1 /* 2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. 3 * 4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <asm/head.h> 9 10 #include <linux/string.h> 11 #include <linux/types.h> 12 #include <linux/sched.h> 13 #include <linux/ptrace.h> 14 #include <linux/mman.h> 15 #include <linux/signal.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/perf_event.h> 20 #include <linux/interrupt.h> 21 #include <linux/kprobes.h> 22 #include <linux/kdebug.h> 23 #include <linux/percpu.h> 24 #include <linux/context_tracking.h> 25 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/openprom.h> 29 #include <asm/oplib.h> 30 #include <asm/uaccess.h> 31 #include <asm/asi.h> 32 #include <asm/lsu.h> 33 #include <asm/sections.h> 34 #include <asm/mmu_context.h> 35 36 int show_unhandled_signals = 1; 37 38 static inline __kprobes int notify_page_fault(struct pt_regs *regs) 39 { 40 int ret = 0; 41 42 /* kprobe_running() needs smp_processor_id() */ 43 if (kprobes_built_in() && !user_mode(regs)) { 44 preempt_disable(); 45 if (kprobe_running() && kprobe_fault_handler(regs, 0)) 46 ret = 1; 47 preempt_enable(); 48 } 49 return ret; 50 } 51 52 static void __kprobes unhandled_fault(unsigned long address, 53 struct task_struct *tsk, 54 struct pt_regs *regs) 55 { 56 if ((unsigned long) address < PAGE_SIZE) { 57 printk(KERN_ALERT "Unable to handle kernel NULL " 58 "pointer dereference\n"); 59 } else { 60 printk(KERN_ALERT "Unable to handle kernel paging request " 61 "at virtual address %016lx\n", (unsigned long)address); 62 } 63 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", 64 (tsk->mm ? 65 CTX_HWBITS(tsk->mm->context) : 66 CTX_HWBITS(tsk->active_mm->context))); 67 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", 68 (tsk->mm ? (unsigned long) tsk->mm->pgd : 69 (unsigned long) tsk->active_mm->pgd)); 70 die_if_kernel("Oops", regs); 71 } 72 73 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) 74 { 75 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", 76 regs->tpc); 77 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); 78 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); 79 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); 80 dump_stack(); 81 unhandled_fault(regs->tpc, current, regs); 82 } 83 84 /* 85 * We now make sure that mmap_sem is held in all paths that call 86 * this. Additionally, to prevent kswapd from ripping ptes from 87 * under us, raise interrupts around the time that we look at the 88 * pte, kswapd will have to wait to get his smp ipi response from 89 * us. vmtruncate likewise. This saves us having to get pte lock. 90 */ 91 static unsigned int get_user_insn(unsigned long tpc) 92 { 93 pgd_t *pgdp = pgd_offset(current->mm, tpc); 94 pud_t *pudp; 95 pmd_t *pmdp; 96 pte_t *ptep, pte; 97 unsigned long pa; 98 u32 insn = 0; 99 100 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 101 goto out; 102 pudp = pud_offset(pgdp, tpc); 103 if (pud_none(*pudp) || unlikely(pud_bad(*pudp))) 104 goto out; 105 106 /* This disables preemption for us as well. */ 107 local_irq_disable(); 108 109 pmdp = pmd_offset(pudp, tpc); 110 if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp))) 111 goto out_irq_enable; 112 113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 114 if (pmd_trans_huge(*pmdp)) { 115 if (pmd_trans_splitting(*pmdp)) 116 goto out_irq_enable; 117 118 pa = pmd_pfn(*pmdp) << PAGE_SHIFT; 119 pa += tpc & ~HPAGE_MASK; 120 121 /* Use phys bypass so we don't pollute dtlb/dcache. */ 122 __asm__ __volatile__("lduwa [%1] %2, %0" 123 : "=r" (insn) 124 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 125 } else 126 #endif 127 { 128 ptep = pte_offset_map(pmdp, tpc); 129 pte = *ptep; 130 if (pte_present(pte)) { 131 pa = (pte_pfn(pte) << PAGE_SHIFT); 132 pa += (tpc & ~PAGE_MASK); 133 134 /* Use phys bypass so we don't pollute dtlb/dcache. */ 135 __asm__ __volatile__("lduwa [%1] %2, %0" 136 : "=r" (insn) 137 : "r" (pa), "i" (ASI_PHYS_USE_EC)); 138 } 139 pte_unmap(ptep); 140 } 141 out_irq_enable: 142 local_irq_enable(); 143 out: 144 return insn; 145 } 146 147 static inline void 148 show_signal_msg(struct pt_regs *regs, int sig, int code, 149 unsigned long address, struct task_struct *tsk) 150 { 151 if (!unhandled_signal(tsk, sig)) 152 return; 153 154 if (!printk_ratelimit()) 155 return; 156 157 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", 158 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 159 tsk->comm, task_pid_nr(tsk), address, 160 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], 161 (void *)regs->u_regs[UREG_FP], code); 162 163 print_vma_addr(KERN_CONT " in ", regs->tpc); 164 165 printk(KERN_CONT "\n"); 166 } 167 168 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, 169 unsigned long fault_addr, unsigned int insn, 170 int fault_code) 171 { 172 unsigned long addr; 173 siginfo_t info; 174 175 info.si_code = code; 176 info.si_signo = sig; 177 info.si_errno = 0; 178 if (fault_code & FAULT_CODE_ITLB) { 179 addr = regs->tpc; 180 } else { 181 /* If we were able to probe the faulting instruction, use it 182 * to compute a precise fault address. Otherwise use the fault 183 * time provided address which may only have page granularity. 184 */ 185 if (insn) 186 addr = compute_effective_address(regs, insn, 0); 187 else 188 addr = fault_addr; 189 } 190 info.si_addr = (void __user *) addr; 191 info.si_trapno = 0; 192 193 if (unlikely(show_unhandled_signals)) 194 show_signal_msg(regs, sig, code, addr, current); 195 196 force_sig_info(sig, &info, current); 197 } 198 199 extern int handle_ldf_stq(u32, struct pt_regs *); 200 extern int handle_ld_nf(u32, struct pt_regs *); 201 202 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) 203 { 204 if (!insn) { 205 if (!regs->tpc || (regs->tpc & 0x3)) 206 return 0; 207 if (regs->tstate & TSTATE_PRIV) { 208 insn = *(unsigned int *) regs->tpc; 209 } else { 210 insn = get_user_insn(regs->tpc); 211 } 212 } 213 return insn; 214 } 215 216 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, 217 int fault_code, unsigned int insn, 218 unsigned long address) 219 { 220 unsigned char asi = ASI_P; 221 222 if ((!insn) && (regs->tstate & TSTATE_PRIV)) 223 goto cannot_handle; 224 225 /* If user insn could be read (thus insn is zero), that 226 * is fine. We will just gun down the process with a signal 227 * in that case. 228 */ 229 230 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && 231 (insn & 0xc0800000) == 0xc0800000) { 232 if (insn & 0x2000) 233 asi = (regs->tstate >> 24); 234 else 235 asi = (insn >> 5); 236 if ((asi & 0xf2) == 0x82) { 237 if (insn & 0x1000000) { 238 handle_ldf_stq(insn, regs); 239 } else { 240 /* This was a non-faulting load. Just clear the 241 * destination register(s) and continue with the next 242 * instruction. -jj 243 */ 244 handle_ld_nf(insn, regs); 245 } 246 return; 247 } 248 } 249 250 /* Is this in ex_table? */ 251 if (regs->tstate & TSTATE_PRIV) { 252 const struct exception_table_entry *entry; 253 254 entry = search_exception_tables(regs->tpc); 255 if (entry) { 256 regs->tpc = entry->fixup; 257 regs->tnpc = regs->tpc + 4; 258 return; 259 } 260 } else { 261 /* The si_code was set to make clear whether 262 * this was a SEGV_MAPERR or SEGV_ACCERR fault. 263 */ 264 do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code); 265 return; 266 } 267 268 cannot_handle: 269 unhandled_fault (address, current, regs); 270 } 271 272 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) 273 { 274 static int times; 275 276 if (times++ < 10) 277 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " 278 "64-bit TPC [%lx]\n", 279 current->comm, current->pid, 280 regs->tpc); 281 show_regs(regs); 282 } 283 284 static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs, 285 unsigned long addr) 286 { 287 static int times; 288 289 if (times++ < 10) 290 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process " 291 "reports 64-bit fault address [%lx]\n", 292 current->comm, current->pid, addr); 293 show_regs(regs); 294 } 295 296 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) 297 { 298 enum ctx_state prev_state = exception_enter(); 299 struct mm_struct *mm = current->mm; 300 struct vm_area_struct *vma; 301 unsigned int insn = 0; 302 int si_code, fault_code, fault; 303 unsigned long address, mm_rss; 304 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 305 306 fault_code = get_thread_fault_code(); 307 308 if (notify_page_fault(regs)) 309 goto exit_exception; 310 311 si_code = SEGV_MAPERR; 312 address = current_thread_info()->fault_address; 313 314 if ((fault_code & FAULT_CODE_ITLB) && 315 (fault_code & FAULT_CODE_DTLB)) 316 BUG(); 317 318 if (test_thread_flag(TIF_32BIT)) { 319 if (!(regs->tstate & TSTATE_PRIV)) { 320 if (unlikely((regs->tpc >> 32) != 0)) { 321 bogus_32bit_fault_tpc(regs); 322 goto intr_or_no_mm; 323 } 324 } 325 if (unlikely((address >> 32) != 0)) { 326 bogus_32bit_fault_address(regs, address); 327 goto intr_or_no_mm; 328 } 329 } 330 331 if (regs->tstate & TSTATE_PRIV) { 332 unsigned long tpc = regs->tpc; 333 334 /* Sanity check the PC. */ 335 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || 336 (tpc >= MODULES_VADDR && tpc < MODULES_END)) { 337 /* Valid, no problems... */ 338 } else { 339 bad_kernel_pc(regs, address); 340 goto exit_exception; 341 } 342 } else 343 flags |= FAULT_FLAG_USER; 344 345 /* 346 * If we're in an interrupt or have no user 347 * context, we must not take the fault.. 348 */ 349 if (in_atomic() || !mm) 350 goto intr_or_no_mm; 351 352 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 353 354 if (!down_read_trylock(&mm->mmap_sem)) { 355 if ((regs->tstate & TSTATE_PRIV) && 356 !search_exception_tables(regs->tpc)) { 357 insn = get_fault_insn(regs, insn); 358 goto handle_kernel_fault; 359 } 360 361 retry: 362 down_read(&mm->mmap_sem); 363 } 364 365 vma = find_vma(mm, address); 366 if (!vma) 367 goto bad_area; 368 369 /* Pure DTLB misses do not tell us whether the fault causing 370 * load/store/atomic was a write or not, it only says that there 371 * was no match. So in such a case we (carefully) read the 372 * instruction to try and figure this out. It's an optimization 373 * so it's ok if we can't do this. 374 * 375 * Special hack, window spill/fill knows the exact fault type. 376 */ 377 if (((fault_code & 378 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && 379 (vma->vm_flags & VM_WRITE) != 0) { 380 insn = get_fault_insn(regs, 0); 381 if (!insn) 382 goto continue_fault; 383 /* All loads, stores and atomics have bits 30 and 31 both set 384 * in the instruction. Bit 21 is set in all stores, but we 385 * have to avoid prefetches which also have bit 21 set. 386 */ 387 if ((insn & 0xc0200000) == 0xc0200000 && 388 (insn & 0x01780000) != 0x01680000) { 389 /* Don't bother updating thread struct value, 390 * because update_mmu_cache only cares which tlb 391 * the access came from. 392 */ 393 fault_code |= FAULT_CODE_WRITE; 394 } 395 } 396 continue_fault: 397 398 if (vma->vm_start <= address) 399 goto good_area; 400 if (!(vma->vm_flags & VM_GROWSDOWN)) 401 goto bad_area; 402 if (!(fault_code & FAULT_CODE_WRITE)) { 403 /* Non-faulting loads shouldn't expand stack. */ 404 insn = get_fault_insn(regs, insn); 405 if ((insn & 0xc0800000) == 0xc0800000) { 406 unsigned char asi; 407 408 if (insn & 0x2000) 409 asi = (regs->tstate >> 24); 410 else 411 asi = (insn >> 5); 412 if ((asi & 0xf2) == 0x82) 413 goto bad_area; 414 } 415 } 416 if (expand_stack(vma, address)) 417 goto bad_area; 418 /* 419 * Ok, we have a good vm_area for this memory access, so 420 * we can handle it.. 421 */ 422 good_area: 423 si_code = SEGV_ACCERR; 424 425 /* If we took a ITLB miss on a non-executable page, catch 426 * that here. 427 */ 428 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { 429 BUG_ON(address != regs->tpc); 430 BUG_ON(regs->tstate & TSTATE_PRIV); 431 goto bad_area; 432 } 433 434 if (fault_code & FAULT_CODE_WRITE) { 435 if (!(vma->vm_flags & VM_WRITE)) 436 goto bad_area; 437 438 /* Spitfire has an icache which does not snoop 439 * processor stores. Later processors do... 440 */ 441 if (tlb_type == spitfire && 442 (vma->vm_flags & VM_EXEC) != 0 && 443 vma->vm_file != NULL) 444 set_thread_fault_code(fault_code | 445 FAULT_CODE_BLKCOMMIT); 446 447 flags |= FAULT_FLAG_WRITE; 448 } else { 449 /* Allow reads even for write-only mappings */ 450 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 451 goto bad_area; 452 } 453 454 fault = handle_mm_fault(mm, vma, address, flags); 455 456 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 457 goto exit_exception; 458 459 if (unlikely(fault & VM_FAULT_ERROR)) { 460 if (fault & VM_FAULT_OOM) 461 goto out_of_memory; 462 else if (fault & VM_FAULT_SIGBUS) 463 goto do_sigbus; 464 BUG(); 465 } 466 467 if (flags & FAULT_FLAG_ALLOW_RETRY) { 468 if (fault & VM_FAULT_MAJOR) { 469 current->maj_flt++; 470 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 471 1, regs, address); 472 } else { 473 current->min_flt++; 474 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 475 1, regs, address); 476 } 477 if (fault & VM_FAULT_RETRY) { 478 flags &= ~FAULT_FLAG_ALLOW_RETRY; 479 flags |= FAULT_FLAG_TRIED; 480 481 /* No need to up_read(&mm->mmap_sem) as we would 482 * have already released it in __lock_page_or_retry 483 * in mm/filemap.c. 484 */ 485 486 goto retry; 487 } 488 } 489 up_read(&mm->mmap_sem); 490 491 mm_rss = get_mm_rss(mm); 492 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 493 mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE)); 494 #endif 495 if (unlikely(mm_rss > 496 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) 497 tsb_grow(mm, MM_TSB_BASE, mm_rss); 498 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 499 mm_rss = mm->context.huge_pte_count; 500 if (unlikely(mm_rss > 501 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) { 502 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) 503 tsb_grow(mm, MM_TSB_HUGE, mm_rss); 504 else 505 hugetlb_setup(regs); 506 507 } 508 #endif 509 exit_exception: 510 exception_exit(prev_state); 511 return; 512 513 /* 514 * Something tried to access memory that isn't in our memory map.. 515 * Fix it, but check if it's kernel or user first.. 516 */ 517 bad_area: 518 insn = get_fault_insn(regs, insn); 519 up_read(&mm->mmap_sem); 520 521 handle_kernel_fault: 522 do_kernel_fault(regs, si_code, fault_code, insn, address); 523 goto exit_exception; 524 525 /* 526 * We ran out of memory, or some other thing happened to us that made 527 * us unable to handle the page fault gracefully. 528 */ 529 out_of_memory: 530 insn = get_fault_insn(regs, insn); 531 up_read(&mm->mmap_sem); 532 if (!(regs->tstate & TSTATE_PRIV)) { 533 pagefault_out_of_memory(); 534 goto exit_exception; 535 } 536 goto handle_kernel_fault; 537 538 intr_or_no_mm: 539 insn = get_fault_insn(regs, 0); 540 goto handle_kernel_fault; 541 542 do_sigbus: 543 insn = get_fault_insn(regs, insn); 544 up_read(&mm->mmap_sem); 545 546 /* 547 * Send a sigbus, regardless of whether we were in kernel 548 * or user mode. 549 */ 550 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code); 551 552 /* Kernel mode? Handle exceptions or die */ 553 if (regs->tstate & TSTATE_PRIV) 554 goto handle_kernel_fault; 555 } 556