xref: /linux/arch/sparc/kernel/uprobes.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for sparc
4  *
5  * Copyright (C) 2013 Oracle Inc.
6  *
7  * Authors:
8  *	Jose E. Marchesi <jose.marchesi@oracle.com>
9  *	Eric Saint Etienne <eric.saint.etienne@oracle.com>
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/uprobes.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched.h> /* For struct task_struct */
17 #include <linux/kdebug.h>
18 
19 #include <asm/cacheflush.h>
20 
21 #include "kernel.h"
22 
23 /* Compute the address of the breakpoint instruction and return it.
24  *
25  * Note that uprobe_get_swbp_addr is defined as a weak symbol in
26  * kernel/events/uprobe.c.
27  */
28 unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
29 {
30 	return instruction_pointer(regs);
31 }
32 
33 static void copy_to_page(struct page *page, unsigned long vaddr,
34 			 const void *src, int len)
35 {
36 	void *kaddr = kmap_atomic(page);
37 
38 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
39 	kunmap_atomic(kaddr);
40 }
41 
42 /* Fill in the xol area with the probed instruction followed by the
43  * single-step trap.  Some fixups in the copied instruction are
44  * performed at this point.
45  *
46  * Note that uprobe_xol_copy is defined as a weak symbol in
47  * kernel/events/uprobe.c.
48  */
49 void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
50 			   void *src, unsigned long len)
51 {
52 	const u32 stp_insn = UPROBE_STP_INSN;
53 	u32 insn = *(u32 *) src;
54 
55 	/* Branches annulling their delay slot must be fixed to not do
56 	 * so.  Clearing the annul bit on these instructions we can be
57 	 * sure the single-step breakpoint in the XOL slot will be
58 	 * executed.
59 	 */
60 
61 	u32 op = (insn >> 30) & 0x3;
62 	u32 op2 = (insn >> 22) & 0x7;
63 
64 	if (op == 0 &&
65 	    (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
66 	    (insn & ANNUL_BIT) == ANNUL_BIT)
67 		insn &= ~ANNUL_BIT;
68 
69 	copy_to_page(page, vaddr, &insn, len);
70 	copy_to_page(page, vaddr+len, &stp_insn, 4);
71 }
72 
73 
74 /* Instruction analysis/validity.
75  *
76  * This function returns 0 on success or a -ve number on error.
77  */
78 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
79 			     struct mm_struct *mm, unsigned long addr)
80 {
81 	/* Any unsupported instruction?  Then return -EINVAL  */
82 	return 0;
83 }
84 
85 /* If INSN is a relative control transfer instruction, return the
86  * corrected branch destination value.
87  *
88  * Note that regs->tpc and regs->tnpc still hold the values of the
89  * program counters at the time of the single-step trap due to the
90  * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
91  *
92  */
93 static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
94 				     struct pt_regs *regs)
95 {
96 	/* Branch not taken, no mods necessary.  */
97 	if (regs->tnpc == regs->tpc + 0x4UL)
98 		return utask->autask.saved_tnpc + 0x4UL;
99 
100 	/* The three cases are call, branch w/prediction,
101 	 * and traditional branch.
102 	 */
103 	if ((insn & 0xc0000000) == 0x40000000 ||
104 	    (insn & 0xc1c00000) == 0x00400000 ||
105 	    (insn & 0xc1c00000) == 0x00800000) {
106 		unsigned long real_pc = (unsigned long) utask->vaddr;
107 		unsigned long ixol_addr = utask->xol_vaddr;
108 
109 		/* The instruction did all the work for us
110 		 * already, just apply the offset to the correct
111 		 * instruction location.
112 		 */
113 		return (real_pc + (regs->tnpc - ixol_addr));
114 	}
115 
116 	/* It is jmpl or some other absolute PC modification instruction,
117 	 * leave NPC as-is.
118 	 */
119 	return regs->tnpc;
120 }
121 
122 /* If INSN is an instruction which writes its PC location
123  * into a destination register, fix that up.
124  */
125 static int retpc_fixup(struct pt_regs *regs, u32 insn,
126 		       unsigned long real_pc)
127 {
128 	unsigned long *slot = NULL;
129 	int rc = 0;
130 
131 	/* Simplest case is 'call', which always uses %o7 */
132 	if ((insn & 0xc0000000) == 0x40000000)
133 		slot = &regs->u_regs[UREG_I7];
134 
135 	/* 'jmpl' encodes the register inside of the opcode */
136 	if ((insn & 0xc1f80000) == 0x81c00000) {
137 		unsigned long rd = ((insn >> 25) & 0x1f);
138 
139 		if (rd <= 15) {
140 			slot = &regs->u_regs[rd];
141 		} else {
142 			unsigned long fp = regs->u_regs[UREG_FP];
143 			/* Hard case, it goes onto the stack. */
144 			flushw_all();
145 
146 			rd -= 16;
147 			if (test_thread_64bit_stack(fp)) {
148 				unsigned long __user *uslot =
149 			(unsigned long __user *) (fp + STACK_BIAS) + rd;
150 				rc = __put_user(real_pc, uslot);
151 			} else {
152 				unsigned int __user *uslot = (unsigned int
153 						__user *) fp + rd;
154 				rc = __put_user((u32) real_pc, uslot);
155 			}
156 		}
157 	}
158 	if (slot != NULL)
159 		*slot = real_pc;
160 	return rc;
161 }
162 
163 /* Single-stepping can be avoided for certain instructions: NOPs and
164  * instructions that can be emulated.  This function determines
165  * whether the instruction where the uprobe is installed falls in one
166  * of these cases and emulates it.
167  *
168  * This function returns true if the single-stepping can be skipped,
169  * false otherwise.
170  */
171 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
172 {
173 	/* We currently only emulate NOP instructions.
174 	 */
175 
176 	if (auprobe->ixol == (1 << 24)) {
177 		regs->tnpc += 4;
178 		regs->tpc += 4;
179 		return true;
180 	}
181 
182 	return false;
183 }
184 
185 /* Prepare to execute out of line.  At this point
186  * current->utask->xol_vaddr points to an allocated XOL slot properly
187  * initialized with the original instruction and the single-stepping
188  * trap instruction.
189  *
190  * This function returns 0 on success, any other number on error.
191  */
192 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
193 {
194 	struct uprobe_task *utask = current->utask;
195 	struct arch_uprobe_task *autask = &current->utask->autask;
196 
197 	/* Save the current program counters so they can be restored
198 	 * later.
199 	 */
200 	autask->saved_tpc = regs->tpc;
201 	autask->saved_tnpc = regs->tnpc;
202 
203 	/* Adjust PC and NPC so the first instruction in the XOL slot
204 	 * will be executed by the user task.
205 	 */
206 	instruction_pointer_set(regs, utask->xol_vaddr);
207 
208 	return 0;
209 }
210 
211 /* Prepare to resume execution after the single-step.  Called after
212  * single-stepping. To avoid the SMP problems that can occur when we
213  * temporarily put back the original opcode to single-step, we
214  * single-stepped a copy of the instruction.
215  *
216  * This function returns 0 on success, any other number on error.
217  */
218 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
219 {
220 	struct uprobe_task *utask = current->utask;
221 	struct arch_uprobe_task *autask = &utask->autask;
222 	u32 insn = auprobe->ixol;
223 	int rc = 0;
224 
225 	if (utask->state == UTASK_SSTEP_ACK) {
226 		regs->tnpc = relbranch_fixup(insn, utask, regs);
227 		regs->tpc = autask->saved_tnpc;
228 		rc =  retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
229 	} else {
230 		regs->tnpc = utask->vaddr+4;
231 		regs->tpc = autask->saved_tnpc+4;
232 	}
233 	return rc;
234 }
235 
236 /* Handler for uprobe traps.  This is called from the traps table and
237  * triggers the proper die notification.
238  */
239 asmlinkage void uprobe_trap(struct pt_regs *regs,
240 			    unsigned long trap_level)
241 {
242 	BUG_ON(trap_level != 0x173 && trap_level != 0x174);
243 
244 	/* We are only interested in user-mode code.  Uprobe traps
245 	 * shall not be present in kernel code.
246 	 */
247 	if (!user_mode(regs)) {
248 		local_irq_enable();
249 		bad_trap(regs, trap_level);
250 		return;
251 	}
252 
253 	/* trap_level == 0x173 --> ta 0x73
254 	 * trap_level == 0x174 --> ta 0x74
255 	 */
256 	if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
257 				(trap_level == 0x173) ? "bpt" : "sstep",
258 				regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
259 		bad_trap(regs, trap_level);
260 }
261 
262 /* Callback routine for handling die notifications.
263 */
264 int arch_uprobe_exception_notify(struct notifier_block *self,
265 				 unsigned long val, void *data)
266 {
267 	int ret = NOTIFY_DONE;
268 	struct die_args *args = (struct die_args *)data;
269 
270 	/* We are only interested in userspace traps */
271 	if (args->regs && !user_mode(args->regs))
272 		return NOTIFY_DONE;
273 
274 	switch (val) {
275 	case DIE_BPT:
276 		if (uprobe_pre_sstep_notifier(args->regs))
277 			ret = NOTIFY_STOP;
278 		break;
279 
280 	case DIE_SSTEP:
281 		if (uprobe_post_sstep_notifier(args->regs))
282 			ret = NOTIFY_STOP;
283 
284 	default:
285 		break;
286 	}
287 
288 	return ret;
289 }
290 
291 /* This function gets called when a XOL instruction either gets
292  * trapped or the thread has a fatal signal, so reset the instruction
293  * pointer to its probed address.
294  */
295 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
296 {
297 	struct uprobe_task *utask = current->utask;
298 
299 	instruction_pointer_set(regs, utask->vaddr);
300 }
301 
302 /* If xol insn itself traps and generates a signal(Say,
303  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
304  * instruction jumps back to its own address.
305  */
306 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
307 {
308 	return false;
309 }
310 
311 unsigned long
312 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
313 				  struct pt_regs *regs)
314 {
315 	unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
316 
317 	regs->u_regs[UREG_I7] = trampoline_vaddr-8;
318 
319 	return orig_ret_vaddr + 8;
320 }
321