xref: /linux/arch/sparc/math-emu/math_64.c (revision e26207a3819684e9b4450a2d30bdd065fa92d9c7)
1 /*
2  * arch/sparc64/math-emu/math.c
3  *
4  * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
5  * Copyright (C) 1999 David S. Miller (davem@redhat.com)
6  *
7  * Emulation routines originate from soft-fp package, which is part
8  * of glibc and has appropriate copyrights in it.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/perf_event.h>
15 
16 #include <asm/fpumacro.h>
17 #include <asm/ptrace.h>
18 #include <asm/uaccess.h>
19 
20 #include "sfp-util_64.h"
21 #include <math-emu/soft-fp.h>
22 #include <math-emu/single.h>
23 #include <math-emu/double.h>
24 #include <math-emu/quad.h>
25 
26 /* QUAD - ftt == 3 */
27 #define FMOVQ	0x003
28 #define FNEGQ	0x007
29 #define FABSQ	0x00b
30 #define FSQRTQ	0x02b
31 #define FADDQ	0x043
32 #define FSUBQ	0x047
33 #define FMULQ	0x04b
34 #define FDIVQ	0x04f
35 #define FDMULQ	0x06e
36 #define FQTOX	0x083
37 #define FXTOQ	0x08c
38 #define FQTOS	0x0c7
39 #define FQTOD	0x0cb
40 #define FITOQ	0x0cc
41 #define FSTOQ	0x0cd
42 #define FDTOQ	0x0ce
43 #define FQTOI	0x0d3
44 /* SUBNORMAL - ftt == 2 */
45 #define FSQRTS	0x029
46 #define FSQRTD	0x02a
47 #define FADDS	0x041
48 #define FADDD	0x042
49 #define FSUBS	0x045
50 #define FSUBD	0x046
51 #define FMULS	0x049
52 #define FMULD	0x04a
53 #define FDIVS	0x04d
54 #define FDIVD	0x04e
55 #define FSMULD	0x069
56 #define FSTOX	0x081
57 #define FDTOX	0x082
58 #define FDTOS	0x0c6
59 #define FSTOD	0x0c9
60 #define FSTOI	0x0d1
61 #define FDTOI	0x0d2
62 #define FXTOS	0x084 /* Only Ultra-III generates this. */
63 #define FXTOD	0x088 /* Only Ultra-III generates this. */
64 #if 0	/* Optimized inline in sparc64/kernel/entry.S */
65 #define FITOS	0x0c4 /* Only Ultra-III generates this. */
66 #endif
67 #define FITOD	0x0c8 /* Only Ultra-III generates this. */
68 /* FPOP2 */
69 #define FCMPQ	0x053
70 #define FCMPEQ	0x057
71 #define FMOVQ0	0x003
72 #define FMOVQ1	0x043
73 #define FMOVQ2	0x083
74 #define FMOVQ3	0x0c3
75 #define FMOVQI	0x103
76 #define FMOVQX	0x183
77 #define FMOVQZ	0x027
78 #define FMOVQLE	0x047
79 #define FMOVQLZ 0x067
80 #define FMOVQNZ	0x0a7
81 #define FMOVQGZ	0x0c7
82 #define FMOVQGE 0x0e7
83 
84 #define FSR_TEM_SHIFT	23UL
85 #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
86 #define FSR_AEXC_SHIFT	5UL
87 #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
88 #define FSR_CEXC_SHIFT	0UL
89 #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
90 
91 /* All routines returning an exception to raise should detect
92  * such exceptions _before_ rounding to be consistent with
93  * the behavior of the hardware in the implemented cases
94  * (and thus with the recommendations in the V9 architecture
95  * manual).
96  *
97  * We return 0 if a SIGFPE should be sent, 1 otherwise.
98  */
99 static inline int record_exception(struct pt_regs *regs, int eflag)
100 {
101 	u64 fsr = current_thread_info()->xfsr[0];
102 	int would_trap;
103 
104 	/* Determine if this exception would have generated a trap. */
105 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
106 
107 	/* If trapping, we only want to signal one bit. */
108 	if(would_trap != 0) {
109 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
110 		if((eflag & (eflag - 1)) != 0) {
111 			if(eflag & FP_EX_INVALID)
112 				eflag = FP_EX_INVALID;
113 			else if(eflag & FP_EX_OVERFLOW)
114 				eflag = FP_EX_OVERFLOW;
115 			else if(eflag & FP_EX_UNDERFLOW)
116 				eflag = FP_EX_UNDERFLOW;
117 			else if(eflag & FP_EX_DIVZERO)
118 				eflag = FP_EX_DIVZERO;
119 			else if(eflag & FP_EX_INEXACT)
120 				eflag = FP_EX_INEXACT;
121 		}
122 	}
123 
124 	/* Set CEXC, here is the rule:
125 	 *
126 	 *    In general all FPU ops will set one and only one
127 	 *    bit in the CEXC field, this is always the case
128 	 *    when the IEEE exception trap is enabled in TEM.
129 	 */
130 	fsr &= ~(FSR_CEXC_MASK);
131 	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
132 
133 	/* Set the AEXC field, rule is:
134 	 *
135 	 *    If a trap would not be generated, the
136 	 *    CEXC just generated is OR'd into the
137 	 *    existing value of AEXC.
138 	 */
139 	if(would_trap == 0)
140 		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
141 
142 	/* If trapping, indicate fault trap type IEEE. */
143 	if(would_trap != 0)
144 		fsr |= (1UL << 14);
145 
146 	current_thread_info()->xfsr[0] = fsr;
147 
148 	/* If we will not trap, advance the program counter over
149 	 * the instruction being handled.
150 	 */
151 	if(would_trap == 0) {
152 		regs->tpc = regs->tnpc;
153 		regs->tnpc += 4;
154 	}
155 
156 	return (would_trap ? 0 : 1);
157 }
158 
159 typedef union {
160 	u32 s;
161 	u64 d;
162 	u64 q[2];
163 } *argp;
164 
165 int do_mathemu(struct pt_regs *regs, struct fpustate *f)
166 {
167 	unsigned long pc = regs->tpc;
168 	unsigned long tstate = regs->tstate;
169 	u32 insn = 0;
170 	int type = 0;
171 	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
172 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
173 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
174 #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
175 	int freg;
176 	static u64 zero[2] = { 0L, 0L };
177 	int flags;
178 	FP_DECL_EX;
179 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
180 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
181 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
182 	int IR;
183 	long XR, xfsr;
184 
185 	if (tstate & TSTATE_PRIV)
186 		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
187 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
188 	if (test_thread_flag(TIF_32BIT))
189 		pc = (u32)pc;
190 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
191 		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
192 			switch ((insn >> 5) & 0x1ff) {
193 			/* QUAD - ftt == 3 */
194 			case FMOVQ:
195 			case FNEGQ:
196 			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
197 			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
198 			case FADDQ:
199 			case FSUBQ:
200 			case FMULQ:
201 			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
202 			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
203 			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
204 			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
205 			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
206 			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
207 			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
208 			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
209 			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
210 			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
211 
212 			/* We can get either unimplemented or unfinished
213 			 * for these cases.  Pre-Niagara systems generate
214 			 * unfinished fpop for SUBNORMAL cases, and Niagara
215 			 * always gives unimplemented fpop for fsqrt{s,d}.
216 			 */
217 			case FSQRTS: {
218 				unsigned long x = current_thread_info()->xfsr[0];
219 
220 				x = (x >> 14) & 0xf;
221 				TYPE(x,1,1,1,1,0,0);
222 				break;
223 			}
224 
225 			case FSQRTD: {
226 				unsigned long x = current_thread_info()->xfsr[0];
227 
228 				x = (x >> 14) & 0xf;
229 				TYPE(x,2,1,2,1,0,0);
230 				break;
231 			}
232 
233 			/* SUBNORMAL - ftt == 2 */
234 			case FADDD:
235 			case FSUBD:
236 			case FMULD:
237 			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
238 			case FADDS:
239 			case FSUBS:
240 			case FMULS:
241 			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
242 			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
243 			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
244 			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
245 			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
246 			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
247 			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
248 			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
249 
250 			/* Only Ultra-III generates these */
251 			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
252 			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
253 #if 0			/* Optimized inline in sparc64/kernel/entry.S */
254 			case FITOS: TYPE(2,1,1,1,0,0,0); break;
255 #endif
256 			case FITOD: TYPE(2,2,1,1,0,0,0); break;
257 			}
258 		}
259 		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
260 			IR = 2;
261 			switch ((insn >> 5) & 0x1ff) {
262 			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
263 			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
264 			/* Now the conditional fmovq support */
265 			case FMOVQ0:
266 			case FMOVQ1:
267 			case FMOVQ2:
268 			case FMOVQ3:
269 				/* fmovq %fccX, %fY, %fZ */
270 				if (!((insn >> 11) & 3))
271 					XR = current_thread_info()->xfsr[0] >> 10;
272 				else
273 					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
274 				XR &= 3;
275 				IR = 0;
276 				switch ((insn >> 14) & 0x7) {
277 				/* case 0: IR = 0; break; */			/* Never */
278 				case 1: if (XR) IR = 1; break;			/* Not Equal */
279 				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
280 				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
281 				case 4: if (XR == 1) IR = 1; break;		/* Less */
282 				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
283 				case 6: if (XR == 2) IR = 1; break;		/* Greater */
284 				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
285 				}
286 				if ((insn >> 14) & 8)
287 					IR ^= 1;
288 				break;
289 			case FMOVQI:
290 			case FMOVQX:
291 				/* fmovq %[ix]cc, %fY, %fZ */
292 				XR = regs->tstate >> 32;
293 				if ((insn >> 5) & 0x80)
294 					XR >>= 4;
295 				XR &= 0xf;
296 				IR = 0;
297 				freg = ((XR >> 2) ^ XR) & 2;
298 				switch ((insn >> 14) & 0x7) {
299 				/* case 0: IR = 0; break; */			/* Never */
300 				case 1: if (XR & 4) IR = 1; break;		/* Equal */
301 				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
302 				case 3: if (freg) IR = 1; break;		/* Less */
303 				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
304 				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
305 				case 6: if (XR & 8) IR = 1; break;		/* Negative */
306 				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
307 				}
308 				if ((insn >> 14) & 8)
309 					IR ^= 1;
310 				break;
311 			case FMOVQZ:
312 			case FMOVQLE:
313 			case FMOVQLZ:
314 			case FMOVQNZ:
315 			case FMOVQGZ:
316 			case FMOVQGE:
317 				freg = (insn >> 14) & 0x1f;
318 				if (!freg)
319 					XR = 0;
320 				else if (freg < 16)
321 					XR = regs->u_regs[freg];
322 				else if (test_thread_flag(TIF_32BIT)) {
323 					struct reg_window32 __user *win32;
324 					flushw_user ();
325 					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
326 					get_user(XR, &win32->locals[freg - 16]);
327 				} else {
328 					struct reg_window __user *win;
329 					flushw_user ();
330 					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
331 					get_user(XR, &win->locals[freg - 16]);
332 				}
333 				IR = 0;
334 				switch ((insn >> 10) & 3) {
335 				case 1: if (!XR) IR = 1; break;			/* Register Zero */
336 				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
337 				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
338 				}
339 				if ((insn >> 10) & 4)
340 					IR ^= 1;
341 				break;
342 			}
343 			if (IR == 0) {
344 				/* The fmov test was false. Do a nop instead */
345 				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
346 				regs->tpc = regs->tnpc;
347 				regs->tnpc += 4;
348 				return 1;
349 			} else if (IR == 1) {
350 				/* Change the instruction into plain fmovq */
351 				insn = (insn & 0x3e00001f) | 0x81a00060;
352 				TYPE(3,3,0,3,0,0,0);
353 			}
354 		}
355 	}
356 	if (type) {
357 		argp rs1 = NULL, rs2 = NULL, rd = NULL;
358 
359 		freg = (current_thread_info()->xfsr[0] >> 14) & 0xf;
360 		if (freg != (type >> 9))
361 			goto err;
362 		current_thread_info()->xfsr[0] &= ~0x1c000;
363 		freg = ((insn >> 14) & 0x1f);
364 		switch (type & 0x3) {
365 		case 3: if (freg & 2) {
366 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
367 				goto err;
368 			}
369 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
370 		case 1: rs1 = (argp)&f->regs[freg];
371 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
372 			if (!(current_thread_info()->fpsaved[0] & flags))
373 				rs1 = (argp)&zero;
374 			break;
375 		}
376 		switch (type & 0x7) {
377 		case 7: FP_UNPACK_QP (QA, rs1); break;
378 		case 6: FP_UNPACK_DP (DA, rs1); break;
379 		case 5: FP_UNPACK_SP (SA, rs1); break;
380 		}
381 		freg = (insn & 0x1f);
382 		switch ((type >> 3) & 0x3) {
383 		case 3: if (freg & 2) {
384 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
385 				goto err;
386 			}
387 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
388 		case 1: rs2 = (argp)&f->regs[freg];
389 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
390 			if (!(current_thread_info()->fpsaved[0] & flags))
391 				rs2 = (argp)&zero;
392 			break;
393 		}
394 		switch ((type >> 3) & 0x7) {
395 		case 7: FP_UNPACK_QP (QB, rs2); break;
396 		case 6: FP_UNPACK_DP (DB, rs2); break;
397 		case 5: FP_UNPACK_SP (SB, rs2); break;
398 		}
399 		freg = ((insn >> 25) & 0x1f);
400 		switch ((type >> 6) & 0x3) {
401 		case 3: if (freg & 2) {
402 				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
403 				goto err;
404 			}
405 		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
406 		case 1: rd = (argp)&f->regs[freg];
407 			flags = (freg < 32) ? FPRS_DL : FPRS_DU;
408 			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
409 				current_thread_info()->fpsaved[0] = FPRS_FEF;
410 				current_thread_info()->gsr[0] = 0;
411 			}
412 			if (!(current_thread_info()->fpsaved[0] & flags)) {
413 				if (freg < 32)
414 					memset(f->regs, 0, 32*sizeof(u32));
415 				else
416 					memset(f->regs+32, 0, 32*sizeof(u32));
417 			}
418 			current_thread_info()->fpsaved[0] |= flags;
419 			break;
420 		}
421 		switch ((insn >> 5) & 0x1ff) {
422 		/* + */
423 		case FADDS: FP_ADD_S (SR, SA, SB); break;
424 		case FADDD: FP_ADD_D (DR, DA, DB); break;
425 		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
426 		/* - */
427 		case FSUBS: FP_SUB_S (SR, SA, SB); break;
428 		case FSUBD: FP_SUB_D (DR, DA, DB); break;
429 		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
430 		/* * */
431 		case FMULS: FP_MUL_S (SR, SA, SB); break;
432 		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
433 			     FP_CONV (D, S, 1, 1, DB, SB);
434 		case FMULD: FP_MUL_D (DR, DA, DB); break;
435 		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
436 			     FP_CONV (Q, D, 2, 1, QB, DB);
437 		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
438 		/* / */
439 		case FDIVS: FP_DIV_S (SR, SA, SB); break;
440 		case FDIVD: FP_DIV_D (DR, DA, DB); break;
441 		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
442 		/* sqrt */
443 		case FSQRTS: FP_SQRT_S (SR, SB); break;
444 		case FSQRTD: FP_SQRT_D (DR, DB); break;
445 		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
446 		/* mov */
447 		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
448 		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
449 		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
450 		/* float to int */
451 		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
452 		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
453 		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
454 		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
455 		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
456 		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
457 		/* int to float */
458 		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
459 		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
460 		/* Only Ultra-III generates these */
461 		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
462 		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
463 #if 0		/* Optimized inline in sparc64/kernel/entry.S */
464 		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
465 #endif
466 		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
467 		/* float to float */
468 		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
469 		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
470 		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
471 		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
472 		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
473 		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
474 		/* comparison */
475 		case FCMPQ:
476 		case FCMPEQ:
477 			FP_CMP_Q(XR, QB, QA, 3);
478 			if (XR == 3 &&
479 			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
480 			     FP_ISSIGNAN_Q(QA) ||
481 			     FP_ISSIGNAN_Q(QB)))
482 				FP_SET_EXCEPTION (FP_EX_INVALID);
483 		}
484 		if (!FP_INHIBIT_RESULTS) {
485 			switch ((type >> 6) & 0x7) {
486 			case 0: xfsr = current_thread_info()->xfsr[0];
487 				if (XR == -1) XR = 2;
488 				switch (freg & 3) {
489 				/* fcc0, 1, 2, 3 */
490 				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
491 				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
492 				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
493 				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
494 				}
495 				current_thread_info()->xfsr[0] = xfsr;
496 				break;
497 			case 1: rd->s = IR; break;
498 			case 2: rd->d = XR; break;
499 			case 5: FP_PACK_SP (rd, SR); break;
500 			case 6: FP_PACK_DP (rd, DR); break;
501 			case 7: FP_PACK_QP (rd, QR); break;
502 			}
503 		}
504 
505 		if(_fex != 0)
506 			return record_exception(regs, _fex);
507 
508 		/* Success and no exceptions detected. */
509 		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
510 		regs->tpc = regs->tnpc;
511 		regs->tnpc += 4;
512 		return 1;
513 	}
514 err:	return 0;
515 }
516