xref: /linux/arch/sparc/mm/fault_64.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
3  *
4  * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
24 #include <linux/context_tracking.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/openprom.h>
29 #include <asm/oplib.h>
30 #include <asm/uaccess.h>
31 #include <asm/asi.h>
32 #include <asm/lsu.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 #include <asm/setup.h>
36 
37 int show_unhandled_signals = 1;
38 
39 static inline __kprobes int notify_page_fault(struct pt_regs *regs)
40 {
41 	int ret = 0;
42 
43 	/* kprobe_running() needs smp_processor_id() */
44 	if (kprobes_built_in() && !user_mode(regs)) {
45 		preempt_disable();
46 		if (kprobe_running() && kprobe_fault_handler(regs, 0))
47 			ret = 1;
48 		preempt_enable();
49 	}
50 	return ret;
51 }
52 
53 static void __kprobes unhandled_fault(unsigned long address,
54 				      struct task_struct *tsk,
55 				      struct pt_regs *regs)
56 {
57 	if ((unsigned long) address < PAGE_SIZE) {
58 		printk(KERN_ALERT "Unable to handle kernel NULL "
59 		       "pointer dereference\n");
60 	} else {
61 		printk(KERN_ALERT "Unable to handle kernel paging request "
62 		       "at virtual address %016lx\n", (unsigned long)address);
63 	}
64 	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
65 	       (tsk->mm ?
66 		CTX_HWBITS(tsk->mm->context) :
67 		CTX_HWBITS(tsk->active_mm->context)));
68 	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
69 	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
70 		          (unsigned long) tsk->active_mm->pgd));
71 	die_if_kernel("Oops", regs);
72 }
73 
74 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
75 {
76 	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
77 	       regs->tpc);
78 	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
79 	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
80 	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
81 	dump_stack();
82 	unhandled_fault(regs->tpc, current, regs);
83 }
84 
85 /*
86  * We now make sure that mmap_sem is held in all paths that call
87  * this. Additionally, to prevent kswapd from ripping ptes from
88  * under us, raise interrupts around the time that we look at the
89  * pte, kswapd will have to wait to get his smp ipi response from
90  * us. vmtruncate likewise. This saves us having to get pte lock.
91  */
92 static unsigned int get_user_insn(unsigned long tpc)
93 {
94 	pgd_t *pgdp = pgd_offset(current->mm, tpc);
95 	pud_t *pudp;
96 	pmd_t *pmdp;
97 	pte_t *ptep, pte;
98 	unsigned long pa;
99 	u32 insn = 0;
100 
101 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
102 		goto out;
103 	pudp = pud_offset(pgdp, tpc);
104 	if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
105 		goto out;
106 
107 	/* This disables preemption for us as well. */
108 	local_irq_disable();
109 
110 	pmdp = pmd_offset(pudp, tpc);
111 	if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
112 		goto out_irq_enable;
113 
114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
115 	if (pmd_trans_huge(*pmdp)) {
116 		if (pmd_trans_splitting(*pmdp))
117 			goto out_irq_enable;
118 
119 		pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
120 		pa += tpc & ~HPAGE_MASK;
121 
122 		/* Use phys bypass so we don't pollute dtlb/dcache. */
123 		__asm__ __volatile__("lduwa [%1] %2, %0"
124 				     : "=r" (insn)
125 				     : "r" (pa), "i" (ASI_PHYS_USE_EC));
126 	} else
127 #endif
128 	{
129 		ptep = pte_offset_map(pmdp, tpc);
130 		pte = *ptep;
131 		if (pte_present(pte)) {
132 			pa  = (pte_pfn(pte) << PAGE_SHIFT);
133 			pa += (tpc & ~PAGE_MASK);
134 
135 			/* Use phys bypass so we don't pollute dtlb/dcache. */
136 			__asm__ __volatile__("lduwa [%1] %2, %0"
137 					     : "=r" (insn)
138 					     : "r" (pa), "i" (ASI_PHYS_USE_EC));
139 		}
140 		pte_unmap(ptep);
141 	}
142 out_irq_enable:
143 	local_irq_enable();
144 out:
145 	return insn;
146 }
147 
148 static inline void
149 show_signal_msg(struct pt_regs *regs, int sig, int code,
150 		unsigned long address, struct task_struct *tsk)
151 {
152 	if (!unhandled_signal(tsk, sig))
153 		return;
154 
155 	if (!printk_ratelimit())
156 		return;
157 
158 	printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
159 	       task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
160 	       tsk->comm, task_pid_nr(tsk), address,
161 	       (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
162 	       (void *)regs->u_regs[UREG_FP], code);
163 
164 	print_vma_addr(KERN_CONT " in ", regs->tpc);
165 
166 	printk(KERN_CONT "\n");
167 }
168 
169 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
170 			     unsigned long fault_addr, unsigned int insn,
171 			     int fault_code)
172 {
173 	unsigned long addr;
174 	siginfo_t info;
175 
176 	info.si_code = code;
177 	info.si_signo = sig;
178 	info.si_errno = 0;
179 	if (fault_code & FAULT_CODE_ITLB) {
180 		addr = regs->tpc;
181 	} else {
182 		/* If we were able to probe the faulting instruction, use it
183 		 * to compute a precise fault address.  Otherwise use the fault
184 		 * time provided address which may only have page granularity.
185 		 */
186 		if (insn)
187 			addr = compute_effective_address(regs, insn, 0);
188 		else
189 			addr = fault_addr;
190 	}
191 	info.si_addr = (void __user *) addr;
192 	info.si_trapno = 0;
193 
194 	if (unlikely(show_unhandled_signals))
195 		show_signal_msg(regs, sig, code, addr, current);
196 
197 	force_sig_info(sig, &info, current);
198 }
199 
200 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
201 {
202 	if (!insn) {
203 		if (!regs->tpc || (regs->tpc & 0x3))
204 			return 0;
205 		if (regs->tstate & TSTATE_PRIV) {
206 			insn = *(unsigned int *) regs->tpc;
207 		} else {
208 			insn = get_user_insn(regs->tpc);
209 		}
210 	}
211 	return insn;
212 }
213 
214 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
215 				      int fault_code, unsigned int insn,
216 				      unsigned long address)
217 {
218 	unsigned char asi = ASI_P;
219 
220 	if ((!insn) && (regs->tstate & TSTATE_PRIV))
221 		goto cannot_handle;
222 
223 	/* If user insn could be read (thus insn is zero), that
224 	 * is fine.  We will just gun down the process with a signal
225 	 * in that case.
226 	 */
227 
228 	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
229 	    (insn & 0xc0800000) == 0xc0800000) {
230 		if (insn & 0x2000)
231 			asi = (regs->tstate >> 24);
232 		else
233 			asi = (insn >> 5);
234 		if ((asi & 0xf2) == 0x82) {
235 			if (insn & 0x1000000) {
236 				handle_ldf_stq(insn, regs);
237 			} else {
238 				/* This was a non-faulting load. Just clear the
239 				 * destination register(s) and continue with the next
240 				 * instruction. -jj
241 				 */
242 				handle_ld_nf(insn, regs);
243 			}
244 			return;
245 		}
246 	}
247 
248 	/* Is this in ex_table? */
249 	if (regs->tstate & TSTATE_PRIV) {
250 		const struct exception_table_entry *entry;
251 
252 		entry = search_exception_tables(regs->tpc);
253 		if (entry) {
254 			regs->tpc = entry->fixup;
255 			regs->tnpc = regs->tpc + 4;
256 			return;
257 		}
258 	} else {
259 		/* The si_code was set to make clear whether
260 		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
261 		 */
262 		do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
263 		return;
264 	}
265 
266 cannot_handle:
267 	unhandled_fault (address, current, regs);
268 }
269 
270 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
271 {
272 	static int times;
273 
274 	if (times++ < 10)
275 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
276 		       "64-bit TPC [%lx]\n",
277 		       current->comm, current->pid,
278 		       regs->tpc);
279 	show_regs(regs);
280 }
281 
282 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
283 {
284 	enum ctx_state prev_state = exception_enter();
285 	struct mm_struct *mm = current->mm;
286 	struct vm_area_struct *vma;
287 	unsigned int insn = 0;
288 	int si_code, fault_code, fault;
289 	unsigned long address, mm_rss;
290 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
291 
292 	fault_code = get_thread_fault_code();
293 
294 	if (notify_page_fault(regs))
295 		goto exit_exception;
296 
297 	si_code = SEGV_MAPERR;
298 	address = current_thread_info()->fault_address;
299 
300 	if ((fault_code & FAULT_CODE_ITLB) &&
301 	    (fault_code & FAULT_CODE_DTLB))
302 		BUG();
303 
304 	if (test_thread_flag(TIF_32BIT)) {
305 		if (!(regs->tstate & TSTATE_PRIV)) {
306 			if (unlikely((regs->tpc >> 32) != 0)) {
307 				bogus_32bit_fault_tpc(regs);
308 				goto intr_or_no_mm;
309 			}
310 		}
311 		if (unlikely((address >> 32) != 0))
312 			goto intr_or_no_mm;
313 	}
314 
315 	if (regs->tstate & TSTATE_PRIV) {
316 		unsigned long tpc = regs->tpc;
317 
318 		/* Sanity check the PC. */
319 		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
320 		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
321 			/* Valid, no problems... */
322 		} else {
323 			bad_kernel_pc(regs, address);
324 			goto exit_exception;
325 		}
326 	} else
327 		flags |= FAULT_FLAG_USER;
328 
329 	/*
330 	 * If we're in an interrupt or have no user
331 	 * context, we must not take the fault..
332 	 */
333 	if (in_atomic() || !mm)
334 		goto intr_or_no_mm;
335 
336 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
337 
338 	if (!down_read_trylock(&mm->mmap_sem)) {
339 		if ((regs->tstate & TSTATE_PRIV) &&
340 		    !search_exception_tables(regs->tpc)) {
341 			insn = get_fault_insn(regs, insn);
342 			goto handle_kernel_fault;
343 		}
344 
345 retry:
346 		down_read(&mm->mmap_sem);
347 	}
348 
349 	if (fault_code & FAULT_CODE_BAD_RA)
350 		goto do_sigbus;
351 
352 	vma = find_vma(mm, address);
353 	if (!vma)
354 		goto bad_area;
355 
356 	/* Pure DTLB misses do not tell us whether the fault causing
357 	 * load/store/atomic was a write or not, it only says that there
358 	 * was no match.  So in such a case we (carefully) read the
359 	 * instruction to try and figure this out.  It's an optimization
360 	 * so it's ok if we can't do this.
361 	 *
362 	 * Special hack, window spill/fill knows the exact fault type.
363 	 */
364 	if (((fault_code &
365 	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
366 	    (vma->vm_flags & VM_WRITE) != 0) {
367 		insn = get_fault_insn(regs, 0);
368 		if (!insn)
369 			goto continue_fault;
370 		/* All loads, stores and atomics have bits 30 and 31 both set
371 		 * in the instruction.  Bit 21 is set in all stores, but we
372 		 * have to avoid prefetches which also have bit 21 set.
373 		 */
374 		if ((insn & 0xc0200000) == 0xc0200000 &&
375 		    (insn & 0x01780000) != 0x01680000) {
376 			/* Don't bother updating thread struct value,
377 			 * because update_mmu_cache only cares which tlb
378 			 * the access came from.
379 			 */
380 			fault_code |= FAULT_CODE_WRITE;
381 		}
382 	}
383 continue_fault:
384 
385 	if (vma->vm_start <= address)
386 		goto good_area;
387 	if (!(vma->vm_flags & VM_GROWSDOWN))
388 		goto bad_area;
389 	if (!(fault_code & FAULT_CODE_WRITE)) {
390 		/* Non-faulting loads shouldn't expand stack. */
391 		insn = get_fault_insn(regs, insn);
392 		if ((insn & 0xc0800000) == 0xc0800000) {
393 			unsigned char asi;
394 
395 			if (insn & 0x2000)
396 				asi = (regs->tstate >> 24);
397 			else
398 				asi = (insn >> 5);
399 			if ((asi & 0xf2) == 0x82)
400 				goto bad_area;
401 		}
402 	}
403 	if (expand_stack(vma, address))
404 		goto bad_area;
405 	/*
406 	 * Ok, we have a good vm_area for this memory access, so
407 	 * we can handle it..
408 	 */
409 good_area:
410 	si_code = SEGV_ACCERR;
411 
412 	/* If we took a ITLB miss on a non-executable page, catch
413 	 * that here.
414 	 */
415 	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
416 		BUG_ON(address != regs->tpc);
417 		BUG_ON(regs->tstate & TSTATE_PRIV);
418 		goto bad_area;
419 	}
420 
421 	if (fault_code & FAULT_CODE_WRITE) {
422 		if (!(vma->vm_flags & VM_WRITE))
423 			goto bad_area;
424 
425 		/* Spitfire has an icache which does not snoop
426 		 * processor stores.  Later processors do...
427 		 */
428 		if (tlb_type == spitfire &&
429 		    (vma->vm_flags & VM_EXEC) != 0 &&
430 		    vma->vm_file != NULL)
431 			set_thread_fault_code(fault_code |
432 					      FAULT_CODE_BLKCOMMIT);
433 
434 		flags |= FAULT_FLAG_WRITE;
435 	} else {
436 		/* Allow reads even for write-only mappings */
437 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
438 			goto bad_area;
439 	}
440 
441 	fault = handle_mm_fault(mm, vma, address, flags);
442 
443 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
444 		goto exit_exception;
445 
446 	if (unlikely(fault & VM_FAULT_ERROR)) {
447 		if (fault & VM_FAULT_OOM)
448 			goto out_of_memory;
449 		else if (fault & VM_FAULT_SIGSEGV)
450 			goto bad_area;
451 		else if (fault & VM_FAULT_SIGBUS)
452 			goto do_sigbus;
453 		BUG();
454 	}
455 
456 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
457 		if (fault & VM_FAULT_MAJOR) {
458 			current->maj_flt++;
459 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
460 				      1, regs, address);
461 		} else {
462 			current->min_flt++;
463 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
464 				      1, regs, address);
465 		}
466 		if (fault & VM_FAULT_RETRY) {
467 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
468 			flags |= FAULT_FLAG_TRIED;
469 
470 			/* No need to up_read(&mm->mmap_sem) as we would
471 			 * have already released it in __lock_page_or_retry
472 			 * in mm/filemap.c.
473 			 */
474 
475 			goto retry;
476 		}
477 	}
478 	up_read(&mm->mmap_sem);
479 
480 	mm_rss = get_mm_rss(mm);
481 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
482 	mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
483 #endif
484 	if (unlikely(mm_rss >
485 		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
486 		tsb_grow(mm, MM_TSB_BASE, mm_rss);
487 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
488 	mm_rss = mm->context.huge_pte_count;
489 	if (unlikely(mm_rss >
490 		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
491 		if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
492 			tsb_grow(mm, MM_TSB_HUGE, mm_rss);
493 		else
494 			hugetlb_setup(regs);
495 
496 	}
497 #endif
498 exit_exception:
499 	exception_exit(prev_state);
500 	return;
501 
502 	/*
503 	 * Something tried to access memory that isn't in our memory map..
504 	 * Fix it, but check if it's kernel or user first..
505 	 */
506 bad_area:
507 	insn = get_fault_insn(regs, insn);
508 	up_read(&mm->mmap_sem);
509 
510 handle_kernel_fault:
511 	do_kernel_fault(regs, si_code, fault_code, insn, address);
512 	goto exit_exception;
513 
514 /*
515  * We ran out of memory, or some other thing happened to us that made
516  * us unable to handle the page fault gracefully.
517  */
518 out_of_memory:
519 	insn = get_fault_insn(regs, insn);
520 	up_read(&mm->mmap_sem);
521 	if (!(regs->tstate & TSTATE_PRIV)) {
522 		pagefault_out_of_memory();
523 		goto exit_exception;
524 	}
525 	goto handle_kernel_fault;
526 
527 intr_or_no_mm:
528 	insn = get_fault_insn(regs, 0);
529 	goto handle_kernel_fault;
530 
531 do_sigbus:
532 	insn = get_fault_insn(regs, insn);
533 	up_read(&mm->mmap_sem);
534 
535 	/*
536 	 * Send a sigbus, regardless of whether we were in kernel
537 	 * or user mode.
538 	 */
539 	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
540 
541 	/* Kernel mode? Handle exceptions or die */
542 	if (regs->tstate & TSTATE_PRIV)
543 		goto handle_kernel_fault;
544 }
545