1 /* 2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 3 * 4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <asm/head.h> 9 10 #include <linux/string.h> 11 #include <linux/types.h> 12 #include <linux/sched.h> 13 #include <linux/ptrace.h> 14 #include <linux/mman.h> 15 #include <linux/signal.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/kprobes.h> 21 #include <linux/kdebug.h> 22 #include <linux/percpu.h> 23 24 #include <asm/page.h> 25 #include <asm/pgtable.h> 26 #include <asm/openprom.h> 27 #include <asm/oplib.h> 28 #include <asm/uaccess.h> 29 #include <asm/asi.h> 30 #include <asm/lsu.h> 31 #include <asm/sections.h> 32 #include <asm/mmu_context.h> 33 34 #ifdef CONFIG_KPROBES 35 static inline int notify_page_fault(struct pt_regs *regs) 36 { 37 int ret = 0; 38 39 /* kprobe_running() needs smp_processor_id() */ 40 if (!user_mode(regs)) { 41 preempt_disable(); 42 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 43 ret = 1; 44 preempt_enable(); 45 } 46 return ret; 47 } 48 #else 49 static inline int notify_page_fault(struct pt_regs *regs) 50 { 51 return 0; 52 } 53 #endif 54 55 static void __kprobes unhandled_fault(unsigned long address, 56 struct task_struct *tsk, 57 struct pt_regs *regs) 58 { 59 if ((unsigned long) address < PAGE_SIZE) { 60 printk(KERN_ALERT "Unable to handle kernel NULL " 61 "pointer dereference\n"); 62 } else { 63 printk(KERN_ALERT "Unable to handle kernel paging request " 64 "at virtual address %016lx\n", (unsigned long)address); 65 } 66 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 67 (tsk->mm ? 68 CTX_HWBITS(tsk->mm->context) : 69 CTX_HWBITS(tsk->active_mm->context))); 70 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 71 (tsk->mm ? (unsigned long) tsk->mm->pgd : 72 (unsigned long) tsk->active_mm->pgd)); 73 die_if_kernel("Oops", regs); 74 } 75 76 static void bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 77 { 78 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 79 regs->tpc); 80 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 81 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 82 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 83 dump_stack(); 84 unhandled_fault(regs->tpc, current, regs); 85 } 86 87 /* 88 * We now make sure that mmap_sem is held in all paths that call 89 * this. Additionally, to prevent kswapd from ripping ptes from 90 * under us, raise interrupts around the time that we look at the 91 * pte, kswapd will have to wait to get his smp ipi response from 92 * us. vmtruncate likewise. This saves us having to get pte lock. 93 */ 94 static unsigned int get_user_insn(unsigned long tpc) 95 { 96 pgd_t *pgdp = pgd_offset(current->mm, tpc); 97 pud_t *pudp; 98 pmd_t *pmdp; 99 pte_t *ptep, pte; 100 unsigned long pa; 101 u32 insn = 0; 102 unsigned long pstate; 103 104 if (pgd_none(*pgdp)) 105 goto outret; 106 pudp = pud_offset(pgdp, tpc); 107 if (pud_none(*pudp)) 108 goto outret; 109 pmdp = pmd_offset(pudp, tpc); 110 if (pmd_none(*pmdp)) 111 goto outret; 112 113 /* This disables preemption for us as well. */ 114 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 115 __asm__ __volatile__("wrpr %0, %1, %%pstate" 116 : : "r" (pstate), "i" (PSTATE_IE)); 117 ptep = pte_offset_map(pmdp, tpc); 118 pte = *ptep; 119 if (!pte_present(pte)) 120 goto out; 121 122 pa = (pte_pfn(pte) << PAGE_SHIFT); 123 pa += (tpc & ~PAGE_MASK); 124 125 /* Use phys bypass so we don't pollute dtlb/dcache. */ 126 __asm__ __volatile__("lduwa [%1] %2, %0" 127 : "=r" (insn) 128 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 129 130 out: 131 pte_unmap(ptep); 132 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); 133 outret: 134 return insn; 135 } 136 137 extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int); 138 139 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 140 unsigned int insn, int fault_code) 141 { 142 siginfo_t info; 143 144 info.si_code = code; 145 info.si_signo = sig; 146 info.si_errno = 0; 147 if (fault_code & FAULT_CODE_ITLB) 148 info.si_addr = (void __user *) regs->tpc; 149 else 150 info.si_addr = (void __user *) 151 compute_effective_address(regs, insn, 0); 152 info.si_trapno = 0; 153 force_sig_info(sig, &info, current); 154 } 155 156 extern int handle_ldf_stq(u32, struct pt_regs *); 157 extern int handle_ld_nf(u32, struct pt_regs *); 158 159 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 160 { 161 if (!insn) { 162 if (!regs->tpc || (regs->tpc & 0x3)) 163 return 0; 164 if (regs->tstate & TSTATE_PRIV) { 165 insn = *(unsigned int *) regs->tpc; 166 } else { 167 insn = get_user_insn(regs->tpc); 168 } 169 } 170 return insn; 171 } 172 173 static void do_kernel_fault(struct pt_regs *regs, int si_code, int fault_code, 174 unsigned int insn, unsigned long address) 175 { 176 unsigned char asi = ASI_P; 177 178 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 179 goto cannot_handle; 180 181 /* If user insn could be read (thus insn is zero), that 182 * is fine. We will just gun down the process with a signal 183 * in that case. 184 */ 185 186 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 187 (insn & 0xc0800000) == 0xc0800000) { 188 if (insn & 0x2000) 189 asi = (regs->tstate >> 24); 190 else 191 asi = (insn >> 5); 192 if ((asi & 0xf2) == 0x82) { 193 if (insn & 0x1000000) { 194 handle_ldf_stq(insn, regs); 195 } else { 196 /* This was a non-faulting load. Just clear the 197 * destination register(s) and continue with the next 198 * instruction. -jj 199 */ 200 handle_ld_nf(insn, regs); 201 } 202 return; 203 } 204 } 205 206 /* Is this in ex_table? */ 207 if (regs->tstate & TSTATE_PRIV) { 208 const struct exception_table_entry *entry; 209 210 entry = search_exception_tables(regs->tpc); 211 if (entry) { 212 regs->tpc = entry->fixup; 213 regs->tnpc = regs->tpc + 4; 214 return; 215 } 216 } else { 217 /* The si_code was set to make clear whether 218 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 219 */ 220 do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code); 221 return; 222 } 223 224 cannot_handle: 225 unhandled_fault (address, current, regs); 226 } 227 228 static void noinline bogus_32bit_fault_tpc(struct pt_regs *regs) 229 { 230 static int times; 231 232 if (times++ < 10) 233 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 234 "64-bit TPC [%lx]\n", 235 current->comm, current->pid, 236 regs->tpc); 237 show_regs(regs); 238 } 239 240 static void noinline bogus_32bit_fault_address(struct pt_regs *regs, 241 unsigned long addr) 242 { 243 static int times; 244 245 if (times++ < 10) 246 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process " 247 "reports 64-bit fault address [%lx]\n", 248 current->comm, current->pid, addr); 249 show_regs(regs); 250 } 251 252 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 253 { 254 struct mm_struct *mm = current->mm; 255 struct vm_area_struct *vma; 256 unsigned int insn = 0; 257 int si_code, fault_code, fault; 258 unsigned long address, mm_rss; 259 260 fault_code = get_thread_fault_code(); 261 262 if (notify_page_fault(regs)) 263 return; 264 265 si_code = SEGV_MAPERR; 266 address = current_thread_info()->fault_address; 267 268 if ((fault_code & FAULT_CODE_ITLB) && 269 (fault_code & FAULT_CODE_DTLB)) 270 BUG(); 271 272 if (test_thread_flag(TIF_32BIT)) { 273 if (!(regs->tstate & TSTATE_PRIV)) { 274 if (unlikely((regs->tpc >> 32) != 0)) { 275 bogus_32bit_fault_tpc(regs); 276 goto intr_or_no_mm; 277 } 278 } 279 if (unlikely((address >> 32) != 0)) { 280 bogus_32bit_fault_address(regs, address); 281 goto intr_or_no_mm; 282 } 283 } 284 285 if (regs->tstate & TSTATE_PRIV) { 286 unsigned long tpc = regs->tpc; 287 288 /* Sanity check the PC. */ 289 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 290 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 291 /* Valid, no problems... */ 292 } else { 293 bad_kernel_pc(regs, address); 294 return; 295 } 296 } 297 298 /* 299 * If we're in an interrupt or have no user 300 * context, we must not take the fault.. 301 */ 302 if (in_atomic() || !mm) 303 goto intr_or_no_mm; 304 305 if (!down_read_trylock(&mm->mmap_sem)) { 306 if ((regs->tstate & TSTATE_PRIV) && 307 !search_exception_tables(regs->tpc)) { 308 insn = get_fault_insn(regs, insn); 309 goto handle_kernel_fault; 310 } 311 down_read(&mm->mmap_sem); 312 } 313 314 vma = find_vma(mm, address); 315 if (!vma) 316 goto bad_area; 317 318 /* Pure DTLB misses do not tell us whether the fault causing 319 * load/store/atomic was a write or not, it only says that there 320 * was no match. So in such a case we (carefully) read the 321 * instruction to try and figure this out. It's an optimization 322 * so it's ok if we can't do this. 323 * 324 * Special hack, window spill/fill knows the exact fault type. 325 */ 326 if (((fault_code & 327 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 328 (vma->vm_flags & VM_WRITE) != 0) { 329 insn = get_fault_insn(regs, 0); 330 if (!insn) 331 goto continue_fault; 332 /* All loads, stores and atomics have bits 30 and 31 both set 333 * in the instruction. Bit 21 is set in all stores, but we 334 * have to avoid prefetches which also have bit 21 set. 335 */ 336 if ((insn & 0xc0200000) == 0xc0200000 && 337 (insn & 0x01780000) != 0x01680000) { 338 /* Don't bother updating thread struct value, 339 * because update_mmu_cache only cares which tlb 340 * the access came from. 341 */ 342 fault_code |= FAULT_CODE_WRITE; 343 } 344 } 345 continue_fault: 346 347 if (vma->vm_start <= address) 348 goto good_area; 349 if (!(vma->vm_flags & VM_GROWSDOWN)) 350 goto bad_area; 351 if (!(fault_code & FAULT_CODE_WRITE)) { 352 /* Non-faulting loads shouldn't expand stack. */ 353 insn = get_fault_insn(regs, insn); 354 if ((insn & 0xc0800000) == 0xc0800000) { 355 unsigned char asi; 356 357 if (insn & 0x2000) 358 asi = (regs->tstate >> 24); 359 else 360 asi = (insn >> 5); 361 if ((asi & 0xf2) == 0x82) 362 goto bad_area; 363 } 364 } 365 if (expand_stack(vma, address)) 366 goto bad_area; 367 /* 368 * Ok, we have a good vm_area for this memory access, so 369 * we can handle it.. 370 */ 371 good_area: 372 si_code = SEGV_ACCERR; 373 374 /* If we took a ITLB miss on a non-executable page, catch 375 * that here. 376 */ 377 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 378 BUG_ON(address != regs->tpc); 379 BUG_ON(regs->tstate & TSTATE_PRIV); 380 goto bad_area; 381 } 382 383 if (fault_code & FAULT_CODE_WRITE) { 384 if (!(vma->vm_flags & VM_WRITE)) 385 goto bad_area; 386 387 /* Spitfire has an icache which does not snoop 388 * processor stores. Later processors do... 389 */ 390 if (tlb_type == spitfire && 391 (vma->vm_flags & VM_EXEC) != 0 && 392 vma->vm_file != NULL) 393 set_thread_fault_code(fault_code | 394 FAULT_CODE_BLKCOMMIT); 395 } else { 396 /* Allow reads even for write-only mappings */ 397 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 398 goto bad_area; 399 } 400 401 fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0); 402 if (unlikely(fault & VM_FAULT_ERROR)) { 403 if (fault & VM_FAULT_OOM) 404 goto out_of_memory; 405 else if (fault & VM_FAULT_SIGBUS) 406 goto do_sigbus; 407 BUG(); 408 } 409 if (fault & VM_FAULT_MAJOR) 410 current->maj_flt++; 411 else 412 current->min_flt++; 413 414 up_read(&mm->mmap_sem); 415 416 mm_rss = get_mm_rss(mm); 417 #ifdef CONFIG_HUGETLB_PAGE 418 mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 419 #endif 420 if (unlikely(mm_rss > 421 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 422 tsb_grow(mm, MM_TSB_BASE, mm_rss); 423 #ifdef CONFIG_HUGETLB_PAGE 424 mm_rss = mm->context.huge_pte_count; 425 if (unlikely(mm_rss > 426 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) 427 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 428 #endif 429 return; 430 431 /* 432 * Something tried to access memory that isn't in our memory map.. 433 * Fix it, but check if it's kernel or user first.. 434 */ 435 bad_area: 436 insn = get_fault_insn(regs, insn); 437 up_read(&mm->mmap_sem); 438 439 handle_kernel_fault: 440 do_kernel_fault(regs, si_code, fault_code, insn, address); 441 return; 442 443 /* 444 * We ran out of memory, or some other thing happened to us that made 445 * us unable to handle the page fault gracefully. 446 */ 447 out_of_memory: 448 insn = get_fault_insn(regs, insn); 449 up_read(&mm->mmap_sem); 450 if (!(regs->tstate & TSTATE_PRIV)) { 451 pagefault_out_of_memory(); 452 return; 453 } 454 goto handle_kernel_fault; 455 456 intr_or_no_mm: 457 insn = get_fault_insn(regs, 0); 458 goto handle_kernel_fault; 459 460 do_sigbus: 461 insn = get_fault_insn(regs, insn); 462 up_read(&mm->mmap_sem); 463 464 /* 465 * Send a sigbus, regardless of whether we were in kernel 466 * or user mode. 467 */ 468 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code); 469 470 /* Kernel mode? Handle exceptions or die */ 471 if (regs->tstate & TSTATE_PRIV) 472 goto handle_kernel_fault; 473 } 474