1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 4 * 5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 7 */ 8 9 #include <asm/head.h> 10 11 #include <linux/string.h> 12 #include <linux/types.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/ptrace.h> 16 #include <linux/mman.h> 17 #include <linux/signal.h> 18 #include <linux/mm.h> 19 #include <linux/extable.h> 20 #include <linux/init.h> 21 #include <linux/perf_event.h> 22 #include <linux/interrupt.h> 23 #include <linux/kprobes.h> 24 #include <linux/kdebug.h> 25 #include <linux/percpu.h> 26 #include <linux/context_tracking.h> 27 #include <linux/uaccess.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/openprom.h> 32 #include <asm/oplib.h> 33 #include <asm/asi.h> 34 #include <asm/lsu.h> 35 #include <asm/sections.h> 36 #include <asm/mmu_context.h> 37 #include <asm/setup.h> 38 39 int show_unhandled_signals = 1; 40 41 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 42 { 43 int ret = 0; 44 45 /* kprobe_running() needs smp_processor_id() */ 46 if (kprobes_built_in() && !user_mode(regs)) { 47 preempt_disable(); 48 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 49 ret = 1; 50 preempt_enable(); 51 } 52 return ret; 53 } 54 55 static void __kprobes unhandled_fault(unsigned long address, 56 struct task_struct *tsk, 57 struct pt_regs *regs) 58 { 59 if ((unsigned long) address < PAGE_SIZE) { 60 printk(KERN_ALERT "Unable to handle kernel NULL " 61 "pointer dereference\n"); 62 } else { 63 printk(KERN_ALERT "Unable to handle kernel paging request " 64 "at virtual address %016lx\n", (unsigned long)address); 65 } 66 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 67 (tsk->mm ? 68 CTX_HWBITS(tsk->mm->context) : 69 CTX_HWBITS(tsk->active_mm->context))); 70 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 71 (tsk->mm ? (unsigned long) tsk->mm->pgd : 72 (unsigned long) tsk->active_mm->pgd)); 73 die_if_kernel("Oops", regs); 74 } 75 76 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 77 { 78 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 79 regs->tpc); 80 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 81 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 82 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 83 dump_stack(); 84 unhandled_fault(regs->tpc, current, regs); 85 } 86 87 /* 88 * We now make sure that mmap_sem is held in all paths that call 89 * this. Additionally, to prevent kswapd from ripping ptes from 90 * under us, raise interrupts around the time that we look at the 91 * pte, kswapd will have to wait to get his smp ipi response from 92 * us. vmtruncate likewise. This saves us having to get pte lock. 93 */ 94 static unsigned int get_user_insn(unsigned long tpc) 95 { 96 pgd_t *pgdp = pgd_offset(current->mm, tpc); 97 pud_t *pudp; 98 pmd_t *pmdp; 99 pte_t *ptep, pte; 100 unsigned long pa; 101 u32 insn = 0; 102 103 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 104 goto out; 105 pudp = pud_offset(pgdp, tpc); 106 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 107 goto out; 108 109 /* This disables preemption for us as well. */ 110 local_irq_disable(); 111 112 pmdp = pmd_offset(pudp, tpc); 113 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 114 goto out_irq_enable; 115 116 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 117 if (is_hugetlb_pmd(*pmdp)) { 118 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 119 pa += tpc & ~HPAGE_MASK; 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 } else 126 #endif 127 { 128 ptep = pte_offset_map(pmdp, tpc); 129 pte = *ptep; 130 if (pte_present(pte)) { 131 pa = (pte_pfn(pte) << PAGE_SHIFT); 132 pa += (tpc & ~PAGE_MASK); 133 134 /* Use phys bypass so we don't pollute dtlb/dcache. */ 135 __asm__ __volatile__("lduwa [%1] %2, %0" 136 : "=r" (insn) 137 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 138 } 139 pte_unmap(ptep); 140 } 141 out_irq_enable: 142 local_irq_enable(); 143 out: 144 return insn; 145 } 146 147 static inline void 148 show_signal_msg(struct pt_regs *regs, int sig, int code, 149 unsigned long address, struct task_struct *tsk) 150 { 151 if (!unhandled_signal(tsk, sig)) 152 return; 153 154 if (!printk_ratelimit()) 155 return; 156 157 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x", 158 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 159 tsk->comm, task_pid_nr(tsk), address, 160 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 161 (void *)regs->u_regs[UREG_FP], code); 162 163 print_vma_addr(KERN_CONT " in ", regs->tpc); 164 165 printk(KERN_CONT "\n"); 166 } 167 168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 169 unsigned long fault_addr, unsigned int insn, 170 int fault_code) 171 { 172 unsigned long addr; 173 174 if (fault_code & FAULT_CODE_ITLB) { 175 addr = regs->tpc; 176 } else { 177 /* If we were able to probe the faulting instruction, use it 178 * to compute a precise fault address. Otherwise use the fault 179 * time provided address which may only have page granularity. 180 */ 181 if (insn) 182 addr = compute_effective_address(regs, insn, 0); 183 else 184 addr = fault_addr; 185 } 186 187 if (unlikely(show_unhandled_signals)) 188 show_signal_msg(regs, sig, code, addr, current); 189 190 force_sig_fault(sig, code, (void __user *) addr, 0, current); 191 } 192 193 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 194 { 195 if (!insn) { 196 if (!regs->tpc || (regs->tpc & 0x3)) 197 return 0; 198 if (regs->tstate & TSTATE_PRIV) { 199 insn = *(unsigned int *) regs->tpc; 200 } else { 201 insn = get_user_insn(regs->tpc); 202 } 203 } 204 return insn; 205 } 206 207 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 208 int fault_code, unsigned int insn, 209 unsigned long address) 210 { 211 unsigned char asi = ASI_P; 212 213 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 214 goto cannot_handle; 215 216 /* If user insn could be read (thus insn is zero), that 217 * is fine. We will just gun down the process with a signal 218 * in that case. 219 */ 220 221 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 222 (insn & 0xc0800000) == 0xc0800000) { 223 if (insn & 0x2000) 224 asi = (regs->tstate >> 24); 225 else 226 asi = (insn >> 5); 227 if ((asi & 0xf2) == 0x82) { 228 if (insn & 0x1000000) { 229 handle_ldf_stq(insn, regs); 230 } else { 231 /* This was a non-faulting load. Just clear the 232 * destination register(s) and continue with the next 233 * instruction. -jj 234 */ 235 handle_ld_nf(insn, regs); 236 } 237 return; 238 } 239 } 240 241 /* Is this in ex_table? */ 242 if (regs->tstate & TSTATE_PRIV) { 243 const struct exception_table_entry *entry; 244 245 entry = search_exception_tables(regs->tpc); 246 if (entry) { 247 regs->tpc = entry->fixup; 248 regs->tnpc = regs->tpc + 4; 249 return; 250 } 251 } else { 252 /* The si_code was set to make clear whether 253 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 254 */ 255 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 256 return; 257 } 258 259 cannot_handle: 260 unhandled_fault (address, current, regs); 261 } 262 263 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 264 { 265 static int times; 266 267 if (times++ < 10) 268 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 269 "64-bit TPC [%lx]\n", 270 current->comm, current->pid, 271 regs->tpc); 272 show_regs(regs); 273 } 274 275 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 276 { 277 enum ctx_state prev_state = exception_enter(); 278 struct mm_struct *mm = current->mm; 279 struct vm_area_struct *vma; 280 unsigned int insn = 0; 281 int si_code, fault_code; 282 vm_fault_t fault; 283 unsigned long address, mm_rss; 284 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 285 286 fault_code = get_thread_fault_code(); 287 288 if (notify_page_fault(regs)) 289 goto exit_exception; 290 291 si_code = SEGV_MAPERR; 292 address = current_thread_info()->fault_address; 293 294 if ((fault_code & FAULT_CODE_ITLB) && 295 (fault_code & FAULT_CODE_DTLB)) 296 BUG(); 297 298 if (test_thread_flag(TIF_32BIT)) { 299 if (!(regs->tstate & TSTATE_PRIV)) { 300 if (unlikely((regs->tpc >> 32) != 0)) { 301 bogus_32bit_fault_tpc(regs); 302 goto intr_or_no_mm; 303 } 304 } 305 if (unlikely((address >> 32) != 0)) 306 goto intr_or_no_mm; 307 } 308 309 if (regs->tstate & TSTATE_PRIV) { 310 unsigned long tpc = regs->tpc; 311 312 /* Sanity check the PC. */ 313 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 314 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 315 /* Valid, no problems... */ 316 } else { 317 bad_kernel_pc(regs, address); 318 goto exit_exception; 319 } 320 } else 321 flags |= FAULT_FLAG_USER; 322 323 /* 324 * If we're in an interrupt or have no user 325 * context, we must not take the fault.. 326 */ 327 if (faulthandler_disabled() || !mm) 328 goto intr_or_no_mm; 329 330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 331 332 if (!down_read_trylock(&mm->mmap_sem)) { 333 if ((regs->tstate & TSTATE_PRIV) && 334 !search_exception_tables(regs->tpc)) { 335 insn = get_fault_insn(regs, insn); 336 goto handle_kernel_fault; 337 } 338 339 retry: 340 down_read(&mm->mmap_sem); 341 } 342 343 if (fault_code & FAULT_CODE_BAD_RA) 344 goto do_sigbus; 345 346 vma = find_vma(mm, address); 347 if (!vma) 348 goto bad_area; 349 350 /* Pure DTLB misses do not tell us whether the fault causing 351 * load/store/atomic was a write or not, it only says that there 352 * was no match. So in such a case we (carefully) read the 353 * instruction to try and figure this out. It's an optimization 354 * so it's ok if we can't do this. 355 * 356 * Special hack, window spill/fill knows the exact fault type. 357 */ 358 if (((fault_code & 359 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 360 (vma->vm_flags & VM_WRITE) != 0) { 361 insn = get_fault_insn(regs, 0); 362 if (!insn) 363 goto continue_fault; 364 /* All loads, stores and atomics have bits 30 and 31 both set 365 * in the instruction. Bit 21 is set in all stores, but we 366 * have to avoid prefetches which also have bit 21 set. 367 */ 368 if ((insn & 0xc0200000) == 0xc0200000 && 369 (insn & 0x01780000) != 0x01680000) { 370 /* Don't bother updating thread struct value, 371 * because update_mmu_cache only cares which tlb 372 * the access came from. 373 */ 374 fault_code |= FAULT_CODE_WRITE; 375 } 376 } 377 continue_fault: 378 379 if (vma->vm_start <= address) 380 goto good_area; 381 if (!(vma->vm_flags & VM_GROWSDOWN)) 382 goto bad_area; 383 if (!(fault_code & FAULT_CODE_WRITE)) { 384 /* Non-faulting loads shouldn't expand stack. */ 385 insn = get_fault_insn(regs, insn); 386 if ((insn & 0xc0800000) == 0xc0800000) { 387 unsigned char asi; 388 389 if (insn & 0x2000) 390 asi = (regs->tstate >> 24); 391 else 392 asi = (insn >> 5); 393 if ((asi & 0xf2) == 0x82) 394 goto bad_area; 395 } 396 } 397 if (expand_stack(vma, address)) 398 goto bad_area; 399 /* 400 * Ok, we have a good vm_area for this memory access, so 401 * we can handle it.. 402 */ 403 good_area: 404 si_code = SEGV_ACCERR; 405 406 /* If we took a ITLB miss on a non-executable page, catch 407 * that here. 408 */ 409 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 410 WARN(address != regs->tpc, 411 "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc); 412 WARN_ON(regs->tstate & TSTATE_PRIV); 413 goto bad_area; 414 } 415 416 if (fault_code & FAULT_CODE_WRITE) { 417 if (!(vma->vm_flags & VM_WRITE)) 418 goto bad_area; 419 420 /* Spitfire has an icache which does not snoop 421 * processor stores. Later processors do... 422 */ 423 if (tlb_type == spitfire && 424 (vma->vm_flags & VM_EXEC) != 0 && 425 vma->vm_file != NULL) 426 set_thread_fault_code(fault_code | 427 FAULT_CODE_BLKCOMMIT); 428 429 flags |= FAULT_FLAG_WRITE; 430 } else { 431 /* Allow reads even for write-only mappings */ 432 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 433 goto bad_area; 434 } 435 436 fault = handle_mm_fault(vma, address, flags); 437 438 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 439 goto exit_exception; 440 441 if (unlikely(fault & VM_FAULT_ERROR)) { 442 if (fault & VM_FAULT_OOM) 443 goto out_of_memory; 444 else if (fault & VM_FAULT_SIGSEGV) 445 goto bad_area; 446 else if (fault & VM_FAULT_SIGBUS) 447 goto do_sigbus; 448 BUG(); 449 } 450 451 if (flags & FAULT_FLAG_ALLOW_RETRY) { 452 if (fault & VM_FAULT_MAJOR) { 453 current->maj_flt++; 454 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 455 1, regs, address); 456 } else { 457 current->min_flt++; 458 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 459 1, regs, address); 460 } 461 if (fault & VM_FAULT_RETRY) { 462 flags &= ~FAULT_FLAG_ALLOW_RETRY; 463 flags |= FAULT_FLAG_TRIED; 464 465 /* No need to up_read(&mm->mmap_sem) as we would 466 * have already released it in __lock_page_or_retry 467 * in mm/filemap.c. 468 */ 469 470 goto retry; 471 } 472 } 473 up_read(&mm->mmap_sem); 474 475 mm_rss = get_mm_rss(mm); 476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 477 mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 478 #endif 479 if (unlikely(mm_rss > 480 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 481 tsb_grow(mm, MM_TSB_BASE, mm_rss); 482 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 483 mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count; 484 mm_rss *= REAL_HPAGE_PER_HPAGE; 485 if (unlikely(mm_rss > 486 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 487 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 488 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 489 else 490 hugetlb_setup(regs); 491 492 } 493 #endif 494 exit_exception: 495 exception_exit(prev_state); 496 return; 497 498 /* 499 * Something tried to access memory that isn't in our memory map.. 500 * Fix it, but check if it's kernel or user first.. 501 */ 502 bad_area: 503 insn = get_fault_insn(regs, insn); 504 up_read(&mm->mmap_sem); 505 506 handle_kernel_fault: 507 do_kernel_fault(regs, si_code, fault_code, insn, address); 508 goto exit_exception; 509 510 /* 511 * We ran out of memory, or some other thing happened to us that made 512 * us unable to handle the page fault gracefully. 513 */ 514 out_of_memory: 515 insn = get_fault_insn(regs, insn); 516 up_read(&mm->mmap_sem); 517 if (!(regs->tstate & TSTATE_PRIV)) { 518 pagefault_out_of_memory(); 519 goto exit_exception; 520 } 521 goto handle_kernel_fault; 522 523 intr_or_no_mm: 524 insn = get_fault_insn(regs, 0); 525 goto handle_kernel_fault; 526 527 do_sigbus: 528 insn = get_fault_insn(regs, insn); 529 up_read(&mm->mmap_sem); 530 531 /* 532 * Send a sigbus, regardless of whether we were in kernel 533 * or user mode. 534 */ 535 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 536 537 /* Kernel mode? Handle exceptions or die */ 538 if (regs->tstate & TSTATE_PRIV) 539 goto handle_kernel_fault; 540 } 541