xref: /linux/arch/sparc/mm/fault_64.c (revision a1922ed661ab2c1637d0b10cde933bd9cd33d965)
1 /*
2  * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
3  *
4  * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kprobes.h>
21 #include <linux/kdebug.h>
22 #include <linux/percpu.h>
23 
24 #include <asm/page.h>
25 #include <asm/pgtable.h>
26 #include <asm/openprom.h>
27 #include <asm/oplib.h>
28 #include <asm/uaccess.h>
29 #include <asm/asi.h>
30 #include <asm/lsu.h>
31 #include <asm/sections.h>
32 #include <asm/mmu_context.h>
33 
34 #ifdef CONFIG_KPROBES
35 static inline int notify_page_fault(struct pt_regs *regs)
36 {
37 	int ret = 0;
38 
39 	/* kprobe_running() needs smp_processor_id() */
40 	if (!user_mode(regs)) {
41 		preempt_disable();
42 		if (kprobe_running() && kprobe_fault_handler(regs, 0))
43 			ret = 1;
44 		preempt_enable();
45 	}
46 	return ret;
47 }
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs)
50 {
51 	return 0;
52 }
53 #endif
54 
55 static void __kprobes unhandled_fault(unsigned long address,
56 				      struct task_struct *tsk,
57 				      struct pt_regs *regs)
58 {
59 	if ((unsigned long) address < PAGE_SIZE) {
60 		printk(KERN_ALERT "Unable to handle kernel NULL "
61 		       "pointer dereference\n");
62 	} else {
63 		printk(KERN_ALERT "Unable to handle kernel paging request "
64 		       "at virtual address %016lx\n", (unsigned long)address);
65 	}
66 	printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
67 	       (tsk->mm ?
68 		CTX_HWBITS(tsk->mm->context) :
69 		CTX_HWBITS(tsk->active_mm->context)));
70 	printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
71 	       (tsk->mm ? (unsigned long) tsk->mm->pgd :
72 		          (unsigned long) tsk->active_mm->pgd));
73 	die_if_kernel("Oops", regs);
74 }
75 
76 static void bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
77 {
78 	printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
79 	       regs->tpc);
80 	printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
81 	printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
82 	printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
83 	dump_stack();
84 	unhandled_fault(regs->tpc, current, regs);
85 }
86 
87 /*
88  * We now make sure that mmap_sem is held in all paths that call
89  * this. Additionally, to prevent kswapd from ripping ptes from
90  * under us, raise interrupts around the time that we look at the
91  * pte, kswapd will have to wait to get his smp ipi response from
92  * us. vmtruncate likewise. This saves us having to get pte lock.
93  */
94 static unsigned int get_user_insn(unsigned long tpc)
95 {
96 	pgd_t *pgdp = pgd_offset(current->mm, tpc);
97 	pud_t *pudp;
98 	pmd_t *pmdp;
99 	pte_t *ptep, pte;
100 	unsigned long pa;
101 	u32 insn = 0;
102 	unsigned long pstate;
103 
104 	if (pgd_none(*pgdp))
105 		goto outret;
106 	pudp = pud_offset(pgdp, tpc);
107 	if (pud_none(*pudp))
108 		goto outret;
109 	pmdp = pmd_offset(pudp, tpc);
110 	if (pmd_none(*pmdp))
111 		goto outret;
112 
113 	/* This disables preemption for us as well. */
114 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
115 	__asm__ __volatile__("wrpr %0, %1, %%pstate"
116 				: : "r" (pstate), "i" (PSTATE_IE));
117 	ptep = pte_offset_map(pmdp, tpc);
118 	pte = *ptep;
119 	if (!pte_present(pte))
120 		goto out;
121 
122 	pa  = (pte_pfn(pte) << PAGE_SHIFT);
123 	pa += (tpc & ~PAGE_MASK);
124 
125 	/* Use phys bypass so we don't pollute dtlb/dcache. */
126 	__asm__ __volatile__("lduwa [%1] %2, %0"
127 			     : "=r" (insn)
128 			     : "r" (pa), "i" (ASI_PHYS_USE_EC));
129 
130 out:
131 	pte_unmap(ptep);
132 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
133 outret:
134 	return insn;
135 }
136 
137 extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int);
138 
139 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
140 			     unsigned int insn, int fault_code)
141 {
142 	siginfo_t info;
143 
144 	info.si_code = code;
145 	info.si_signo = sig;
146 	info.si_errno = 0;
147 	if (fault_code & FAULT_CODE_ITLB)
148 		info.si_addr = (void __user *) regs->tpc;
149 	else
150 		info.si_addr = (void __user *)
151 			compute_effective_address(regs, insn, 0);
152 	info.si_trapno = 0;
153 	force_sig_info(sig, &info, current);
154 }
155 
156 extern int handle_ldf_stq(u32, struct pt_regs *);
157 extern int handle_ld_nf(u32, struct pt_regs *);
158 
159 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
160 {
161 	if (!insn) {
162 		if (!regs->tpc || (regs->tpc & 0x3))
163 			return 0;
164 		if (regs->tstate & TSTATE_PRIV) {
165 			insn = *(unsigned int *) regs->tpc;
166 		} else {
167 			insn = get_user_insn(regs->tpc);
168 		}
169 	}
170 	return insn;
171 }
172 
173 static void do_kernel_fault(struct pt_regs *regs, int si_code, int fault_code,
174 			    unsigned int insn, unsigned long address)
175 {
176 	unsigned char asi = ASI_P;
177 
178 	if ((!insn) && (regs->tstate & TSTATE_PRIV))
179 		goto cannot_handle;
180 
181 	/* If user insn could be read (thus insn is zero), that
182 	 * is fine.  We will just gun down the process with a signal
183 	 * in that case.
184 	 */
185 
186 	if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
187 	    (insn & 0xc0800000) == 0xc0800000) {
188 		if (insn & 0x2000)
189 			asi = (regs->tstate >> 24);
190 		else
191 			asi = (insn >> 5);
192 		if ((asi & 0xf2) == 0x82) {
193 			if (insn & 0x1000000) {
194 				handle_ldf_stq(insn, regs);
195 			} else {
196 				/* This was a non-faulting load. Just clear the
197 				 * destination register(s) and continue with the next
198 				 * instruction. -jj
199 				 */
200 				handle_ld_nf(insn, regs);
201 			}
202 			return;
203 		}
204 	}
205 
206 	/* Is this in ex_table? */
207 	if (regs->tstate & TSTATE_PRIV) {
208 		const struct exception_table_entry *entry;
209 
210 		entry = search_exception_tables(regs->tpc);
211 		if (entry) {
212 			regs->tpc = entry->fixup;
213 			regs->tnpc = regs->tpc + 4;
214 			return;
215 		}
216 	} else {
217 		/* The si_code was set to make clear whether
218 		 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
219 		 */
220 		do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
221 		return;
222 	}
223 
224 cannot_handle:
225 	unhandled_fault (address, current, regs);
226 }
227 
228 static void noinline bogus_32bit_fault_tpc(struct pt_regs *regs)
229 {
230 	static int times;
231 
232 	if (times++ < 10)
233 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
234 		       "64-bit TPC [%lx]\n",
235 		       current->comm, current->pid,
236 		       regs->tpc);
237 	show_regs(regs);
238 }
239 
240 static void noinline bogus_32bit_fault_address(struct pt_regs *regs,
241 					       unsigned long addr)
242 {
243 	static int times;
244 
245 	if (times++ < 10)
246 		printk(KERN_ERR "FAULT[%s:%d]: 32-bit process "
247 		       "reports 64-bit fault address [%lx]\n",
248 		       current->comm, current->pid, addr);
249 	show_regs(regs);
250 }
251 
252 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
253 {
254 	struct mm_struct *mm = current->mm;
255 	struct vm_area_struct *vma;
256 	unsigned int insn = 0;
257 	int si_code, fault_code, fault;
258 	unsigned long address, mm_rss;
259 
260 	fault_code = get_thread_fault_code();
261 
262 	if (notify_page_fault(regs))
263 		return;
264 
265 	si_code = SEGV_MAPERR;
266 	address = current_thread_info()->fault_address;
267 
268 	if ((fault_code & FAULT_CODE_ITLB) &&
269 	    (fault_code & FAULT_CODE_DTLB))
270 		BUG();
271 
272 	if (test_thread_flag(TIF_32BIT)) {
273 		if (!(regs->tstate & TSTATE_PRIV)) {
274 			if (unlikely((regs->tpc >> 32) != 0)) {
275 				bogus_32bit_fault_tpc(regs);
276 				goto intr_or_no_mm;
277 			}
278 		}
279 		if (unlikely((address >> 32) != 0)) {
280 			bogus_32bit_fault_address(regs, address);
281 			goto intr_or_no_mm;
282 		}
283 	}
284 
285 	if (regs->tstate & TSTATE_PRIV) {
286 		unsigned long tpc = regs->tpc;
287 
288 		/* Sanity check the PC. */
289 		if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
290 		    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
291 			/* Valid, no problems... */
292 		} else {
293 			bad_kernel_pc(regs, address);
294 			return;
295 		}
296 	}
297 
298 	/*
299 	 * If we're in an interrupt or have no user
300 	 * context, we must not take the fault..
301 	 */
302 	if (in_atomic() || !mm)
303 		goto intr_or_no_mm;
304 
305 	if (!down_read_trylock(&mm->mmap_sem)) {
306 		if ((regs->tstate & TSTATE_PRIV) &&
307 		    !search_exception_tables(regs->tpc)) {
308 			insn = get_fault_insn(regs, insn);
309 			goto handle_kernel_fault;
310 		}
311 		down_read(&mm->mmap_sem);
312 	}
313 
314 	vma = find_vma(mm, address);
315 	if (!vma)
316 		goto bad_area;
317 
318 	/* Pure DTLB misses do not tell us whether the fault causing
319 	 * load/store/atomic was a write or not, it only says that there
320 	 * was no match.  So in such a case we (carefully) read the
321 	 * instruction to try and figure this out.  It's an optimization
322 	 * so it's ok if we can't do this.
323 	 *
324 	 * Special hack, window spill/fill knows the exact fault type.
325 	 */
326 	if (((fault_code &
327 	      (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
328 	    (vma->vm_flags & VM_WRITE) != 0) {
329 		insn = get_fault_insn(regs, 0);
330 		if (!insn)
331 			goto continue_fault;
332 		/* All loads, stores and atomics have bits 30 and 31 both set
333 		 * in the instruction.  Bit 21 is set in all stores, but we
334 		 * have to avoid prefetches which also have bit 21 set.
335 		 */
336 		if ((insn & 0xc0200000) == 0xc0200000 &&
337 		    (insn & 0x01780000) != 0x01680000) {
338 			/* Don't bother updating thread struct value,
339 			 * because update_mmu_cache only cares which tlb
340 			 * the access came from.
341 			 */
342 			fault_code |= FAULT_CODE_WRITE;
343 		}
344 	}
345 continue_fault:
346 
347 	if (vma->vm_start <= address)
348 		goto good_area;
349 	if (!(vma->vm_flags & VM_GROWSDOWN))
350 		goto bad_area;
351 	if (!(fault_code & FAULT_CODE_WRITE)) {
352 		/* Non-faulting loads shouldn't expand stack. */
353 		insn = get_fault_insn(regs, insn);
354 		if ((insn & 0xc0800000) == 0xc0800000) {
355 			unsigned char asi;
356 
357 			if (insn & 0x2000)
358 				asi = (regs->tstate >> 24);
359 			else
360 				asi = (insn >> 5);
361 			if ((asi & 0xf2) == 0x82)
362 				goto bad_area;
363 		}
364 	}
365 	if (expand_stack(vma, address))
366 		goto bad_area;
367 	/*
368 	 * Ok, we have a good vm_area for this memory access, so
369 	 * we can handle it..
370 	 */
371 good_area:
372 	si_code = SEGV_ACCERR;
373 
374 	/* If we took a ITLB miss on a non-executable page, catch
375 	 * that here.
376 	 */
377 	if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
378 		BUG_ON(address != regs->tpc);
379 		BUG_ON(regs->tstate & TSTATE_PRIV);
380 		goto bad_area;
381 	}
382 
383 	if (fault_code & FAULT_CODE_WRITE) {
384 		if (!(vma->vm_flags & VM_WRITE))
385 			goto bad_area;
386 
387 		/* Spitfire has an icache which does not snoop
388 		 * processor stores.  Later processors do...
389 		 */
390 		if (tlb_type == spitfire &&
391 		    (vma->vm_flags & VM_EXEC) != 0 &&
392 		    vma->vm_file != NULL)
393 			set_thread_fault_code(fault_code |
394 					      FAULT_CODE_BLKCOMMIT);
395 	} else {
396 		/* Allow reads even for write-only mappings */
397 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
398 			goto bad_area;
399 	}
400 
401 	fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0);
402 	if (unlikely(fault & VM_FAULT_ERROR)) {
403 		if (fault & VM_FAULT_OOM)
404 			goto out_of_memory;
405 		else if (fault & VM_FAULT_SIGBUS)
406 			goto do_sigbus;
407 		BUG();
408 	}
409 	if (fault & VM_FAULT_MAJOR)
410 		current->maj_flt++;
411 	else
412 		current->min_flt++;
413 
414 	up_read(&mm->mmap_sem);
415 
416 	mm_rss = get_mm_rss(mm);
417 #ifdef CONFIG_HUGETLB_PAGE
418 	mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
419 #endif
420 	if (unlikely(mm_rss >
421 		     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
422 		tsb_grow(mm, MM_TSB_BASE, mm_rss);
423 #ifdef CONFIG_HUGETLB_PAGE
424 	mm_rss = mm->context.huge_pte_count;
425 	if (unlikely(mm_rss >
426 		     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit))
427 		tsb_grow(mm, MM_TSB_HUGE, mm_rss);
428 #endif
429 	return;
430 
431 	/*
432 	 * Something tried to access memory that isn't in our memory map..
433 	 * Fix it, but check if it's kernel or user first..
434 	 */
435 bad_area:
436 	insn = get_fault_insn(regs, insn);
437 	up_read(&mm->mmap_sem);
438 
439 handle_kernel_fault:
440 	do_kernel_fault(regs, si_code, fault_code, insn, address);
441 	return;
442 
443 /*
444  * We ran out of memory, or some other thing happened to us that made
445  * us unable to handle the page fault gracefully.
446  */
447 out_of_memory:
448 	insn = get_fault_insn(regs, insn);
449 	up_read(&mm->mmap_sem);
450 	if (!(regs->tstate & TSTATE_PRIV)) {
451 		pagefault_out_of_memory();
452 		return;
453 	}
454 	goto handle_kernel_fault;
455 
456 intr_or_no_mm:
457 	insn = get_fault_insn(regs, 0);
458 	goto handle_kernel_fault;
459 
460 do_sigbus:
461 	insn = get_fault_insn(regs, insn);
462 	up_read(&mm->mmap_sem);
463 
464 	/*
465 	 * Send a sigbus, regardless of whether we were in kernel
466 	 * or user mode.
467 	 */
468 	do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
469 
470 	/* Kernel mode? Handle exceptions or die */
471 	if (regs->tstate & TSTATE_PRIV)
472 		goto handle_kernel_fault;
473 }
474