1 // SPDX-License-Identifier: GPL-2.0-only 2 /* arch/sparc64/kernel/traps.c 3 * 4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) 6 */ 7 8 /* 9 * I like traps on v9, :)))) 10 */ 11 12 #include <linux/extable.h> 13 #include <linux/sched/mm.h> 14 #include <linux/sched/debug.h> 15 #include <linux/linkage.h> 16 #include <linux/kernel.h> 17 #include <linux/signal.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/init.h> 21 #include <linux/kallsyms.h> 22 #include <linux/kdebug.h> 23 #include <linux/ftrace.h> 24 #include <linux/reboot.h> 25 #include <linux/gfp.h> 26 #include <linux/context_tracking.h> 27 28 #include <asm/smp.h> 29 #include <asm/delay.h> 30 #include <asm/ptrace.h> 31 #include <asm/oplib.h> 32 #include <asm/page.h> 33 #include <asm/unistd.h> 34 #include <linux/uaccess.h> 35 #include <asm/fpumacro.h> 36 #include <asm/lsu.h> 37 #include <asm/dcu.h> 38 #include <asm/estate.h> 39 #include <asm/chafsr.h> 40 #include <asm/sfafsr.h> 41 #include <asm/psrcompat.h> 42 #include <asm/processor.h> 43 #include <asm/timer.h> 44 #include <asm/head.h> 45 #include <asm/prom.h> 46 #include <asm/memctrl.h> 47 #include <asm/cacheflush.h> 48 #include <asm/setup.h> 49 50 #include "entry.h" 51 #include "kernel.h" 52 #include "kstack.h" 53 54 /* When an irrecoverable trap occurs at tl > 0, the trap entry 55 * code logs the trap state registers at every level in the trap 56 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout 57 * is as follows: 58 */ 59 struct tl1_traplog { 60 struct { 61 unsigned long tstate; 62 unsigned long tpc; 63 unsigned long tnpc; 64 unsigned long tt; 65 } trapstack[4]; 66 unsigned long tl; 67 }; 68 69 static void dump_tl1_traplog(struct tl1_traplog *p) 70 { 71 int i, limit; 72 73 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " 74 "dumping track stack.\n", p->tl); 75 76 limit = (tlb_type == hypervisor) ? 2 : 4; 77 for (i = 0; i < limit; i++) { 78 printk(KERN_EMERG 79 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " 80 "TNPC[%016lx] TT[%lx]\n", 81 i + 1, 82 p->trapstack[i].tstate, p->trapstack[i].tpc, 83 p->trapstack[i].tnpc, p->trapstack[i].tt); 84 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); 85 } 86 } 87 88 void bad_trap(struct pt_regs *regs, long lvl) 89 { 90 char buffer[36]; 91 92 if (notify_die(DIE_TRAP, "bad trap", regs, 93 0, lvl, SIGTRAP) == NOTIFY_STOP) 94 return; 95 96 if (lvl < 0x100) { 97 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); 98 die_if_kernel(buffer, regs); 99 } 100 101 lvl -= 0x100; 102 if (regs->tstate & TSTATE_PRIV) { 103 sprintf(buffer, "Kernel bad sw trap %lx", lvl); 104 die_if_kernel(buffer, regs); 105 } 106 if (test_thread_flag(TIF_32BIT)) { 107 regs->tpc &= 0xffffffff; 108 regs->tnpc &= 0xffffffff; 109 } 110 force_sig_fault(SIGILL, ILL_ILLTRP, 111 (void __user *)regs->tpc, lvl); 112 } 113 114 void bad_trap_tl1(struct pt_regs *regs, long lvl) 115 { 116 char buffer[36]; 117 118 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 119 0, lvl, SIGTRAP) == NOTIFY_STOP) 120 return; 121 122 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 123 124 sprintf (buffer, "Bad trap %lx at tl>0", lvl); 125 die_if_kernel (buffer, regs); 126 } 127 128 #ifdef CONFIG_DEBUG_BUGVERBOSE 129 void do_BUG(const char *file, int line) 130 { 131 bust_spinlocks(1); 132 printk("kernel BUG at %s:%d!\n", file, line); 133 } 134 EXPORT_SYMBOL(do_BUG); 135 #endif 136 137 static DEFINE_SPINLOCK(dimm_handler_lock); 138 static dimm_printer_t dimm_handler; 139 140 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) 141 { 142 unsigned long flags; 143 int ret = -ENODEV; 144 145 spin_lock_irqsave(&dimm_handler_lock, flags); 146 if (dimm_handler) { 147 ret = dimm_handler(synd_code, paddr, buf, buflen); 148 } else if (tlb_type == spitfire) { 149 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) 150 ret = -EINVAL; 151 else 152 ret = 0; 153 } else 154 ret = -ENODEV; 155 spin_unlock_irqrestore(&dimm_handler_lock, flags); 156 157 return ret; 158 } 159 160 int register_dimm_printer(dimm_printer_t func) 161 { 162 unsigned long flags; 163 int ret = 0; 164 165 spin_lock_irqsave(&dimm_handler_lock, flags); 166 if (!dimm_handler) 167 dimm_handler = func; 168 else 169 ret = -EEXIST; 170 spin_unlock_irqrestore(&dimm_handler_lock, flags); 171 172 return ret; 173 } 174 EXPORT_SYMBOL_GPL(register_dimm_printer); 175 176 void unregister_dimm_printer(dimm_printer_t func) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&dimm_handler_lock, flags); 181 if (dimm_handler == func) 182 dimm_handler = NULL; 183 spin_unlock_irqrestore(&dimm_handler_lock, flags); 184 } 185 EXPORT_SYMBOL_GPL(unregister_dimm_printer); 186 187 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 188 { 189 enum ctx_state prev_state = exception_enter(); 190 191 if (notify_die(DIE_TRAP, "instruction access exception", regs, 192 0, 0x8, SIGTRAP) == NOTIFY_STOP) 193 goto out; 194 195 if (regs->tstate & TSTATE_PRIV) { 196 printk("spitfire_insn_access_exception: SFSR[%016lx] " 197 "SFAR[%016lx], going.\n", sfsr, sfar); 198 die_if_kernel("Iax", regs); 199 } 200 if (test_thread_flag(TIF_32BIT)) { 201 regs->tpc &= 0xffffffff; 202 regs->tnpc &= 0xffffffff; 203 } 204 force_sig_fault(SIGSEGV, SEGV_MAPERR, 205 (void __user *)regs->tpc, 0); 206 out: 207 exception_exit(prev_state); 208 } 209 210 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 211 { 212 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 213 0, 0x8, SIGTRAP) == NOTIFY_STOP) 214 return; 215 216 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 217 spitfire_insn_access_exception(regs, sfsr, sfar); 218 } 219 220 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 221 { 222 unsigned short type = (type_ctx >> 16); 223 unsigned short ctx = (type_ctx & 0xffff); 224 225 if (notify_die(DIE_TRAP, "instruction access exception", regs, 226 0, 0x8, SIGTRAP) == NOTIFY_STOP) 227 return; 228 229 if (regs->tstate & TSTATE_PRIV) { 230 printk("sun4v_insn_access_exception: ADDR[%016lx] " 231 "CTX[%04x] TYPE[%04x], going.\n", 232 addr, ctx, type); 233 die_if_kernel("Iax", regs); 234 } 235 236 if (test_thread_flag(TIF_32BIT)) { 237 regs->tpc &= 0xffffffff; 238 regs->tnpc &= 0xffffffff; 239 } 240 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0); 241 } 242 243 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 244 { 245 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 246 0, 0x8, SIGTRAP) == NOTIFY_STOP) 247 return; 248 249 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 250 sun4v_insn_access_exception(regs, addr, type_ctx); 251 } 252 253 bool is_no_fault_exception(struct pt_regs *regs) 254 { 255 unsigned char asi; 256 u32 insn; 257 258 if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT) 259 return false; 260 261 /* 262 * Must do a little instruction decoding here in order to 263 * decide on a course of action. The bits of interest are: 264 * insn[31:30] = op, where 3 indicates the load/store group 265 * insn[24:19] = op3, which identifies individual opcodes 266 * insn[13] indicates an immediate offset 267 * op3[4]=1 identifies alternate space instructions 268 * op3[5:4]=3 identifies floating point instructions 269 * op3[2]=1 identifies stores 270 * See "Opcode Maps" in the appendix of any Sparc V9 271 * architecture spec for full details. 272 */ 273 if ((insn & 0xc0800000) == 0xc0800000) { /* op=3, op3[4]=1 */ 274 if (insn & 0x2000) /* immediate offset */ 275 asi = (regs->tstate >> 24); /* saved %asi */ 276 else 277 asi = (insn >> 5); /* immediate asi */ 278 if ((asi & 0xf2) == ASI_PNF) { 279 if (insn & 0x1000000) { /* op3[5:4]=3 */ 280 handle_ldf_stq(insn, regs); 281 return true; 282 } else if (insn & 0x200000) { /* op3[2], stores */ 283 return false; 284 } 285 handle_ld_nf(insn, regs); 286 return true; 287 } 288 } 289 return false; 290 } 291 292 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 293 { 294 enum ctx_state prev_state = exception_enter(); 295 296 if (notify_die(DIE_TRAP, "data access exception", regs, 297 0, 0x30, SIGTRAP) == NOTIFY_STOP) 298 goto out; 299 300 if (regs->tstate & TSTATE_PRIV) { 301 /* Test if this comes from uaccess places. */ 302 const struct exception_table_entry *entry; 303 304 entry = search_exception_tables(regs->tpc); 305 if (entry) { 306 /* Ouch, somebody is trying VM hole tricks on us... */ 307 #ifdef DEBUG_EXCEPTIONS 308 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 309 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 310 regs->tpc, entry->fixup); 311 #endif 312 regs->tpc = entry->fixup; 313 regs->tnpc = regs->tpc + 4; 314 goto out; 315 } 316 /* Shit... */ 317 printk("spitfire_data_access_exception: SFSR[%016lx] " 318 "SFAR[%016lx], going.\n", sfsr, sfar); 319 die_if_kernel("Dax", regs); 320 } 321 322 if (is_no_fault_exception(regs)) 323 return; 324 325 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0); 326 out: 327 exception_exit(prev_state); 328 } 329 330 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 331 { 332 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 333 0, 0x30, SIGTRAP) == NOTIFY_STOP) 334 return; 335 336 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 337 spitfire_data_access_exception(regs, sfsr, sfar); 338 } 339 340 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 341 { 342 unsigned short type = (type_ctx >> 16); 343 unsigned short ctx = (type_ctx & 0xffff); 344 345 if (notify_die(DIE_TRAP, "data access exception", regs, 346 0, 0x8, SIGTRAP) == NOTIFY_STOP) 347 return; 348 349 if (regs->tstate & TSTATE_PRIV) { 350 /* Test if this comes from uaccess places. */ 351 const struct exception_table_entry *entry; 352 353 entry = search_exception_tables(regs->tpc); 354 if (entry) { 355 /* Ouch, somebody is trying VM hole tricks on us... */ 356 #ifdef DEBUG_EXCEPTIONS 357 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 358 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 359 regs->tpc, entry->fixup); 360 #endif 361 regs->tpc = entry->fixup; 362 regs->tnpc = regs->tpc + 4; 363 return; 364 } 365 printk("sun4v_data_access_exception: ADDR[%016lx] " 366 "CTX[%04x] TYPE[%04x], going.\n", 367 addr, ctx, type); 368 die_if_kernel("Dax", regs); 369 } 370 371 if (test_thread_flag(TIF_32BIT)) { 372 regs->tpc &= 0xffffffff; 373 regs->tnpc &= 0xffffffff; 374 } 375 if (is_no_fault_exception(regs)) 376 return; 377 378 /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV 379 * is vectored thorugh data access exception trap with fault type 380 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap. 381 * Accessing an address with invalid ASI for the address, for 382 * example setting an ADI tag on an address with ASI_MCD_PRIMARY 383 * when TTE.mcd is not set for the VA, is also vectored into 384 * kerbel by HV as data access exception with fault type set to 385 * HV_FAULT_TYPE_INV_ASI. 386 */ 387 switch (type) { 388 case HV_FAULT_TYPE_INV_ASI: 389 force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0); 390 break; 391 case HV_FAULT_TYPE_MCD_DIS: 392 force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0); 393 break; 394 default: 395 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0); 396 break; 397 } 398 } 399 400 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 401 { 402 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 403 0, 0x8, SIGTRAP) == NOTIFY_STOP) 404 return; 405 406 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 407 sun4v_data_access_exception(regs, addr, type_ctx); 408 } 409 410 #ifdef CONFIG_PCI 411 #include "pci_impl.h" 412 #endif 413 414 /* When access exceptions happen, we must do this. */ 415 static void spitfire_clean_and_reenable_l1_caches(void) 416 { 417 unsigned long va; 418 419 if (tlb_type != spitfire) 420 BUG(); 421 422 /* Clean 'em. */ 423 for (va = 0; va < (PAGE_SIZE << 1); va += 32) { 424 spitfire_put_icache_tag(va, 0x0); 425 spitfire_put_dcache_tag(va, 0x0); 426 } 427 428 /* Re-enable in LSU. */ 429 __asm__ __volatile__("flush %%g6\n\t" 430 "membar #Sync\n\t" 431 "stxa %0, [%%g0] %1\n\t" 432 "membar #Sync" 433 : /* no outputs */ 434 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | 435 LSU_CONTROL_IM | LSU_CONTROL_DM), 436 "i" (ASI_LSU_CONTROL) 437 : "memory"); 438 } 439 440 static void spitfire_enable_estate_errors(void) 441 { 442 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 443 "membar #Sync" 444 : /* no outputs */ 445 : "r" (ESTATE_ERR_ALL), 446 "i" (ASI_ESTATE_ERROR_EN)); 447 } 448 449 static char ecc_syndrome_table[] = { 450 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 451 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 452 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 453 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 454 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 455 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 456 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 457 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 458 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 459 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 460 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 461 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 462 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 463 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 464 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 465 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 466 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 467 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 468 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 469 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 470 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 471 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 472 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 473 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 474 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 475 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 476 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 477 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 478 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 479 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 480 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 481 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a 482 }; 483 484 static char *syndrome_unknown = "<Unknown>"; 485 486 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) 487 { 488 unsigned short scode; 489 char memmod_str[64], *p; 490 491 if (udbl & bit) { 492 scode = ecc_syndrome_table[udbl & 0xff]; 493 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 494 p = syndrome_unknown; 495 else 496 p = memmod_str; 497 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " 498 "Memory Module \"%s\"\n", 499 smp_processor_id(), scode, p); 500 } 501 502 if (udbh & bit) { 503 scode = ecc_syndrome_table[udbh & 0xff]; 504 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 505 p = syndrome_unknown; 506 else 507 p = memmod_str; 508 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " 509 "Memory Module \"%s\"\n", 510 smp_processor_id(), scode, p); 511 } 512 513 } 514 515 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) 516 { 517 518 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " 519 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", 520 smp_processor_id(), afsr, afar, udbl, udbh, tl1); 521 522 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); 523 524 /* We always log it, even if someone is listening for this 525 * trap. 526 */ 527 notify_die(DIE_TRAP, "Correctable ECC Error", regs, 528 0, TRAP_TYPE_CEE, SIGTRAP); 529 530 /* The Correctable ECC Error trap does not disable I/D caches. So 531 * we only have to restore the ESTATE Error Enable register. 532 */ 533 spitfire_enable_estate_errors(); 534 } 535 536 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) 537 { 538 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " 539 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", 540 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); 541 542 /* XXX add more human friendly logging of the error status 543 * XXX as is implemented for cheetah 544 */ 545 546 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); 547 548 /* We always log it, even if someone is listening for this 549 * trap. 550 */ 551 notify_die(DIE_TRAP, "Uncorrectable Error", regs, 552 0, tt, SIGTRAP); 553 554 if (regs->tstate & TSTATE_PRIV) { 555 if (tl1) 556 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 557 die_if_kernel("UE", regs); 558 } 559 560 /* XXX need more intelligent processing here, such as is implemented 561 * XXX for cheetah errors, in fact if the E-cache still holds the 562 * XXX line with bad parity this will loop 563 */ 564 565 spitfire_clean_and_reenable_l1_caches(); 566 spitfire_enable_estate_errors(); 567 568 if (test_thread_flag(TIF_32BIT)) { 569 regs->tpc &= 0xffffffff; 570 regs->tnpc &= 0xffffffff; 571 } 572 force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0); 573 } 574 575 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) 576 { 577 unsigned long afsr, tt, udbh, udbl; 578 int tl1; 579 580 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; 581 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; 582 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; 583 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; 584 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; 585 586 #ifdef CONFIG_PCI 587 if (tt == TRAP_TYPE_DAE && 588 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 589 spitfire_clean_and_reenable_l1_caches(); 590 spitfire_enable_estate_errors(); 591 592 pci_poke_faulted = 1; 593 regs->tnpc = regs->tpc + 4; 594 return; 595 } 596 #endif 597 598 if (afsr & SFAFSR_UE) 599 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); 600 601 if (tt == TRAP_TYPE_CEE) { 602 /* Handle the case where we took a CEE trap, but ACK'd 603 * only the UE state in the UDB error registers. 604 */ 605 if (afsr & SFAFSR_UE) { 606 if (udbh & UDBE_CE) { 607 __asm__ __volatile__( 608 "stxa %0, [%1] %2\n\t" 609 "membar #Sync" 610 : /* no outputs */ 611 : "r" (udbh & UDBE_CE), 612 "r" (0x0), "i" (ASI_UDB_ERROR_W)); 613 } 614 if (udbl & UDBE_CE) { 615 __asm__ __volatile__( 616 "stxa %0, [%1] %2\n\t" 617 "membar #Sync" 618 : /* no outputs */ 619 : "r" (udbl & UDBE_CE), 620 "r" (0x18), "i" (ASI_UDB_ERROR_W)); 621 } 622 } 623 624 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); 625 } 626 } 627 628 int cheetah_pcache_forced_on; 629 630 void cheetah_enable_pcache(void) 631 { 632 unsigned long dcr; 633 634 printk("CHEETAH: Enabling P-Cache on cpu %d.\n", 635 smp_processor_id()); 636 637 __asm__ __volatile__("ldxa [%%g0] %1, %0" 638 : "=r" (dcr) 639 : "i" (ASI_DCU_CONTROL_REG)); 640 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); 641 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 642 "membar #Sync" 643 : /* no outputs */ 644 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); 645 } 646 647 /* Cheetah error trap handling. */ 648 static unsigned long ecache_flush_physbase; 649 static unsigned long ecache_flush_linesize; 650 static unsigned long ecache_flush_size; 651 652 /* This table is ordered in priority of errors and matches the 653 * AFAR overwrite policy as well. 654 */ 655 656 struct afsr_error_table { 657 unsigned long mask; 658 const char *name; 659 }; 660 661 static const char CHAFSR_PERR_msg[] = 662 "System interface protocol error"; 663 static const char CHAFSR_IERR_msg[] = 664 "Internal processor error"; 665 static const char CHAFSR_ISAP_msg[] = 666 "System request parity error on incoming address"; 667 static const char CHAFSR_UCU_msg[] = 668 "Uncorrectable E-cache ECC error for ifetch/data"; 669 static const char CHAFSR_UCC_msg[] = 670 "SW Correctable E-cache ECC error for ifetch/data"; 671 static const char CHAFSR_UE_msg[] = 672 "Uncorrectable system bus data ECC error for read"; 673 static const char CHAFSR_EDU_msg[] = 674 "Uncorrectable E-cache ECC error for stmerge/blkld"; 675 static const char CHAFSR_EMU_msg[] = 676 "Uncorrectable system bus MTAG error"; 677 static const char CHAFSR_WDU_msg[] = 678 "Uncorrectable E-cache ECC error for writeback"; 679 static const char CHAFSR_CPU_msg[] = 680 "Uncorrectable ECC error for copyout"; 681 static const char CHAFSR_CE_msg[] = 682 "HW corrected system bus data ECC error for read"; 683 static const char CHAFSR_EDC_msg[] = 684 "HW corrected E-cache ECC error for stmerge/blkld"; 685 static const char CHAFSR_EMC_msg[] = 686 "HW corrected system bus MTAG ECC error"; 687 static const char CHAFSR_WDC_msg[] = 688 "HW corrected E-cache ECC error for writeback"; 689 static const char CHAFSR_CPC_msg[] = 690 "HW corrected ECC error for copyout"; 691 static const char CHAFSR_TO_msg[] = 692 "Unmapped error from system bus"; 693 static const char CHAFSR_BERR_msg[] = 694 "Bus error response from system bus"; 695 static const char CHAFSR_IVC_msg[] = 696 "HW corrected system bus data ECC error for ivec read"; 697 static const char CHAFSR_IVU_msg[] = 698 "Uncorrectable system bus data ECC error for ivec read"; 699 static struct afsr_error_table __cheetah_error_table[] = { 700 { CHAFSR_PERR, CHAFSR_PERR_msg }, 701 { CHAFSR_IERR, CHAFSR_IERR_msg }, 702 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 703 { CHAFSR_UCU, CHAFSR_UCU_msg }, 704 { CHAFSR_UCC, CHAFSR_UCC_msg }, 705 { CHAFSR_UE, CHAFSR_UE_msg }, 706 { CHAFSR_EDU, CHAFSR_EDU_msg }, 707 { CHAFSR_EMU, CHAFSR_EMU_msg }, 708 { CHAFSR_WDU, CHAFSR_WDU_msg }, 709 { CHAFSR_CPU, CHAFSR_CPU_msg }, 710 { CHAFSR_CE, CHAFSR_CE_msg }, 711 { CHAFSR_EDC, CHAFSR_EDC_msg }, 712 { CHAFSR_EMC, CHAFSR_EMC_msg }, 713 { CHAFSR_WDC, CHAFSR_WDC_msg }, 714 { CHAFSR_CPC, CHAFSR_CPC_msg }, 715 { CHAFSR_TO, CHAFSR_TO_msg }, 716 { CHAFSR_BERR, CHAFSR_BERR_msg }, 717 /* These two do not update the AFAR. */ 718 { CHAFSR_IVC, CHAFSR_IVC_msg }, 719 { CHAFSR_IVU, CHAFSR_IVU_msg }, 720 { 0, NULL }, 721 }; 722 static const char CHPAFSR_DTO_msg[] = 723 "System bus unmapped error for prefetch/storequeue-read"; 724 static const char CHPAFSR_DBERR_msg[] = 725 "System bus error for prefetch/storequeue-read"; 726 static const char CHPAFSR_THCE_msg[] = 727 "Hardware corrected E-cache Tag ECC error"; 728 static const char CHPAFSR_TSCE_msg[] = 729 "SW handled correctable E-cache Tag ECC error"; 730 static const char CHPAFSR_TUE_msg[] = 731 "Uncorrectable E-cache Tag ECC error"; 732 static const char CHPAFSR_DUE_msg[] = 733 "System bus uncorrectable data ECC error due to prefetch/store-fill"; 734 static struct afsr_error_table __cheetah_plus_error_table[] = { 735 { CHAFSR_PERR, CHAFSR_PERR_msg }, 736 { CHAFSR_IERR, CHAFSR_IERR_msg }, 737 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 738 { CHAFSR_UCU, CHAFSR_UCU_msg }, 739 { CHAFSR_UCC, CHAFSR_UCC_msg }, 740 { CHAFSR_UE, CHAFSR_UE_msg }, 741 { CHAFSR_EDU, CHAFSR_EDU_msg }, 742 { CHAFSR_EMU, CHAFSR_EMU_msg }, 743 { CHAFSR_WDU, CHAFSR_WDU_msg }, 744 { CHAFSR_CPU, CHAFSR_CPU_msg }, 745 { CHAFSR_CE, CHAFSR_CE_msg }, 746 { CHAFSR_EDC, CHAFSR_EDC_msg }, 747 { CHAFSR_EMC, CHAFSR_EMC_msg }, 748 { CHAFSR_WDC, CHAFSR_WDC_msg }, 749 { CHAFSR_CPC, CHAFSR_CPC_msg }, 750 { CHAFSR_TO, CHAFSR_TO_msg }, 751 { CHAFSR_BERR, CHAFSR_BERR_msg }, 752 { CHPAFSR_DTO, CHPAFSR_DTO_msg }, 753 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, 754 { CHPAFSR_THCE, CHPAFSR_THCE_msg }, 755 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, 756 { CHPAFSR_TUE, CHPAFSR_TUE_msg }, 757 { CHPAFSR_DUE, CHPAFSR_DUE_msg }, 758 /* These two do not update the AFAR. */ 759 { CHAFSR_IVC, CHAFSR_IVC_msg }, 760 { CHAFSR_IVU, CHAFSR_IVU_msg }, 761 { 0, NULL }, 762 }; 763 static const char JPAFSR_JETO_msg[] = 764 "System interface protocol error, hw timeout caused"; 765 static const char JPAFSR_SCE_msg[] = 766 "Parity error on system snoop results"; 767 static const char JPAFSR_JEIC_msg[] = 768 "System interface protocol error, illegal command detected"; 769 static const char JPAFSR_JEIT_msg[] = 770 "System interface protocol error, illegal ADTYPE detected"; 771 static const char JPAFSR_OM_msg[] = 772 "Out of range memory error has occurred"; 773 static const char JPAFSR_ETP_msg[] = 774 "Parity error on L2 cache tag SRAM"; 775 static const char JPAFSR_UMS_msg[] = 776 "Error due to unsupported store"; 777 static const char JPAFSR_RUE_msg[] = 778 "Uncorrectable ECC error from remote cache/memory"; 779 static const char JPAFSR_RCE_msg[] = 780 "Correctable ECC error from remote cache/memory"; 781 static const char JPAFSR_BP_msg[] = 782 "JBUS parity error on returned read data"; 783 static const char JPAFSR_WBP_msg[] = 784 "JBUS parity error on data for writeback or block store"; 785 static const char JPAFSR_FRC_msg[] = 786 "Foreign read to DRAM incurring correctable ECC error"; 787 static const char JPAFSR_FRU_msg[] = 788 "Foreign read to DRAM incurring uncorrectable ECC error"; 789 static struct afsr_error_table __jalapeno_error_table[] = { 790 { JPAFSR_JETO, JPAFSR_JETO_msg }, 791 { JPAFSR_SCE, JPAFSR_SCE_msg }, 792 { JPAFSR_JEIC, JPAFSR_JEIC_msg }, 793 { JPAFSR_JEIT, JPAFSR_JEIT_msg }, 794 { CHAFSR_PERR, CHAFSR_PERR_msg }, 795 { CHAFSR_IERR, CHAFSR_IERR_msg }, 796 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 797 { CHAFSR_UCU, CHAFSR_UCU_msg }, 798 { CHAFSR_UCC, CHAFSR_UCC_msg }, 799 { CHAFSR_UE, CHAFSR_UE_msg }, 800 { CHAFSR_EDU, CHAFSR_EDU_msg }, 801 { JPAFSR_OM, JPAFSR_OM_msg }, 802 { CHAFSR_WDU, CHAFSR_WDU_msg }, 803 { CHAFSR_CPU, CHAFSR_CPU_msg }, 804 { CHAFSR_CE, CHAFSR_CE_msg }, 805 { CHAFSR_EDC, CHAFSR_EDC_msg }, 806 { JPAFSR_ETP, JPAFSR_ETP_msg }, 807 { CHAFSR_WDC, CHAFSR_WDC_msg }, 808 { CHAFSR_CPC, CHAFSR_CPC_msg }, 809 { CHAFSR_TO, CHAFSR_TO_msg }, 810 { CHAFSR_BERR, CHAFSR_BERR_msg }, 811 { JPAFSR_UMS, JPAFSR_UMS_msg }, 812 { JPAFSR_RUE, JPAFSR_RUE_msg }, 813 { JPAFSR_RCE, JPAFSR_RCE_msg }, 814 { JPAFSR_BP, JPAFSR_BP_msg }, 815 { JPAFSR_WBP, JPAFSR_WBP_msg }, 816 { JPAFSR_FRC, JPAFSR_FRC_msg }, 817 { JPAFSR_FRU, JPAFSR_FRU_msg }, 818 /* These two do not update the AFAR. */ 819 { CHAFSR_IVU, CHAFSR_IVU_msg }, 820 { 0, NULL }, 821 }; 822 static struct afsr_error_table *cheetah_error_table; 823 static unsigned long cheetah_afsr_errors; 824 825 struct cheetah_err_info *cheetah_error_log; 826 827 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) 828 { 829 struct cheetah_err_info *p; 830 int cpu = smp_processor_id(); 831 832 if (!cheetah_error_log) 833 return NULL; 834 835 p = cheetah_error_log + (cpu * 2); 836 if ((afsr & CHAFSR_TL1) != 0UL) 837 p++; 838 839 return p; 840 } 841 842 extern unsigned int tl0_icpe[], tl1_icpe[]; 843 extern unsigned int tl0_dcpe[], tl1_dcpe[]; 844 extern unsigned int tl0_fecc[], tl1_fecc[]; 845 extern unsigned int tl0_cee[], tl1_cee[]; 846 extern unsigned int tl0_iae[], tl1_iae[]; 847 extern unsigned int tl0_dae[], tl1_dae[]; 848 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; 849 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; 850 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; 851 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; 852 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; 853 854 void __init cheetah_ecache_flush_init(void) 855 { 856 unsigned long largest_size, smallest_linesize, order, ver; 857 int i, sz; 858 859 /* Scan all cpu device tree nodes, note two values: 860 * 1) largest E-cache size 861 * 2) smallest E-cache line size 862 */ 863 largest_size = 0UL; 864 smallest_linesize = ~0UL; 865 866 for (i = 0; i < NR_CPUS; i++) { 867 unsigned long val; 868 869 val = cpu_data(i).ecache_size; 870 if (!val) 871 continue; 872 873 if (val > largest_size) 874 largest_size = val; 875 876 val = cpu_data(i).ecache_line_size; 877 if (val < smallest_linesize) 878 smallest_linesize = val; 879 880 } 881 882 if (largest_size == 0UL || smallest_linesize == ~0UL) { 883 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " 884 "parameters.\n"); 885 prom_halt(); 886 } 887 888 ecache_flush_size = (2 * largest_size); 889 ecache_flush_linesize = smallest_linesize; 890 891 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); 892 893 if (ecache_flush_physbase == ~0UL) { 894 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte " 895 "contiguous physical memory.\n", 896 ecache_flush_size); 897 prom_halt(); 898 } 899 900 /* Now allocate error trap reporting scoreboard. */ 901 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); 902 for (order = 0; order < MAX_ORDER; order++) { 903 if ((PAGE_SIZE << order) >= sz) 904 break; 905 } 906 cheetah_error_log = (struct cheetah_err_info *) 907 __get_free_pages(GFP_KERNEL, order); 908 if (!cheetah_error_log) { 909 prom_printf("cheetah_ecache_flush_init: Failed to allocate " 910 "error logging scoreboard (%d bytes).\n", sz); 911 prom_halt(); 912 } 913 memset(cheetah_error_log, 0, PAGE_SIZE << order); 914 915 /* Mark all AFSRs as invalid so that the trap handler will 916 * log new new information there. 917 */ 918 for (i = 0; i < 2 * NR_CPUS; i++) 919 cheetah_error_log[i].afsr = CHAFSR_INVALID; 920 921 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 922 if ((ver >> 32) == __JALAPENO_ID || 923 (ver >> 32) == __SERRANO_ID) { 924 cheetah_error_table = &__jalapeno_error_table[0]; 925 cheetah_afsr_errors = JPAFSR_ERRORS; 926 } else if ((ver >> 32) == 0x003e0015) { 927 cheetah_error_table = &__cheetah_plus_error_table[0]; 928 cheetah_afsr_errors = CHPAFSR_ERRORS; 929 } else { 930 cheetah_error_table = &__cheetah_error_table[0]; 931 cheetah_afsr_errors = CHAFSR_ERRORS; 932 } 933 934 /* Now patch trap tables. */ 935 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); 936 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); 937 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); 938 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); 939 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); 940 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 941 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); 942 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 943 if (tlb_type == cheetah_plus) { 944 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); 945 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); 946 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); 947 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); 948 } 949 flushi(PAGE_OFFSET); 950 } 951 952 static void cheetah_flush_ecache(void) 953 { 954 unsigned long flush_base = ecache_flush_physbase; 955 unsigned long flush_linesize = ecache_flush_linesize; 956 unsigned long flush_size = ecache_flush_size; 957 958 __asm__ __volatile__("1: subcc %0, %4, %0\n\t" 959 " bne,pt %%xcc, 1b\n\t" 960 " ldxa [%2 + %0] %3, %%g0\n\t" 961 : "=&r" (flush_size) 962 : "0" (flush_size), "r" (flush_base), 963 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); 964 } 965 966 static void cheetah_flush_ecache_line(unsigned long physaddr) 967 { 968 unsigned long alias; 969 970 physaddr &= ~(8UL - 1UL); 971 physaddr = (ecache_flush_physbase + 972 (physaddr & ((ecache_flush_size>>1UL) - 1UL))); 973 alias = physaddr + (ecache_flush_size >> 1UL); 974 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" 975 "ldxa [%1] %2, %%g0\n\t" 976 "membar #Sync" 977 : /* no outputs */ 978 : "r" (physaddr), "r" (alias), 979 "i" (ASI_PHYS_USE_EC)); 980 } 981 982 /* Unfortunately, the diagnostic access to the I-cache tags we need to 983 * use to clear the thing interferes with I-cache coherency transactions. 984 * 985 * So we must only flush the I-cache when it is disabled. 986 */ 987 static void __cheetah_flush_icache(void) 988 { 989 unsigned int icache_size, icache_line_size; 990 unsigned long addr; 991 992 icache_size = local_cpu_data().icache_size; 993 icache_line_size = local_cpu_data().icache_line_size; 994 995 /* Clear the valid bits in all the tags. */ 996 for (addr = 0; addr < icache_size; addr += icache_line_size) { 997 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 998 "membar #Sync" 999 : /* no outputs */ 1000 : "r" (addr | (2 << 3)), 1001 "i" (ASI_IC_TAG)); 1002 } 1003 } 1004 1005 static void cheetah_flush_icache(void) 1006 { 1007 unsigned long dcu_save; 1008 1009 /* Save current DCU, disable I-cache. */ 1010 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1011 "or %0, %2, %%g1\n\t" 1012 "stxa %%g1, [%%g0] %1\n\t" 1013 "membar #Sync" 1014 : "=r" (dcu_save) 1015 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) 1016 : "g1"); 1017 1018 __cheetah_flush_icache(); 1019 1020 /* Restore DCU register */ 1021 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1022 "membar #Sync" 1023 : /* no outputs */ 1024 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); 1025 } 1026 1027 static void cheetah_flush_dcache(void) 1028 { 1029 unsigned int dcache_size, dcache_line_size; 1030 unsigned long addr; 1031 1032 dcache_size = local_cpu_data().dcache_size; 1033 dcache_line_size = local_cpu_data().dcache_line_size; 1034 1035 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1036 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 1037 "membar #Sync" 1038 : /* no outputs */ 1039 : "r" (addr), "i" (ASI_DCACHE_TAG)); 1040 } 1041 } 1042 1043 /* In order to make the even parity correct we must do two things. 1044 * First, we clear DC_data_parity and set DC_utag to an appropriate value. 1045 * Next, we clear out all 32-bytes of data for that line. Data of 1046 * all-zero + tag parity value of zero == correct parity. 1047 */ 1048 static void cheetah_plus_zap_dcache_parity(void) 1049 { 1050 unsigned int dcache_size, dcache_line_size; 1051 unsigned long addr; 1052 1053 dcache_size = local_cpu_data().dcache_size; 1054 dcache_line_size = local_cpu_data().dcache_line_size; 1055 1056 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1057 unsigned long tag = (addr >> 14); 1058 unsigned long line; 1059 1060 __asm__ __volatile__("membar #Sync\n\t" 1061 "stxa %0, [%1] %2\n\t" 1062 "membar #Sync" 1063 : /* no outputs */ 1064 : "r" (tag), "r" (addr), 1065 "i" (ASI_DCACHE_UTAG)); 1066 for (line = addr; line < addr + dcache_line_size; line += 8) 1067 __asm__ __volatile__("membar #Sync\n\t" 1068 "stxa %%g0, [%0] %1\n\t" 1069 "membar #Sync" 1070 : /* no outputs */ 1071 : "r" (line), 1072 "i" (ASI_DCACHE_DATA)); 1073 } 1074 } 1075 1076 /* Conversion tables used to frob Cheetah AFSR syndrome values into 1077 * something palatable to the memory controller driver get_unumber 1078 * routine. 1079 */ 1080 #define MT0 137 1081 #define MT1 138 1082 #define MT2 139 1083 #define NONE 254 1084 #define MTC0 140 1085 #define MTC1 141 1086 #define MTC2 142 1087 #define MTC3 143 1088 #define C0 128 1089 #define C1 129 1090 #define C2 130 1091 #define C3 131 1092 #define C4 132 1093 #define C5 133 1094 #define C6 134 1095 #define C7 135 1096 #define C8 136 1097 #define M2 144 1098 #define M3 145 1099 #define M4 146 1100 #define M 147 1101 static unsigned char cheetah_ecc_syntab[] = { 1102 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, 1103 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, 1104 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, 1105 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, 1106 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, 1107 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, 1108 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, 1109 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, 1110 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, 1111 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, 1112 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, 1113 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, 1114 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, 1115 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, 1116 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, 1117 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, 1118 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, 1119 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, 1120 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, 1121 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, 1122 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, 1123 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, 1124 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, 1125 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, 1126 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, 1127 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, 1128 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, 1129 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, 1130 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, 1131 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, 1132 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, 1133 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M 1134 }; 1135 static unsigned char cheetah_mtag_syntab[] = { 1136 NONE, MTC0, 1137 MTC1, NONE, 1138 MTC2, NONE, 1139 NONE, MT0, 1140 MTC3, NONE, 1141 NONE, MT1, 1142 NONE, MT2, 1143 NONE, NONE 1144 }; 1145 1146 /* Return the highest priority error conditon mentioned. */ 1147 static inline unsigned long cheetah_get_hipri(unsigned long afsr) 1148 { 1149 unsigned long tmp = 0; 1150 int i; 1151 1152 for (i = 0; cheetah_error_table[i].mask; i++) { 1153 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) 1154 return tmp; 1155 } 1156 return tmp; 1157 } 1158 1159 static const char *cheetah_get_string(unsigned long bit) 1160 { 1161 int i; 1162 1163 for (i = 0; cheetah_error_table[i].mask; i++) { 1164 if ((bit & cheetah_error_table[i].mask) != 0UL) 1165 return cheetah_error_table[i].name; 1166 } 1167 return "???"; 1168 } 1169 1170 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, 1171 unsigned long afsr, unsigned long afar, int recoverable) 1172 { 1173 unsigned long hipri; 1174 char unum[256]; 1175 1176 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", 1177 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1178 afsr, afar, 1179 (afsr & CHAFSR_TL1) ? 1 : 0); 1180 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", 1181 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1182 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); 1183 printk("%s" "ERROR(%d): ", 1184 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); 1185 printk("TPC<%pS>\n", (void *) regs->tpc); 1186 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", 1187 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1188 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, 1189 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, 1190 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", 1191 (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); 1192 hipri = cheetah_get_hipri(afsr); 1193 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", 1194 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1195 hipri, cheetah_get_string(hipri)); 1196 1197 /* Try to get unumber if relevant. */ 1198 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ 1199 CHAFSR_CPC | CHAFSR_CPU | \ 1200 CHAFSR_UE | CHAFSR_CE | \ 1201 CHAFSR_EDC | CHAFSR_EDU | \ 1202 CHAFSR_UCC | CHAFSR_UCU | \ 1203 CHAFSR_WDU | CHAFSR_WDC) 1204 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) 1205 if (afsr & ESYND_ERRORS) { 1206 int syndrome; 1207 int ret; 1208 1209 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; 1210 syndrome = cheetah_ecc_syntab[syndrome]; 1211 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1212 if (ret != -1) 1213 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", 1214 (recoverable ? KERN_WARNING : KERN_CRIT), 1215 smp_processor_id(), unum); 1216 } else if (afsr & MSYND_ERRORS) { 1217 int syndrome; 1218 int ret; 1219 1220 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; 1221 syndrome = cheetah_mtag_syntab[syndrome]; 1222 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1223 if (ret != -1) 1224 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", 1225 (recoverable ? KERN_WARNING : KERN_CRIT), 1226 smp_processor_id(), unum); 1227 } 1228 1229 /* Now dump the cache snapshots. */ 1230 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", 1231 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1232 (int) info->dcache_index, 1233 info->dcache_tag, 1234 info->dcache_utag, 1235 info->dcache_stag); 1236 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1237 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1238 info->dcache_data[0], 1239 info->dcache_data[1], 1240 info->dcache_data[2], 1241 info->dcache_data[3]); 1242 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " 1243 "u[%016llx] l[%016llx]\n", 1244 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1245 (int) info->icache_index, 1246 info->icache_tag, 1247 info->icache_utag, 1248 info->icache_stag, 1249 info->icache_upper, 1250 info->icache_lower); 1251 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", 1252 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1253 info->icache_data[0], 1254 info->icache_data[1], 1255 info->icache_data[2], 1256 info->icache_data[3]); 1257 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", 1258 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1259 info->icache_data[4], 1260 info->icache_data[5], 1261 info->icache_data[6], 1262 info->icache_data[7]); 1263 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", 1264 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1265 (int) info->ecache_index, info->ecache_tag); 1266 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1267 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1268 info->ecache_data[0], 1269 info->ecache_data[1], 1270 info->ecache_data[2], 1271 info->ecache_data[3]); 1272 1273 afsr = (afsr & ~hipri) & cheetah_afsr_errors; 1274 while (afsr != 0UL) { 1275 unsigned long bit = cheetah_get_hipri(afsr); 1276 1277 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", 1278 (recoverable ? KERN_WARNING : KERN_CRIT), 1279 bit, cheetah_get_string(bit)); 1280 1281 afsr &= ~bit; 1282 } 1283 1284 if (!recoverable) 1285 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); 1286 } 1287 1288 static int cheetah_recheck_errors(struct cheetah_err_info *logp) 1289 { 1290 unsigned long afsr, afar; 1291 int ret = 0; 1292 1293 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1294 : "=r" (afsr) 1295 : "i" (ASI_AFSR)); 1296 if ((afsr & cheetah_afsr_errors) != 0) { 1297 if (logp != NULL) { 1298 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1299 : "=r" (afar) 1300 : "i" (ASI_AFAR)); 1301 logp->afsr = afsr; 1302 logp->afar = afar; 1303 } 1304 ret = 1; 1305 } 1306 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1307 "membar #Sync\n\t" 1308 : : "r" (afsr), "i" (ASI_AFSR)); 1309 1310 return ret; 1311 } 1312 1313 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1314 { 1315 struct cheetah_err_info local_snapshot, *p; 1316 int recoverable; 1317 1318 /* Flush E-cache */ 1319 cheetah_flush_ecache(); 1320 1321 p = cheetah_get_error_log(afsr); 1322 if (!p) { 1323 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", 1324 afsr, afar); 1325 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1326 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1327 prom_halt(); 1328 } 1329 1330 /* Grab snapshot of logged error. */ 1331 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1332 1333 /* If the current trap snapshot does not match what the 1334 * trap handler passed along into our args, big trouble. 1335 * In such a case, mark the local copy as invalid. 1336 * 1337 * Else, it matches and we mark the afsr in the non-local 1338 * copy as invalid so we may log new error traps there. 1339 */ 1340 if (p->afsr != afsr || p->afar != afar) 1341 local_snapshot.afsr = CHAFSR_INVALID; 1342 else 1343 p->afsr = CHAFSR_INVALID; 1344 1345 cheetah_flush_icache(); 1346 cheetah_flush_dcache(); 1347 1348 /* Re-enable I-cache/D-cache */ 1349 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1350 "or %%g1, %1, %%g1\n\t" 1351 "stxa %%g1, [%%g0] %0\n\t" 1352 "membar #Sync" 1353 : /* no outputs */ 1354 : "i" (ASI_DCU_CONTROL_REG), 1355 "i" (DCU_DC | DCU_IC) 1356 : "g1"); 1357 1358 /* Re-enable error reporting */ 1359 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1360 "or %%g1, %1, %%g1\n\t" 1361 "stxa %%g1, [%%g0] %0\n\t" 1362 "membar #Sync" 1363 : /* no outputs */ 1364 : "i" (ASI_ESTATE_ERROR_EN), 1365 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1366 : "g1"); 1367 1368 /* Decide if we can continue after handling this trap and 1369 * logging the error. 1370 */ 1371 recoverable = 1; 1372 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1373 recoverable = 0; 1374 1375 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1376 * error was logged while we had error reporting traps disabled. 1377 */ 1378 if (cheetah_recheck_errors(&local_snapshot)) { 1379 unsigned long new_afsr = local_snapshot.afsr; 1380 1381 /* If we got a new asynchronous error, die... */ 1382 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1383 CHAFSR_WDU | CHAFSR_CPU | 1384 CHAFSR_IVU | CHAFSR_UE | 1385 CHAFSR_BERR | CHAFSR_TO)) 1386 recoverable = 0; 1387 } 1388 1389 /* Log errors. */ 1390 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1391 1392 if (!recoverable) 1393 panic("Irrecoverable Fast-ECC error trap.\n"); 1394 1395 /* Flush E-cache to kick the error trap handlers out. */ 1396 cheetah_flush_ecache(); 1397 } 1398 1399 /* Try to fix a correctable error by pushing the line out from 1400 * the E-cache. Recheck error reporting registers to see if the 1401 * problem is intermittent. 1402 */ 1403 static int cheetah_fix_ce(unsigned long physaddr) 1404 { 1405 unsigned long orig_estate; 1406 unsigned long alias1, alias2; 1407 int ret; 1408 1409 /* Make sure correctable error traps are disabled. */ 1410 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" 1411 "andn %0, %1, %%g1\n\t" 1412 "stxa %%g1, [%%g0] %2\n\t" 1413 "membar #Sync" 1414 : "=&r" (orig_estate) 1415 : "i" (ESTATE_ERROR_CEEN), 1416 "i" (ASI_ESTATE_ERROR_EN) 1417 : "g1"); 1418 1419 /* We calculate alias addresses that will force the 1420 * cache line in question out of the E-cache. Then 1421 * we bring it back in with an atomic instruction so 1422 * that we get it in some modified/exclusive state, 1423 * then we displace it again to try and get proper ECC 1424 * pushed back into the system. 1425 */ 1426 physaddr &= ~(8UL - 1UL); 1427 alias1 = (ecache_flush_physbase + 1428 (physaddr & ((ecache_flush_size >> 1) - 1))); 1429 alias2 = alias1 + (ecache_flush_size >> 1); 1430 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" 1431 "ldxa [%1] %3, %%g0\n\t" 1432 "casxa [%2] %3, %%g0, %%g0\n\t" 1433 "ldxa [%0] %3, %%g0\n\t" 1434 "ldxa [%1] %3, %%g0\n\t" 1435 "membar #Sync" 1436 : /* no outputs */ 1437 : "r" (alias1), "r" (alias2), 1438 "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1439 1440 /* Did that trigger another error? */ 1441 if (cheetah_recheck_errors(NULL)) { 1442 /* Try one more time. */ 1443 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" 1444 "membar #Sync" 1445 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1446 if (cheetah_recheck_errors(NULL)) 1447 ret = 2; 1448 else 1449 ret = 1; 1450 } else { 1451 /* No new error, intermittent problem. */ 1452 ret = 0; 1453 } 1454 1455 /* Restore error enables. */ 1456 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1457 "membar #Sync" 1458 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); 1459 1460 return ret; 1461 } 1462 1463 /* Return non-zero if PADDR is a valid physical memory address. */ 1464 static int cheetah_check_main_memory(unsigned long paddr) 1465 { 1466 unsigned long vaddr = PAGE_OFFSET + paddr; 1467 1468 if (vaddr > (unsigned long) high_memory) 1469 return 0; 1470 1471 return kern_addr_valid(vaddr); 1472 } 1473 1474 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1475 { 1476 struct cheetah_err_info local_snapshot, *p; 1477 int recoverable, is_memory; 1478 1479 p = cheetah_get_error_log(afsr); 1480 if (!p) { 1481 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", 1482 afsr, afar); 1483 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1484 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1485 prom_halt(); 1486 } 1487 1488 /* Grab snapshot of logged error. */ 1489 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1490 1491 /* If the current trap snapshot does not match what the 1492 * trap handler passed along into our args, big trouble. 1493 * In such a case, mark the local copy as invalid. 1494 * 1495 * Else, it matches and we mark the afsr in the non-local 1496 * copy as invalid so we may log new error traps there. 1497 */ 1498 if (p->afsr != afsr || p->afar != afar) 1499 local_snapshot.afsr = CHAFSR_INVALID; 1500 else 1501 p->afsr = CHAFSR_INVALID; 1502 1503 is_memory = cheetah_check_main_memory(afar); 1504 1505 if (is_memory && (afsr & CHAFSR_CE) != 0UL) { 1506 /* XXX Might want to log the results of this operation 1507 * XXX somewhere... -DaveM 1508 */ 1509 cheetah_fix_ce(afar); 1510 } 1511 1512 { 1513 int flush_all, flush_line; 1514 1515 flush_all = flush_line = 0; 1516 if ((afsr & CHAFSR_EDC) != 0UL) { 1517 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) 1518 flush_line = 1; 1519 else 1520 flush_all = 1; 1521 } else if ((afsr & CHAFSR_CPC) != 0UL) { 1522 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) 1523 flush_line = 1; 1524 else 1525 flush_all = 1; 1526 } 1527 1528 /* Trap handler only disabled I-cache, flush it. */ 1529 cheetah_flush_icache(); 1530 1531 /* Re-enable I-cache */ 1532 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1533 "or %%g1, %1, %%g1\n\t" 1534 "stxa %%g1, [%%g0] %0\n\t" 1535 "membar #Sync" 1536 : /* no outputs */ 1537 : "i" (ASI_DCU_CONTROL_REG), 1538 "i" (DCU_IC) 1539 : "g1"); 1540 1541 if (flush_all) 1542 cheetah_flush_ecache(); 1543 else if (flush_line) 1544 cheetah_flush_ecache_line(afar); 1545 } 1546 1547 /* Re-enable error reporting */ 1548 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1549 "or %%g1, %1, %%g1\n\t" 1550 "stxa %%g1, [%%g0] %0\n\t" 1551 "membar #Sync" 1552 : /* no outputs */ 1553 : "i" (ASI_ESTATE_ERROR_EN), 1554 "i" (ESTATE_ERROR_CEEN) 1555 : "g1"); 1556 1557 /* Decide if we can continue after handling this trap and 1558 * logging the error. 1559 */ 1560 recoverable = 1; 1561 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1562 recoverable = 0; 1563 1564 /* Re-check AFSR/AFAR */ 1565 (void) cheetah_recheck_errors(&local_snapshot); 1566 1567 /* Log errors. */ 1568 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1569 1570 if (!recoverable) 1571 panic("Irrecoverable Correctable-ECC error trap.\n"); 1572 } 1573 1574 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1575 { 1576 struct cheetah_err_info local_snapshot, *p; 1577 int recoverable, is_memory; 1578 1579 #ifdef CONFIG_PCI 1580 /* Check for the special PCI poke sequence. */ 1581 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 1582 cheetah_flush_icache(); 1583 cheetah_flush_dcache(); 1584 1585 /* Re-enable I-cache/D-cache */ 1586 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1587 "or %%g1, %1, %%g1\n\t" 1588 "stxa %%g1, [%%g0] %0\n\t" 1589 "membar #Sync" 1590 : /* no outputs */ 1591 : "i" (ASI_DCU_CONTROL_REG), 1592 "i" (DCU_DC | DCU_IC) 1593 : "g1"); 1594 1595 /* Re-enable error reporting */ 1596 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1597 "or %%g1, %1, %%g1\n\t" 1598 "stxa %%g1, [%%g0] %0\n\t" 1599 "membar #Sync" 1600 : /* no outputs */ 1601 : "i" (ASI_ESTATE_ERROR_EN), 1602 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1603 : "g1"); 1604 1605 (void) cheetah_recheck_errors(NULL); 1606 1607 pci_poke_faulted = 1; 1608 regs->tpc += 4; 1609 regs->tnpc = regs->tpc + 4; 1610 return; 1611 } 1612 #endif 1613 1614 p = cheetah_get_error_log(afsr); 1615 if (!p) { 1616 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", 1617 afsr, afar); 1618 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1619 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1620 prom_halt(); 1621 } 1622 1623 /* Grab snapshot of logged error. */ 1624 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1625 1626 /* If the current trap snapshot does not match what the 1627 * trap handler passed along into our args, big trouble. 1628 * In such a case, mark the local copy as invalid. 1629 * 1630 * Else, it matches and we mark the afsr in the non-local 1631 * copy as invalid so we may log new error traps there. 1632 */ 1633 if (p->afsr != afsr || p->afar != afar) 1634 local_snapshot.afsr = CHAFSR_INVALID; 1635 else 1636 p->afsr = CHAFSR_INVALID; 1637 1638 is_memory = cheetah_check_main_memory(afar); 1639 1640 { 1641 int flush_all, flush_line; 1642 1643 flush_all = flush_line = 0; 1644 if ((afsr & CHAFSR_EDU) != 0UL) { 1645 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) 1646 flush_line = 1; 1647 else 1648 flush_all = 1; 1649 } else if ((afsr & CHAFSR_BERR) != 0UL) { 1650 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) 1651 flush_line = 1; 1652 else 1653 flush_all = 1; 1654 } 1655 1656 cheetah_flush_icache(); 1657 cheetah_flush_dcache(); 1658 1659 /* Re-enable I/D caches */ 1660 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1661 "or %%g1, %1, %%g1\n\t" 1662 "stxa %%g1, [%%g0] %0\n\t" 1663 "membar #Sync" 1664 : /* no outputs */ 1665 : "i" (ASI_DCU_CONTROL_REG), 1666 "i" (DCU_IC | DCU_DC) 1667 : "g1"); 1668 1669 if (flush_all) 1670 cheetah_flush_ecache(); 1671 else if (flush_line) 1672 cheetah_flush_ecache_line(afar); 1673 } 1674 1675 /* Re-enable error reporting */ 1676 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1677 "or %%g1, %1, %%g1\n\t" 1678 "stxa %%g1, [%%g0] %0\n\t" 1679 "membar #Sync" 1680 : /* no outputs */ 1681 : "i" (ASI_ESTATE_ERROR_EN), 1682 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1683 : "g1"); 1684 1685 /* Decide if we can continue after handling this trap and 1686 * logging the error. 1687 */ 1688 recoverable = 1; 1689 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1690 recoverable = 0; 1691 1692 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1693 * error was logged while we had error reporting traps disabled. 1694 */ 1695 if (cheetah_recheck_errors(&local_snapshot)) { 1696 unsigned long new_afsr = local_snapshot.afsr; 1697 1698 /* If we got a new asynchronous error, die... */ 1699 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1700 CHAFSR_WDU | CHAFSR_CPU | 1701 CHAFSR_IVU | CHAFSR_UE | 1702 CHAFSR_BERR | CHAFSR_TO)) 1703 recoverable = 0; 1704 } 1705 1706 /* Log errors. */ 1707 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1708 1709 /* "Recoverable" here means we try to yank the page from ever 1710 * being newly used again. This depends upon a few things: 1711 * 1) Must be main memory, and AFAR must be valid. 1712 * 2) If we trapped from user, OK. 1713 * 3) Else, if we trapped from kernel we must find exception 1714 * table entry (ie. we have to have been accessing user 1715 * space). 1716 * 1717 * If AFAR is not in main memory, or we trapped from kernel 1718 * and cannot find an exception table entry, it is unacceptable 1719 * to try and continue. 1720 */ 1721 if (recoverable && is_memory) { 1722 if ((regs->tstate & TSTATE_PRIV) == 0UL) { 1723 /* OK, usermode access. */ 1724 recoverable = 1; 1725 } else { 1726 const struct exception_table_entry *entry; 1727 1728 entry = search_exception_tables(regs->tpc); 1729 if (entry) { 1730 /* OK, kernel access to userspace. */ 1731 recoverable = 1; 1732 1733 } else { 1734 /* BAD, privileged state is corrupted. */ 1735 recoverable = 0; 1736 } 1737 1738 if (recoverable) { 1739 if (pfn_valid(afar >> PAGE_SHIFT)) 1740 get_page(pfn_to_page(afar >> PAGE_SHIFT)); 1741 else 1742 recoverable = 0; 1743 1744 /* Only perform fixup if we still have a 1745 * recoverable condition. 1746 */ 1747 if (recoverable) { 1748 regs->tpc = entry->fixup; 1749 regs->tnpc = regs->tpc + 4; 1750 } 1751 } 1752 } 1753 } else { 1754 recoverable = 0; 1755 } 1756 1757 if (!recoverable) 1758 panic("Irrecoverable deferred error trap.\n"); 1759 } 1760 1761 /* Handle a D/I cache parity error trap. TYPE is encoded as: 1762 * 1763 * Bit0: 0=dcache,1=icache 1764 * Bit1: 0=recoverable,1=unrecoverable 1765 * 1766 * The hardware has disabled both the I-cache and D-cache in 1767 * the %dcr register. 1768 */ 1769 void cheetah_plus_parity_error(int type, struct pt_regs *regs) 1770 { 1771 if (type & 0x1) 1772 __cheetah_flush_icache(); 1773 else 1774 cheetah_plus_zap_dcache_parity(); 1775 cheetah_flush_dcache(); 1776 1777 /* Re-enable I-cache/D-cache */ 1778 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1779 "or %%g1, %1, %%g1\n\t" 1780 "stxa %%g1, [%%g0] %0\n\t" 1781 "membar #Sync" 1782 : /* no outputs */ 1783 : "i" (ASI_DCU_CONTROL_REG), 1784 "i" (DCU_DC | DCU_IC) 1785 : "g1"); 1786 1787 if (type & 0x2) { 1788 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1789 smp_processor_id(), 1790 (type & 0x1) ? 'I' : 'D', 1791 regs->tpc); 1792 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); 1793 panic("Irrecoverable Cheetah+ parity error."); 1794 } 1795 1796 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1797 smp_processor_id(), 1798 (type & 0x1) ? 'I' : 'D', 1799 regs->tpc); 1800 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); 1801 } 1802 1803 struct sun4v_error_entry { 1804 /* Unique error handle */ 1805 /*0x00*/u64 err_handle; 1806 1807 /* %stick value at the time of the error */ 1808 /*0x08*/u64 err_stick; 1809 1810 /*0x10*/u8 reserved_1[3]; 1811 1812 /* Error type */ 1813 /*0x13*/u8 err_type; 1814 #define SUN4V_ERR_TYPE_UNDEFINED 0 1815 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 1816 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 1817 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 1818 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4 1819 #define SUN4V_ERR_TYPE_DUMP_CORE 5 1820 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6 1821 #define SUN4V_ERR_TYPE_NUM 7 1822 1823 /* Error attributes */ 1824 /*0x14*/u32 err_attrs; 1825 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 1826 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 1827 #define SUN4V_ERR_ATTRS_PIO 0x00000004 1828 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 1829 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 1830 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020 1831 #define SUN4V_ERR_ATTRS_ASR 0x00000040 1832 #define SUN4V_ERR_ATTRS_ASI 0x00000080 1833 #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100 1834 #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600 1835 #define SUN4V_ERR_ATTRS_MCD 0x00000800 1836 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9 1837 #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000 1838 #define SUN4V_ERR_ATTRS_MODE_SHFT 24 1839 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 1840 1841 #define SUN4V_ERR_SPSTATE_FAULTED 0 1842 #define SUN4V_ERR_SPSTATE_AVAILABLE 1 1843 #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2 1844 1845 #define SUN4V_ERR_MODE_USER 1 1846 #define SUN4V_ERR_MODE_PRIV 2 1847 1848 /* Real address of the memory region or PIO transaction */ 1849 /*0x18*/u64 err_raddr; 1850 1851 /* Size of the operation triggering the error, in bytes */ 1852 /*0x20*/u32 err_size; 1853 1854 /* ID of the CPU */ 1855 /*0x24*/u16 err_cpu; 1856 1857 /* Grace periof for shutdown, in seconds */ 1858 /*0x26*/u16 err_secs; 1859 1860 /* Value of the %asi register */ 1861 /*0x28*/u8 err_asi; 1862 1863 /*0x29*/u8 reserved_2; 1864 1865 /* Value of the ASR register number */ 1866 /*0x2a*/u16 err_asr; 1867 #define SUN4V_ERR_ASR_VALID 0x8000 1868 1869 /*0x2c*/u32 reserved_3; 1870 /*0x30*/u64 reserved_4; 1871 /*0x38*/u64 reserved_5; 1872 }; 1873 1874 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); 1875 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); 1876 1877 static const char *sun4v_err_type_to_str(u8 type) 1878 { 1879 static const char *types[SUN4V_ERR_TYPE_NUM] = { 1880 "undefined", 1881 "uncorrected resumable", 1882 "precise nonresumable", 1883 "deferred nonresumable", 1884 "shutdown request", 1885 "dump core", 1886 "SP state change", 1887 }; 1888 1889 if (type < SUN4V_ERR_TYPE_NUM) 1890 return types[type]; 1891 1892 return "unknown"; 1893 } 1894 1895 static void sun4v_emit_err_attr_strings(u32 attrs) 1896 { 1897 static const char *attr_names[] = { 1898 "processor", 1899 "memory", 1900 "PIO", 1901 "int-registers", 1902 "fpu-registers", 1903 "shutdown-request", 1904 "ASR", 1905 "ASI", 1906 "priv-reg", 1907 }; 1908 static const char *sp_states[] = { 1909 "sp-faulted", 1910 "sp-available", 1911 "sp-not-present", 1912 "sp-state-reserved", 1913 }; 1914 static const char *modes[] = { 1915 "mode-reserved0", 1916 "user", 1917 "priv", 1918 "mode-reserved1", 1919 }; 1920 u32 sp_state, mode; 1921 int i; 1922 1923 for (i = 0; i < ARRAY_SIZE(attr_names); i++) { 1924 if (attrs & (1U << i)) { 1925 const char *s = attr_names[i]; 1926 1927 pr_cont("%s ", s); 1928 } 1929 } 1930 1931 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >> 1932 SUN4V_ERR_ATTRS_SPSTATE_SHFT); 1933 pr_cont("%s ", sp_states[sp_state]); 1934 1935 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >> 1936 SUN4V_ERR_ATTRS_MODE_SHFT); 1937 pr_cont("%s ", modes[mode]); 1938 1939 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) 1940 pr_cont("res-queue-full "); 1941 } 1942 1943 /* When the report contains a real-address of "-1" it means that the 1944 * hardware did not provide the address. So we compute the effective 1945 * address of the load or store instruction at regs->tpc and report 1946 * that. Usually when this happens it's a PIO and in such a case we 1947 * are using physical addresses with bypass ASIs anyways, so what we 1948 * report here is exactly what we want. 1949 */ 1950 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs) 1951 { 1952 unsigned int insn; 1953 u64 addr; 1954 1955 if (!(regs->tstate & TSTATE_PRIV)) 1956 return; 1957 1958 insn = *(unsigned int *) regs->tpc; 1959 1960 addr = compute_effective_address(regs, insn, 0); 1961 1962 printk("%s: insn effective address [0x%016llx]\n", 1963 pfx, addr); 1964 } 1965 1966 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, 1967 int cpu, const char *pfx, atomic_t *ocnt) 1968 { 1969 u64 *raw_ptr = (u64 *) ent; 1970 u32 attrs; 1971 int cnt; 1972 1973 printk("%s: Reporting on cpu %d\n", pfx, cpu); 1974 printk("%s: TPC [0x%016lx] <%pS>\n", 1975 pfx, regs->tpc, (void *) regs->tpc); 1976 1977 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n", 1978 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]); 1979 printk("%s: %016llx:%016llx:%016llx:%016llx]\n", 1980 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]); 1981 1982 printk("%s: handle [0x%016llx] stick [0x%016llx]\n", 1983 pfx, ent->err_handle, ent->err_stick); 1984 1985 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type)); 1986 1987 attrs = ent->err_attrs; 1988 printk("%s: attrs [0x%08x] < ", pfx, attrs); 1989 sun4v_emit_err_attr_strings(attrs); 1990 pr_cont(">\n"); 1991 1992 /* Various fields in the error report are only valid if 1993 * certain attribute bits are set. 1994 */ 1995 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | 1996 SUN4V_ERR_ATTRS_PIO | 1997 SUN4V_ERR_ATTRS_ASI)) { 1998 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr); 1999 2000 if (ent->err_raddr == ~(u64)0) 2001 sun4v_report_real_raddr(pfx, regs); 2002 } 2003 2004 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI)) 2005 printk("%s: size [0x%x]\n", pfx, ent->err_size); 2006 2007 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR | 2008 SUN4V_ERR_ATTRS_INT_REGISTERS | 2009 SUN4V_ERR_ATTRS_FPU_REGISTERS | 2010 SUN4V_ERR_ATTRS_PRIV_REG)) 2011 printk("%s: cpu[%u]\n", pfx, ent->err_cpu); 2012 2013 if (attrs & SUN4V_ERR_ATTRS_ASI) 2014 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi); 2015 2016 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS | 2017 SUN4V_ERR_ATTRS_FPU_REGISTERS | 2018 SUN4V_ERR_ATTRS_PRIV_REG)) && 2019 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0) 2020 printk("%s: reg [0x%04x]\n", 2021 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID); 2022 2023 show_regs(regs); 2024 2025 if ((cnt = atomic_read(ocnt)) != 0) { 2026 atomic_set(ocnt, 0); 2027 wmb(); 2028 printk("%s: Queue overflowed %d times.\n", 2029 pfx, cnt); 2030 } 2031 } 2032 2033 /* Handle memory corruption detected error which is vectored in 2034 * through resumable error trap. 2035 */ 2036 void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent) 2037 { 2038 if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34, 2039 SIGSEGV) == NOTIFY_STOP) 2040 return; 2041 2042 if (regs->tstate & TSTATE_PRIV) { 2043 /* MCD exception could happen because the task was 2044 * running a system call with MCD enabled and passed a 2045 * non-versioned pointer or pointer with bad version 2046 * tag to the system call. In such cases, hypervisor 2047 * places the address of offending instruction in the 2048 * resumable error report. This is a deferred error, 2049 * so the read/write that caused the trap was potentially 2050 * retired long time back and we may have no choice 2051 * but to send SIGSEGV to the process. 2052 */ 2053 const struct exception_table_entry *entry; 2054 2055 entry = search_exception_tables(regs->tpc); 2056 if (entry) { 2057 /* Looks like a bad syscall parameter */ 2058 #ifdef DEBUG_EXCEPTIONS 2059 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", 2060 regs->tpc); 2061 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 2062 ent.err_raddr, entry->fixup); 2063 #endif 2064 regs->tpc = entry->fixup; 2065 regs->tnpc = regs->tpc + 4; 2066 return; 2067 } 2068 } 2069 2070 /* Send SIGSEGV to the userspace process with the right signal 2071 * code 2072 */ 2073 force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr, 2074 0); 2075 } 2076 2077 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2078 * Log the event and clear the first word of the entry. 2079 */ 2080 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) 2081 { 2082 enum ctx_state prev_state = exception_enter(); 2083 struct sun4v_error_entry *ent, local_copy; 2084 struct trap_per_cpu *tb; 2085 unsigned long paddr; 2086 int cpu; 2087 2088 cpu = get_cpu(); 2089 2090 tb = &trap_block[cpu]; 2091 paddr = tb->resum_kernel_buf_pa + offset; 2092 ent = __va(paddr); 2093 2094 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2095 2096 /* We have a local copy now, so release the entry. */ 2097 ent->err_handle = 0; 2098 wmb(); 2099 2100 put_cpu(); 2101 2102 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) { 2103 /* We should really take the seconds field of 2104 * the error report and use it for the shutdown 2105 * invocation, but for now do the same thing we 2106 * do for a DS shutdown request. 2107 */ 2108 pr_info("Shutdown request, %u seconds...\n", 2109 local_copy.err_secs); 2110 orderly_poweroff(true); 2111 goto out; 2112 } 2113 2114 /* If this is a memory corruption detected error vectored in 2115 * by HV through resumable error trap, call the handler 2116 */ 2117 if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) { 2118 do_mcd_err(regs, local_copy); 2119 return; 2120 } 2121 2122 sun4v_log_error(regs, &local_copy, cpu, 2123 KERN_ERR "RESUMABLE ERROR", 2124 &sun4v_resum_oflow_cnt); 2125 out: 2126 exception_exit(prev_state); 2127 } 2128 2129 /* If we try to printk() we'll probably make matters worse, by trying 2130 * to retake locks this cpu already holds or causing more errors. So 2131 * just bump a counter, and we'll report these counter bumps above. 2132 */ 2133 void sun4v_resum_overflow(struct pt_regs *regs) 2134 { 2135 atomic_inc(&sun4v_resum_oflow_cnt); 2136 } 2137 2138 /* Given a set of registers, get the virtual addressi that was being accessed 2139 * by the faulting instructions at tpc. 2140 */ 2141 static unsigned long sun4v_get_vaddr(struct pt_regs *regs) 2142 { 2143 unsigned int insn; 2144 2145 if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) { 2146 return compute_effective_address(regs, insn, 2147 (insn >> 25) & 0x1f); 2148 } 2149 return 0; 2150 } 2151 2152 /* Attempt to handle non-resumable errors generated from userspace. 2153 * Returns true if the signal was handled, false otherwise. 2154 */ 2155 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs, 2156 struct sun4v_error_entry *ent) { 2157 2158 unsigned int attrs = ent->err_attrs; 2159 2160 if (attrs & SUN4V_ERR_ATTRS_MEMORY) { 2161 unsigned long addr = ent->err_raddr; 2162 2163 if (addr == ~(u64)0) { 2164 /* This seems highly unlikely to ever occur */ 2165 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n"); 2166 } else { 2167 unsigned long page_cnt = DIV_ROUND_UP(ent->err_size, 2168 PAGE_SIZE); 2169 2170 /* Break the unfortunate news. */ 2171 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n", 2172 addr); 2173 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n", 2174 page_cnt); 2175 2176 while (page_cnt-- > 0) { 2177 if (pfn_valid(addr >> PAGE_SHIFT)) 2178 get_page(pfn_to_page(addr >> PAGE_SHIFT)); 2179 addr += PAGE_SIZE; 2180 } 2181 } 2182 force_sig(SIGKILL); 2183 2184 return true; 2185 } 2186 if (attrs & SUN4V_ERR_ATTRS_PIO) { 2187 force_sig_fault(SIGBUS, BUS_ADRERR, 2188 (void __user *)sun4v_get_vaddr(regs), 0); 2189 return true; 2190 } 2191 2192 /* Default to doing nothing */ 2193 return false; 2194 } 2195 2196 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2197 * Log the event, clear the first word of the entry, and die. 2198 */ 2199 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) 2200 { 2201 struct sun4v_error_entry *ent, local_copy; 2202 struct trap_per_cpu *tb; 2203 unsigned long paddr; 2204 int cpu; 2205 2206 cpu = get_cpu(); 2207 2208 tb = &trap_block[cpu]; 2209 paddr = tb->nonresum_kernel_buf_pa + offset; 2210 ent = __va(paddr); 2211 2212 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2213 2214 /* We have a local copy now, so release the entry. */ 2215 ent->err_handle = 0; 2216 wmb(); 2217 2218 put_cpu(); 2219 2220 if (!(regs->tstate & TSTATE_PRIV) && 2221 sun4v_nonresum_error_user_handled(regs, &local_copy)) { 2222 /* DON'T PANIC: This userspace error was handled. */ 2223 return; 2224 } 2225 2226 #ifdef CONFIG_PCI 2227 /* Check for the special PCI poke sequence. */ 2228 if (pci_poke_in_progress && pci_poke_cpu == cpu) { 2229 pci_poke_faulted = 1; 2230 regs->tpc += 4; 2231 regs->tnpc = regs->tpc + 4; 2232 return; 2233 } 2234 #endif 2235 2236 sun4v_log_error(regs, &local_copy, cpu, 2237 KERN_EMERG "NON-RESUMABLE ERROR", 2238 &sun4v_nonresum_oflow_cnt); 2239 2240 panic("Non-resumable error."); 2241 } 2242 2243 /* If we try to printk() we'll probably make matters worse, by trying 2244 * to retake locks this cpu already holds or causing more errors. So 2245 * just bump a counter, and we'll report these counter bumps above. 2246 */ 2247 void sun4v_nonresum_overflow(struct pt_regs *regs) 2248 { 2249 /* XXX Actually even this can make not that much sense. Perhaps 2250 * XXX we should just pull the plug and panic directly from here? 2251 */ 2252 atomic_inc(&sun4v_nonresum_oflow_cnt); 2253 } 2254 2255 static void sun4v_tlb_error(struct pt_regs *regs) 2256 { 2257 die_if_kernel("TLB/TSB error", regs); 2258 } 2259 2260 unsigned long sun4v_err_itlb_vaddr; 2261 unsigned long sun4v_err_itlb_ctx; 2262 unsigned long sun4v_err_itlb_pte; 2263 unsigned long sun4v_err_itlb_error; 2264 2265 void sun4v_itlb_error_report(struct pt_regs *regs, int tl) 2266 { 2267 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2268 2269 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", 2270 regs->tpc, tl); 2271 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); 2272 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2273 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", 2274 (void *) regs->u_regs[UREG_I7]); 2275 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " 2276 "pte[%lx] error[%lx]\n", 2277 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, 2278 sun4v_err_itlb_pte, sun4v_err_itlb_error); 2279 2280 sun4v_tlb_error(regs); 2281 } 2282 2283 unsigned long sun4v_err_dtlb_vaddr; 2284 unsigned long sun4v_err_dtlb_ctx; 2285 unsigned long sun4v_err_dtlb_pte; 2286 unsigned long sun4v_err_dtlb_error; 2287 2288 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) 2289 { 2290 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2291 2292 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", 2293 regs->tpc, tl); 2294 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); 2295 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2296 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", 2297 (void *) regs->u_regs[UREG_I7]); 2298 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " 2299 "pte[%lx] error[%lx]\n", 2300 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, 2301 sun4v_err_dtlb_pte, sun4v_err_dtlb_error); 2302 2303 sun4v_tlb_error(regs); 2304 } 2305 2306 void hypervisor_tlbop_error(unsigned long err, unsigned long op) 2307 { 2308 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", 2309 err, op); 2310 } 2311 2312 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) 2313 { 2314 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", 2315 err, op); 2316 } 2317 2318 static void do_fpe_common(struct pt_regs *regs) 2319 { 2320 if (regs->tstate & TSTATE_PRIV) { 2321 regs->tpc = regs->tnpc; 2322 regs->tnpc += 4; 2323 } else { 2324 unsigned long fsr = current_thread_info()->xfsr[0]; 2325 int code; 2326 2327 if (test_thread_flag(TIF_32BIT)) { 2328 regs->tpc &= 0xffffffff; 2329 regs->tnpc &= 0xffffffff; 2330 } 2331 code = FPE_FLTUNK; 2332 if ((fsr & 0x1c000) == (1 << 14)) { 2333 if (fsr & 0x10) 2334 code = FPE_FLTINV; 2335 else if (fsr & 0x08) 2336 code = FPE_FLTOVF; 2337 else if (fsr & 0x04) 2338 code = FPE_FLTUND; 2339 else if (fsr & 0x02) 2340 code = FPE_FLTDIV; 2341 else if (fsr & 0x01) 2342 code = FPE_FLTRES; 2343 } 2344 force_sig_fault(SIGFPE, code, 2345 (void __user *)regs->tpc, 0); 2346 } 2347 } 2348 2349 void do_fpieee(struct pt_regs *regs) 2350 { 2351 enum ctx_state prev_state = exception_enter(); 2352 2353 if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 2354 0, 0x24, SIGFPE) == NOTIFY_STOP) 2355 goto out; 2356 2357 do_fpe_common(regs); 2358 out: 2359 exception_exit(prev_state); 2360 } 2361 2362 void do_fpother(struct pt_regs *regs) 2363 { 2364 enum ctx_state prev_state = exception_enter(); 2365 struct fpustate *f = FPUSTATE; 2366 int ret = 0; 2367 2368 if (notify_die(DIE_TRAP, "fpu exception other", regs, 2369 0, 0x25, SIGFPE) == NOTIFY_STOP) 2370 goto out; 2371 2372 switch ((current_thread_info()->xfsr[0] & 0x1c000)) { 2373 case (2 << 14): /* unfinished_FPop */ 2374 case (3 << 14): /* unimplemented_FPop */ 2375 ret = do_mathemu(regs, f, false); 2376 break; 2377 } 2378 if (ret) 2379 goto out; 2380 do_fpe_common(regs); 2381 out: 2382 exception_exit(prev_state); 2383 } 2384 2385 void do_tof(struct pt_regs *regs) 2386 { 2387 enum ctx_state prev_state = exception_enter(); 2388 2389 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 2390 0, 0x26, SIGEMT) == NOTIFY_STOP) 2391 goto out; 2392 2393 if (regs->tstate & TSTATE_PRIV) 2394 die_if_kernel("Penguin overflow trap from kernel mode", regs); 2395 if (test_thread_flag(TIF_32BIT)) { 2396 regs->tpc &= 0xffffffff; 2397 regs->tnpc &= 0xffffffff; 2398 } 2399 force_sig_fault(SIGEMT, EMT_TAGOVF, 2400 (void __user *)regs->tpc, 0); 2401 out: 2402 exception_exit(prev_state); 2403 } 2404 2405 void do_div0(struct pt_regs *regs) 2406 { 2407 enum ctx_state prev_state = exception_enter(); 2408 2409 if (notify_die(DIE_TRAP, "integer division by zero", regs, 2410 0, 0x28, SIGFPE) == NOTIFY_STOP) 2411 goto out; 2412 2413 if (regs->tstate & TSTATE_PRIV) 2414 die_if_kernel("TL0: Kernel divide by zero.", regs); 2415 if (test_thread_flag(TIF_32BIT)) { 2416 regs->tpc &= 0xffffffff; 2417 regs->tnpc &= 0xffffffff; 2418 } 2419 force_sig_fault(SIGFPE, FPE_INTDIV, 2420 (void __user *)regs->tpc, 0); 2421 out: 2422 exception_exit(prev_state); 2423 } 2424 2425 static void instruction_dump(unsigned int *pc) 2426 { 2427 int i; 2428 2429 if ((((unsigned long) pc) & 3)) 2430 return; 2431 2432 printk("Instruction DUMP:"); 2433 for (i = -3; i < 6; i++) 2434 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); 2435 printk("\n"); 2436 } 2437 2438 static void user_instruction_dump(unsigned int __user *pc) 2439 { 2440 int i; 2441 unsigned int buf[9]; 2442 2443 if ((((unsigned long) pc) & 3)) 2444 return; 2445 2446 if (copy_from_user(buf, pc - 3, sizeof(buf))) 2447 return; 2448 2449 printk("Instruction DUMP:"); 2450 for (i = 0; i < 9; i++) 2451 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); 2452 printk("\n"); 2453 } 2454 2455 void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl) 2456 { 2457 unsigned long fp, ksp; 2458 struct thread_info *tp; 2459 int count = 0; 2460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2461 int graph = 0; 2462 #endif 2463 2464 ksp = (unsigned long) _ksp; 2465 if (!tsk) 2466 tsk = current; 2467 tp = task_thread_info(tsk); 2468 if (ksp == 0UL) { 2469 if (tsk == current) 2470 asm("mov %%fp, %0" : "=r" (ksp)); 2471 else 2472 ksp = tp->ksp; 2473 } 2474 if (tp == current_thread_info()) 2475 flushw_all(); 2476 2477 fp = ksp + STACK_BIAS; 2478 2479 printk("%sCall Trace:\n", loglvl); 2480 do { 2481 struct sparc_stackf *sf; 2482 struct pt_regs *regs; 2483 unsigned long pc; 2484 2485 if (!kstack_valid(tp, fp)) 2486 break; 2487 sf = (struct sparc_stackf *) fp; 2488 regs = (struct pt_regs *) (sf + 1); 2489 2490 if (kstack_is_trap_frame(tp, regs)) { 2491 if (!(regs->tstate & TSTATE_PRIV)) 2492 break; 2493 pc = regs->tpc; 2494 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 2495 } else { 2496 pc = sf->callers_pc; 2497 fp = (unsigned long)sf->fp + STACK_BIAS; 2498 } 2499 2500 print_ip_sym(loglvl, pc); 2501 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2502 if ((pc + 8UL) == (unsigned long) &return_to_handler) { 2503 struct ftrace_ret_stack *ret_stack; 2504 ret_stack = ftrace_graph_get_ret_stack(tsk, graph); 2505 if (ret_stack) { 2506 pc = ret_stack->ret; 2507 print_ip_sym(loglvl, pc); 2508 graph++; 2509 } 2510 } 2511 #endif 2512 } while (++count < 16); 2513 } 2514 2515 static inline struct reg_window *kernel_stack_up(struct reg_window *rw) 2516 { 2517 unsigned long fp = rw->ins[6]; 2518 2519 if (!fp) 2520 return NULL; 2521 2522 return (struct reg_window *) (fp + STACK_BIAS); 2523 } 2524 2525 void __noreturn die_if_kernel(char *str, struct pt_regs *regs) 2526 { 2527 static int die_counter; 2528 int count = 0; 2529 2530 /* Amuse the user. */ 2531 printk( 2532 " \\|/ ____ \\|/\n" 2533 " \"@'/ .. \\`@\"\n" 2534 " /_| \\__/ |_\\\n" 2535 " \\__U_/\n"); 2536 2537 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); 2538 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); 2539 __asm__ __volatile__("flushw"); 2540 show_regs(regs); 2541 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 2542 if (regs->tstate & TSTATE_PRIV) { 2543 struct thread_info *tp = current_thread_info(); 2544 struct reg_window *rw = (struct reg_window *) 2545 (regs->u_regs[UREG_FP] + STACK_BIAS); 2546 2547 /* Stop the back trace when we hit userland or we 2548 * find some badly aligned kernel stack. 2549 */ 2550 while (rw && 2551 count++ < 30 && 2552 kstack_valid(tp, (unsigned long) rw)) { 2553 printk("Caller[%016lx]: %pS\n", rw->ins[7], 2554 (void *) rw->ins[7]); 2555 2556 rw = kernel_stack_up(rw); 2557 } 2558 instruction_dump ((unsigned int *) regs->tpc); 2559 } else { 2560 if (test_thread_flag(TIF_32BIT)) { 2561 regs->tpc &= 0xffffffff; 2562 regs->tnpc &= 0xffffffff; 2563 } 2564 user_instruction_dump ((unsigned int __user *) regs->tpc); 2565 } 2566 if (panic_on_oops) 2567 panic("Fatal exception"); 2568 if (regs->tstate & TSTATE_PRIV) 2569 do_exit(SIGKILL); 2570 do_exit(SIGSEGV); 2571 } 2572 EXPORT_SYMBOL(die_if_kernel); 2573 2574 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) 2575 #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) 2576 2577 void do_illegal_instruction(struct pt_regs *regs) 2578 { 2579 enum ctx_state prev_state = exception_enter(); 2580 unsigned long pc = regs->tpc; 2581 unsigned long tstate = regs->tstate; 2582 u32 insn; 2583 2584 if (notify_die(DIE_TRAP, "illegal instruction", regs, 2585 0, 0x10, SIGILL) == NOTIFY_STOP) 2586 goto out; 2587 2588 if (tstate & TSTATE_PRIV) 2589 die_if_kernel("Kernel illegal instruction", regs); 2590 if (test_thread_flag(TIF_32BIT)) 2591 pc = (u32)pc; 2592 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 2593 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { 2594 if (handle_popc(insn, regs)) 2595 goto out; 2596 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { 2597 if (handle_ldf_stq(insn, regs)) 2598 goto out; 2599 } else if (tlb_type == hypervisor) { 2600 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { 2601 if (!vis_emul(regs, insn)) 2602 goto out; 2603 } else { 2604 struct fpustate *f = FPUSTATE; 2605 2606 /* On UltraSPARC T2 and later, FPU insns which 2607 * are not implemented in HW signal an illegal 2608 * instruction trap and do not set the FP Trap 2609 * Trap in the %fsr to unimplemented_FPop. 2610 */ 2611 if (do_mathemu(regs, f, true)) 2612 goto out; 2613 } 2614 } 2615 } 2616 force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0); 2617 out: 2618 exception_exit(prev_state); 2619 } 2620 2621 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 2622 { 2623 enum ctx_state prev_state = exception_enter(); 2624 2625 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2626 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2627 goto out; 2628 2629 if (regs->tstate & TSTATE_PRIV) { 2630 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2631 goto out; 2632 } 2633 if (is_no_fault_exception(regs)) 2634 return; 2635 2636 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0); 2637 out: 2638 exception_exit(prev_state); 2639 } 2640 2641 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 2642 { 2643 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2644 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2645 return; 2646 2647 if (regs->tstate & TSTATE_PRIV) { 2648 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2649 return; 2650 } 2651 if (is_no_fault_exception(regs)) 2652 return; 2653 2654 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0); 2655 } 2656 2657 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI 2658 * tag mismatch. 2659 * 2660 * ADI version tag mismatch on a load from memory always results in a 2661 * precise exception. Tag mismatch on a store to memory will result in 2662 * precise exception if MCDPER or PMCDPER is set to 1. 2663 */ 2664 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr, 2665 unsigned long context) 2666 { 2667 if (notify_die(DIE_TRAP, "memory corruption precise exception", regs, 2668 0, 0x8, SIGSEGV) == NOTIFY_STOP) 2669 return; 2670 2671 if (regs->tstate & TSTATE_PRIV) { 2672 /* MCD exception could happen because the task was running 2673 * a system call with MCD enabled and passed a non-versioned 2674 * pointer or pointer with bad version tag to the system 2675 * call. 2676 */ 2677 const struct exception_table_entry *entry; 2678 2679 entry = search_exception_tables(regs->tpc); 2680 if (entry) { 2681 /* Looks like a bad syscall parameter */ 2682 #ifdef DEBUG_EXCEPTIONS 2683 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", 2684 regs->tpc); 2685 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 2686 regs->tpc, entry->fixup); 2687 #endif 2688 regs->tpc = entry->fixup; 2689 regs->tnpc = regs->tpc + 4; 2690 return; 2691 } 2692 pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n", 2693 __func__, addr, context); 2694 die_if_kernel("MCD precise", regs); 2695 } 2696 2697 if (test_thread_flag(TIF_32BIT)) { 2698 regs->tpc &= 0xffffffff; 2699 regs->tnpc &= 0xffffffff; 2700 } 2701 force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0); 2702 } 2703 2704 void do_privop(struct pt_regs *regs) 2705 { 2706 enum ctx_state prev_state = exception_enter(); 2707 2708 if (notify_die(DIE_TRAP, "privileged operation", regs, 2709 0, 0x11, SIGILL) == NOTIFY_STOP) 2710 goto out; 2711 2712 if (test_thread_flag(TIF_32BIT)) { 2713 regs->tpc &= 0xffffffff; 2714 regs->tnpc &= 0xffffffff; 2715 } 2716 force_sig_fault(SIGILL, ILL_PRVOPC, 2717 (void __user *)regs->tpc, 0); 2718 out: 2719 exception_exit(prev_state); 2720 } 2721 2722 void do_privact(struct pt_regs *regs) 2723 { 2724 do_privop(regs); 2725 } 2726 2727 /* Trap level 1 stuff or other traps we should never see... */ 2728 void do_cee(struct pt_regs *regs) 2729 { 2730 exception_enter(); 2731 die_if_kernel("TL0: Cache Error Exception", regs); 2732 } 2733 2734 void do_div0_tl1(struct pt_regs *regs) 2735 { 2736 exception_enter(); 2737 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2738 die_if_kernel("TL1: DIV0 Exception", regs); 2739 } 2740 2741 void do_fpieee_tl1(struct pt_regs *regs) 2742 { 2743 exception_enter(); 2744 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2745 die_if_kernel("TL1: FPU IEEE Exception", regs); 2746 } 2747 2748 void do_fpother_tl1(struct pt_regs *regs) 2749 { 2750 exception_enter(); 2751 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2752 die_if_kernel("TL1: FPU Other Exception", regs); 2753 } 2754 2755 void do_ill_tl1(struct pt_regs *regs) 2756 { 2757 exception_enter(); 2758 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2759 die_if_kernel("TL1: Illegal Instruction Exception", regs); 2760 } 2761 2762 void do_irq_tl1(struct pt_regs *regs) 2763 { 2764 exception_enter(); 2765 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2766 die_if_kernel("TL1: IRQ Exception", regs); 2767 } 2768 2769 void do_lddfmna_tl1(struct pt_regs *regs) 2770 { 2771 exception_enter(); 2772 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2773 die_if_kernel("TL1: LDDF Exception", regs); 2774 } 2775 2776 void do_stdfmna_tl1(struct pt_regs *regs) 2777 { 2778 exception_enter(); 2779 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2780 die_if_kernel("TL1: STDF Exception", regs); 2781 } 2782 2783 void do_paw(struct pt_regs *regs) 2784 { 2785 exception_enter(); 2786 die_if_kernel("TL0: Phys Watchpoint Exception", regs); 2787 } 2788 2789 void do_paw_tl1(struct pt_regs *regs) 2790 { 2791 exception_enter(); 2792 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2793 die_if_kernel("TL1: Phys Watchpoint Exception", regs); 2794 } 2795 2796 void do_vaw(struct pt_regs *regs) 2797 { 2798 exception_enter(); 2799 die_if_kernel("TL0: Virt Watchpoint Exception", regs); 2800 } 2801 2802 void do_vaw_tl1(struct pt_regs *regs) 2803 { 2804 exception_enter(); 2805 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2806 die_if_kernel("TL1: Virt Watchpoint Exception", regs); 2807 } 2808 2809 void do_tof_tl1(struct pt_regs *regs) 2810 { 2811 exception_enter(); 2812 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2813 die_if_kernel("TL1: Tag Overflow Exception", regs); 2814 } 2815 2816 void do_getpsr(struct pt_regs *regs) 2817 { 2818 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); 2819 regs->tpc = regs->tnpc; 2820 regs->tnpc += 4; 2821 if (test_thread_flag(TIF_32BIT)) { 2822 regs->tpc &= 0xffffffff; 2823 regs->tnpc &= 0xffffffff; 2824 } 2825 } 2826 2827 u64 cpu_mondo_counter[NR_CPUS] = {0}; 2828 struct trap_per_cpu trap_block[NR_CPUS]; 2829 EXPORT_SYMBOL(trap_block); 2830 2831 /* This can get invoked before sched_init() so play it super safe 2832 * and use hard_smp_processor_id(). 2833 */ 2834 void notrace init_cur_cpu_trap(struct thread_info *t) 2835 { 2836 int cpu = hard_smp_processor_id(); 2837 struct trap_per_cpu *p = &trap_block[cpu]; 2838 2839 p->thread = t; 2840 p->pgd_paddr = 0; 2841 } 2842 2843 extern void thread_info_offsets_are_bolixed_dave(void); 2844 extern void trap_per_cpu_offsets_are_bolixed_dave(void); 2845 extern void tsb_config_offsets_are_bolixed_dave(void); 2846 2847 /* Only invoked on boot processor. */ 2848 void __init trap_init(void) 2849 { 2850 /* Compile time sanity check. */ 2851 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) || 2852 TI_FLAGS != offsetof(struct thread_info, flags) || 2853 TI_CPU != offsetof(struct thread_info, cpu) || 2854 TI_FPSAVED != offsetof(struct thread_info, fpsaved) || 2855 TI_KSP != offsetof(struct thread_info, ksp) || 2856 TI_FAULT_ADDR != offsetof(struct thread_info, 2857 fault_address) || 2858 TI_KREGS != offsetof(struct thread_info, kregs) || 2859 TI_UTRAPS != offsetof(struct thread_info, utraps) || 2860 TI_REG_WINDOW != offsetof(struct thread_info, 2861 reg_window) || 2862 TI_RWIN_SPTRS != offsetof(struct thread_info, 2863 rwbuf_stkptrs) || 2864 TI_GSR != offsetof(struct thread_info, gsr) || 2865 TI_XFSR != offsetof(struct thread_info, xfsr) || 2866 TI_PRE_COUNT != offsetof(struct thread_info, 2867 preempt_count) || 2868 TI_NEW_CHILD != offsetof(struct thread_info, new_child) || 2869 TI_CURRENT_DS != offsetof(struct thread_info, 2870 current_ds) || 2871 TI_KUNA_REGS != offsetof(struct thread_info, 2872 kern_una_regs) || 2873 TI_KUNA_INSN != offsetof(struct thread_info, 2874 kern_una_insn) || 2875 TI_FPREGS != offsetof(struct thread_info, fpregs) || 2876 (TI_FPREGS & (64 - 1))); 2877 2878 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, 2879 thread) || 2880 (TRAP_PER_CPU_PGD_PADDR != 2881 offsetof(struct trap_per_cpu, pgd_paddr)) || 2882 (TRAP_PER_CPU_CPU_MONDO_PA != 2883 offsetof(struct trap_per_cpu, cpu_mondo_pa)) || 2884 (TRAP_PER_CPU_DEV_MONDO_PA != 2885 offsetof(struct trap_per_cpu, dev_mondo_pa)) || 2886 (TRAP_PER_CPU_RESUM_MONDO_PA != 2887 offsetof(struct trap_per_cpu, resum_mondo_pa)) || 2888 (TRAP_PER_CPU_RESUM_KBUF_PA != 2889 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || 2890 (TRAP_PER_CPU_NONRESUM_MONDO_PA != 2891 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || 2892 (TRAP_PER_CPU_NONRESUM_KBUF_PA != 2893 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || 2894 (TRAP_PER_CPU_FAULT_INFO != 2895 offsetof(struct trap_per_cpu, fault_info)) || 2896 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != 2897 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || 2898 (TRAP_PER_CPU_CPU_LIST_PA != 2899 offsetof(struct trap_per_cpu, cpu_list_pa)) || 2900 (TRAP_PER_CPU_TSB_HUGE != 2901 offsetof(struct trap_per_cpu, tsb_huge)) || 2902 (TRAP_PER_CPU_TSB_HUGE_TEMP != 2903 offsetof(struct trap_per_cpu, tsb_huge_temp)) || 2904 (TRAP_PER_CPU_IRQ_WORKLIST_PA != 2905 offsetof(struct trap_per_cpu, irq_worklist_pa)) || 2906 (TRAP_PER_CPU_CPU_MONDO_QMASK != 2907 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || 2908 (TRAP_PER_CPU_DEV_MONDO_QMASK != 2909 offsetof(struct trap_per_cpu, dev_mondo_qmask)) || 2910 (TRAP_PER_CPU_RESUM_QMASK != 2911 offsetof(struct trap_per_cpu, resum_qmask)) || 2912 (TRAP_PER_CPU_NONRESUM_QMASK != 2913 offsetof(struct trap_per_cpu, nonresum_qmask)) || 2914 (TRAP_PER_CPU_PER_CPU_BASE != 2915 offsetof(struct trap_per_cpu, __per_cpu_base))); 2916 2917 BUILD_BUG_ON((TSB_CONFIG_TSB != 2918 offsetof(struct tsb_config, tsb)) || 2919 (TSB_CONFIG_RSS_LIMIT != 2920 offsetof(struct tsb_config, tsb_rss_limit)) || 2921 (TSB_CONFIG_NENTRIES != 2922 offsetof(struct tsb_config, tsb_nentries)) || 2923 (TSB_CONFIG_REG_VAL != 2924 offsetof(struct tsb_config, tsb_reg_val)) || 2925 (TSB_CONFIG_MAP_VADDR != 2926 offsetof(struct tsb_config, tsb_map_vaddr)) || 2927 (TSB_CONFIG_MAP_PTE != 2928 offsetof(struct tsb_config, tsb_map_pte))); 2929 2930 /* Attach to the address space of init_task. On SMP we 2931 * do this in smp.c:smp_callin for other cpus. 2932 */ 2933 mmgrab(&init_mm); 2934 current->active_mm = &init_mm; 2935 } 2936