xref: /linux/arch/sparc/kernel/traps_64.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /* arch/sparc64/kernel/traps.c
2  *
3  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
5  */
6 
7 /*
8  * I like traps on v9, :))))
9  */
10 
11 #include <linux/extable.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/debug.h>
14 #include <linux/linkage.h>
15 #include <linux/kernel.h>
16 #include <linux/signal.h>
17 #include <linux/smp.h>
18 #include <linux/mm.h>
19 #include <linux/init.h>
20 #include <linux/kdebug.h>
21 #include <linux/ftrace.h>
22 #include <linux/reboot.h>
23 #include <linux/gfp.h>
24 #include <linux/context_tracking.h>
25 
26 #include <asm/smp.h>
27 #include <asm/delay.h>
28 #include <asm/ptrace.h>
29 #include <asm/oplib.h>
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/unistd.h>
33 #include <linux/uaccess.h>
34 #include <asm/fpumacro.h>
35 #include <asm/lsu.h>
36 #include <asm/dcu.h>
37 #include <asm/estate.h>
38 #include <asm/chafsr.h>
39 #include <asm/sfafsr.h>
40 #include <asm/psrcompat.h>
41 #include <asm/processor.h>
42 #include <asm/timer.h>
43 #include <asm/head.h>
44 #include <asm/prom.h>
45 #include <asm/memctrl.h>
46 #include <asm/cacheflush.h>
47 #include <asm/setup.h>
48 
49 #include "entry.h"
50 #include "kernel.h"
51 #include "kstack.h"
52 
53 /* When an irrecoverable trap occurs at tl > 0, the trap entry
54  * code logs the trap state registers at every level in the trap
55  * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
56  * is as follows:
57  */
58 struct tl1_traplog {
59 	struct {
60 		unsigned long tstate;
61 		unsigned long tpc;
62 		unsigned long tnpc;
63 		unsigned long tt;
64 	} trapstack[4];
65 	unsigned long tl;
66 };
67 
68 static void dump_tl1_traplog(struct tl1_traplog *p)
69 {
70 	int i, limit;
71 
72 	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
73 	       "dumping track stack.\n", p->tl);
74 
75 	limit = (tlb_type == hypervisor) ? 2 : 4;
76 	for (i = 0; i < limit; i++) {
77 		printk(KERN_EMERG
78 		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
79 		       "TNPC[%016lx] TT[%lx]\n",
80 		       i + 1,
81 		       p->trapstack[i].tstate, p->trapstack[i].tpc,
82 		       p->trapstack[i].tnpc, p->trapstack[i].tt);
83 		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
84 	}
85 }
86 
87 void bad_trap(struct pt_regs *regs, long lvl)
88 {
89 	char buffer[36];
90 
91 	if (notify_die(DIE_TRAP, "bad trap", regs,
92 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
93 		return;
94 
95 	if (lvl < 0x100) {
96 		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
97 		die_if_kernel(buffer, regs);
98 	}
99 
100 	lvl -= 0x100;
101 	if (regs->tstate & TSTATE_PRIV) {
102 		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
103 		die_if_kernel(buffer, regs);
104 	}
105 	if (test_thread_flag(TIF_32BIT)) {
106 		regs->tpc &= 0xffffffff;
107 		regs->tnpc &= 0xffffffff;
108 	}
109 	force_sig_fault(SIGILL, ILL_ILLTRP,
110 			(void __user *)regs->tpc, lvl, current);
111 }
112 
113 void bad_trap_tl1(struct pt_regs *regs, long lvl)
114 {
115 	char buffer[36];
116 
117 	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
118 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
119 		return;
120 
121 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
122 
123 	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
124 	die_if_kernel (buffer, regs);
125 }
126 
127 #ifdef CONFIG_DEBUG_BUGVERBOSE
128 void do_BUG(const char *file, int line)
129 {
130 	bust_spinlocks(1);
131 	printk("kernel BUG at %s:%d!\n", file, line);
132 }
133 EXPORT_SYMBOL(do_BUG);
134 #endif
135 
136 static DEFINE_SPINLOCK(dimm_handler_lock);
137 static dimm_printer_t dimm_handler;
138 
139 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
140 {
141 	unsigned long flags;
142 	int ret = -ENODEV;
143 
144 	spin_lock_irqsave(&dimm_handler_lock, flags);
145 	if (dimm_handler) {
146 		ret = dimm_handler(synd_code, paddr, buf, buflen);
147 	} else if (tlb_type == spitfire) {
148 		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
149 			ret = -EINVAL;
150 		else
151 			ret = 0;
152 	} else
153 		ret = -ENODEV;
154 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
155 
156 	return ret;
157 }
158 
159 int register_dimm_printer(dimm_printer_t func)
160 {
161 	unsigned long flags;
162 	int ret = 0;
163 
164 	spin_lock_irqsave(&dimm_handler_lock, flags);
165 	if (!dimm_handler)
166 		dimm_handler = func;
167 	else
168 		ret = -EEXIST;
169 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
170 
171 	return ret;
172 }
173 EXPORT_SYMBOL_GPL(register_dimm_printer);
174 
175 void unregister_dimm_printer(dimm_printer_t func)
176 {
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(&dimm_handler_lock, flags);
180 	if (dimm_handler == func)
181 		dimm_handler = NULL;
182 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
183 }
184 EXPORT_SYMBOL_GPL(unregister_dimm_printer);
185 
186 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
187 {
188 	enum ctx_state prev_state = exception_enter();
189 
190 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
191 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
192 		goto out;
193 
194 	if (regs->tstate & TSTATE_PRIV) {
195 		printk("spitfire_insn_access_exception: SFSR[%016lx] "
196 		       "SFAR[%016lx], going.\n", sfsr, sfar);
197 		die_if_kernel("Iax", regs);
198 	}
199 	if (test_thread_flag(TIF_32BIT)) {
200 		regs->tpc &= 0xffffffff;
201 		regs->tnpc &= 0xffffffff;
202 	}
203 	force_sig_fault(SIGSEGV, SEGV_MAPERR,
204 			(void __user *)regs->tpc, 0, current);
205 out:
206 	exception_exit(prev_state);
207 }
208 
209 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
210 {
211 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
212 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
213 		return;
214 
215 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
216 	spitfire_insn_access_exception(regs, sfsr, sfar);
217 }
218 
219 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
220 {
221 	unsigned short type = (type_ctx >> 16);
222 	unsigned short ctx  = (type_ctx & 0xffff);
223 
224 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
225 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
226 		return;
227 
228 	if (regs->tstate & TSTATE_PRIV) {
229 		printk("sun4v_insn_access_exception: ADDR[%016lx] "
230 		       "CTX[%04x] TYPE[%04x], going.\n",
231 		       addr, ctx, type);
232 		die_if_kernel("Iax", regs);
233 	}
234 
235 	if (test_thread_flag(TIF_32BIT)) {
236 		regs->tpc &= 0xffffffff;
237 		regs->tnpc &= 0xffffffff;
238 	}
239 	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0, current);
240 }
241 
242 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
243 {
244 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
245 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
246 		return;
247 
248 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
249 	sun4v_insn_access_exception(regs, addr, type_ctx);
250 }
251 
252 bool is_no_fault_exception(struct pt_regs *regs)
253 {
254 	unsigned char asi;
255 	u32 insn;
256 
257 	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
258 		return false;
259 
260 	/*
261 	 * Must do a little instruction decoding here in order to
262 	 * decide on a course of action. The bits of interest are:
263 	 *  insn[31:30] = op, where 3 indicates the load/store group
264 	 *  insn[24:19] = op3, which identifies individual opcodes
265 	 *  insn[13] indicates an immediate offset
266 	 *  op3[4]=1 identifies alternate space instructions
267 	 *  op3[5:4]=3 identifies floating point instructions
268 	 *  op3[2]=1 identifies stores
269 	 * See "Opcode Maps" in the appendix of any Sparc V9
270 	 * architecture spec for full details.
271 	 */
272 	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
273 		if (insn & 0x2000)		    /* immediate offset */
274 			asi = (regs->tstate >> 24); /* saved %asi       */
275 		else
276 			asi = (insn >> 5);	    /* immediate asi    */
277 		if ((asi & 0xf2) == ASI_PNF) {
278 			if (insn & 0x1000000) {     /* op3[5:4]=3       */
279 				handle_ldf_stq(insn, regs);
280 				return true;
281 			} else if (insn & 0x200000) { /* op3[2], stores */
282 				return false;
283 			}
284 			handle_ld_nf(insn, regs);
285 			return true;
286 		}
287 	}
288 	return false;
289 }
290 
291 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
292 {
293 	enum ctx_state prev_state = exception_enter();
294 
295 	if (notify_die(DIE_TRAP, "data access exception", regs,
296 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
297 		goto out;
298 
299 	if (regs->tstate & TSTATE_PRIV) {
300 		/* Test if this comes from uaccess places. */
301 		const struct exception_table_entry *entry;
302 
303 		entry = search_exception_tables(regs->tpc);
304 		if (entry) {
305 			/* Ouch, somebody is trying VM hole tricks on us... */
306 #ifdef DEBUG_EXCEPTIONS
307 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
308 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
309 			       regs->tpc, entry->fixup);
310 #endif
311 			regs->tpc = entry->fixup;
312 			regs->tnpc = regs->tpc + 4;
313 			goto out;
314 		}
315 		/* Shit... */
316 		printk("spitfire_data_access_exception: SFSR[%016lx] "
317 		       "SFAR[%016lx], going.\n", sfsr, sfar);
318 		die_if_kernel("Dax", regs);
319 	}
320 
321 	if (is_no_fault_exception(regs))
322 		return;
323 
324 	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0, current);
325 out:
326 	exception_exit(prev_state);
327 }
328 
329 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
330 {
331 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
332 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
333 		return;
334 
335 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
336 	spitfire_data_access_exception(regs, sfsr, sfar);
337 }
338 
339 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
340 {
341 	unsigned short type = (type_ctx >> 16);
342 	unsigned short ctx  = (type_ctx & 0xffff);
343 
344 	if (notify_die(DIE_TRAP, "data access exception", regs,
345 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
346 		return;
347 
348 	if (regs->tstate & TSTATE_PRIV) {
349 		/* Test if this comes from uaccess places. */
350 		const struct exception_table_entry *entry;
351 
352 		entry = search_exception_tables(regs->tpc);
353 		if (entry) {
354 			/* Ouch, somebody is trying VM hole tricks on us... */
355 #ifdef DEBUG_EXCEPTIONS
356 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
357 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
358 			       regs->tpc, entry->fixup);
359 #endif
360 			regs->tpc = entry->fixup;
361 			regs->tnpc = regs->tpc + 4;
362 			return;
363 		}
364 		printk("sun4v_data_access_exception: ADDR[%016lx] "
365 		       "CTX[%04x] TYPE[%04x], going.\n",
366 		       addr, ctx, type);
367 		die_if_kernel("Dax", regs);
368 	}
369 
370 	if (test_thread_flag(TIF_32BIT)) {
371 		regs->tpc &= 0xffffffff;
372 		regs->tnpc &= 0xffffffff;
373 	}
374 	if (is_no_fault_exception(regs))
375 		return;
376 
377 	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
378 	 * is vectored thorugh data access exception trap with fault type
379 	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
380 	 * Accessing an address with invalid ASI for the address, for
381 	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
382 	 * when TTE.mcd is not set for the VA, is also vectored into
383 	 * kerbel by HV as data access exception with fault type set to
384 	 * HV_FAULT_TYPE_INV_ASI.
385 	 */
386 	switch (type) {
387 	case HV_FAULT_TYPE_INV_ASI:
388 		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
389 				current);
390 		break;
391 	case HV_FAULT_TYPE_MCD_DIS:
392 		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
393 				current);
394 		break;
395 	default:
396 		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
397 				current);
398 		break;
399 	}
400 }
401 
402 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
403 {
404 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
405 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
406 		return;
407 
408 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
409 	sun4v_data_access_exception(regs, addr, type_ctx);
410 }
411 
412 #ifdef CONFIG_PCI
413 #include "pci_impl.h"
414 #endif
415 
416 /* When access exceptions happen, we must do this. */
417 static void spitfire_clean_and_reenable_l1_caches(void)
418 {
419 	unsigned long va;
420 
421 	if (tlb_type != spitfire)
422 		BUG();
423 
424 	/* Clean 'em. */
425 	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
426 		spitfire_put_icache_tag(va, 0x0);
427 		spitfire_put_dcache_tag(va, 0x0);
428 	}
429 
430 	/* Re-enable in LSU. */
431 	__asm__ __volatile__("flush %%g6\n\t"
432 			     "membar #Sync\n\t"
433 			     "stxa %0, [%%g0] %1\n\t"
434 			     "membar #Sync"
435 			     : /* no outputs */
436 			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
437 				    LSU_CONTROL_IM | LSU_CONTROL_DM),
438 			     "i" (ASI_LSU_CONTROL)
439 			     : "memory");
440 }
441 
442 static void spitfire_enable_estate_errors(void)
443 {
444 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
445 			     "membar	#Sync"
446 			     : /* no outputs */
447 			     : "r" (ESTATE_ERR_ALL),
448 			       "i" (ASI_ESTATE_ERROR_EN));
449 }
450 
451 static char ecc_syndrome_table[] = {
452 	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
453 	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
454 	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
455 	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
456 	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
457 	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
458 	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
459 	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
460 	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
461 	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
462 	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
463 	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
464 	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
465 	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
466 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
467 	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
468 	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
469 	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
470 	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
471 	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
472 	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
473 	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
474 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
475 	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
476 	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
477 	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
478 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
479 	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
480 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
481 	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
482 	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
483 	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
484 };
485 
486 static char *syndrome_unknown = "<Unknown>";
487 
488 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
489 {
490 	unsigned short scode;
491 	char memmod_str[64], *p;
492 
493 	if (udbl & bit) {
494 		scode = ecc_syndrome_table[udbl & 0xff];
495 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
496 			p = syndrome_unknown;
497 		else
498 			p = memmod_str;
499 		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
500 		       "Memory Module \"%s\"\n",
501 		       smp_processor_id(), scode, p);
502 	}
503 
504 	if (udbh & bit) {
505 		scode = ecc_syndrome_table[udbh & 0xff];
506 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
507 			p = syndrome_unknown;
508 		else
509 			p = memmod_str;
510 		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
511 		       "Memory Module \"%s\"\n",
512 		       smp_processor_id(), scode, p);
513 	}
514 
515 }
516 
517 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
518 {
519 
520 	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
521 	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
522 	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
523 
524 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
525 
526 	/* We always log it, even if someone is listening for this
527 	 * trap.
528 	 */
529 	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
530 		   0, TRAP_TYPE_CEE, SIGTRAP);
531 
532 	/* The Correctable ECC Error trap does not disable I/D caches.  So
533 	 * we only have to restore the ESTATE Error Enable register.
534 	 */
535 	spitfire_enable_estate_errors();
536 }
537 
538 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
539 {
540 	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
541 	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
542 	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
543 
544 	/* XXX add more human friendly logging of the error status
545 	 * XXX as is implemented for cheetah
546 	 */
547 
548 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
549 
550 	/* We always log it, even if someone is listening for this
551 	 * trap.
552 	 */
553 	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
554 		   0, tt, SIGTRAP);
555 
556 	if (regs->tstate & TSTATE_PRIV) {
557 		if (tl1)
558 			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
559 		die_if_kernel("UE", regs);
560 	}
561 
562 	/* XXX need more intelligent processing here, such as is implemented
563 	 * XXX for cheetah errors, in fact if the E-cache still holds the
564 	 * XXX line with bad parity this will loop
565 	 */
566 
567 	spitfire_clean_and_reenable_l1_caches();
568 	spitfire_enable_estate_errors();
569 
570 	if (test_thread_flag(TIF_32BIT)) {
571 		regs->tpc &= 0xffffffff;
572 		regs->tnpc &= 0xffffffff;
573 	}
574 	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0, current);
575 }
576 
577 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
578 {
579 	unsigned long afsr, tt, udbh, udbl;
580 	int tl1;
581 
582 	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
583 	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
584 	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
585 	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
586 	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
587 
588 #ifdef CONFIG_PCI
589 	if (tt == TRAP_TYPE_DAE &&
590 	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
591 		spitfire_clean_and_reenable_l1_caches();
592 		spitfire_enable_estate_errors();
593 
594 		pci_poke_faulted = 1;
595 		regs->tnpc = regs->tpc + 4;
596 		return;
597 	}
598 #endif
599 
600 	if (afsr & SFAFSR_UE)
601 		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
602 
603 	if (tt == TRAP_TYPE_CEE) {
604 		/* Handle the case where we took a CEE trap, but ACK'd
605 		 * only the UE state in the UDB error registers.
606 		 */
607 		if (afsr & SFAFSR_UE) {
608 			if (udbh & UDBE_CE) {
609 				__asm__ __volatile__(
610 					"stxa	%0, [%1] %2\n\t"
611 					"membar	#Sync"
612 					: /* no outputs */
613 					: "r" (udbh & UDBE_CE),
614 					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
615 			}
616 			if (udbl & UDBE_CE) {
617 				__asm__ __volatile__(
618 					"stxa	%0, [%1] %2\n\t"
619 					"membar	#Sync"
620 					: /* no outputs */
621 					: "r" (udbl & UDBE_CE),
622 					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
623 			}
624 		}
625 
626 		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
627 	}
628 }
629 
630 int cheetah_pcache_forced_on;
631 
632 void cheetah_enable_pcache(void)
633 {
634 	unsigned long dcr;
635 
636 	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
637 	       smp_processor_id());
638 
639 	__asm__ __volatile__("ldxa [%%g0] %1, %0"
640 			     : "=r" (dcr)
641 			     : "i" (ASI_DCU_CONTROL_REG));
642 	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
643 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
644 			     "membar #Sync"
645 			     : /* no outputs */
646 			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
647 }
648 
649 /* Cheetah error trap handling. */
650 static unsigned long ecache_flush_physbase;
651 static unsigned long ecache_flush_linesize;
652 static unsigned long ecache_flush_size;
653 
654 /* This table is ordered in priority of errors and matches the
655  * AFAR overwrite policy as well.
656  */
657 
658 struct afsr_error_table {
659 	unsigned long mask;
660 	const char *name;
661 };
662 
663 static const char CHAFSR_PERR_msg[] =
664 	"System interface protocol error";
665 static const char CHAFSR_IERR_msg[] =
666 	"Internal processor error";
667 static const char CHAFSR_ISAP_msg[] =
668 	"System request parity error on incoming address";
669 static const char CHAFSR_UCU_msg[] =
670 	"Uncorrectable E-cache ECC error for ifetch/data";
671 static const char CHAFSR_UCC_msg[] =
672 	"SW Correctable E-cache ECC error for ifetch/data";
673 static const char CHAFSR_UE_msg[] =
674 	"Uncorrectable system bus data ECC error for read";
675 static const char CHAFSR_EDU_msg[] =
676 	"Uncorrectable E-cache ECC error for stmerge/blkld";
677 static const char CHAFSR_EMU_msg[] =
678 	"Uncorrectable system bus MTAG error";
679 static const char CHAFSR_WDU_msg[] =
680 	"Uncorrectable E-cache ECC error for writeback";
681 static const char CHAFSR_CPU_msg[] =
682 	"Uncorrectable ECC error for copyout";
683 static const char CHAFSR_CE_msg[] =
684 	"HW corrected system bus data ECC error for read";
685 static const char CHAFSR_EDC_msg[] =
686 	"HW corrected E-cache ECC error for stmerge/blkld";
687 static const char CHAFSR_EMC_msg[] =
688 	"HW corrected system bus MTAG ECC error";
689 static const char CHAFSR_WDC_msg[] =
690 	"HW corrected E-cache ECC error for writeback";
691 static const char CHAFSR_CPC_msg[] =
692 	"HW corrected ECC error for copyout";
693 static const char CHAFSR_TO_msg[] =
694 	"Unmapped error from system bus";
695 static const char CHAFSR_BERR_msg[] =
696 	"Bus error response from system bus";
697 static const char CHAFSR_IVC_msg[] =
698 	"HW corrected system bus data ECC error for ivec read";
699 static const char CHAFSR_IVU_msg[] =
700 	"Uncorrectable system bus data ECC error for ivec read";
701 static struct afsr_error_table __cheetah_error_table[] = {
702 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
703 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
704 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
705 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
706 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
707 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
708 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
709 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
710 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
711 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
712 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
713 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
714 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
715 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
716 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
717 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
718 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
719 	/* These two do not update the AFAR. */
720 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
721 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
722 	{	0,		NULL			},
723 };
724 static const char CHPAFSR_DTO_msg[] =
725 	"System bus unmapped error for prefetch/storequeue-read";
726 static const char CHPAFSR_DBERR_msg[] =
727 	"System bus error for prefetch/storequeue-read";
728 static const char CHPAFSR_THCE_msg[] =
729 	"Hardware corrected E-cache Tag ECC error";
730 static const char CHPAFSR_TSCE_msg[] =
731 	"SW handled correctable E-cache Tag ECC error";
732 static const char CHPAFSR_TUE_msg[] =
733 	"Uncorrectable E-cache Tag ECC error";
734 static const char CHPAFSR_DUE_msg[] =
735 	"System bus uncorrectable data ECC error due to prefetch/store-fill";
736 static struct afsr_error_table __cheetah_plus_error_table[] = {
737 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
738 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
739 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
740 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
741 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
742 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
743 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
744 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
745 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
746 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
747 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
748 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
749 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
750 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
751 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
752 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
753 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
754 	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
755 	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
756 	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
757 	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
758 	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
759 	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
760 	/* These two do not update the AFAR. */
761 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
762 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
763 	{	0,		NULL			},
764 };
765 static const char JPAFSR_JETO_msg[] =
766 	"System interface protocol error, hw timeout caused";
767 static const char JPAFSR_SCE_msg[] =
768 	"Parity error on system snoop results";
769 static const char JPAFSR_JEIC_msg[] =
770 	"System interface protocol error, illegal command detected";
771 static const char JPAFSR_JEIT_msg[] =
772 	"System interface protocol error, illegal ADTYPE detected";
773 static const char JPAFSR_OM_msg[] =
774 	"Out of range memory error has occurred";
775 static const char JPAFSR_ETP_msg[] =
776 	"Parity error on L2 cache tag SRAM";
777 static const char JPAFSR_UMS_msg[] =
778 	"Error due to unsupported store";
779 static const char JPAFSR_RUE_msg[] =
780 	"Uncorrectable ECC error from remote cache/memory";
781 static const char JPAFSR_RCE_msg[] =
782 	"Correctable ECC error from remote cache/memory";
783 static const char JPAFSR_BP_msg[] =
784 	"JBUS parity error on returned read data";
785 static const char JPAFSR_WBP_msg[] =
786 	"JBUS parity error on data for writeback or block store";
787 static const char JPAFSR_FRC_msg[] =
788 	"Foreign read to DRAM incurring correctable ECC error";
789 static const char JPAFSR_FRU_msg[] =
790 	"Foreign read to DRAM incurring uncorrectable ECC error";
791 static struct afsr_error_table __jalapeno_error_table[] = {
792 	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
793 	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
794 	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
795 	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
796 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
797 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
798 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
799 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
800 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
801 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
802 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
803 	{	JPAFSR_OM,	JPAFSR_OM_msg		},
804 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
805 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
806 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
807 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
808 	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
809 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
810 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
811 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
812 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
813 	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
814 	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
815 	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
816 	{	JPAFSR_BP,	JPAFSR_BP_msg		},
817 	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
818 	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
819 	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
820 	/* These two do not update the AFAR. */
821 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
822 	{	0,		NULL			},
823 };
824 static struct afsr_error_table *cheetah_error_table;
825 static unsigned long cheetah_afsr_errors;
826 
827 struct cheetah_err_info *cheetah_error_log;
828 
829 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
830 {
831 	struct cheetah_err_info *p;
832 	int cpu = smp_processor_id();
833 
834 	if (!cheetah_error_log)
835 		return NULL;
836 
837 	p = cheetah_error_log + (cpu * 2);
838 	if ((afsr & CHAFSR_TL1) != 0UL)
839 		p++;
840 
841 	return p;
842 }
843 
844 extern unsigned int tl0_icpe[], tl1_icpe[];
845 extern unsigned int tl0_dcpe[], tl1_dcpe[];
846 extern unsigned int tl0_fecc[], tl1_fecc[];
847 extern unsigned int tl0_cee[], tl1_cee[];
848 extern unsigned int tl0_iae[], tl1_iae[];
849 extern unsigned int tl0_dae[], tl1_dae[];
850 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
851 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
852 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
853 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
854 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
855 
856 void __init cheetah_ecache_flush_init(void)
857 {
858 	unsigned long largest_size, smallest_linesize, order, ver;
859 	int i, sz;
860 
861 	/* Scan all cpu device tree nodes, note two values:
862 	 * 1) largest E-cache size
863 	 * 2) smallest E-cache line size
864 	 */
865 	largest_size = 0UL;
866 	smallest_linesize = ~0UL;
867 
868 	for (i = 0; i < NR_CPUS; i++) {
869 		unsigned long val;
870 
871 		val = cpu_data(i).ecache_size;
872 		if (!val)
873 			continue;
874 
875 		if (val > largest_size)
876 			largest_size = val;
877 
878 		val = cpu_data(i).ecache_line_size;
879 		if (val < smallest_linesize)
880 			smallest_linesize = val;
881 
882 	}
883 
884 	if (largest_size == 0UL || smallest_linesize == ~0UL) {
885 		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
886 			    "parameters.\n");
887 		prom_halt();
888 	}
889 
890 	ecache_flush_size = (2 * largest_size);
891 	ecache_flush_linesize = smallest_linesize;
892 
893 	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
894 
895 	if (ecache_flush_physbase == ~0UL) {
896 		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
897 			    "contiguous physical memory.\n",
898 			    ecache_flush_size);
899 		prom_halt();
900 	}
901 
902 	/* Now allocate error trap reporting scoreboard. */
903 	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
904 	for (order = 0; order < MAX_ORDER; order++) {
905 		if ((PAGE_SIZE << order) >= sz)
906 			break;
907 	}
908 	cheetah_error_log = (struct cheetah_err_info *)
909 		__get_free_pages(GFP_KERNEL, order);
910 	if (!cheetah_error_log) {
911 		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
912 			    "error logging scoreboard (%d bytes).\n", sz);
913 		prom_halt();
914 	}
915 	memset(cheetah_error_log, 0, PAGE_SIZE << order);
916 
917 	/* Mark all AFSRs as invalid so that the trap handler will
918 	 * log new new information there.
919 	 */
920 	for (i = 0; i < 2 * NR_CPUS; i++)
921 		cheetah_error_log[i].afsr = CHAFSR_INVALID;
922 
923 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
924 	if ((ver >> 32) == __JALAPENO_ID ||
925 	    (ver >> 32) == __SERRANO_ID) {
926 		cheetah_error_table = &__jalapeno_error_table[0];
927 		cheetah_afsr_errors = JPAFSR_ERRORS;
928 	} else if ((ver >> 32) == 0x003e0015) {
929 		cheetah_error_table = &__cheetah_plus_error_table[0];
930 		cheetah_afsr_errors = CHPAFSR_ERRORS;
931 	} else {
932 		cheetah_error_table = &__cheetah_error_table[0];
933 		cheetah_afsr_errors = CHAFSR_ERRORS;
934 	}
935 
936 	/* Now patch trap tables. */
937 	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
938 	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
939 	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
940 	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
941 	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
942 	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
943 	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
944 	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
945 	if (tlb_type == cheetah_plus) {
946 		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
947 		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
948 		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
949 		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
950 	}
951 	flushi(PAGE_OFFSET);
952 }
953 
954 static void cheetah_flush_ecache(void)
955 {
956 	unsigned long flush_base = ecache_flush_physbase;
957 	unsigned long flush_linesize = ecache_flush_linesize;
958 	unsigned long flush_size = ecache_flush_size;
959 
960 	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
961 			     "   bne,pt	%%xcc, 1b\n\t"
962 			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
963 			     : "=&r" (flush_size)
964 			     : "0" (flush_size), "r" (flush_base),
965 			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
966 }
967 
968 static void cheetah_flush_ecache_line(unsigned long physaddr)
969 {
970 	unsigned long alias;
971 
972 	physaddr &= ~(8UL - 1UL);
973 	physaddr = (ecache_flush_physbase +
974 		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
975 	alias = physaddr + (ecache_flush_size >> 1UL);
976 	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
977 			     "ldxa [%1] %2, %%g0\n\t"
978 			     "membar #Sync"
979 			     : /* no outputs */
980 			     : "r" (physaddr), "r" (alias),
981 			       "i" (ASI_PHYS_USE_EC));
982 }
983 
984 /* Unfortunately, the diagnostic access to the I-cache tags we need to
985  * use to clear the thing interferes with I-cache coherency transactions.
986  *
987  * So we must only flush the I-cache when it is disabled.
988  */
989 static void __cheetah_flush_icache(void)
990 {
991 	unsigned int icache_size, icache_line_size;
992 	unsigned long addr;
993 
994 	icache_size = local_cpu_data().icache_size;
995 	icache_line_size = local_cpu_data().icache_line_size;
996 
997 	/* Clear the valid bits in all the tags. */
998 	for (addr = 0; addr < icache_size; addr += icache_line_size) {
999 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1000 				     "membar #Sync"
1001 				     : /* no outputs */
1002 				     : "r" (addr | (2 << 3)),
1003 				       "i" (ASI_IC_TAG));
1004 	}
1005 }
1006 
1007 static void cheetah_flush_icache(void)
1008 {
1009 	unsigned long dcu_save;
1010 
1011 	/* Save current DCU, disable I-cache. */
1012 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1013 			     "or %0, %2, %%g1\n\t"
1014 			     "stxa %%g1, [%%g0] %1\n\t"
1015 			     "membar #Sync"
1016 			     : "=r" (dcu_save)
1017 			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1018 			     : "g1");
1019 
1020 	__cheetah_flush_icache();
1021 
1022 	/* Restore DCU register */
1023 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1024 			     "membar #Sync"
1025 			     : /* no outputs */
1026 			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1027 }
1028 
1029 static void cheetah_flush_dcache(void)
1030 {
1031 	unsigned int dcache_size, dcache_line_size;
1032 	unsigned long addr;
1033 
1034 	dcache_size = local_cpu_data().dcache_size;
1035 	dcache_line_size = local_cpu_data().dcache_line_size;
1036 
1037 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1038 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1039 				     "membar #Sync"
1040 				     : /* no outputs */
1041 				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1042 	}
1043 }
1044 
1045 /* In order to make the even parity correct we must do two things.
1046  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1047  * Next, we clear out all 32-bytes of data for that line.  Data of
1048  * all-zero + tag parity value of zero == correct parity.
1049  */
1050 static void cheetah_plus_zap_dcache_parity(void)
1051 {
1052 	unsigned int dcache_size, dcache_line_size;
1053 	unsigned long addr;
1054 
1055 	dcache_size = local_cpu_data().dcache_size;
1056 	dcache_line_size = local_cpu_data().dcache_line_size;
1057 
1058 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1059 		unsigned long tag = (addr >> 14);
1060 		unsigned long line;
1061 
1062 		__asm__ __volatile__("membar	#Sync\n\t"
1063 				     "stxa	%0, [%1] %2\n\t"
1064 				     "membar	#Sync"
1065 				     : /* no outputs */
1066 				     : "r" (tag), "r" (addr),
1067 				       "i" (ASI_DCACHE_UTAG));
1068 		for (line = addr; line < addr + dcache_line_size; line += 8)
1069 			__asm__ __volatile__("membar	#Sync\n\t"
1070 					     "stxa	%%g0, [%0] %1\n\t"
1071 					     "membar	#Sync"
1072 					     : /* no outputs */
1073 					     : "r" (line),
1074 					       "i" (ASI_DCACHE_DATA));
1075 	}
1076 }
1077 
1078 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1079  * something palatable to the memory controller driver get_unumber
1080  * routine.
1081  */
1082 #define MT0	137
1083 #define MT1	138
1084 #define MT2	139
1085 #define NONE	254
1086 #define MTC0	140
1087 #define MTC1	141
1088 #define MTC2	142
1089 #define MTC3	143
1090 #define C0	128
1091 #define C1	129
1092 #define C2	130
1093 #define C3	131
1094 #define C4	132
1095 #define C5	133
1096 #define C6	134
1097 #define C7	135
1098 #define C8	136
1099 #define M2	144
1100 #define M3	145
1101 #define M4	146
1102 #define M	147
1103 static unsigned char cheetah_ecc_syntab[] = {
1104 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1105 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1106 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1107 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1108 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1109 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1110 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1111 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1112 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1113 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1114 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1115 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1116 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1117 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1118 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1119 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1120 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1121 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1122 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1123 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1124 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1125 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1126 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1127 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1128 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1129 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1130 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1131 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1132 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1133 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1134 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1135 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1136 };
1137 static unsigned char cheetah_mtag_syntab[] = {
1138        NONE, MTC0,
1139        MTC1, NONE,
1140        MTC2, NONE,
1141        NONE, MT0,
1142        MTC3, NONE,
1143        NONE, MT1,
1144        NONE, MT2,
1145        NONE, NONE
1146 };
1147 
1148 /* Return the highest priority error conditon mentioned. */
1149 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1150 {
1151 	unsigned long tmp = 0;
1152 	int i;
1153 
1154 	for (i = 0; cheetah_error_table[i].mask; i++) {
1155 		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1156 			return tmp;
1157 	}
1158 	return tmp;
1159 }
1160 
1161 static const char *cheetah_get_string(unsigned long bit)
1162 {
1163 	int i;
1164 
1165 	for (i = 0; cheetah_error_table[i].mask; i++) {
1166 		if ((bit & cheetah_error_table[i].mask) != 0UL)
1167 			return cheetah_error_table[i].name;
1168 	}
1169 	return "???";
1170 }
1171 
1172 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1173 			       unsigned long afsr, unsigned long afar, int recoverable)
1174 {
1175 	unsigned long hipri;
1176 	char unum[256];
1177 
1178 	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1179 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180 	       afsr, afar,
1181 	       (afsr & CHAFSR_TL1) ? 1 : 0);
1182 	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1183 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1184 	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1185 	printk("%s" "ERROR(%d): ",
1186 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1187 	printk("TPC<%pS>\n", (void *) regs->tpc);
1188 	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1189 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1190 	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1191 	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1192 	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1193 	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1194 	hipri = cheetah_get_hipri(afsr);
1195 	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1196 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1197 	       hipri, cheetah_get_string(hipri));
1198 
1199 	/* Try to get unumber if relevant. */
1200 #define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1201 			 CHAFSR_CPC | CHAFSR_CPU | \
1202 			 CHAFSR_UE  | CHAFSR_CE  | \
1203 			 CHAFSR_EDC | CHAFSR_EDU  | \
1204 			 CHAFSR_UCC | CHAFSR_UCU  | \
1205 			 CHAFSR_WDU | CHAFSR_WDC)
1206 #define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1207 	if (afsr & ESYND_ERRORS) {
1208 		int syndrome;
1209 		int ret;
1210 
1211 		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1212 		syndrome = cheetah_ecc_syntab[syndrome];
1213 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1214 		if (ret != -1)
1215 			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1216 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1217 			       smp_processor_id(), unum);
1218 	} else if (afsr & MSYND_ERRORS) {
1219 		int syndrome;
1220 		int ret;
1221 
1222 		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1223 		syndrome = cheetah_mtag_syntab[syndrome];
1224 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1225 		if (ret != -1)
1226 			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1227 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1228 			       smp_processor_id(), unum);
1229 	}
1230 
1231 	/* Now dump the cache snapshots. */
1232 	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1233 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1234 	       (int) info->dcache_index,
1235 	       info->dcache_tag,
1236 	       info->dcache_utag,
1237 	       info->dcache_stag);
1238 	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1239 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1240 	       info->dcache_data[0],
1241 	       info->dcache_data[1],
1242 	       info->dcache_data[2],
1243 	       info->dcache_data[3]);
1244 	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1245 	       "u[%016llx] l[%016llx]\n",
1246 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1247 	       (int) info->icache_index,
1248 	       info->icache_tag,
1249 	       info->icache_utag,
1250 	       info->icache_stag,
1251 	       info->icache_upper,
1252 	       info->icache_lower);
1253 	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1254 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1255 	       info->icache_data[0],
1256 	       info->icache_data[1],
1257 	       info->icache_data[2],
1258 	       info->icache_data[3]);
1259 	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1260 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1261 	       info->icache_data[4],
1262 	       info->icache_data[5],
1263 	       info->icache_data[6],
1264 	       info->icache_data[7]);
1265 	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1266 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267 	       (int) info->ecache_index, info->ecache_tag);
1268 	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1269 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1270 	       info->ecache_data[0],
1271 	       info->ecache_data[1],
1272 	       info->ecache_data[2],
1273 	       info->ecache_data[3]);
1274 
1275 	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1276 	while (afsr != 0UL) {
1277 		unsigned long bit = cheetah_get_hipri(afsr);
1278 
1279 		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1280 		       (recoverable ? KERN_WARNING : KERN_CRIT),
1281 		       bit, cheetah_get_string(bit));
1282 
1283 		afsr &= ~bit;
1284 	}
1285 
1286 	if (!recoverable)
1287 		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1288 }
1289 
1290 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1291 {
1292 	unsigned long afsr, afar;
1293 	int ret = 0;
1294 
1295 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1296 			     : "=r" (afsr)
1297 			     : "i" (ASI_AFSR));
1298 	if ((afsr & cheetah_afsr_errors) != 0) {
1299 		if (logp != NULL) {
1300 			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1301 					     : "=r" (afar)
1302 					     : "i" (ASI_AFAR));
1303 			logp->afsr = afsr;
1304 			logp->afar = afar;
1305 		}
1306 		ret = 1;
1307 	}
1308 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1309 			     "membar #Sync\n\t"
1310 			     : : "r" (afsr), "i" (ASI_AFSR));
1311 
1312 	return ret;
1313 }
1314 
1315 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1316 {
1317 	struct cheetah_err_info local_snapshot, *p;
1318 	int recoverable;
1319 
1320 	/* Flush E-cache */
1321 	cheetah_flush_ecache();
1322 
1323 	p = cheetah_get_error_log(afsr);
1324 	if (!p) {
1325 		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1326 			    afsr, afar);
1327 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1328 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1329 		prom_halt();
1330 	}
1331 
1332 	/* Grab snapshot of logged error. */
1333 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1334 
1335 	/* If the current trap snapshot does not match what the
1336 	 * trap handler passed along into our args, big trouble.
1337 	 * In such a case, mark the local copy as invalid.
1338 	 *
1339 	 * Else, it matches and we mark the afsr in the non-local
1340 	 * copy as invalid so we may log new error traps there.
1341 	 */
1342 	if (p->afsr != afsr || p->afar != afar)
1343 		local_snapshot.afsr = CHAFSR_INVALID;
1344 	else
1345 		p->afsr = CHAFSR_INVALID;
1346 
1347 	cheetah_flush_icache();
1348 	cheetah_flush_dcache();
1349 
1350 	/* Re-enable I-cache/D-cache */
1351 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1352 			     "or %%g1, %1, %%g1\n\t"
1353 			     "stxa %%g1, [%%g0] %0\n\t"
1354 			     "membar #Sync"
1355 			     : /* no outputs */
1356 			     : "i" (ASI_DCU_CONTROL_REG),
1357 			       "i" (DCU_DC | DCU_IC)
1358 			     : "g1");
1359 
1360 	/* Re-enable error reporting */
1361 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1362 			     "or %%g1, %1, %%g1\n\t"
1363 			     "stxa %%g1, [%%g0] %0\n\t"
1364 			     "membar #Sync"
1365 			     : /* no outputs */
1366 			     : "i" (ASI_ESTATE_ERROR_EN),
1367 			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1368 			     : "g1");
1369 
1370 	/* Decide if we can continue after handling this trap and
1371 	 * logging the error.
1372 	 */
1373 	recoverable = 1;
1374 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1375 		recoverable = 0;
1376 
1377 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1378 	 * error was logged while we had error reporting traps disabled.
1379 	 */
1380 	if (cheetah_recheck_errors(&local_snapshot)) {
1381 		unsigned long new_afsr = local_snapshot.afsr;
1382 
1383 		/* If we got a new asynchronous error, die... */
1384 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1385 				CHAFSR_WDU | CHAFSR_CPU |
1386 				CHAFSR_IVU | CHAFSR_UE |
1387 				CHAFSR_BERR | CHAFSR_TO))
1388 			recoverable = 0;
1389 	}
1390 
1391 	/* Log errors. */
1392 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1393 
1394 	if (!recoverable)
1395 		panic("Irrecoverable Fast-ECC error trap.\n");
1396 
1397 	/* Flush E-cache to kick the error trap handlers out. */
1398 	cheetah_flush_ecache();
1399 }
1400 
1401 /* Try to fix a correctable error by pushing the line out from
1402  * the E-cache.  Recheck error reporting registers to see if the
1403  * problem is intermittent.
1404  */
1405 static int cheetah_fix_ce(unsigned long physaddr)
1406 {
1407 	unsigned long orig_estate;
1408 	unsigned long alias1, alias2;
1409 	int ret;
1410 
1411 	/* Make sure correctable error traps are disabled. */
1412 	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1413 			     "andn	%0, %1, %%g1\n\t"
1414 			     "stxa	%%g1, [%%g0] %2\n\t"
1415 			     "membar	#Sync"
1416 			     : "=&r" (orig_estate)
1417 			     : "i" (ESTATE_ERROR_CEEN),
1418 			       "i" (ASI_ESTATE_ERROR_EN)
1419 			     : "g1");
1420 
1421 	/* We calculate alias addresses that will force the
1422 	 * cache line in question out of the E-cache.  Then
1423 	 * we bring it back in with an atomic instruction so
1424 	 * that we get it in some modified/exclusive state,
1425 	 * then we displace it again to try and get proper ECC
1426 	 * pushed back into the system.
1427 	 */
1428 	physaddr &= ~(8UL - 1UL);
1429 	alias1 = (ecache_flush_physbase +
1430 		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1431 	alias2 = alias1 + (ecache_flush_size >> 1);
1432 	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1433 			     "ldxa	[%1] %3, %%g0\n\t"
1434 			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1435 			     "ldxa	[%0] %3, %%g0\n\t"
1436 			     "ldxa	[%1] %3, %%g0\n\t"
1437 			     "membar	#Sync"
1438 			     : /* no outputs */
1439 			     : "r" (alias1), "r" (alias2),
1440 			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1441 
1442 	/* Did that trigger another error? */
1443 	if (cheetah_recheck_errors(NULL)) {
1444 		/* Try one more time. */
1445 		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1446 				     "membar #Sync"
1447 				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1448 		if (cheetah_recheck_errors(NULL))
1449 			ret = 2;
1450 		else
1451 			ret = 1;
1452 	} else {
1453 		/* No new error, intermittent problem. */
1454 		ret = 0;
1455 	}
1456 
1457 	/* Restore error enables. */
1458 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1459 			     "membar	#Sync"
1460 			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1461 
1462 	return ret;
1463 }
1464 
1465 /* Return non-zero if PADDR is a valid physical memory address. */
1466 static int cheetah_check_main_memory(unsigned long paddr)
1467 {
1468 	unsigned long vaddr = PAGE_OFFSET + paddr;
1469 
1470 	if (vaddr > (unsigned long) high_memory)
1471 		return 0;
1472 
1473 	return kern_addr_valid(vaddr);
1474 }
1475 
1476 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1477 {
1478 	struct cheetah_err_info local_snapshot, *p;
1479 	int recoverable, is_memory;
1480 
1481 	p = cheetah_get_error_log(afsr);
1482 	if (!p) {
1483 		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1484 			    afsr, afar);
1485 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1486 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1487 		prom_halt();
1488 	}
1489 
1490 	/* Grab snapshot of logged error. */
1491 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1492 
1493 	/* If the current trap snapshot does not match what the
1494 	 * trap handler passed along into our args, big trouble.
1495 	 * In such a case, mark the local copy as invalid.
1496 	 *
1497 	 * Else, it matches and we mark the afsr in the non-local
1498 	 * copy as invalid so we may log new error traps there.
1499 	 */
1500 	if (p->afsr != afsr || p->afar != afar)
1501 		local_snapshot.afsr = CHAFSR_INVALID;
1502 	else
1503 		p->afsr = CHAFSR_INVALID;
1504 
1505 	is_memory = cheetah_check_main_memory(afar);
1506 
1507 	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1508 		/* XXX Might want to log the results of this operation
1509 		 * XXX somewhere... -DaveM
1510 		 */
1511 		cheetah_fix_ce(afar);
1512 	}
1513 
1514 	{
1515 		int flush_all, flush_line;
1516 
1517 		flush_all = flush_line = 0;
1518 		if ((afsr & CHAFSR_EDC) != 0UL) {
1519 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1520 				flush_line = 1;
1521 			else
1522 				flush_all = 1;
1523 		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1524 			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1525 				flush_line = 1;
1526 			else
1527 				flush_all = 1;
1528 		}
1529 
1530 		/* Trap handler only disabled I-cache, flush it. */
1531 		cheetah_flush_icache();
1532 
1533 		/* Re-enable I-cache */
1534 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1535 				     "or %%g1, %1, %%g1\n\t"
1536 				     "stxa %%g1, [%%g0] %0\n\t"
1537 				     "membar #Sync"
1538 				     : /* no outputs */
1539 				     : "i" (ASI_DCU_CONTROL_REG),
1540 				     "i" (DCU_IC)
1541 				     : "g1");
1542 
1543 		if (flush_all)
1544 			cheetah_flush_ecache();
1545 		else if (flush_line)
1546 			cheetah_flush_ecache_line(afar);
1547 	}
1548 
1549 	/* Re-enable error reporting */
1550 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1551 			     "or %%g1, %1, %%g1\n\t"
1552 			     "stxa %%g1, [%%g0] %0\n\t"
1553 			     "membar #Sync"
1554 			     : /* no outputs */
1555 			     : "i" (ASI_ESTATE_ERROR_EN),
1556 			       "i" (ESTATE_ERROR_CEEN)
1557 			     : "g1");
1558 
1559 	/* Decide if we can continue after handling this trap and
1560 	 * logging the error.
1561 	 */
1562 	recoverable = 1;
1563 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1564 		recoverable = 0;
1565 
1566 	/* Re-check AFSR/AFAR */
1567 	(void) cheetah_recheck_errors(&local_snapshot);
1568 
1569 	/* Log errors. */
1570 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1571 
1572 	if (!recoverable)
1573 		panic("Irrecoverable Correctable-ECC error trap.\n");
1574 }
1575 
1576 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1577 {
1578 	struct cheetah_err_info local_snapshot, *p;
1579 	int recoverable, is_memory;
1580 
1581 #ifdef CONFIG_PCI
1582 	/* Check for the special PCI poke sequence. */
1583 	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1584 		cheetah_flush_icache();
1585 		cheetah_flush_dcache();
1586 
1587 		/* Re-enable I-cache/D-cache */
1588 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1589 				     "or %%g1, %1, %%g1\n\t"
1590 				     "stxa %%g1, [%%g0] %0\n\t"
1591 				     "membar #Sync"
1592 				     : /* no outputs */
1593 				     : "i" (ASI_DCU_CONTROL_REG),
1594 				       "i" (DCU_DC | DCU_IC)
1595 				     : "g1");
1596 
1597 		/* Re-enable error reporting */
1598 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1599 				     "or %%g1, %1, %%g1\n\t"
1600 				     "stxa %%g1, [%%g0] %0\n\t"
1601 				     "membar #Sync"
1602 				     : /* no outputs */
1603 				     : "i" (ASI_ESTATE_ERROR_EN),
1604 				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1605 				     : "g1");
1606 
1607 		(void) cheetah_recheck_errors(NULL);
1608 
1609 		pci_poke_faulted = 1;
1610 		regs->tpc += 4;
1611 		regs->tnpc = regs->tpc + 4;
1612 		return;
1613 	}
1614 #endif
1615 
1616 	p = cheetah_get_error_log(afsr);
1617 	if (!p) {
1618 		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1619 			    afsr, afar);
1620 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1621 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1622 		prom_halt();
1623 	}
1624 
1625 	/* Grab snapshot of logged error. */
1626 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1627 
1628 	/* If the current trap snapshot does not match what the
1629 	 * trap handler passed along into our args, big trouble.
1630 	 * In such a case, mark the local copy as invalid.
1631 	 *
1632 	 * Else, it matches and we mark the afsr in the non-local
1633 	 * copy as invalid so we may log new error traps there.
1634 	 */
1635 	if (p->afsr != afsr || p->afar != afar)
1636 		local_snapshot.afsr = CHAFSR_INVALID;
1637 	else
1638 		p->afsr = CHAFSR_INVALID;
1639 
1640 	is_memory = cheetah_check_main_memory(afar);
1641 
1642 	{
1643 		int flush_all, flush_line;
1644 
1645 		flush_all = flush_line = 0;
1646 		if ((afsr & CHAFSR_EDU) != 0UL) {
1647 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1648 				flush_line = 1;
1649 			else
1650 				flush_all = 1;
1651 		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1652 			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1653 				flush_line = 1;
1654 			else
1655 				flush_all = 1;
1656 		}
1657 
1658 		cheetah_flush_icache();
1659 		cheetah_flush_dcache();
1660 
1661 		/* Re-enable I/D caches */
1662 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1663 				     "or %%g1, %1, %%g1\n\t"
1664 				     "stxa %%g1, [%%g0] %0\n\t"
1665 				     "membar #Sync"
1666 				     : /* no outputs */
1667 				     : "i" (ASI_DCU_CONTROL_REG),
1668 				     "i" (DCU_IC | DCU_DC)
1669 				     : "g1");
1670 
1671 		if (flush_all)
1672 			cheetah_flush_ecache();
1673 		else if (flush_line)
1674 			cheetah_flush_ecache_line(afar);
1675 	}
1676 
1677 	/* Re-enable error reporting */
1678 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1679 			     "or %%g1, %1, %%g1\n\t"
1680 			     "stxa %%g1, [%%g0] %0\n\t"
1681 			     "membar #Sync"
1682 			     : /* no outputs */
1683 			     : "i" (ASI_ESTATE_ERROR_EN),
1684 			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1685 			     : "g1");
1686 
1687 	/* Decide if we can continue after handling this trap and
1688 	 * logging the error.
1689 	 */
1690 	recoverable = 1;
1691 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1692 		recoverable = 0;
1693 
1694 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1695 	 * error was logged while we had error reporting traps disabled.
1696 	 */
1697 	if (cheetah_recheck_errors(&local_snapshot)) {
1698 		unsigned long new_afsr = local_snapshot.afsr;
1699 
1700 		/* If we got a new asynchronous error, die... */
1701 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1702 				CHAFSR_WDU | CHAFSR_CPU |
1703 				CHAFSR_IVU | CHAFSR_UE |
1704 				CHAFSR_BERR | CHAFSR_TO))
1705 			recoverable = 0;
1706 	}
1707 
1708 	/* Log errors. */
1709 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1710 
1711 	/* "Recoverable" here means we try to yank the page from ever
1712 	 * being newly used again.  This depends upon a few things:
1713 	 * 1) Must be main memory, and AFAR must be valid.
1714 	 * 2) If we trapped from user, OK.
1715 	 * 3) Else, if we trapped from kernel we must find exception
1716 	 *    table entry (ie. we have to have been accessing user
1717 	 *    space).
1718 	 *
1719 	 * If AFAR is not in main memory, or we trapped from kernel
1720 	 * and cannot find an exception table entry, it is unacceptable
1721 	 * to try and continue.
1722 	 */
1723 	if (recoverable && is_memory) {
1724 		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1725 			/* OK, usermode access. */
1726 			recoverable = 1;
1727 		} else {
1728 			const struct exception_table_entry *entry;
1729 
1730 			entry = search_exception_tables(regs->tpc);
1731 			if (entry) {
1732 				/* OK, kernel access to userspace. */
1733 				recoverable = 1;
1734 
1735 			} else {
1736 				/* BAD, privileged state is corrupted. */
1737 				recoverable = 0;
1738 			}
1739 
1740 			if (recoverable) {
1741 				if (pfn_valid(afar >> PAGE_SHIFT))
1742 					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1743 				else
1744 					recoverable = 0;
1745 
1746 				/* Only perform fixup if we still have a
1747 				 * recoverable condition.
1748 				 */
1749 				if (recoverable) {
1750 					regs->tpc = entry->fixup;
1751 					regs->tnpc = regs->tpc + 4;
1752 				}
1753 			}
1754 		}
1755 	} else {
1756 		recoverable = 0;
1757 	}
1758 
1759 	if (!recoverable)
1760 		panic("Irrecoverable deferred error trap.\n");
1761 }
1762 
1763 /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1764  *
1765  * Bit0:	0=dcache,1=icache
1766  * Bit1:	0=recoverable,1=unrecoverable
1767  *
1768  * The hardware has disabled both the I-cache and D-cache in
1769  * the %dcr register.
1770  */
1771 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1772 {
1773 	if (type & 0x1)
1774 		__cheetah_flush_icache();
1775 	else
1776 		cheetah_plus_zap_dcache_parity();
1777 	cheetah_flush_dcache();
1778 
1779 	/* Re-enable I-cache/D-cache */
1780 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1781 			     "or %%g1, %1, %%g1\n\t"
1782 			     "stxa %%g1, [%%g0] %0\n\t"
1783 			     "membar #Sync"
1784 			     : /* no outputs */
1785 			     : "i" (ASI_DCU_CONTROL_REG),
1786 			       "i" (DCU_DC | DCU_IC)
1787 			     : "g1");
1788 
1789 	if (type & 0x2) {
1790 		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1791 		       smp_processor_id(),
1792 		       (type & 0x1) ? 'I' : 'D',
1793 		       regs->tpc);
1794 		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1795 		panic("Irrecoverable Cheetah+ parity error.");
1796 	}
1797 
1798 	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1799 	       smp_processor_id(),
1800 	       (type & 0x1) ? 'I' : 'D',
1801 	       regs->tpc);
1802 	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1803 }
1804 
1805 struct sun4v_error_entry {
1806 	/* Unique error handle */
1807 /*0x00*/u64		err_handle;
1808 
1809 	/* %stick value at the time of the error */
1810 /*0x08*/u64		err_stick;
1811 
1812 /*0x10*/u8		reserved_1[3];
1813 
1814 	/* Error type */
1815 /*0x13*/u8		err_type;
1816 #define SUN4V_ERR_TYPE_UNDEFINED	0
1817 #define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1818 #define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1819 #define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1820 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1821 #define SUN4V_ERR_TYPE_DUMP_CORE	5
1822 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1823 #define SUN4V_ERR_TYPE_NUM		7
1824 
1825 	/* Error attributes */
1826 /*0x14*/u32		err_attrs;
1827 #define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1828 #define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1829 #define SUN4V_ERR_ATTRS_PIO		0x00000004
1830 #define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1831 #define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1832 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1833 #define SUN4V_ERR_ATTRS_ASR		0x00000040
1834 #define SUN4V_ERR_ATTRS_ASI		0x00000080
1835 #define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1836 #define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1837 #define SUN4V_ERR_ATTRS_MCD		0x00000800
1838 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1839 #define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1840 #define SUN4V_ERR_ATTRS_MODE_SHFT	24
1841 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1842 
1843 #define SUN4V_ERR_SPSTATE_FAULTED	0
1844 #define SUN4V_ERR_SPSTATE_AVAILABLE	1
1845 #define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1846 
1847 #define SUN4V_ERR_MODE_USER		1
1848 #define SUN4V_ERR_MODE_PRIV		2
1849 
1850 	/* Real address of the memory region or PIO transaction */
1851 /*0x18*/u64		err_raddr;
1852 
1853 	/* Size of the operation triggering the error, in bytes */
1854 /*0x20*/u32		err_size;
1855 
1856 	/* ID of the CPU */
1857 /*0x24*/u16		err_cpu;
1858 
1859 	/* Grace periof for shutdown, in seconds */
1860 /*0x26*/u16		err_secs;
1861 
1862 	/* Value of the %asi register */
1863 /*0x28*/u8		err_asi;
1864 
1865 /*0x29*/u8		reserved_2;
1866 
1867 	/* Value of the ASR register number */
1868 /*0x2a*/u16		err_asr;
1869 #define SUN4V_ERR_ASR_VALID		0x8000
1870 
1871 /*0x2c*/u32		reserved_3;
1872 /*0x30*/u64		reserved_4;
1873 /*0x38*/u64		reserved_5;
1874 };
1875 
1876 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1877 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1878 
1879 static const char *sun4v_err_type_to_str(u8 type)
1880 {
1881 	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1882 		"undefined",
1883 		"uncorrected resumable",
1884 		"precise nonresumable",
1885 		"deferred nonresumable",
1886 		"shutdown request",
1887 		"dump core",
1888 		"SP state change",
1889 	};
1890 
1891 	if (type < SUN4V_ERR_TYPE_NUM)
1892 		return types[type];
1893 
1894 	return "unknown";
1895 }
1896 
1897 static void sun4v_emit_err_attr_strings(u32 attrs)
1898 {
1899 	static const char *attr_names[] = {
1900 		"processor",
1901 		"memory",
1902 		"PIO",
1903 		"int-registers",
1904 		"fpu-registers",
1905 		"shutdown-request",
1906 		"ASR",
1907 		"ASI",
1908 		"priv-reg",
1909 	};
1910 	static const char *sp_states[] = {
1911 		"sp-faulted",
1912 		"sp-available",
1913 		"sp-not-present",
1914 		"sp-state-reserved",
1915 	};
1916 	static const char *modes[] = {
1917 		"mode-reserved0",
1918 		"user",
1919 		"priv",
1920 		"mode-reserved1",
1921 	};
1922 	u32 sp_state, mode;
1923 	int i;
1924 
1925 	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1926 		if (attrs & (1U << i)) {
1927 			const char *s = attr_names[i];
1928 
1929 			pr_cont("%s ", s);
1930 		}
1931 	}
1932 
1933 	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1934 		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1935 	pr_cont("%s ", sp_states[sp_state]);
1936 
1937 	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1938 		SUN4V_ERR_ATTRS_MODE_SHFT);
1939 	pr_cont("%s ", modes[mode]);
1940 
1941 	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1942 		pr_cont("res-queue-full ");
1943 }
1944 
1945 /* When the report contains a real-address of "-1" it means that the
1946  * hardware did not provide the address.  So we compute the effective
1947  * address of the load or store instruction at regs->tpc and report
1948  * that.  Usually when this happens it's a PIO and in such a case we
1949  * are using physical addresses with bypass ASIs anyways, so what we
1950  * report here is exactly what we want.
1951  */
1952 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1953 {
1954 	unsigned int insn;
1955 	u64 addr;
1956 
1957 	if (!(regs->tstate & TSTATE_PRIV))
1958 		return;
1959 
1960 	insn = *(unsigned int *) regs->tpc;
1961 
1962 	addr = compute_effective_address(regs, insn, 0);
1963 
1964 	printk("%s: insn effective address [0x%016llx]\n",
1965 	       pfx, addr);
1966 }
1967 
1968 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1969 			    int cpu, const char *pfx, atomic_t *ocnt)
1970 {
1971 	u64 *raw_ptr = (u64 *) ent;
1972 	u32 attrs;
1973 	int cnt;
1974 
1975 	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1976 	printk("%s: TPC [0x%016lx] <%pS>\n",
1977 	       pfx, regs->tpc, (void *) regs->tpc);
1978 
1979 	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1980 	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1981 	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1982 	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1983 
1984 	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1985 	       pfx, ent->err_handle, ent->err_stick);
1986 
1987 	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1988 
1989 	attrs = ent->err_attrs;
1990 	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1991 	sun4v_emit_err_attr_strings(attrs);
1992 	pr_cont(">\n");
1993 
1994 	/* Various fields in the error report are only valid if
1995 	 * certain attribute bits are set.
1996 	 */
1997 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1998 		     SUN4V_ERR_ATTRS_PIO |
1999 		     SUN4V_ERR_ATTRS_ASI)) {
2000 		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2001 
2002 		if (ent->err_raddr == ~(u64)0)
2003 			sun4v_report_real_raddr(pfx, regs);
2004 	}
2005 
2006 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2007 		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2008 
2009 	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2010 		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2011 		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2012 		     SUN4V_ERR_ATTRS_PRIV_REG))
2013 		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2014 
2015 	if (attrs & SUN4V_ERR_ATTRS_ASI)
2016 		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2017 
2018 	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2019 		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2020 		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2021 	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2022 		printk("%s: reg [0x%04x]\n",
2023 		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2024 
2025 	show_regs(regs);
2026 
2027 	if ((cnt = atomic_read(ocnt)) != 0) {
2028 		atomic_set(ocnt, 0);
2029 		wmb();
2030 		printk("%s: Queue overflowed %d times.\n",
2031 		       pfx, cnt);
2032 	}
2033 }
2034 
2035 /* Handle memory corruption detected error which is vectored in
2036  * through resumable error trap.
2037  */
2038 void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2039 {
2040 	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2041 		       SIGSEGV) == NOTIFY_STOP)
2042 		return;
2043 
2044 	if (regs->tstate & TSTATE_PRIV) {
2045 		/* MCD exception could happen because the task was
2046 		 * running a system call with MCD enabled and passed a
2047 		 * non-versioned pointer or pointer with bad version
2048 		 * tag to the system call. In such cases, hypervisor
2049 		 * places the address of offending instruction in the
2050 		 * resumable error report. This is a deferred error,
2051 		 * so the read/write that caused the trap was potentially
2052 		 * retired long time back and we may have no choice
2053 		 * but to send SIGSEGV to the process.
2054 		 */
2055 		const struct exception_table_entry *entry;
2056 
2057 		entry = search_exception_tables(regs->tpc);
2058 		if (entry) {
2059 			/* Looks like a bad syscall parameter */
2060 #ifdef DEBUG_EXCEPTIONS
2061 			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2062 				 regs->tpc);
2063 			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2064 				 ent.err_raddr, entry->fixup);
2065 #endif
2066 			regs->tpc = entry->fixup;
2067 			regs->tnpc = regs->tpc + 4;
2068 			return;
2069 		}
2070 	}
2071 
2072 	/* Send SIGSEGV to the userspace process with the right signal
2073 	 * code
2074 	 */
2075 	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2076 			0, current);
2077 }
2078 
2079 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2080  * Log the event and clear the first word of the entry.
2081  */
2082 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2083 {
2084 	enum ctx_state prev_state = exception_enter();
2085 	struct sun4v_error_entry *ent, local_copy;
2086 	struct trap_per_cpu *tb;
2087 	unsigned long paddr;
2088 	int cpu;
2089 
2090 	cpu = get_cpu();
2091 
2092 	tb = &trap_block[cpu];
2093 	paddr = tb->resum_kernel_buf_pa + offset;
2094 	ent = __va(paddr);
2095 
2096 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2097 
2098 	/* We have a local copy now, so release the entry.  */
2099 	ent->err_handle = 0;
2100 	wmb();
2101 
2102 	put_cpu();
2103 
2104 	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2105 		/* We should really take the seconds field of
2106 		 * the error report and use it for the shutdown
2107 		 * invocation, but for now do the same thing we
2108 		 * do for a DS shutdown request.
2109 		 */
2110 		pr_info("Shutdown request, %u seconds...\n",
2111 			local_copy.err_secs);
2112 		orderly_poweroff(true);
2113 		goto out;
2114 	}
2115 
2116 	/* If this is a memory corruption detected error vectored in
2117 	 * by HV through resumable error trap, call the handler
2118 	 */
2119 	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2120 		do_mcd_err(regs, local_copy);
2121 		return;
2122 	}
2123 
2124 	sun4v_log_error(regs, &local_copy, cpu,
2125 			KERN_ERR "RESUMABLE ERROR",
2126 			&sun4v_resum_oflow_cnt);
2127 out:
2128 	exception_exit(prev_state);
2129 }
2130 
2131 /* If we try to printk() we'll probably make matters worse, by trying
2132  * to retake locks this cpu already holds or causing more errors. So
2133  * just bump a counter, and we'll report these counter bumps above.
2134  */
2135 void sun4v_resum_overflow(struct pt_regs *regs)
2136 {
2137 	atomic_inc(&sun4v_resum_oflow_cnt);
2138 }
2139 
2140 /* Given a set of registers, get the virtual addressi that was being accessed
2141  * by the faulting instructions at tpc.
2142  */
2143 static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2144 {
2145 	unsigned int insn;
2146 
2147 	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2148 		return compute_effective_address(regs, insn,
2149 						 (insn >> 25) & 0x1f);
2150 	}
2151 	return 0;
2152 }
2153 
2154 /* Attempt to handle non-resumable errors generated from userspace.
2155  * Returns true if the signal was handled, false otherwise.
2156  */
2157 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2158 				  struct sun4v_error_entry *ent) {
2159 
2160 	unsigned int attrs = ent->err_attrs;
2161 
2162 	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2163 		unsigned long addr = ent->err_raddr;
2164 
2165 		if (addr == ~(u64)0) {
2166 			/* This seems highly unlikely to ever occur */
2167 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2168 		} else {
2169 			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2170 							      PAGE_SIZE);
2171 
2172 			/* Break the unfortunate news. */
2173 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2174 				 addr);
2175 			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2176 				 page_cnt);
2177 
2178 			while (page_cnt-- > 0) {
2179 				if (pfn_valid(addr >> PAGE_SHIFT))
2180 					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2181 				addr += PAGE_SIZE;
2182 			}
2183 		}
2184 		force_sig(SIGKILL, current);
2185 
2186 		return true;
2187 	}
2188 	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2189 		force_sig_fault(SIGBUS, BUS_ADRERR,
2190 				(void __user *)sun4v_get_vaddr(regs), 0, current);
2191 		return true;
2192 	}
2193 
2194 	/* Default to doing nothing */
2195 	return false;
2196 }
2197 
2198 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2199  * Log the event, clear the first word of the entry, and die.
2200  */
2201 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2202 {
2203 	struct sun4v_error_entry *ent, local_copy;
2204 	struct trap_per_cpu *tb;
2205 	unsigned long paddr;
2206 	int cpu;
2207 
2208 	cpu = get_cpu();
2209 
2210 	tb = &trap_block[cpu];
2211 	paddr = tb->nonresum_kernel_buf_pa + offset;
2212 	ent = __va(paddr);
2213 
2214 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2215 
2216 	/* We have a local copy now, so release the entry.  */
2217 	ent->err_handle = 0;
2218 	wmb();
2219 
2220 	put_cpu();
2221 
2222 	if (!(regs->tstate & TSTATE_PRIV) &&
2223 	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2224 		/* DON'T PANIC: This userspace error was handled. */
2225 		return;
2226 	}
2227 
2228 #ifdef CONFIG_PCI
2229 	/* Check for the special PCI poke sequence. */
2230 	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2231 		pci_poke_faulted = 1;
2232 		regs->tpc += 4;
2233 		regs->tnpc = regs->tpc + 4;
2234 		return;
2235 	}
2236 #endif
2237 
2238 	sun4v_log_error(regs, &local_copy, cpu,
2239 			KERN_EMERG "NON-RESUMABLE ERROR",
2240 			&sun4v_nonresum_oflow_cnt);
2241 
2242 	panic("Non-resumable error.");
2243 }
2244 
2245 /* If we try to printk() we'll probably make matters worse, by trying
2246  * to retake locks this cpu already holds or causing more errors. So
2247  * just bump a counter, and we'll report these counter bumps above.
2248  */
2249 void sun4v_nonresum_overflow(struct pt_regs *regs)
2250 {
2251 	/* XXX Actually even this can make not that much sense.  Perhaps
2252 	 * XXX we should just pull the plug and panic directly from here?
2253 	 */
2254 	atomic_inc(&sun4v_nonresum_oflow_cnt);
2255 }
2256 
2257 static void sun4v_tlb_error(struct pt_regs *regs)
2258 {
2259 	die_if_kernel("TLB/TSB error", regs);
2260 }
2261 
2262 unsigned long sun4v_err_itlb_vaddr;
2263 unsigned long sun4v_err_itlb_ctx;
2264 unsigned long sun4v_err_itlb_pte;
2265 unsigned long sun4v_err_itlb_error;
2266 
2267 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2268 {
2269 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2270 
2271 	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2272 	       regs->tpc, tl);
2273 	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2274 	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2275 	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2276 	       (void *) regs->u_regs[UREG_I7]);
2277 	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2278 	       "pte[%lx] error[%lx]\n",
2279 	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2280 	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2281 
2282 	sun4v_tlb_error(regs);
2283 }
2284 
2285 unsigned long sun4v_err_dtlb_vaddr;
2286 unsigned long sun4v_err_dtlb_ctx;
2287 unsigned long sun4v_err_dtlb_pte;
2288 unsigned long sun4v_err_dtlb_error;
2289 
2290 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2291 {
2292 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2293 
2294 	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2295 	       regs->tpc, tl);
2296 	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2297 	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2298 	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2299 	       (void *) regs->u_regs[UREG_I7]);
2300 	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2301 	       "pte[%lx] error[%lx]\n",
2302 	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2303 	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2304 
2305 	sun4v_tlb_error(regs);
2306 }
2307 
2308 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2309 {
2310 	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2311 	       err, op);
2312 }
2313 
2314 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2315 {
2316 	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2317 	       err, op);
2318 }
2319 
2320 static void do_fpe_common(struct pt_regs *regs)
2321 {
2322 	if (regs->tstate & TSTATE_PRIV) {
2323 		regs->tpc = regs->tnpc;
2324 		regs->tnpc += 4;
2325 	} else {
2326 		unsigned long fsr = current_thread_info()->xfsr[0];
2327 		int code;
2328 
2329 		if (test_thread_flag(TIF_32BIT)) {
2330 			regs->tpc &= 0xffffffff;
2331 			regs->tnpc &= 0xffffffff;
2332 		}
2333 		code = FPE_FLTUNK;
2334 		if ((fsr & 0x1c000) == (1 << 14)) {
2335 			if (fsr & 0x10)
2336 				code = FPE_FLTINV;
2337 			else if (fsr & 0x08)
2338 				code = FPE_FLTOVF;
2339 			else if (fsr & 0x04)
2340 				code = FPE_FLTUND;
2341 			else if (fsr & 0x02)
2342 				code = FPE_FLTDIV;
2343 			else if (fsr & 0x01)
2344 				code = FPE_FLTRES;
2345 		}
2346 		force_sig_fault(SIGFPE, code,
2347 				(void __user *)regs->tpc, 0, current);
2348 	}
2349 }
2350 
2351 void do_fpieee(struct pt_regs *regs)
2352 {
2353 	enum ctx_state prev_state = exception_enter();
2354 
2355 	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2356 		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2357 		goto out;
2358 
2359 	do_fpe_common(regs);
2360 out:
2361 	exception_exit(prev_state);
2362 }
2363 
2364 void do_fpother(struct pt_regs *regs)
2365 {
2366 	enum ctx_state prev_state = exception_enter();
2367 	struct fpustate *f = FPUSTATE;
2368 	int ret = 0;
2369 
2370 	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2371 		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2372 		goto out;
2373 
2374 	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2375 	case (2 << 14): /* unfinished_FPop */
2376 	case (3 << 14): /* unimplemented_FPop */
2377 		ret = do_mathemu(regs, f, false);
2378 		break;
2379 	}
2380 	if (ret)
2381 		goto out;
2382 	do_fpe_common(regs);
2383 out:
2384 	exception_exit(prev_state);
2385 }
2386 
2387 void do_tof(struct pt_regs *regs)
2388 {
2389 	enum ctx_state prev_state = exception_enter();
2390 
2391 	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2392 		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2393 		goto out;
2394 
2395 	if (regs->tstate & TSTATE_PRIV)
2396 		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2397 	if (test_thread_flag(TIF_32BIT)) {
2398 		regs->tpc &= 0xffffffff;
2399 		regs->tnpc &= 0xffffffff;
2400 	}
2401 	force_sig_fault(SIGEMT, EMT_TAGOVF,
2402 			(void __user *)regs->tpc, 0, current);
2403 out:
2404 	exception_exit(prev_state);
2405 }
2406 
2407 void do_div0(struct pt_regs *regs)
2408 {
2409 	enum ctx_state prev_state = exception_enter();
2410 
2411 	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2412 		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2413 		goto out;
2414 
2415 	if (regs->tstate & TSTATE_PRIV)
2416 		die_if_kernel("TL0: Kernel divide by zero.", regs);
2417 	if (test_thread_flag(TIF_32BIT)) {
2418 		regs->tpc &= 0xffffffff;
2419 		regs->tnpc &= 0xffffffff;
2420 	}
2421 	force_sig_fault(SIGFPE, FPE_INTDIV,
2422 			(void __user *)regs->tpc, 0, current);
2423 out:
2424 	exception_exit(prev_state);
2425 }
2426 
2427 static void instruction_dump(unsigned int *pc)
2428 {
2429 	int i;
2430 
2431 	if ((((unsigned long) pc) & 3))
2432 		return;
2433 
2434 	printk("Instruction DUMP:");
2435 	for (i = -3; i < 6; i++)
2436 		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2437 	printk("\n");
2438 }
2439 
2440 static void user_instruction_dump(unsigned int __user *pc)
2441 {
2442 	int i;
2443 	unsigned int buf[9];
2444 
2445 	if ((((unsigned long) pc) & 3))
2446 		return;
2447 
2448 	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2449 		return;
2450 
2451 	printk("Instruction DUMP:");
2452 	for (i = 0; i < 9; i++)
2453 		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2454 	printk("\n");
2455 }
2456 
2457 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2458 {
2459 	unsigned long fp, ksp;
2460 	struct thread_info *tp;
2461 	int count = 0;
2462 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2463 	int graph = 0;
2464 #endif
2465 
2466 	ksp = (unsigned long) _ksp;
2467 	if (!tsk)
2468 		tsk = current;
2469 	tp = task_thread_info(tsk);
2470 	if (ksp == 0UL) {
2471 		if (tsk == current)
2472 			asm("mov %%fp, %0" : "=r" (ksp));
2473 		else
2474 			ksp = tp->ksp;
2475 	}
2476 	if (tp == current_thread_info())
2477 		flushw_all();
2478 
2479 	fp = ksp + STACK_BIAS;
2480 
2481 	printk("Call Trace:\n");
2482 	do {
2483 		struct sparc_stackf *sf;
2484 		struct pt_regs *regs;
2485 		unsigned long pc;
2486 
2487 		if (!kstack_valid(tp, fp))
2488 			break;
2489 		sf = (struct sparc_stackf *) fp;
2490 		regs = (struct pt_regs *) (sf + 1);
2491 
2492 		if (kstack_is_trap_frame(tp, regs)) {
2493 			if (!(regs->tstate & TSTATE_PRIV))
2494 				break;
2495 			pc = regs->tpc;
2496 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2497 		} else {
2498 			pc = sf->callers_pc;
2499 			fp = (unsigned long)sf->fp + STACK_BIAS;
2500 		}
2501 
2502 		printk(" [%016lx] %pS\n", pc, (void *) pc);
2503 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2504 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2505 			int index = tsk->curr_ret_stack;
2506 			if (tsk->ret_stack && index >= graph) {
2507 				pc = tsk->ret_stack[index - graph].ret;
2508 				printk(" [%016lx] %pS\n", pc, (void *) pc);
2509 				graph++;
2510 			}
2511 		}
2512 #endif
2513 	} while (++count < 16);
2514 }
2515 
2516 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2517 {
2518 	unsigned long fp = rw->ins[6];
2519 
2520 	if (!fp)
2521 		return NULL;
2522 
2523 	return (struct reg_window *) (fp + STACK_BIAS);
2524 }
2525 
2526 void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2527 {
2528 	static int die_counter;
2529 	int count = 0;
2530 
2531 	/* Amuse the user. */
2532 	printk(
2533 "              \\|/ ____ \\|/\n"
2534 "              \"@'/ .. \\`@\"\n"
2535 "              /_| \\__/ |_\\\n"
2536 "                 \\__U_/\n");
2537 
2538 	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2539 	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2540 	__asm__ __volatile__("flushw");
2541 	show_regs(regs);
2542 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2543 	if (regs->tstate & TSTATE_PRIV) {
2544 		struct thread_info *tp = current_thread_info();
2545 		struct reg_window *rw = (struct reg_window *)
2546 			(regs->u_regs[UREG_FP] + STACK_BIAS);
2547 
2548 		/* Stop the back trace when we hit userland or we
2549 		 * find some badly aligned kernel stack.
2550 		 */
2551 		while (rw &&
2552 		       count++ < 30 &&
2553 		       kstack_valid(tp, (unsigned long) rw)) {
2554 			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2555 			       (void *) rw->ins[7]);
2556 
2557 			rw = kernel_stack_up(rw);
2558 		}
2559 		instruction_dump ((unsigned int *) regs->tpc);
2560 	} else {
2561 		if (test_thread_flag(TIF_32BIT)) {
2562 			regs->tpc &= 0xffffffff;
2563 			regs->tnpc &= 0xffffffff;
2564 		}
2565 		user_instruction_dump ((unsigned int __user *) regs->tpc);
2566 	}
2567 	if (panic_on_oops)
2568 		panic("Fatal exception");
2569 	if (regs->tstate & TSTATE_PRIV)
2570 		do_exit(SIGKILL);
2571 	do_exit(SIGSEGV);
2572 }
2573 EXPORT_SYMBOL(die_if_kernel);
2574 
2575 #define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2576 #define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2577 
2578 void do_illegal_instruction(struct pt_regs *regs)
2579 {
2580 	enum ctx_state prev_state = exception_enter();
2581 	unsigned long pc = regs->tpc;
2582 	unsigned long tstate = regs->tstate;
2583 	u32 insn;
2584 
2585 	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2586 		       0, 0x10, SIGILL) == NOTIFY_STOP)
2587 		goto out;
2588 
2589 	if (tstate & TSTATE_PRIV)
2590 		die_if_kernel("Kernel illegal instruction", regs);
2591 	if (test_thread_flag(TIF_32BIT))
2592 		pc = (u32)pc;
2593 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2594 		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2595 			if (handle_popc(insn, regs))
2596 				goto out;
2597 		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2598 			if (handle_ldf_stq(insn, regs))
2599 				goto out;
2600 		} else if (tlb_type == hypervisor) {
2601 			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2602 				if (!vis_emul(regs, insn))
2603 					goto out;
2604 			} else {
2605 				struct fpustate *f = FPUSTATE;
2606 
2607 				/* On UltraSPARC T2 and later, FPU insns which
2608 				 * are not implemented in HW signal an illegal
2609 				 * instruction trap and do not set the FP Trap
2610 				 * Trap in the %fsr to unimplemented_FPop.
2611 				 */
2612 				if (do_mathemu(regs, f, true))
2613 					goto out;
2614 			}
2615 		}
2616 	}
2617 	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0, current);
2618 out:
2619 	exception_exit(prev_state);
2620 }
2621 
2622 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2623 {
2624 	enum ctx_state prev_state = exception_enter();
2625 
2626 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2627 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2628 		goto out;
2629 
2630 	if (regs->tstate & TSTATE_PRIV) {
2631 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2632 		goto out;
2633 	}
2634 	if (is_no_fault_exception(regs))
2635 		return;
2636 
2637 	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0, current);
2638 out:
2639 	exception_exit(prev_state);
2640 }
2641 
2642 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2643 {
2644 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2645 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2646 		return;
2647 
2648 	if (regs->tstate & TSTATE_PRIV) {
2649 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2650 		return;
2651 	}
2652 	if (is_no_fault_exception(regs))
2653 		return;
2654 
2655 	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0, current);
2656 }
2657 
2658 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2659  * tag mismatch.
2660  *
2661  * ADI version tag mismatch on a load from memory always results in a
2662  * precise exception. Tag mismatch on a store to memory will result in
2663  * precise exception if MCDPER or PMCDPER is set to 1.
2664  */
2665 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2666 				      unsigned long context)
2667 {
2668 	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2669 		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2670 		return;
2671 
2672 	if (regs->tstate & TSTATE_PRIV) {
2673 		/* MCD exception could happen because the task was running
2674 		 * a system call with MCD enabled and passed a non-versioned
2675 		 * pointer or pointer with bad version tag to  the system
2676 		 * call.
2677 		 */
2678 		const struct exception_table_entry *entry;
2679 
2680 		entry = search_exception_tables(regs->tpc);
2681 		if (entry) {
2682 			/* Looks like a bad syscall parameter */
2683 #ifdef DEBUG_EXCEPTIONS
2684 			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2685 				 regs->tpc);
2686 			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2687 				 regs->tpc, entry->fixup);
2688 #endif
2689 			regs->tpc = entry->fixup;
2690 			regs->tnpc = regs->tpc + 4;
2691 			return;
2692 		}
2693 		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2694 			 __func__, addr, context);
2695 		die_if_kernel("MCD precise", regs);
2696 	}
2697 
2698 	if (test_thread_flag(TIF_32BIT)) {
2699 		regs->tpc &= 0xffffffff;
2700 		regs->tnpc &= 0xffffffff;
2701 	}
2702 	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
2703 }
2704 
2705 void do_privop(struct pt_regs *regs)
2706 {
2707 	enum ctx_state prev_state = exception_enter();
2708 
2709 	if (notify_die(DIE_TRAP, "privileged operation", regs,
2710 		       0, 0x11, SIGILL) == NOTIFY_STOP)
2711 		goto out;
2712 
2713 	if (test_thread_flag(TIF_32BIT)) {
2714 		regs->tpc &= 0xffffffff;
2715 		regs->tnpc &= 0xffffffff;
2716 	}
2717 	force_sig_fault(SIGILL, ILL_PRVOPC,
2718 			(void __user *)regs->tpc, 0, current);
2719 out:
2720 	exception_exit(prev_state);
2721 }
2722 
2723 void do_privact(struct pt_regs *regs)
2724 {
2725 	do_privop(regs);
2726 }
2727 
2728 /* Trap level 1 stuff or other traps we should never see... */
2729 void do_cee(struct pt_regs *regs)
2730 {
2731 	exception_enter();
2732 	die_if_kernel("TL0: Cache Error Exception", regs);
2733 }
2734 
2735 void do_div0_tl1(struct pt_regs *regs)
2736 {
2737 	exception_enter();
2738 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2739 	die_if_kernel("TL1: DIV0 Exception", regs);
2740 }
2741 
2742 void do_fpieee_tl1(struct pt_regs *regs)
2743 {
2744 	exception_enter();
2745 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2746 	die_if_kernel("TL1: FPU IEEE Exception", regs);
2747 }
2748 
2749 void do_fpother_tl1(struct pt_regs *regs)
2750 {
2751 	exception_enter();
2752 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2753 	die_if_kernel("TL1: FPU Other Exception", regs);
2754 }
2755 
2756 void do_ill_tl1(struct pt_regs *regs)
2757 {
2758 	exception_enter();
2759 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2760 	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2761 }
2762 
2763 void do_irq_tl1(struct pt_regs *regs)
2764 {
2765 	exception_enter();
2766 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2767 	die_if_kernel("TL1: IRQ Exception", regs);
2768 }
2769 
2770 void do_lddfmna_tl1(struct pt_regs *regs)
2771 {
2772 	exception_enter();
2773 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2774 	die_if_kernel("TL1: LDDF Exception", regs);
2775 }
2776 
2777 void do_stdfmna_tl1(struct pt_regs *regs)
2778 {
2779 	exception_enter();
2780 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2781 	die_if_kernel("TL1: STDF Exception", regs);
2782 }
2783 
2784 void do_paw(struct pt_regs *regs)
2785 {
2786 	exception_enter();
2787 	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2788 }
2789 
2790 void do_paw_tl1(struct pt_regs *regs)
2791 {
2792 	exception_enter();
2793 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2794 	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2795 }
2796 
2797 void do_vaw(struct pt_regs *regs)
2798 {
2799 	exception_enter();
2800 	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2801 }
2802 
2803 void do_vaw_tl1(struct pt_regs *regs)
2804 {
2805 	exception_enter();
2806 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2807 	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2808 }
2809 
2810 void do_tof_tl1(struct pt_regs *regs)
2811 {
2812 	exception_enter();
2813 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2814 	die_if_kernel("TL1: Tag Overflow Exception", regs);
2815 }
2816 
2817 void do_getpsr(struct pt_regs *regs)
2818 {
2819 	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2820 	regs->tpc   = regs->tnpc;
2821 	regs->tnpc += 4;
2822 	if (test_thread_flag(TIF_32BIT)) {
2823 		regs->tpc &= 0xffffffff;
2824 		regs->tnpc &= 0xffffffff;
2825 	}
2826 }
2827 
2828 u64 cpu_mondo_counter[NR_CPUS] = {0};
2829 struct trap_per_cpu trap_block[NR_CPUS];
2830 EXPORT_SYMBOL(trap_block);
2831 
2832 /* This can get invoked before sched_init() so play it super safe
2833  * and use hard_smp_processor_id().
2834  */
2835 void notrace init_cur_cpu_trap(struct thread_info *t)
2836 {
2837 	int cpu = hard_smp_processor_id();
2838 	struct trap_per_cpu *p = &trap_block[cpu];
2839 
2840 	p->thread = t;
2841 	p->pgd_paddr = 0;
2842 }
2843 
2844 extern void thread_info_offsets_are_bolixed_dave(void);
2845 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2846 extern void tsb_config_offsets_are_bolixed_dave(void);
2847 
2848 /* Only invoked on boot processor. */
2849 void __init trap_init(void)
2850 {
2851 	/* Compile time sanity check. */
2852 	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2853 		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2854 		     TI_CPU != offsetof(struct thread_info, cpu) ||
2855 		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2856 		     TI_KSP != offsetof(struct thread_info, ksp) ||
2857 		     TI_FAULT_ADDR != offsetof(struct thread_info,
2858 					       fault_address) ||
2859 		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2860 		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2861 		     TI_REG_WINDOW != offsetof(struct thread_info,
2862 					       reg_window) ||
2863 		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2864 					       rwbuf_stkptrs) ||
2865 		     TI_GSR != offsetof(struct thread_info, gsr) ||
2866 		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2867 		     TI_PRE_COUNT != offsetof(struct thread_info,
2868 					      preempt_count) ||
2869 		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2870 		     TI_CURRENT_DS != offsetof(struct thread_info,
2871 						current_ds) ||
2872 		     TI_KUNA_REGS != offsetof(struct thread_info,
2873 					      kern_una_regs) ||
2874 		     TI_KUNA_INSN != offsetof(struct thread_info,
2875 					      kern_una_insn) ||
2876 		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2877 		     (TI_FPREGS & (64 - 1)));
2878 
2879 	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2880 						     thread) ||
2881 		     (TRAP_PER_CPU_PGD_PADDR !=
2882 		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2883 		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2884 		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2885 		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2886 		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2887 		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2888 		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2889 		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2890 		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2891 		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2892 		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2893 		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2894 		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2895 		     (TRAP_PER_CPU_FAULT_INFO !=
2896 		      offsetof(struct trap_per_cpu, fault_info)) ||
2897 		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2898 		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2899 		     (TRAP_PER_CPU_CPU_LIST_PA !=
2900 		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2901 		     (TRAP_PER_CPU_TSB_HUGE !=
2902 		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2903 		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2904 		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2905 		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2906 		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2907 		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2908 		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2909 		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2910 		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2911 		     (TRAP_PER_CPU_RESUM_QMASK !=
2912 		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2913 		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2914 		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2915 		     (TRAP_PER_CPU_PER_CPU_BASE !=
2916 		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2917 
2918 	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2919 		      offsetof(struct tsb_config, tsb)) ||
2920 		     (TSB_CONFIG_RSS_LIMIT !=
2921 		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2922 		     (TSB_CONFIG_NENTRIES !=
2923 		      offsetof(struct tsb_config, tsb_nentries)) ||
2924 		     (TSB_CONFIG_REG_VAL !=
2925 		      offsetof(struct tsb_config, tsb_reg_val)) ||
2926 		     (TSB_CONFIG_MAP_VADDR !=
2927 		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2928 		     (TSB_CONFIG_MAP_PTE !=
2929 		      offsetof(struct tsb_config, tsb_map_pte)));
2930 
2931 	/* Attach to the address space of init_task.  On SMP we
2932 	 * do this in smp.c:smp_callin for other cpus.
2933 	 */
2934 	mmgrab(&init_mm);
2935 	current->active_mm = &init_mm;
2936 }
2937