
1135 		if (val && *val == cfg_handle)
1136 			return 0;
1137 	}
1138 	return -ENODEV;
1139 }
1140 
1141 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1142 				    u32 cfg_handle)
1143 {
1144 	u64 arc, candidate, best_latency = ~(u64)0;
1145 
1146 	candidate = MDESC_NODE_NULL;
1147 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1148 		u64 target = mdesc_arc_target(md, arc);
1149 		const char *name = mdesc_node_name(md, target);
1150 		const u64 *val;
1151 
1152 		if (strcmp(name, "pio-latency-group"))
1153 			continue;
1154 
1155 		val = mdesc_get_property(md, target, "latency", NULL);
1156 		if (!val)
1157 			continue;
1158 
1159 		if (*val < best_latency) {
1160 			candidate = target;
1161 			best_latency = *val;
1162 		}
1163 	}
1164 
1165 	if (candidate == MDESC_NODE_NULL)
1166 		return -ENODEV;
1167 
1168 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1169 }
1170 
1171 int of_node_to_nid(struct device_node *dp)
1172 {
1173 	const struct linux_prom64_registers *regs;
1174 	struct mdesc_handle *md;
1175 	u32 cfg_handle;
1176 	int count, nid;
1177 	u64 grp;
1178 
1179 	/* This is the right thing to do on currently supported
1180 	 * SUN4U NUMA platforms as well, as the PCI controller does
1181 	 * not sit behind any particular memory controller.
1182 	 */
1183 	if (!mlgroups)
1184 		return -1;
1185 
1186 	regs = of_get_property(dp, "reg", NULL);
1187 	if (!regs)
1188 		return -1;
1189 
1190 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1191 
1192 	md = mdesc_grab();
1193 
1194 	count = 0;
1195 	nid = NUMA_NO_NODE;
1196 	mdesc_for_each_node_by_name(md, grp, "group") {
1197 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1198 			nid = count;
1199 			break;
1200 		}
1201 		count++;
1202 	}
1203 
1204 	mdesc_release(md);
1205 
1206 	return nid;
1207 }
1208 
1209 static void __init add_node_ranges(void)
1210 {
1211 	phys_addr_t start, end;
1212 	unsigned long prev_max;
1213 	u64 i;
1214 
1215 memblock_resized:
1216 	prev_max = memblock.memory.max;
1217 
1218 	for_each_mem_range(i, &start, &end) {
1219 		while (start < end) {
1220 			unsigned long this_end;
1221 			int nid;
1222 
1223 			this_end = memblock_nid_range(start, end, &nid);
1224 
1225 			numadbg("Setting memblock NUMA node nid[%d] "
1226 				"start[%llx] end[%lx]\n",
1227 				nid, start, this_end);
1228 
1229 			memblock_set_node(start, this_end - start,
1230 					  &memblock.memory, nid);
1231 			if (memblock.memory.max != prev_max)
1232 				goto memblock_resized;
1233 			start = this_end;
1234 		}
1235 	}
1236 }
1237 
1238 static int __init grab_mlgroups(struct mdesc_handle *md)
1239 {
1240 	unsigned long paddr;
1241 	int count = 0;
1242 	u64 node;
1243 
1244 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1245 		count++;
1246 	if (!count)
1247 		return -ENOENT;
1248 
1249 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1250 				    SMP_CACHE_BYTES);
1251 	if (!paddr)
1252 		return -ENOMEM;
1253 
1254 	mlgroups = __va(paddr);
1255 	num_mlgroups = count;
1256 
1257 	count = 0;
1258 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1259 		struct mdesc_mlgroup *m = &mlgroups[count++];
1260 		const u64 *val;
1261 
1262 		m->node = node;
1263 
1264 		val = mdesc_get_property(md, node, "latency", NULL);
1265 		m->latency = *val;
1266 		val = mdesc_get_property(md, node, "address-match", NULL);
1267 		m->match = *val;
1268 		val = mdesc_get_property(md, node, "address-mask", NULL);
1269 		m->mask = *val;
1270 
1271 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1272 			"match[%llx] mask[%llx]\n",
1273 			count - 1, m->node, m->latency, m->match, m->mask);
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static int __init grab_mblocks(struct mdesc_handle *md)
1280 {
1281 	unsigned long paddr;
1282 	int count = 0;
1283 	u64 node;
1284 
1285 	mdesc_for_each_node_by_name(md, node, "mblock")
1286 		count++;
1287 	if (!count)
1288 		return -ENOENT;
1289 
1290 	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1291 				    SMP_CACHE_BYTES);
1292 	if (!paddr)
1293 		return -ENOMEM;
1294 
1295 	mblocks = __va(paddr);
1296 	num_mblocks = count;
1297 
1298 	count = 0;
1299 	mdesc_for_each_node_by_name(md, node, "mblock") {
1300 		struct mdesc_mblock *m = &mblocks[count++];
1301 		const u64 *val;
1302 
1303 		val = mdesc_get_property(md, node, "base", NULL);
1304 		m->base = *val;
1305 		val = mdesc_get_property(md, node, "size", NULL);
1306 		m->size = *val;
1307 		val = mdesc_get_property(md, node,
1308 					 "address-congruence-offset", NULL);
1309 
1310 		/* The address-congruence-offset property is optional.
1311 		 * Explicity zero it be identifty this.
1312 		 */
1313 		if (val)
1314 			m->offset = *val;
1315 		else
1316 			m->offset = 0UL;
1317 
1318 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1319 			count - 1, m->base, m->size, m->offset);
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1326 					       u64 grp, cpumask_t *mask)
1327 {
1328 	u64 arc;
1329 
1330 	cpumask_clear(mask);
1331 
1332 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1333 		u64 target = mdesc_arc_target(md, arc);
1334 		const char *name = mdesc_node_name(md, target);
1335 		const u64 *id;
1336 
1337 		if (strcmp(name, "cpu"))
1338 			continue;
1339 		id = mdesc_get_property(md, target, "id", NULL);
1340 		if (*id < nr_cpu_ids)
1341 			cpumask_set_cpu(*id, mask);
1342 	}
1343 }
1344 
1345 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1346 {
1347 	int i;
1348 
1349 	for (i = 0; i < num_mlgroups; i++) {
1350 		struct mdesc_mlgroup *m = &mlgroups[i];
1351 		if (m->node == node)
1352 			return m;
1353 	}
1354 	return NULL;
1355 }
1356 
1357 int __node_distance(int from, int to)
1358 {
1359 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1360 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1361 			from, to);
1362 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1363 	}
1364 	return numa_latency[from][to];
1365 }
1366 EXPORT_SYMBOL(__node_distance);
1367 
1368 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1369 {
1370 	int i;
1371 
1372 	for (i = 0; i < MAX_NUMNODES; i++) {
1373 		struct node_mem_mask *n = &node_masks[i];
1374 
1375 		if ((grp->mask == n->mask) && (grp->match == n->match))
1376 			break;
1377 	}
1378 	return i;
1379 }
1380 
1381 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1382 						 u64 grp, int index)
1383 {
1384 	u64 arc;
1385 
1386 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1387 		int tnode;
1388 		u64 target = mdesc_arc_target(md, arc);
1389 		struct mdesc_mlgroup *m = find_mlgroup(target);
1390 
1391 		if (!m)
1392 			continue;
1393 		tnode = find_best_numa_node_for_mlgroup(m);
1394 		if (tnode == MAX_NUMNODES)
1395 			continue;
1396 		numa_latency[index][tnode] = m->latency;
1397 	}
1398 }
1399 
1400 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1401 				      int index)
1402 {
1403 	struct mdesc_mlgroup *candidate = NULL;
1404 	u64 arc, best_latency = ~(u64)0;
1405 	struct node_mem_mask *n;
1406 
1407 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1408 		u64 target = mdesc_arc_target(md, arc);
1409 		struct mdesc_mlgroup *m = find_mlgroup(target);
1410 		if (!m)
1411 			continue;
1412 		if (m->latency < best_latency) {
1413 			candidate = m;
1414 			best_latency = m->latency;
1415 		}
1416 	}
1417 	if (!candidate)
1418 		return -ENOENT;
1419 
1420 	if (num_node_masks != index) {
1421 		printk(KERN_ERR "Inconsistent NUMA state, "
1422 		       "index[%d] != num_node_masks[%d]\n",
1423 		       index, num_node_masks);
1424 		return -EINVAL;
1425 	}
1426 
1427 	n = &node_masks[num_node_masks++];
1428 
1429 	n->mask = candidate->mask;
1430 	n->match = candidate->match;
1431 
1432 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1433 		index, n->mask, n->match, candidate->latency);
1434 
1435 	return 0;
1436 }
1437 
1438 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1439 					 int index)
1440 {
1441 	cpumask_t mask;
1442 	int cpu;
1443 
1444 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1445 
1446 	for_each_cpu(cpu, &mask)
1447 		numa_cpu_lookup_table[cpu] = index;
1448 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1449 
1450 	if (numa_debug) {
1451 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1452 		for_each_cpu(cpu, &mask)
1453 			printk("%d ", cpu);
1454 		printk("]\n");
1455 	}
1456 
1457 	return numa_attach_mlgroup(md, grp, index);
1458 }
1459 
1460 static int __init numa_parse_mdesc(void)
1461 {
1462 	struct mdesc_handle *md = mdesc_grab();
1463 	int i, j, err, count;
1464 	u64 node;
1465 
1466 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1467 	if (node == MDESC_NODE_NULL) {
1468 		mdesc_release(md);
1469 		return -ENOENT;
1470 	}
1471 
1472 	err = grab_mblocks(md);
1473 	if (err < 0)
1474 		goto out;
1475 
1476 	err = grab_mlgroups(md);
1477 	if (err < 0)
1478 		goto out;
1479 
1480 	count = 0;
1481 	mdesc_for_each_node_by_name(md, node, "group") {
1482 		err = numa_parse_mdesc_group(md, node, count);
1483 		if (err < 0)
1484 			break;
1485 		count++;
1486 	}
1487 
1488 	count = 0;
1489 	mdesc_for_each_node_by_name(md, node, "group") {
1490 		find_numa_latencies_for_group(md, node, count);
1491 		count++;
1492 	}
1493 
1494 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1495 	for (i = 0; i < MAX_NUMNODES; i++) {
1496 		u64 self_latency = numa_latency[i][i];
1497 
1498 		for (j = 0; j < MAX_NUMNODES; j++) {
1499 			numa_latency[i][j] =
1500 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1501 				self_latency;
1502 		}
1503 	}
1504 
1505 	add_node_ranges();
1506 
1507 	for (i = 0; i < num_node_masks; i++) {
1508 		allocate_node_data(i);
1509 		node_set_online(i);
1510 	}
1511 
1512 	err = 0;
1513 out:
1514 	mdesc_release(md);
1515 	return err;
1516 }
1517 
1518 static int __init numa_parse_jbus(void)
1519 {
1520 	unsigned long cpu, index;
1521 
1522 	/* NUMA node id is encoded in bits 36 and higher, and there is
1523 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1524 	 */
1525 	index = 0;
1526 	for_each_present_cpu(cpu) {
1527 		numa_cpu_lookup_table[cpu] = index;
1528 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1529 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1530 		node_masks[index].match = cpu << 36UL;
1531 
1532 		index++;
1533 	}
1534 	num_node_masks = index;
1535 
1536 	add_node_ranges();
1537 
1538 	for (index = 0; index < num_node_masks; index++) {
1539 		allocate_node_data(index);
1540 		node_set_online(index);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int __init numa_parse_sun4u(void)
1547 {
1548 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1549 		unsigned long ver;
1550 
1551 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1552 		if ((ver >> 32UL) == __JALAPENO_ID ||
1553 		    (ver >> 32UL) == __SERRANO_ID)
1554 			return numa_parse_jbus();
1555 	}
1556 	return -1;
1557 }
1558 
1559 static int __init bootmem_init_numa(void)
1560 {
1561 	int i, j;
1562 	int err = -1;
1563 
1564 	numadbg("bootmem_init_numa()\n");
1565 
1566 	/* Some sane defaults for numa latency values */
1567 	for (i = 0; i < MAX_NUMNODES; i++) {
1568 		for (j = 0; j < MAX_NUMNODES; j++)
1569 			numa_latency[i][j] = (i == j) ?
1570 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1571 	}
1572 
1573 	if (numa_enabled) {
1574 		if (tlb_type == hypervisor)
1575 			err = numa_parse_mdesc();
1576 		else
1577 			err = numa_parse_sun4u();
1578 	}
1579 	return err;
1580 }
1581 
1582 #else
1583 
1584 static int bootmem_init_numa(void)
1585 {
1586 	return -1;
1587 }
1588 
1589 #endif
1590 
1591 static void __init bootmem_init_nonnuma(void)
1592 {
1593 	unsigned long top_of_ram = memblock_end_of_DRAM();
1594 	unsigned long total_ram = memblock_phys_mem_size();
1595 
1596 	numadbg("bootmem_init_nonnuma()\n");
1597 
1598 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1599 	       top_of_ram, total_ram);
1600 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1601 	       (top_of_ram - total_ram) >> 20);
1602 
1603 	init_node_masks_nonnuma();
1604 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1605 	allocate_node_data(0);
1606 	node_set_online(0);
1607 }
1608 
1609 static unsigned long __init bootmem_init(unsigned long phys_base)
1610 {
1611 	unsigned long end_pfn;
1612 
1613 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1614 	max_pfn = max_low_pfn = end_pfn;
1615 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1616 
1617 	if (bootmem_init_numa() < 0)
1618 		bootmem_init_nonnuma();
1619 
1620 	/* Dump memblock with node info. */
1621 	memblock_dump_all();
1622 
1623 	/* XXX cpu notifier XXX */
1624 
1625 	sparse_init();
1626 
1627 	return end_pfn;
1628 }
1629 
1630 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1631 static int pall_ents __initdata;
1632 
1633 static unsigned long max_phys_bits = 40;
1634 
1635 bool kern_addr_valid(unsigned long addr)
1636 {
1637 	pgd_t *pgd;
1638 	p4d_t *p4d;
1639 	pud_t *pud;
1640 	pmd_t *pmd;
1641 	pte_t *pte;
1642 
1643 	if ((long)addr < 0L) {
1644 		unsigned long pa = __pa(addr);
1645 
1646 		if ((pa >> max_phys_bits) != 0UL)
1647 			return false;
1648 
1649 		return pfn_valid(pa >> PAGE_SHIFT);
1650 	}
1651 
1652 	if (addr >= (unsigned long) KERNBASE &&
1653 	    addr < (unsigned long)&_end)
1654 		return true;
1655 
1656 	pgd = pgd_offset_k(addr);
1657 	if (pgd_none(*pgd))
1658 		return false;
1659 
1660 	p4d = p4d_offset(pgd, addr);
1661 	if (p4d_none(*p4d))
1662 		return false;
1663 
1664 	pud = pud_offset(p4d, addr);
1665 	if (pud_none(*pud))
1666 		return false;
1667 
1668 	if (pud_leaf(*pud))
1669 		return pfn_valid(pud_pfn(*pud));
1670 
1671 	pmd = pmd_offset(pud, addr);
1672 	if (pmd_none(*pmd))
1673 		return false;
1674 
1675 	if (pmd_leaf(*pmd))
1676 		return pfn_valid(pmd_pfn(*pmd));
1677 
1678 	pte = pte_offset_kernel(pmd, addr);
1679 	if (pte_none(*pte))
1680 		return false;
1681 
1682 	return pfn_valid(pte_pfn(*pte));
1683 }
1684 
1685 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1686 					      unsigned long vend,
1687 					      pud_t *pud)
1688 {
1689 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1690 	u64 pte_val = vstart;
1691 
1692 	/* Each PUD is 8GB */
1693 	if ((vstart & mask16gb) ||
1694 	    (vend - vstart <= mask16gb)) {
1695 		pte_val ^= kern_linear_pte_xor[2];
1696 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1697 
1698 		return vstart + PUD_SIZE;
1699 	}
1700 
1701 	pte_val ^= kern_linear_pte_xor[3];
1702 	pte_val |= _PAGE_PUD_HUGE;
1703 
1704 	vend = vstart + mask16gb + 1UL;
1705 	while (vstart < vend) {
1706 		pud_val(*pud) = pte_val;
1707 
1708 		pte_val += PUD_SIZE;
1709 		vstart += PUD_SIZE;
1710 		pud++;
1711 	}
1712 	return vstart;
1713 }
1714 
1715 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1716 				   bool guard)
1717 {
1718 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1719 		return true;
1720 
1721 	return false;
1722 }
1723 
1724 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1725 					      unsigned long vend,
1726 					      pmd_t *pmd)
1727 {
1728 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1729 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1730 	u64 pte_val = vstart;
1731 
1732 	/* Each PMD is 8MB */
1733 	if ((vstart & mask256mb) ||
1734 	    (vend - vstart <= mask256mb)) {
1735 		pte_val ^= kern_linear_pte_xor[0];
1736 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1737 
1738 		return vstart + PMD_SIZE;
1739 	}
1740 
1741 	if ((vstart & mask2gb) ||
1742 	    (vend - vstart <= mask2gb)) {
1743 		pte_val ^= kern_linear_pte_xor[1];
1744 		pte_val |= _PAGE_PMD_HUGE;
1745 		vend = vstart + mask256mb + 1UL;
1746 	} else {
1747 		pte_val ^= kern_linear_pte_xor[2];
1748 		pte_val |= _PAGE_PMD_HUGE;
1749 		vend = vstart + mask2gb + 1UL;
1750 	}
1751 
1752 	while (vstart < vend) {
1753 		pmd_val(*pmd) = pte_val;
1754 
1755 		pte_val += PMD_SIZE;
1756 		vstart += PMD_SIZE;
1757 		pmd++;
1758 	}
1759 
1760 	return vstart;
1761 }
1762 
1763 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1764 				   bool guard)
1765 {
1766 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1767 		return true;
1768 
1769 	return false;
1770 }
1771 
1772 static unsigned long __ref kernel_map_range(unsigned long pstart,
1773 					    unsigned long pend, pgprot_t prot,
1774 					    bool use_huge)
1775 {
1776 	unsigned long vstart = PAGE_OFFSET + pstart;
1777 	unsigned long vend = PAGE_OFFSET + pend;
1778 	unsigned long alloc_bytes = 0UL;
1779 
1780 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1781 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1782 			    vstart, vend);
1783 		prom_halt();
1784 	}
1785 
1786 	while (vstart < vend) {
1787 		unsigned long this_end, paddr = __pa(vstart);
1788 		pgd_t *pgd = pgd_offset_k(vstart);
1789 		p4d_t *p4d;
1790 		pud_t *pud;
1791 		pmd_t *pmd;
1792 		pte_t *pte;
1793 
1794 		if (pgd_none(*pgd)) {
1795 			pud_t *new;
1796 
1797 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1798 						  PAGE_SIZE);
1799 			if (!new)
1800 				goto err_alloc;
1801 			alloc_bytes += PAGE_SIZE;
1802 			pgd_populate(&init_mm, pgd, new);
1803 		}
1804 
1805 		p4d = p4d_offset(pgd, vstart);
1806 		if (p4d_none(*p4d)) {
1807 			pud_t *new;
1808 
1809 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1810 						  PAGE_SIZE);
1811 			if (!new)
1812 				goto err_alloc;
1813 			alloc_bytes += PAGE_SIZE;
1814 			p4d_populate(&init_mm, p4d, new);
1815 		}
1816 
1817 		pud = pud_offset(p4d, vstart);
1818 		if (pud_none(*pud)) {
1819 			pmd_t *new;
1820 
1821 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1822 				vstart = kernel_map_hugepud(vstart, vend, pud);
1823 				continue;
1824 			}
1825 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1826 						  PAGE_SIZE);
1827 			if (!new)
1828 				goto err_alloc;
1829 			alloc_bytes += PAGE_SIZE;
1830 			pud_populate(&init_mm, pud, new);
1831 		}
1832 
1833 		pmd = pmd_offset(pud, vstart);
1834 		if (pmd_none(*pmd)) {
1835 			pte_t *new;
1836 
1837 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1838 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1839 				continue;
1840 			}
1841 			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1842 						  PAGE_SIZE);
1843 			if (!new)
1844 				goto err_alloc;
1845 			alloc_bytes += PAGE_SIZE;
1846 			pmd_populate_kernel(&init_mm, pmd, new);
1847 		}
1848 
1849 		pte = pte_offset_kernel(pmd, vstart);
1850 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1851 		if (this_end > vend)
1852 			this_end = vend;
1853 
1854 		while (vstart < this_end) {
1855 			pte_val(*pte) = (paddr | pgprot_val(prot));
1856 
1857 			vstart += PAGE_SIZE;
1858 			paddr += PAGE_SIZE;
1859 			pte++;
1860 		}
1861 	}
1862 
1863 	return alloc_bytes;
1864 
1865 err_alloc:
1866 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1867 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1868 	return -ENOMEM;
1869 }
1870 
1871 static void __init flush_all_kernel_tsbs(void)
1872 {
1873 	int i;
1874 
1875 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1876 		struct tsb *ent = &swapper_tsb[i];
1877 
1878 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1879 	}
1880 #ifndef CONFIG_DEBUG_PAGEALLOC
1881 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1882 		struct tsb *ent = &swapper_4m_tsb[i];
1883 
1884 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1885 	}
1886 #endif
1887 }
1888 
1889 extern unsigned int kvmap_linear_patch[1];
1890 
1891 static void __init kernel_physical_mapping_init(void)
1892 {
1893 	unsigned long i, mem_alloced = 0UL;
1894 	bool use_huge = true;
1895 
1896 #ifdef CONFIG_DEBUG_PAGEALLOC
1897 	use_huge = false;
1898 #endif
1899 	for (i = 0; i < pall_ents; i++) {
1900 		unsigned long phys_start, phys_end;
1901 
1902 		phys_start = pall[i].phys_addr;
1903 		phys_end = phys_start + pall[i].reg_size;
1904 
1905 		mem_alloced += kernel_map_range(phys_start, phys_end,
1906 						PAGE_KERNEL, use_huge);
1907 	}
1908 
1909 	printk("Allocated %ld bytes for kernel page tables.\n",
1910 	       mem_alloced);
1911 
1912 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1913 	flushi(&kvmap_linear_patch[0]);
1914 
1915 	flush_all_kernel_tsbs();
1916 
1917 	__flush_tlb_all();
1918 }
1919 
1920 #ifdef CONFIG_DEBUG_PAGEALLOC
1921 void __kernel_map_pages(struct page *page, int numpages, int enable)
1922 {
1923 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1924 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1925 
1926 	kernel_map_range(phys_start, phys_end,
1927 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1928 
1929 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1930 			       PAGE_OFFSET + phys_end);
1931 
1932 	/* we should perform an IPI and flush all tlbs,
1933 	 * but that can deadlock->flush only current cpu.
1934 	 */
1935 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1936 				 PAGE_OFFSET + phys_end);
1937 }
1938 #endif
1939 
1940 unsigned long __init find_ecache_flush_span(unsigned long size)
1941 {
1942 	int i;
1943 
1944 	for (i = 0; i < pavail_ents; i++) {
1945 		if (pavail[i].reg_size >= size)
1946 			return pavail[i].phys_addr;
1947 	}
1948 
1949 	return ~0UL;
1950 }
1951 
1952 unsigned long PAGE_OFFSET;
1953 EXPORT_SYMBOL(PAGE_OFFSET);
1954 
1955 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1956 EXPORT_SYMBOL(VMALLOC_END);
1957 
1958 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1959 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1960 
1961 static void __init setup_page_offset(void)
1962 {
1963 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1964 		/* Cheetah/Panther support a full 64-bit virtual
1965 		 * address, so we can use all that our page tables
1966 		 * support.
1967 		 */
1968 		sparc64_va_hole_top =    0xfff0000000000000UL;
1969 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1970 
1971 		max_phys_bits = 42;
1972 	} else if (tlb_type == hypervisor) {
1973 		switch (sun4v_chip_type) {
1974 		case SUN4V_CHIP_NIAGARA1:
1975 		case SUN4V_CHIP_NIAGARA2:
1976 			/* T1 and T2 support 48-bit virtual addresses.  */
1977 			sparc64_va_hole_top =    0xffff800000000000UL;
1978 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1979 
1980 			max_phys_bits = 39;
1981 			break;
1982 		case SUN4V_CHIP_NIAGARA3:
1983 			/* T3 supports 48-bit virtual addresses.  */
1984 			sparc64_va_hole_top =    0xffff800000000000UL;
1985 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1986 
1987 			max_phys_bits = 43;
1988 			break;
1989 		case SUN4V_CHIP_NIAGARA4:
1990 		case SUN4V_CHIP_NIAGARA5:
1991 		case SUN4V_CHIP_SPARC64X:
1992 		case SUN4V_CHIP_SPARC_M6:
1993 			/* T4 and later support 52-bit virtual addresses.  */
1994 			sparc64_va_hole_top =    0xfff8000000000000UL;
1995 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1996 			max_phys_bits = 47;
1997 			break;
1998 		case SUN4V_CHIP_SPARC_M7:
1999 		case SUN4V_CHIP_SPARC_SN:
2000 			/* M7 and later support 52-bit virtual addresses.  */
2001 			sparc64_va_hole_top =    0xfff8000000000000UL;
2002 			sparc64_va_hole_bottom = 0x0008000000000000UL;
2003 			max_phys_bits = 49;
2004 			break;
2005 		case SUN4V_CHIP_SPARC_M8:
2006 		default:
2007 			/* M8 and later support 54-bit virtual addresses.
2008 			 * However, restricting M8 and above VA bits to 53
2009 			 * as 4-level page table cannot support more than
2010 			 * 53 VA bits.
2011 			 */
2012 			sparc64_va_hole_top =    0xfff0000000000000UL;
2013 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2014 			max_phys_bits = 51;
2015 			break;
2016 		}
2017 	}
2018 
2019 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2020 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2021 			    max_phys_bits);
2022 		prom_halt();
2023 	}
2024 
2025 	PAGE_OFFSET = sparc64_va_hole_top;
2026 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2027 		       (sparc64_va_hole_bottom >> 2));
2028 
2029 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2030 		PAGE_OFFSET, max_phys_bits);
2031 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2032 		VMALLOC_START, VMALLOC_END);
2033 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2034 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2035 }
2036 
2037 static void __init tsb_phys_patch(void)
2038 {
2039 	struct tsb_ldquad_phys_patch_entry *pquad;
2040 	struct tsb_phys_patch_entry *p;
2041 
2042 	pquad = &__tsb_ldquad_phys_patch;
2043 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2044 		unsigned long addr = pquad->addr;
2045 
2046 		if (tlb_type == hypervisor)
2047 			*(unsigned int *) addr = pquad->sun4v_insn;
2048 		else
2049 			*(unsigned int *) addr = pquad->sun4u_insn;
2050 		wmb();
2051 		__asm__ __volatile__("flush	%0"
2052 				     : /* no outputs */
2053 				     : "r" (addr));
2054 
2055 		pquad++;
2056 	}
2057 
2058 	p = &__tsb_phys_patch;
2059 	while (p < &__tsb_phys_patch_end) {
2060 		unsigned long addr = p->addr;
2061 
2062 		*(unsigned int *) addr = p->insn;
2063 		wmb();
2064 		__asm__ __volatile__("flush	%0"
2065 				     : /* no outputs */
2066 				     : "r" (addr));
2067 
2068 		p++;
2069 	}
2070 }
2071 
2072 /* Don't mark as init, we give this to the Hypervisor.  */
2073 #ifndef CONFIG_DEBUG_PAGEALLOC
2074 #define NUM_KTSB_DESCR	2
2075 #else
2076 #define NUM_KTSB_DESCR	1
2077 #endif
2078 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2079 
2080 /* The swapper TSBs are loaded with a base sequence of:
2081  *
2082  *	sethi	%uhi(SYMBOL), REG1
2083  *	sethi	%hi(SYMBOL), REG2
2084  *	or	REG1, %ulo(SYMBOL), REG1
2085  *	or	REG2, %lo(SYMBOL), REG2
2086  *	sllx	REG1, 32, REG1
2087  *	or	REG1, REG2, REG1
2088  *
2089  * When we use physical addressing for the TSB accesses, we patch the
2090  * first four instructions in the above sequence.
2091  */
2092 
2093 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2094 {
2095 	unsigned long high_bits, low_bits;
2096 
2097 	high_bits = (pa >> 32) & 0xffffffff;
2098 	low_bits = (pa >> 0) & 0xffffffff;
2099 
2100 	while (start < end) {
2101 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2102 
2103 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2104 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2105 
2106 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2107 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2108 
2109 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2110 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2111 
2112 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2113 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2114 
2115 		start++;
2116 	}
2117 }
2118 
2119 static void ktsb_phys_patch(void)
2120 {
2121 	extern unsigned int __swapper_tsb_phys_patch;
2122 	extern unsigned int __swapper_tsb_phys_patch_end;
2123 	unsigned long ktsb_pa;
2124 
2125 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2126 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2127 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2128 #ifndef CONFIG_DEBUG_PAGEALLOC
2129 	{
2130 	extern unsigned int __swapper_4m_tsb_phys_patch;
2131 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2132 	ktsb_pa = (kern_base +
2133 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2134 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2135 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2136 	}
2137 #endif
2138 }
2139 
2140 static void __init sun4v_ktsb_init(void)
2141 {
2142 	unsigned long ktsb_pa;
2143 
2144 	/* First KTSB for PAGE_SIZE mappings.  */
2145 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2146 
2147 	switch (PAGE_SIZE) {
2148 	case 8 * 1024:
2149 	default:
2150 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2151 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2152 		break;
2153 
2154 	case 64 * 1024:
2155 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2156 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2157 		break;
2158 
2159 	case 512 * 1024:
2160 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2161 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2162 		break;
2163 
2164 	case 4 * 1024 * 1024:
2165 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2166 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2167 		break;
2168 	}
2169 
2170 	ktsb_descr[0].assoc = 1;
2171 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2172 	ktsb_descr[0].ctx_idx = 0;
2173 	ktsb_descr[0].tsb_base = ktsb_pa;
2174 	ktsb_descr[0].resv = 0;
2175 
2176 #ifndef CONFIG_DEBUG_PAGEALLOC
2177 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2178 	ktsb_pa = (kern_base +
2179 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2180 
2181 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2182 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2183 				    HV_PGSZ_MASK_256MB |
2184 				    HV_PGSZ_MASK_2GB |
2185 				    HV_PGSZ_MASK_16GB) &
2186 				   cpu_pgsz_mask);
2187 	ktsb_descr[1].assoc = 1;
2188 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2189 	ktsb_descr[1].ctx_idx = 0;
2190 	ktsb_descr[1].tsb_base = ktsb_pa;
2191 	ktsb_descr[1].resv = 0;
2192 #endif
2193 }
2194 
2195 void sun4v_ktsb_register(void)
2196 {
2197 	unsigned long pa, ret;
2198 
2199 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2200 
2201 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2202 	if (ret != 0) {
2203 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2204 			    "errors with %lx\n", pa, ret);
2205 		prom_halt();
2206 	}
2207 }
2208 
2209 static void __init sun4u_linear_pte_xor_finalize(void)
2210 {
2211 #ifndef CONFIG_DEBUG_PAGEALLOC
2212 	/* This is where we would add Panther support for
2213 	 * 32MB and 256MB pages.
2214 	 */
2215 #endif
2216 }
2217 
2218 static void __init sun4v_linear_pte_xor_finalize(void)
2219 {
2220 	unsigned long pagecv_flag;
2221 
2222 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2223 	 * enables MCD error. Do not set bit 9 on M7 processor.
2224 	 */
2225 	switch (sun4v_chip_type) {
2226 	case SUN4V_CHIP_SPARC_M7:
2227 	case SUN4V_CHIP_SPARC_M8:
2228 	case SUN4V_CHIP_SPARC_SN:
2229 		pagecv_flag = 0x00;
2230 		break;
2231 	default:
2232 		pagecv_flag = _PAGE_CV_4V;
2233 		break;
2234 	}
2235 #ifndef CONFIG_DEBUG_PAGEALLOC
2236 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2237 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2238 			PAGE_OFFSET;
2239 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2240 					   _PAGE_P_4V | _PAGE_W_4V);
2241 	} else {
2242 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2243 	}
2244 
2245 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2246 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2247 			PAGE_OFFSET;
2248 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2249 					   _PAGE_P_4V | _PAGE_W_4V);
2250 	} else {
2251 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2252 	}
2253 
2254 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2255 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2256 			PAGE_OFFSET;
2257 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2258 					   _PAGE_P_4V | _PAGE_W_4V);
2259 	} else {
2260 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2261 	}
2262 #endif
2263 }
2264 
2265 /* paging_init() sets up the page tables */
2266 
2267 static unsigned long last_valid_pfn;
2268 
2269 static void sun4u_pgprot_init(void);
2270 static void sun4v_pgprot_init(void);
2271 
2272 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2273 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2274 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2275 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2276 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2277 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2278 
2279 /* We need to exclude reserved regions. This exclusion will include
2280  * vmlinux and initrd. To be more precise the initrd size could be used to
2281  * compute a new lower limit because it is freed later during initialization.
2282  */
2283 static void __init reduce_memory(phys_addr_t limit_ram)
2284 {
2285 	limit_ram += memblock_reserved_size();
2286 	memblock_enforce_memory_limit(limit_ram);
2287 }
2288 
2289 void __init paging_init(void)
2290 {
2291 	unsigned long end_pfn, shift, phys_base;
2292 	unsigned long real_end, i;
2293 
2294 	setup_page_offset();
2295 
2296 	/* These build time checkes make sure that the dcache_dirty_cpu()
2297 	 * folio->flags usage will work.
2298 	 *
2299 	 * When a page gets marked as dcache-dirty, we store the
2300 	 * cpu number starting at bit 32 in the folio->flags.  Also,
2301 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2302 	 * in 13-bit signed-immediate instruction fields.
2303 	 */
2304 
2305 	/*
2306 	 * Page flags must not reach into upper 32 bits that are used
2307 	 * for the cpu number
2308 	 */
2309 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2310 
2311 	/*
2312 	 * The bit fields placed in the high range must not reach below
2313 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2314 	 * at the 32 bit boundary.
2315 	 */
2316 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2317 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2318 
2319 	BUILD_BUG_ON(NR_CPUS > 4096);
2320 
2321 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2322 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2323 
2324 	/* Invalidate both kernel TSBs.  */
2325 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2326 #ifndef CONFIG_DEBUG_PAGEALLOC
2327 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2328 #endif
2329 
2330 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2331 	 * bit on M7 processor. This is a conflicting usage of the same
2332 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2333 	 * Detection error on all pages and this will lead to problems
2334 	 * later. Kernel does not run with MCD enabled and hence rest
2335 	 * of the required steps to fully configure memory corruption
2336 	 * detection are not taken. We need to ensure TTE.mcde is not
2337 	 * set on M7 processor. Compute the value of cacheability
2338 	 * flag for use later taking this into consideration.
2339 	 */
2340 	switch (sun4v_chip_type) {
2341 	case SUN4V_CHIP_SPARC_M7:
2342 	case SUN4V_CHIP_SPARC_M8:
2343 	case SUN4V_CHIP_SPARC_SN:
2344 		page_cache4v_flag = _PAGE_CP_4V;
2345 		break;
2346 	default:
2347 		page_cache4v_flag = _PAGE_CACHE_4V;
2348 		break;
2349 	}
2350 
2351 	if (tlb_type == hypervisor)
2352 		sun4v_pgprot_init();
2353 	else
2354 		sun4u_pgprot_init();
2355 
2356 	if (tlb_type == cheetah_plus ||
2357 	    tlb_type == hypervisor) {
2358 		tsb_phys_patch();
2359 		ktsb_phys_patch();
2360 	}
2361 
2362 	if (tlb_type == hypervisor)
2363 		sun4v_patch_tlb_handlers();
2364 
2365 	/* Find available physical memory...
2366 	 *
2367 	 * Read it twice in order to work around a bug in openfirmware.
2368 	 * The call to grab this table itself can cause openfirmware to
2369 	 * allocate memory, which in turn can take away some space from
2370 	 * the list of available memory.  Reading it twice makes sure
2371 	 * we really do get the final value.
2372 	 */
2373 	read_obp_translations();
2374 	read_obp_memory("reg", &pall[0], &pall_ents);
2375 	read_obp_memory("available", &pavail[0], &pavail_ents);
2376 	read_obp_memory("available", &pavail[0], &pavail_ents);
2377 
2378 	phys_base = 0xffffffffffffffffUL;
2379 	for (i = 0; i < pavail_ents; i++) {
2380 		phys_base = min(phys_base, pavail[i].phys_addr);
2381 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2382 	}
2383 
2384 	memblock_reserve(kern_base, kern_size);
2385 
2386 	find_ramdisk(phys_base);
2387 
2388 	if (cmdline_memory_size)
2389 		reduce_memory(cmdline_memory_size);
2390 
2391 	memblock_allow_resize();
2392 	memblock_dump_all();
2393 
2394 	set_bit(0, mmu_context_bmap);
2395 
2396 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2397 
2398 	real_end = (unsigned long)_end;
2399 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2400 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2401 	       num_kernel_image_mappings);
2402 
2403 	/* Set kernel pgd to upper alias so physical page computations
2404 	 * work.
2405 	 */
2406 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2407 
2408 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2409 
2410 	inherit_prom_mappings();
2411 
2412 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2413 	setup_tba();
2414 
2415 	__flush_tlb_all();
2416 
2417 	prom_build_devicetree();
2418 	of_populate_present_mask();
2419 #ifndef CONFIG_SMP
2420 	of_fill_in_cpu_data();
2421 #endif
2422 
2423 	if (tlb_type == hypervisor) {
2424 		sun4v_mdesc_init();
2425 		mdesc_populate_present_mask(cpu_all_mask);
2426 #ifndef CONFIG_SMP
2427 		mdesc_fill_in_cpu_data(cpu_all_mask);
2428 #endif
2429 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2430 
2431 		sun4v_linear_pte_xor_finalize();
2432 
2433 		sun4v_ktsb_init();
2434 		sun4v_ktsb_register();
2435 	} else {
2436 		unsigned long impl, ver;
2437 
2438 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2439 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2440 
2441 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2442 		impl = ((ver >> 32) & 0xffff);
2443 		if (impl == PANTHER_IMPL)
2444 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2445 					  HV_PGSZ_MASK_256MB);
2446 
2447 		sun4u_linear_pte_xor_finalize();
2448 	}
2449 
2450 	/* Flush the TLBs and the 4M TSB so that the updated linear
2451 	 * pte XOR settings are realized for all mappings.
2452 	 */
2453 	__flush_tlb_all();
2454 #ifndef CONFIG_DEBUG_PAGEALLOC
2455 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2456 #endif
2457 	__flush_tlb_all();
2458 
2459 	/* Setup bootmem... */
2460 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2461 
2462 	kernel_physical_mapping_init();
2463 
2464 	{
2465 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2466 
2467 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2468 
2469 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2470 
2471 		free_area_init(max_zone_pfns);
2472 	}
2473 
2474 	printk("Booting Linux...\n");
2475 }
2476 
2477 int page_in_phys_avail(unsigned long paddr)
2478 {
2479 	int i;
2480 
2481 	paddr &= PAGE_MASK;
2482 
2483 	for (i = 0; i < pavail_ents; i++) {
2484 		unsigned long start, end;
2485 
2486 		start = pavail[i].phys_addr;
2487 		end = start + pavail[i].reg_size;
2488 
2489 		if (paddr >= start && paddr < end)
2490 			return 1;
2491 	}
2492 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2493 		return 1;
2494 #ifdef CONFIG_BLK_DEV_INITRD
2495 	if (paddr >= __pa(initrd_start) &&
2496 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2497 		return 1;
2498 #endif
2499 
2500 	return 0;
2501 }
2502 
2503 static void __init register_page_bootmem_info(void)
2504 {
2505 #ifdef CONFIG_NUMA
2506 	int i;
2507 
2508 	for_each_online_node(i)
2509 		if (NODE_DATA(i)->node_spanned_pages)
2510 			register_page_bootmem_info_node(NODE_DATA(i));
2511 #endif
2512 }
2513 void __init mem_init(void)
2514 {
2515 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2516 
2517 	memblock_free_all();
2518 
2519 	/*
2520 	 * Must be done after boot memory is put on freelist, because here we
2521 	 * might set fields in deferred struct pages that have not yet been
2522 	 * initialized, and memblock_free_all() initializes all the reserved
2523 	 * deferred pages for us.
2524 	 */
2525 	register_page_bootmem_info();
2526 
2527 	/*
2528 	 * Set up the zero page, mark it reserved, so that page count
2529 	 * is not manipulated when freeing the page from user ptes.
2530 	 */
2531 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2532 	if (mem_map_zero == NULL) {
2533 		prom_printf("paging_init: Cannot alloc zero page.\n");
2534 		prom_halt();
2535 	}
2536 	mark_page_reserved(mem_map_zero);
2537 
2538 
2539 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2540 		cheetah_ecache_flush_init();
2541 }
2542 
2543 void free_initmem(void)
2544 {
2545 	unsigned long addr, initend;
2546 	int do_free = 1;
2547 
2548 	/* If the physical memory maps were trimmed by kernel command
2549 	 * line options, don't even try freeing this initmem stuff up.
2550 	 * The kernel image could have been in the trimmed out region
2551 	 * and if so the freeing below will free invalid page structs.
2552 	 */
2553 	if (cmdline_memory_size)
2554 		do_free = 0;
2555 
2556 	/*
2557 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2558 	 */
2559 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2560 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2561 	for (; addr < initend; addr += PAGE_SIZE) {
2562 		unsigned long page;
2563 
2564 		page = (addr +
2565 			((unsigned long) __va(kern_base)) -
2566 			((unsigned long) KERNBASE));
2567 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2568 
2569 		if (do_free)
2570 			free_reserved_page(virt_to_page(page));
2571 	}
2572 }
2573 
2574 pgprot_t PAGE_KERNEL __read_mostly;
2575 EXPORT_SYMBOL(PAGE_KERNEL);
2576 
2577 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2578 pgprot_t PAGE_COPY __read_mostly;
2579 
2580 pgprot_t PAGE_SHARED __read_mostly;
2581 EXPORT_SYMBOL(PAGE_SHARED);
2582 
2583 unsigned long pg_iobits __read_mostly;
2584 
2585 unsigned long _PAGE_IE __read_mostly;
2586 EXPORT_SYMBOL(_PAGE_IE);
2587 
2588 unsigned long _PAGE_E __read_mostly;
2589 EXPORT_SYMBOL(_PAGE_E);
2590 
2591 unsigned long _PAGE_CACHE __read_mostly;
2592 EXPORT_SYMBOL(_PAGE_CACHE);
2593 
2594 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2595 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2596 			       int node, struct vmem_altmap *altmap)
2597 {
2598 	unsigned long pte_base;
2599 
2600 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2601 		    _PAGE_CP_4U | _PAGE_CV_4U |
2602 		    _PAGE_P_4U | _PAGE_W_4U);
2603 	if (tlb_type == hypervisor)
2604 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2605 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2606 
2607 	pte_base |= _PAGE_PMD_HUGE;
2608 
2609 	vstart = vstart & PMD_MASK;
2610 	vend = ALIGN(vend, PMD_SIZE);
2611 	for (; vstart < vend; vstart += PMD_SIZE) {
2612 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2613 		unsigned long pte;
2614 		p4d_t *p4d;
2615 		pud_t *pud;
2616 		pmd_t *pmd;
2617 
2618 		if (!pgd)
2619 			return -ENOMEM;
2620 
2621 		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2622 		if (!p4d)
2623 			return -ENOMEM;
2624 
2625 		pud = vmemmap_pud_populate(p4d, vstart, node);
2626 		if (!pud)
2627 			return -ENOMEM;
2628 
2629 		pmd = pmd_offset(pud, vstart);
2630 		pte = pmd_val(*pmd);
2631 		if (!(pte & _PAGE_VALID)) {
2632 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2633 
2634 			if (!block)
2635 				return -ENOMEM;
2636 
2637 			pmd_val(*pmd) = pte_base | __pa(block);
2638 		}
2639 	}
2640 
2641 	return 0;
2642 }
2643 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2644 
2645 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2646 static pgprot_t protection_map[16] __ro_after_init;
2647 
2648 static void prot_init_common(unsigned long page_none,
2649 			     unsigned long page_shared,
2650 			     unsigned long page_copy,
2651 			     unsigned long page_readonly,
2652 			     unsigned long page_exec_bit)
2653 {
2654 	PAGE_COPY = __pgprot(page_copy);
2655 	PAGE_SHARED = __pgprot(page_shared);
2656 
2657 	protection_map[0x0] = __pgprot(page_none);
2658 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2659 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2660 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2661 	protection_map[0x4] = __pgprot(page_readonly);
2662 	protection_map[0x5] = __pgprot(page_readonly);
2663 	protection_map[0x6] = __pgprot(page_copy);
2664 	protection_map[0x7] = __pgprot(page_copy);
2665 	protection_map[0x8] = __pgprot(page_none);
2666 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2667 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2668 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2669 	protection_map[0xc] = __pgprot(page_readonly);
2670 	protection_map[0xd] = __pgprot(page_readonly);
2671 	protection_map[0xe] = __pgprot(page_shared);
2672 	protection_map[0xf] = __pgprot(page_shared);
2673 }
2674 
2675 static void __init sun4u_pgprot_init(void)
2676 {
2677 	unsigned long page_none, page_shared, page_copy, page_readonly;
2678 	unsigned long page_exec_bit;
2679 	int i;
2680 
2681 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2682 				_PAGE_CACHE_4U | _PAGE_P_4U |
2683 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2684 				_PAGE_EXEC_4U);
2685 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2686 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2687 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2688 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2689 
2690 	_PAGE_IE = _PAGE_IE_4U;
2691 	_PAGE_E = _PAGE_E_4U;
2692 	_PAGE_CACHE = _PAGE_CACHE_4U;
2693 
2694 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2695 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2696 
2697 #ifdef CONFIG_DEBUG_PAGEALLOC
2698 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2699 #else
2700 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2701 		PAGE_OFFSET;
2702 #endif
2703 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2704 				   _PAGE_P_4U | _PAGE_W_4U);
2705 
2706 	for (i = 1; i < 4; i++)
2707 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2708 
2709 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2710 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2711 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2712 
2713 
2714 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2715 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2716 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2717 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2718 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2719 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2720 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2721 
2722 	page_exec_bit = _PAGE_EXEC_4U;
2723 
2724 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2725 			 page_exec_bit);
2726 }
2727 
2728 static void __init sun4v_pgprot_init(void)
2729 {
2730 	unsigned long page_none, page_shared, page_copy, page_readonly;
2731 	unsigned long page_exec_bit;
2732 	int i;
2733 
2734 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2735 				page_cache4v_flag | _PAGE_P_4V |
2736 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2737 				_PAGE_EXEC_4V);
2738 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2739 
2740 	_PAGE_IE = _PAGE_IE_4V;
2741 	_PAGE_E = _PAGE_E_4V;
2742 	_PAGE_CACHE = page_cache4v_flag;
2743 
2744 #ifdef CONFIG_DEBUG_PAGEALLOC
2745 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2746 #else
2747 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2748 		PAGE_OFFSET;
2749 #endif
2750 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2751 				   _PAGE_W_4V);
2752 
2753 	for (i = 1; i < 4; i++)
2754 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2755 
2756 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2757 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2758 
2759 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2760 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2761 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2762 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2763 
2764 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2765 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2766 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2767 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2768 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2769 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2770 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2771 
2772 	page_exec_bit = _PAGE_EXEC_4V;
2773 
2774 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2775 			 page_exec_bit);
2776 }
2777 
2778 unsigned long pte_sz_bits(unsigned long sz)
2779 {
2780 	if (tlb_type == hypervisor) {
2781 		switch (sz) {
2782 		case 8 * 1024:
2783 		default:
2784 			return _PAGE_SZ8K_4V;
2785 		case 64 * 1024:
2786 			return _PAGE_SZ64K_4V;
2787 		case 512 * 1024:
2788 			return _PAGE_SZ512K_4V;
2789 		case 4 * 1024 * 1024:
2790 			return _PAGE_SZ4MB_4V;
2791 		}
2792 	} else {
2793 		switch (sz) {
2794 		case 8 * 1024:
2795 		default:
2796 			return _PAGE_SZ8K_4U;
2797 		case 64 * 1024:
2798 			return _PAGE_SZ64K_4U;
2799 		case 512 * 1024:
2800 			return _PAGE_SZ512K_4U;
2801 		case 4 * 1024 * 1024:
2802 			return _PAGE_SZ4MB_4U;
2803 		}
2804 	}
2805 }
2806 
2807 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2808 {
2809 	pte_t pte;
2810 
2811 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2812 	pte_val(pte) |= (((unsigned long)space) << 32);
2813 	pte_val(pte) |= pte_sz_bits(page_size);
2814 
2815 	return pte;
2816 }
2817 
2818 static unsigned long kern_large_tte(unsigned long paddr)
2819 {
2820 	unsigned long val;
2821 
2822 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2823 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2824 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2825 	if (tlb_type == hypervisor)
2826 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2827 		       page_cache4v_flag | _PAGE_P_4V |
2828 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2829 
2830 	return val | paddr;
2831 }
2832 
2833 /* If not locked, zap it. */
2834 void __flush_tlb_all(void)
2835 {
2836 	unsigned long pstate;
2837 	int i;
2838 
2839 	__asm__ __volatile__("flushw\n\t"
2840 			     "rdpr	%%pstate, %0\n\t"
2841 			     "wrpr	%0, %1, %%pstate"
2842 			     : "=r" (pstate)
2843 			     : "i" (PSTATE_IE));
2844 	if (tlb_type == hypervisor) {
2845 		sun4v_mmu_demap_all();
2846 	} else if (tlb_type == spitfire) {
2847 		for (i = 0; i < 64; i++) {
2848 			/* Spitfire Errata #32 workaround */
2849 			/* NOTE: Always runs on spitfire, so no
2850 			 *       cheetah+ page size encodings.
2851 			 */
2852 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2853 					     "flush	%%g6"
2854 					     : /* No outputs */
2855 					     : "r" (0),
2856 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2857 
2858 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2859 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2860 						     "membar #Sync"
2861 						     : /* no outputs */
2862 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2863 				spitfire_put_dtlb_data(i, 0x0UL);
2864 			}
2865 
2866 			/* Spitfire Errata #32 workaround */
2867 			/* NOTE: Always runs on spitfire, so no
2868 			 *       cheetah+ page size encodings.
2869 			 */
2870 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2871 					     "flush	%%g6"
2872 					     : /* No outputs */
2873 					     : "r" (0),
2874 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2875 
2876 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2877 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2878 						     "membar #Sync"
2879 						     : /* no outputs */
2880 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2881 				spitfire_put_itlb_data(i, 0x0UL);
2882 			}
2883 		}
2884 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2885 		cheetah_flush_dtlb_all();
2886 		cheetah_flush_itlb_all();
2887 	}
2888 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2889 			     : : "r" (pstate));
2890 }
2891 
2892 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2893 {
2894 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2895 	pte_t *pte = NULL;
2896 
2897 	if (page)
2898 		pte = (pte_t *) page_address(page);
2899 
2900 	return pte;
2901 }
2902 
2903 pgtable_t pte_alloc_one(struct mm_struct *mm)
2904 {
2905 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0);
2906 
2907 	if (!ptdesc)
2908 		return NULL;
2909 	if (!pagetable_pte_ctor(ptdesc)) {
2910 		pagetable_free(ptdesc);
2911 		return NULL;
2912 	}
2913 	return ptdesc_address(ptdesc);
2914 }
2915 
2916 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2917 {
2918 	free_page((unsigned long)pte);
2919 }
2920 
2921 static void __pte_free(pgtable_t pte)
2922 {
2923 	struct ptdesc *ptdesc = virt_to_ptdesc(pte);
2924 
2925 	pagetable_pte_dtor(ptdesc);
2926 	pagetable_free(ptdesc);
2927 }
2928 
2929 void pte_free(struct mm_struct *mm, pgtable_t pte)
2930 {
2931 	__pte_free(pte);
2932 }
2933 
2934 void pgtable_free(void *table, bool is_page)
2935 {
2936 	if (is_page)
2937 		__pte_free(table);
2938 	else
2939 		kmem_cache_free(pgtable_cache, table);
2940 }
2941 
2942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2943 static void pte_free_now(struct rcu_head *head)
2944 {
2945 	struct page *page;
2946 
2947 	page = container_of(head, struct page, rcu_head);
2948 	__pte_free((pgtable_t)page_address(page));
2949 }
2950 
2951 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
2952 {
2953 	struct page *page;
2954 
2955 	page = virt_to_page(pgtable);
2956 	call_rcu(&page->rcu_head, pte_free_now);
2957 }
2958 
2959 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2960 			  pmd_t *pmd)
2961 {
2962 	unsigned long pte, flags;
2963 	struct mm_struct *mm;
2964 	pmd_t entry = *pmd;
2965 
2966 	if (!pmd_leaf(entry) || !pmd_young(entry))
2967 		return;
2968 
2969 	pte = pmd_val(entry);
2970 
2971 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2972 	if (!(pte & _PAGE_VALID))
2973 		return;
2974 
2975 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2976 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2977 
2978 	mm = vma->vm_mm;
2979 
2980 	spin_lock_irqsave(&mm->context.lock, flags);
2981 
2982 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2983 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2984 					addr, pte);
2985 
2986 	spin_unlock_irqrestore(&mm->context.lock, flags);
2987 }
2988 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2989 
2990 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2991 static void context_reload(void *__data)
2992 {
2993 	struct mm_struct *mm = __data;
2994 
2995 	if (mm == current->mm)
2996 		load_secondary_context(mm);
2997 }
2998 
2999 void hugetlb_setup(struct pt_regs *regs)
3000 {
3001 	struct mm_struct *mm = current->mm;
3002 	struct tsb_config *tp;
3003 
3004 	if (faulthandler_disabled() || !mm) {
3005 		const struct exception_table_entry *entry;
3006 
3007 		entry = search_exception_tables(regs->tpc);
3008 		if (entry) {
3009 			regs->tpc = entry->fixup;
3010 			regs->tnpc = regs->tpc + 4;
3011 			return;
3012 		}
3013 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3014 		die_if_kernel("HugeTSB in atomic", regs);
3015 	}
3016 
3017 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3018 	if (likely(tp->tsb == NULL))
3019 		tsb_grow(mm, MM_TSB_HUGE, 0);
3020 
3021 	tsb_context_switch(mm);
3022 	smp_tsb_sync(mm);
3023 
3024 	/* On UltraSPARC-III+ and later, configure the second half of
3025 	 * the Data-TLB for huge pages.
3026 	 */
3027 	if (tlb_type == cheetah_plus) {
3028 		bool need_context_reload = false;
3029 		unsigned long ctx;
3030 
3031 		spin_lock_irq(&ctx_alloc_lock);
3032 		ctx = mm->context.sparc64_ctx_val;
3033 		ctx &= ~CTX_PGSZ_MASK;
3034 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3035 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3036 
3037 		if (ctx != mm->context.sparc64_ctx_val) {
3038 			/* When changing the page size fields, we
3039 			 * must perform a context flush so that no
3040 			 * stale entries match.  This flush must
3041 			 * occur with the original context register
3042 			 * settings.
3043 			 */
3044 			do_flush_tlb_mm(mm);
3045 
3046 			/* Reload the context register of all processors
3047 			 * also executing in this address space.
3048 			 */
3049 			mm->context.sparc64_ctx_val = ctx;
3050 			need_context_reload = true;
3051 		}
3052 		spin_unlock_irq(&ctx_alloc_lock);
3053 
3054 		if (need_context_reload)
3055 			on_each_cpu(context_reload, mm, 0);
3056 	}
3057 }
3058 #endif
3059 
3060 static struct resource code_resource = {
3061 	.name	= "Kernel code",
3062 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3063 };
3064 
3065 static struct resource data_resource = {
3066 	.name	= "Kernel data",
3067 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3068 };
3069 
3070 static struct resource bss_resource = {
3071 	.name	= "Kernel bss",
3072 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3073 };
3074 
3075 static inline resource_size_t compute_kern_paddr(void *addr)
3076 {
3077 	return (resource_size_t) (addr - KERNBASE + kern_base);
3078 }
3079 
3080 static void __init kernel_lds_init(void)
3081 {
3082 	code_resource.start = compute_kern_paddr(_text);
3083 	code_resource.end   = compute_kern_paddr(_etext - 1);
3084 	data_resource.start = compute_kern_paddr(_etext);
3085 	data_resource.end   = compute_kern_paddr(_edata - 1);
3086 	bss_resource.start  = compute_kern_paddr(__bss_start);
3087 	bss_resource.end    = compute_kern_paddr(_end - 1);
3088 }
3089 
3090 static int __init report_memory(void)
3091 {
3092 	int i;
3093 	struct resource *res;
3094 
3095 	kernel_lds_init();
3096 
3097 	for (i = 0; i < pavail_ents; i++) {
3098 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3099 
3100 		if (!res) {
3101 			pr_warn("Failed to allocate source.\n");
3102 			break;
3103 		}
3104 
3105 		res->name = "System RAM";
3106 		res->start = pavail[i].phys_addr;
3107 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3108 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3109 
3110 		if (insert_resource(&iomem_resource, res) < 0) {
3111 			pr_warn("Resource insertion failed.\n");
3112 			break;
3113 		}
3114 
3115 		insert_resource(res, &code_resource);
3116 		insert_resource(res, &data_resource);
3117 		insert_resource(res, &bss_resource);
3118 	}
3119 
3120 	return 0;
3121 }
3122 arch_initcall(report_memory);
3123 
3124 #ifdef CONFIG_SMP
3125 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3126 #else
3127 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3128 #endif
3129 
3130 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3131 {
3132 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3133 		if (start < LOW_OBP_ADDRESS) {
3134 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3135 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3136 		}
3137 		if (end > HI_OBP_ADDRESS) {
3138 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3139 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3140 		}
3141 	} else {
3142 		flush_tsb_kernel_range(start, end);
3143 		do_flush_tlb_kernel_range(start, end);
3144 	}
3145 }
3146 
3147 void copy_user_highpage(struct page *to, struct page *from,
3148 	unsigned long vaddr, struct vm_area_struct *vma)
3149 {
3150 	char *vfrom, *vto;
3151 
3152 	vfrom = kmap_atomic(from);
3153 	vto = kmap_atomic(to);
3154 	copy_user_page(vto, vfrom, vaddr, to);
3155 	kunmap_atomic(vto);
3156 	kunmap_atomic(vfrom);
3157 
3158 	/* If this page has ADI enabled, copy over any ADI tags
3159 	 * as well
3160 	 */
3161 	if (vma->vm_flags & VM_SPARC_ADI) {
3162 		unsigned long pfrom, pto, i, adi_tag;
3163 
3164 		pfrom = page_to_phys(from);
3165 		pto = page_to_phys(to);
3166 
3167 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3168 			asm volatile("ldxa [%1] %2, %0\n\t"
3169 					: "=r" (adi_tag)
3170 					:  "r" (i), "i" (ASI_MCD_REAL));
3171 			asm volatile("stxa %0, [%1] %2\n\t"
3172 					:
3173 					: "r" (adi_tag), "r" (pto),
3174 					  "i" (ASI_MCD_REAL));
3175 			pto += adi_blksize();
3176 		}
3177 		asm volatile("membar #Sync\n\t");
3178 	}
3179 }
3180 EXPORT_SYMBOL(copy_user_highpage);
3181 
3182 void copy_highpage(struct page *to, struct page *from)
3183 {
3184 	char *vfrom, *vto;
3185 
3186 	vfrom = kmap_atomic(from);
3187 	vto = kmap_atomic(to);
3188 	copy_page(vto, vfrom);
3189 	kunmap_atomic(vto);
3190 	kunmap_atomic(vfrom);
3191 
3192 	/* If this platform is ADI enabled, copy any ADI tags
3193 	 * as well
3194 	 */
3195 	if (adi_capable()) {
3196 		unsigned long pfrom, pto, i, adi_tag;
3197 
3198 		pfrom = page_to_phys(from);
3199 		pto = page_to_phys(to);
3200 
3201 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3202 			asm volatile("ldxa [%1] %2, %0\n\t"
3203 					: "=r" (adi_tag)
3204 					:  "r" (i), "i" (ASI_MCD_REAL));
3205 			asm volatile("stxa %0, [%1] %2\n\t"
3206 					:
3207 					: "r" (adi_tag), "r" (pto),
3208 					  "i" (ASI_MCD_REAL));
3209 			pto += adi_blksize();
3210 		}
3211 		asm volatile("membar #Sync\n\t");
3212 	}
3213 }
3214 EXPORT_SYMBOL(copy_highpage);
3215 
3216 pgprot_t vm_get_page_prot(unsigned long vm_flags)
3217 {
3218 	unsigned long prot = pgprot_val(protection_map[vm_flags &
3219 					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3220 
3221 	if (vm_flags & VM_SPARC_ADI)
3222 		prot |= _PAGE_MCD_4V;
3223 
3224 	return __pgprot(prot);
3225 }
3226 EXPORT_SYMBOL(vm_get_page_prot);
3227