xref: /linux/arch/sparc/kernel/traps_64.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /* arch/sparc64/kernel/traps.c
2  *
3  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
5  */
6 
7 /*
8  * I like traps on v9, :))))
9  */
10 
11 #include <linux/extable.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/debug.h>
14 #include <linux/linkage.h>
15 #include <linux/kernel.h>
16 #include <linux/signal.h>
17 #include <linux/smp.h>
18 #include <linux/mm.h>
19 #include <linux/init.h>
20 #include <linux/kdebug.h>
21 #include <linux/ftrace.h>
22 #include <linux/reboot.h>
23 #include <linux/gfp.h>
24 #include <linux/context_tracking.h>
25 
26 #include <asm/smp.h>
27 #include <asm/delay.h>
28 #include <asm/ptrace.h>
29 #include <asm/oplib.h>
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/unistd.h>
33 #include <linux/uaccess.h>
34 #include <asm/fpumacro.h>
35 #include <asm/lsu.h>
36 #include <asm/dcu.h>
37 #include <asm/estate.h>
38 #include <asm/chafsr.h>
39 #include <asm/sfafsr.h>
40 #include <asm/psrcompat.h>
41 #include <asm/processor.h>
42 #include <asm/timer.h>
43 #include <asm/head.h>
44 #include <asm/prom.h>
45 #include <asm/memctrl.h>
46 #include <asm/cacheflush.h>
47 #include <asm/setup.h>
48 
49 #include "entry.h"
50 #include "kernel.h"
51 #include "kstack.h"
52 
53 /* When an irrecoverable trap occurs at tl > 0, the trap entry
54  * code logs the trap state registers at every level in the trap
55  * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
56  * is as follows:
57  */
58 struct tl1_traplog {
59 	struct {
60 		unsigned long tstate;
61 		unsigned long tpc;
62 		unsigned long tnpc;
63 		unsigned long tt;
64 	} trapstack[4];
65 	unsigned long tl;
66 };
67 
68 static void dump_tl1_traplog(struct tl1_traplog *p)
69 {
70 	int i, limit;
71 
72 	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
73 	       "dumping track stack.\n", p->tl);
74 
75 	limit = (tlb_type == hypervisor) ? 2 : 4;
76 	for (i = 0; i < limit; i++) {
77 		printk(KERN_EMERG
78 		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
79 		       "TNPC[%016lx] TT[%lx]\n",
80 		       i + 1,
81 		       p->trapstack[i].tstate, p->trapstack[i].tpc,
82 		       p->trapstack[i].tnpc, p->trapstack[i].tt);
83 		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
84 	}
85 }
86 
87 void bad_trap(struct pt_regs *regs, long lvl)
88 {
89 	char buffer[36];
90 	siginfo_t info;
91 
92 	if (notify_die(DIE_TRAP, "bad trap", regs,
93 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
94 		return;
95 
96 	if (lvl < 0x100) {
97 		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
98 		die_if_kernel(buffer, regs);
99 	}
100 
101 	lvl -= 0x100;
102 	if (regs->tstate & TSTATE_PRIV) {
103 		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
104 		die_if_kernel(buffer, regs);
105 	}
106 	if (test_thread_flag(TIF_32BIT)) {
107 		regs->tpc &= 0xffffffff;
108 		regs->tnpc &= 0xffffffff;
109 	}
110 	info.si_signo = SIGILL;
111 	info.si_errno = 0;
112 	info.si_code = ILL_ILLTRP;
113 	info.si_addr = (void __user *)regs->tpc;
114 	info.si_trapno = lvl;
115 	force_sig_info(SIGILL, &info, current);
116 }
117 
118 void bad_trap_tl1(struct pt_regs *regs, long lvl)
119 {
120 	char buffer[36];
121 
122 	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
123 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
124 		return;
125 
126 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
127 
128 	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
129 	die_if_kernel (buffer, regs);
130 }
131 
132 #ifdef CONFIG_DEBUG_BUGVERBOSE
133 void do_BUG(const char *file, int line)
134 {
135 	bust_spinlocks(1);
136 	printk("kernel BUG at %s:%d!\n", file, line);
137 }
138 EXPORT_SYMBOL(do_BUG);
139 #endif
140 
141 static DEFINE_SPINLOCK(dimm_handler_lock);
142 static dimm_printer_t dimm_handler;
143 
144 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
145 {
146 	unsigned long flags;
147 	int ret = -ENODEV;
148 
149 	spin_lock_irqsave(&dimm_handler_lock, flags);
150 	if (dimm_handler) {
151 		ret = dimm_handler(synd_code, paddr, buf, buflen);
152 	} else if (tlb_type == spitfire) {
153 		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
154 			ret = -EINVAL;
155 		else
156 			ret = 0;
157 	} else
158 		ret = -ENODEV;
159 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
160 
161 	return ret;
162 }
163 
164 int register_dimm_printer(dimm_printer_t func)
165 {
166 	unsigned long flags;
167 	int ret = 0;
168 
169 	spin_lock_irqsave(&dimm_handler_lock, flags);
170 	if (!dimm_handler)
171 		dimm_handler = func;
172 	else
173 		ret = -EEXIST;
174 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
175 
176 	return ret;
177 }
178 EXPORT_SYMBOL_GPL(register_dimm_printer);
179 
180 void unregister_dimm_printer(dimm_printer_t func)
181 {
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&dimm_handler_lock, flags);
185 	if (dimm_handler == func)
186 		dimm_handler = NULL;
187 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
188 }
189 EXPORT_SYMBOL_GPL(unregister_dimm_printer);
190 
191 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
192 {
193 	enum ctx_state prev_state = exception_enter();
194 	siginfo_t info;
195 
196 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
197 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
198 		goto out;
199 
200 	if (regs->tstate & TSTATE_PRIV) {
201 		printk("spitfire_insn_access_exception: SFSR[%016lx] "
202 		       "SFAR[%016lx], going.\n", sfsr, sfar);
203 		die_if_kernel("Iax", regs);
204 	}
205 	if (test_thread_flag(TIF_32BIT)) {
206 		regs->tpc &= 0xffffffff;
207 		regs->tnpc &= 0xffffffff;
208 	}
209 	info.si_signo = SIGSEGV;
210 	info.si_errno = 0;
211 	info.si_code = SEGV_MAPERR;
212 	info.si_addr = (void __user *)regs->tpc;
213 	info.si_trapno = 0;
214 	force_sig_info(SIGSEGV, &info, current);
215 out:
216 	exception_exit(prev_state);
217 }
218 
219 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
220 {
221 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
222 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
223 		return;
224 
225 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
226 	spitfire_insn_access_exception(regs, sfsr, sfar);
227 }
228 
229 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
230 {
231 	unsigned short type = (type_ctx >> 16);
232 	unsigned short ctx  = (type_ctx & 0xffff);
233 	siginfo_t info;
234 
235 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
236 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
237 		return;
238 
239 	if (regs->tstate & TSTATE_PRIV) {
240 		printk("sun4v_insn_access_exception: ADDR[%016lx] "
241 		       "CTX[%04x] TYPE[%04x], going.\n",
242 		       addr, ctx, type);
243 		die_if_kernel("Iax", regs);
244 	}
245 
246 	if (test_thread_flag(TIF_32BIT)) {
247 		regs->tpc &= 0xffffffff;
248 		regs->tnpc &= 0xffffffff;
249 	}
250 	info.si_signo = SIGSEGV;
251 	info.si_errno = 0;
252 	info.si_code = SEGV_MAPERR;
253 	info.si_addr = (void __user *) addr;
254 	info.si_trapno = 0;
255 	force_sig_info(SIGSEGV, &info, current);
256 }
257 
258 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
259 {
260 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
261 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
262 		return;
263 
264 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
265 	sun4v_insn_access_exception(regs, addr, type_ctx);
266 }
267 
268 bool is_no_fault_exception(struct pt_regs *regs)
269 {
270 	unsigned char asi;
271 	u32 insn;
272 
273 	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
274 		return false;
275 
276 	/*
277 	 * Must do a little instruction decoding here in order to
278 	 * decide on a course of action. The bits of interest are:
279 	 *  insn[31:30] = op, where 3 indicates the load/store group
280 	 *  insn[24:19] = op3, which identifies individual opcodes
281 	 *  insn[13] indicates an immediate offset
282 	 *  op3[4]=1 identifies alternate space instructions
283 	 *  op3[5:4]=3 identifies floating point instructions
284 	 *  op3[2]=1 identifies stores
285 	 * See "Opcode Maps" in the appendix of any Sparc V9
286 	 * architecture spec for full details.
287 	 */
288 	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
289 		if (insn & 0x2000)		    /* immediate offset */
290 			asi = (regs->tstate >> 24); /* saved %asi       */
291 		else
292 			asi = (insn >> 5);	    /* immediate asi    */
293 		if ((asi & 0xf2) == ASI_PNF) {
294 			if (insn & 0x1000000) {     /* op3[5:4]=3       */
295 				handle_ldf_stq(insn, regs);
296 				return true;
297 			} else if (insn & 0x200000) { /* op3[2], stores */
298 				return false;
299 			}
300 			handle_ld_nf(insn, regs);
301 			return true;
302 		}
303 	}
304 	return false;
305 }
306 
307 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
308 {
309 	enum ctx_state prev_state = exception_enter();
310 	siginfo_t info;
311 
312 	if (notify_die(DIE_TRAP, "data access exception", regs,
313 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
314 		goto out;
315 
316 	if (regs->tstate & TSTATE_PRIV) {
317 		/* Test if this comes from uaccess places. */
318 		const struct exception_table_entry *entry;
319 
320 		entry = search_exception_tables(regs->tpc);
321 		if (entry) {
322 			/* Ouch, somebody is trying VM hole tricks on us... */
323 #ifdef DEBUG_EXCEPTIONS
324 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
325 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
326 			       regs->tpc, entry->fixup);
327 #endif
328 			regs->tpc = entry->fixup;
329 			regs->tnpc = regs->tpc + 4;
330 			goto out;
331 		}
332 		/* Shit... */
333 		printk("spitfire_data_access_exception: SFSR[%016lx] "
334 		       "SFAR[%016lx], going.\n", sfsr, sfar);
335 		die_if_kernel("Dax", regs);
336 	}
337 
338 	if (is_no_fault_exception(regs))
339 		return;
340 
341 	info.si_signo = SIGSEGV;
342 	info.si_errno = 0;
343 	info.si_code = SEGV_MAPERR;
344 	info.si_addr = (void __user *)sfar;
345 	info.si_trapno = 0;
346 	force_sig_info(SIGSEGV, &info, current);
347 out:
348 	exception_exit(prev_state);
349 }
350 
351 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
352 {
353 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
354 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
355 		return;
356 
357 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
358 	spitfire_data_access_exception(regs, sfsr, sfar);
359 }
360 
361 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
362 {
363 	unsigned short type = (type_ctx >> 16);
364 	unsigned short ctx  = (type_ctx & 0xffff);
365 	siginfo_t info;
366 
367 	if (notify_die(DIE_TRAP, "data access exception", regs,
368 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
369 		return;
370 
371 	if (regs->tstate & TSTATE_PRIV) {
372 		/* Test if this comes from uaccess places. */
373 		const struct exception_table_entry *entry;
374 
375 		entry = search_exception_tables(regs->tpc);
376 		if (entry) {
377 			/* Ouch, somebody is trying VM hole tricks on us... */
378 #ifdef DEBUG_EXCEPTIONS
379 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
380 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
381 			       regs->tpc, entry->fixup);
382 #endif
383 			regs->tpc = entry->fixup;
384 			regs->tnpc = regs->tpc + 4;
385 			return;
386 		}
387 		printk("sun4v_data_access_exception: ADDR[%016lx] "
388 		       "CTX[%04x] TYPE[%04x], going.\n",
389 		       addr, ctx, type);
390 		die_if_kernel("Dax", regs);
391 	}
392 
393 	if (test_thread_flag(TIF_32BIT)) {
394 		regs->tpc &= 0xffffffff;
395 		regs->tnpc &= 0xffffffff;
396 	}
397 	if (is_no_fault_exception(regs))
398 		return;
399 
400 	info.si_signo = SIGSEGV;
401 	info.si_errno = 0;
402 	info.si_code = SEGV_MAPERR;
403 	info.si_addr = (void __user *) addr;
404 	info.si_trapno = 0;
405 	force_sig_info(SIGSEGV, &info, current);
406 }
407 
408 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
409 {
410 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
411 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
412 		return;
413 
414 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
415 	sun4v_data_access_exception(regs, addr, type_ctx);
416 }
417 
418 #ifdef CONFIG_PCI
419 #include "pci_impl.h"
420 #endif
421 
422 /* When access exceptions happen, we must do this. */
423 static void spitfire_clean_and_reenable_l1_caches(void)
424 {
425 	unsigned long va;
426 
427 	if (tlb_type != spitfire)
428 		BUG();
429 
430 	/* Clean 'em. */
431 	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
432 		spitfire_put_icache_tag(va, 0x0);
433 		spitfire_put_dcache_tag(va, 0x0);
434 	}
435 
436 	/* Re-enable in LSU. */
437 	__asm__ __volatile__("flush %%g6\n\t"
438 			     "membar #Sync\n\t"
439 			     "stxa %0, [%%g0] %1\n\t"
440 			     "membar #Sync"
441 			     : /* no outputs */
442 			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
443 				    LSU_CONTROL_IM | LSU_CONTROL_DM),
444 			     "i" (ASI_LSU_CONTROL)
445 			     : "memory");
446 }
447 
448 static void spitfire_enable_estate_errors(void)
449 {
450 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
451 			     "membar	#Sync"
452 			     : /* no outputs */
453 			     : "r" (ESTATE_ERR_ALL),
454 			       "i" (ASI_ESTATE_ERROR_EN));
455 }
456 
457 static char ecc_syndrome_table[] = {
458 	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
459 	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
460 	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
461 	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
462 	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
463 	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
464 	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
465 	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
466 	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
467 	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
468 	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
469 	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
470 	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
471 	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
472 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
473 	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
474 	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
475 	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
476 	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
477 	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
478 	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
479 	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
480 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
481 	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
482 	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
483 	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
484 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
485 	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
486 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
487 	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
488 	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
489 	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
490 };
491 
492 static char *syndrome_unknown = "<Unknown>";
493 
494 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
495 {
496 	unsigned short scode;
497 	char memmod_str[64], *p;
498 
499 	if (udbl & bit) {
500 		scode = ecc_syndrome_table[udbl & 0xff];
501 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
502 			p = syndrome_unknown;
503 		else
504 			p = memmod_str;
505 		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
506 		       "Memory Module \"%s\"\n",
507 		       smp_processor_id(), scode, p);
508 	}
509 
510 	if (udbh & bit) {
511 		scode = ecc_syndrome_table[udbh & 0xff];
512 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
513 			p = syndrome_unknown;
514 		else
515 			p = memmod_str;
516 		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
517 		       "Memory Module \"%s\"\n",
518 		       smp_processor_id(), scode, p);
519 	}
520 
521 }
522 
523 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
524 {
525 
526 	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
527 	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
528 	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
529 
530 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
531 
532 	/* We always log it, even if someone is listening for this
533 	 * trap.
534 	 */
535 	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
536 		   0, TRAP_TYPE_CEE, SIGTRAP);
537 
538 	/* The Correctable ECC Error trap does not disable I/D caches.  So
539 	 * we only have to restore the ESTATE Error Enable register.
540 	 */
541 	spitfire_enable_estate_errors();
542 }
543 
544 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
545 {
546 	siginfo_t info;
547 
548 	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
549 	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
550 	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
551 
552 	/* XXX add more human friendly logging of the error status
553 	 * XXX as is implemented for cheetah
554 	 */
555 
556 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
557 
558 	/* We always log it, even if someone is listening for this
559 	 * trap.
560 	 */
561 	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
562 		   0, tt, SIGTRAP);
563 
564 	if (regs->tstate & TSTATE_PRIV) {
565 		if (tl1)
566 			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
567 		die_if_kernel("UE", regs);
568 	}
569 
570 	/* XXX need more intelligent processing here, such as is implemented
571 	 * XXX for cheetah errors, in fact if the E-cache still holds the
572 	 * XXX line with bad parity this will loop
573 	 */
574 
575 	spitfire_clean_and_reenable_l1_caches();
576 	spitfire_enable_estate_errors();
577 
578 	if (test_thread_flag(TIF_32BIT)) {
579 		regs->tpc &= 0xffffffff;
580 		regs->tnpc &= 0xffffffff;
581 	}
582 	info.si_signo = SIGBUS;
583 	info.si_errno = 0;
584 	info.si_code = BUS_OBJERR;
585 	info.si_addr = (void *)0;
586 	info.si_trapno = 0;
587 	force_sig_info(SIGBUS, &info, current);
588 }
589 
590 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
591 {
592 	unsigned long afsr, tt, udbh, udbl;
593 	int tl1;
594 
595 	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
596 	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
597 	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
598 	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
599 	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
600 
601 #ifdef CONFIG_PCI
602 	if (tt == TRAP_TYPE_DAE &&
603 	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
604 		spitfire_clean_and_reenable_l1_caches();
605 		spitfire_enable_estate_errors();
606 
607 		pci_poke_faulted = 1;
608 		regs->tnpc = regs->tpc + 4;
609 		return;
610 	}
611 #endif
612 
613 	if (afsr & SFAFSR_UE)
614 		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
615 
616 	if (tt == TRAP_TYPE_CEE) {
617 		/* Handle the case where we took a CEE trap, but ACK'd
618 		 * only the UE state in the UDB error registers.
619 		 */
620 		if (afsr & SFAFSR_UE) {
621 			if (udbh & UDBE_CE) {
622 				__asm__ __volatile__(
623 					"stxa	%0, [%1] %2\n\t"
624 					"membar	#Sync"
625 					: /* no outputs */
626 					: "r" (udbh & UDBE_CE),
627 					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
628 			}
629 			if (udbl & UDBE_CE) {
630 				__asm__ __volatile__(
631 					"stxa	%0, [%1] %2\n\t"
632 					"membar	#Sync"
633 					: /* no outputs */
634 					: "r" (udbl & UDBE_CE),
635 					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
636 			}
637 		}
638 
639 		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
640 	}
641 }
642 
643 int cheetah_pcache_forced_on;
644 
645 void cheetah_enable_pcache(void)
646 {
647 	unsigned long dcr;
648 
649 	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
650 	       smp_processor_id());
651 
652 	__asm__ __volatile__("ldxa [%%g0] %1, %0"
653 			     : "=r" (dcr)
654 			     : "i" (ASI_DCU_CONTROL_REG));
655 	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
656 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
657 			     "membar #Sync"
658 			     : /* no outputs */
659 			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
660 }
661 
662 /* Cheetah error trap handling. */
663 static unsigned long ecache_flush_physbase;
664 static unsigned long ecache_flush_linesize;
665 static unsigned long ecache_flush_size;
666 
667 /* This table is ordered in priority of errors and matches the
668  * AFAR overwrite policy as well.
669  */
670 
671 struct afsr_error_table {
672 	unsigned long mask;
673 	const char *name;
674 };
675 
676 static const char CHAFSR_PERR_msg[] =
677 	"System interface protocol error";
678 static const char CHAFSR_IERR_msg[] =
679 	"Internal processor error";
680 static const char CHAFSR_ISAP_msg[] =
681 	"System request parity error on incoming address";
682 static const char CHAFSR_UCU_msg[] =
683 	"Uncorrectable E-cache ECC error for ifetch/data";
684 static const char CHAFSR_UCC_msg[] =
685 	"SW Correctable E-cache ECC error for ifetch/data";
686 static const char CHAFSR_UE_msg[] =
687 	"Uncorrectable system bus data ECC error for read";
688 static const char CHAFSR_EDU_msg[] =
689 	"Uncorrectable E-cache ECC error for stmerge/blkld";
690 static const char CHAFSR_EMU_msg[] =
691 	"Uncorrectable system bus MTAG error";
692 static const char CHAFSR_WDU_msg[] =
693 	"Uncorrectable E-cache ECC error for writeback";
694 static const char CHAFSR_CPU_msg[] =
695 	"Uncorrectable ECC error for copyout";
696 static const char CHAFSR_CE_msg[] =
697 	"HW corrected system bus data ECC error for read";
698 static const char CHAFSR_EDC_msg[] =
699 	"HW corrected E-cache ECC error for stmerge/blkld";
700 static const char CHAFSR_EMC_msg[] =
701 	"HW corrected system bus MTAG ECC error";
702 static const char CHAFSR_WDC_msg[] =
703 	"HW corrected E-cache ECC error for writeback";
704 static const char CHAFSR_CPC_msg[] =
705 	"HW corrected ECC error for copyout";
706 static const char CHAFSR_TO_msg[] =
707 	"Unmapped error from system bus";
708 static const char CHAFSR_BERR_msg[] =
709 	"Bus error response from system bus";
710 static const char CHAFSR_IVC_msg[] =
711 	"HW corrected system bus data ECC error for ivec read";
712 static const char CHAFSR_IVU_msg[] =
713 	"Uncorrectable system bus data ECC error for ivec read";
714 static struct afsr_error_table __cheetah_error_table[] = {
715 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
716 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
717 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
718 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
719 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
720 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
721 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
722 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
723 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
724 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
725 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
726 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
727 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
728 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
729 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
730 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
731 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
732 	/* These two do not update the AFAR. */
733 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
734 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
735 	{	0,		NULL			},
736 };
737 static const char CHPAFSR_DTO_msg[] =
738 	"System bus unmapped error for prefetch/storequeue-read";
739 static const char CHPAFSR_DBERR_msg[] =
740 	"System bus error for prefetch/storequeue-read";
741 static const char CHPAFSR_THCE_msg[] =
742 	"Hardware corrected E-cache Tag ECC error";
743 static const char CHPAFSR_TSCE_msg[] =
744 	"SW handled correctable E-cache Tag ECC error";
745 static const char CHPAFSR_TUE_msg[] =
746 	"Uncorrectable E-cache Tag ECC error";
747 static const char CHPAFSR_DUE_msg[] =
748 	"System bus uncorrectable data ECC error due to prefetch/store-fill";
749 static struct afsr_error_table __cheetah_plus_error_table[] = {
750 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
751 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
752 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
753 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
754 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
755 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
756 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
757 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
758 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
759 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
760 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
761 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
762 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
763 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
764 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
765 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
766 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
767 	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
768 	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
769 	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
770 	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
771 	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
772 	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
773 	/* These two do not update the AFAR. */
774 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
775 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
776 	{	0,		NULL			},
777 };
778 static const char JPAFSR_JETO_msg[] =
779 	"System interface protocol error, hw timeout caused";
780 static const char JPAFSR_SCE_msg[] =
781 	"Parity error on system snoop results";
782 static const char JPAFSR_JEIC_msg[] =
783 	"System interface protocol error, illegal command detected";
784 static const char JPAFSR_JEIT_msg[] =
785 	"System interface protocol error, illegal ADTYPE detected";
786 static const char JPAFSR_OM_msg[] =
787 	"Out of range memory error has occurred";
788 static const char JPAFSR_ETP_msg[] =
789 	"Parity error on L2 cache tag SRAM";
790 static const char JPAFSR_UMS_msg[] =
791 	"Error due to unsupported store";
792 static const char JPAFSR_RUE_msg[] =
793 	"Uncorrectable ECC error from remote cache/memory";
794 static const char JPAFSR_RCE_msg[] =
795 	"Correctable ECC error from remote cache/memory";
796 static const char JPAFSR_BP_msg[] =
797 	"JBUS parity error on returned read data";
798 static const char JPAFSR_WBP_msg[] =
799 	"JBUS parity error on data for writeback or block store";
800 static const char JPAFSR_FRC_msg[] =
801 	"Foreign read to DRAM incurring correctable ECC error";
802 static const char JPAFSR_FRU_msg[] =
803 	"Foreign read to DRAM incurring uncorrectable ECC error";
804 static struct afsr_error_table __jalapeno_error_table[] = {
805 	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
806 	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
807 	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
808 	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
809 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
810 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
811 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
812 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
813 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
814 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
815 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
816 	{	JPAFSR_OM,	JPAFSR_OM_msg		},
817 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
818 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
819 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
820 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
821 	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
822 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
823 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
824 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
825 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
826 	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
827 	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
828 	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
829 	{	JPAFSR_BP,	JPAFSR_BP_msg		},
830 	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
831 	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
832 	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
833 	/* These two do not update the AFAR. */
834 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
835 	{	0,		NULL			},
836 };
837 static struct afsr_error_table *cheetah_error_table;
838 static unsigned long cheetah_afsr_errors;
839 
840 struct cheetah_err_info *cheetah_error_log;
841 
842 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
843 {
844 	struct cheetah_err_info *p;
845 	int cpu = smp_processor_id();
846 
847 	if (!cheetah_error_log)
848 		return NULL;
849 
850 	p = cheetah_error_log + (cpu * 2);
851 	if ((afsr & CHAFSR_TL1) != 0UL)
852 		p++;
853 
854 	return p;
855 }
856 
857 extern unsigned int tl0_icpe[], tl1_icpe[];
858 extern unsigned int tl0_dcpe[], tl1_dcpe[];
859 extern unsigned int tl0_fecc[], tl1_fecc[];
860 extern unsigned int tl0_cee[], tl1_cee[];
861 extern unsigned int tl0_iae[], tl1_iae[];
862 extern unsigned int tl0_dae[], tl1_dae[];
863 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
864 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
865 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
866 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
867 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
868 
869 void __init cheetah_ecache_flush_init(void)
870 {
871 	unsigned long largest_size, smallest_linesize, order, ver;
872 	int i, sz;
873 
874 	/* Scan all cpu device tree nodes, note two values:
875 	 * 1) largest E-cache size
876 	 * 2) smallest E-cache line size
877 	 */
878 	largest_size = 0UL;
879 	smallest_linesize = ~0UL;
880 
881 	for (i = 0; i < NR_CPUS; i++) {
882 		unsigned long val;
883 
884 		val = cpu_data(i).ecache_size;
885 		if (!val)
886 			continue;
887 
888 		if (val > largest_size)
889 			largest_size = val;
890 
891 		val = cpu_data(i).ecache_line_size;
892 		if (val < smallest_linesize)
893 			smallest_linesize = val;
894 
895 	}
896 
897 	if (largest_size == 0UL || smallest_linesize == ~0UL) {
898 		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
899 			    "parameters.\n");
900 		prom_halt();
901 	}
902 
903 	ecache_flush_size = (2 * largest_size);
904 	ecache_flush_linesize = smallest_linesize;
905 
906 	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
907 
908 	if (ecache_flush_physbase == ~0UL) {
909 		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
910 			    "contiguous physical memory.\n",
911 			    ecache_flush_size);
912 		prom_halt();
913 	}
914 
915 	/* Now allocate error trap reporting scoreboard. */
916 	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
917 	for (order = 0; order < MAX_ORDER; order++) {
918 		if ((PAGE_SIZE << order) >= sz)
919 			break;
920 	}
921 	cheetah_error_log = (struct cheetah_err_info *)
922 		__get_free_pages(GFP_KERNEL, order);
923 	if (!cheetah_error_log) {
924 		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
925 			    "error logging scoreboard (%d bytes).\n", sz);
926 		prom_halt();
927 	}
928 	memset(cheetah_error_log, 0, PAGE_SIZE << order);
929 
930 	/* Mark all AFSRs as invalid so that the trap handler will
931 	 * log new new information there.
932 	 */
933 	for (i = 0; i < 2 * NR_CPUS; i++)
934 		cheetah_error_log[i].afsr = CHAFSR_INVALID;
935 
936 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
937 	if ((ver >> 32) == __JALAPENO_ID ||
938 	    (ver >> 32) == __SERRANO_ID) {
939 		cheetah_error_table = &__jalapeno_error_table[0];
940 		cheetah_afsr_errors = JPAFSR_ERRORS;
941 	} else if ((ver >> 32) == 0x003e0015) {
942 		cheetah_error_table = &__cheetah_plus_error_table[0];
943 		cheetah_afsr_errors = CHPAFSR_ERRORS;
944 	} else {
945 		cheetah_error_table = &__cheetah_error_table[0];
946 		cheetah_afsr_errors = CHAFSR_ERRORS;
947 	}
948 
949 	/* Now patch trap tables. */
950 	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
951 	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
952 	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
953 	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
954 	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
955 	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
956 	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
957 	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
958 	if (tlb_type == cheetah_plus) {
959 		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
960 		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
961 		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
962 		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
963 	}
964 	flushi(PAGE_OFFSET);
965 }
966 
967 static void cheetah_flush_ecache(void)
968 {
969 	unsigned long flush_base = ecache_flush_physbase;
970 	unsigned long flush_linesize = ecache_flush_linesize;
971 	unsigned long flush_size = ecache_flush_size;
972 
973 	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
974 			     "   bne,pt	%%xcc, 1b\n\t"
975 			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
976 			     : "=&r" (flush_size)
977 			     : "0" (flush_size), "r" (flush_base),
978 			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
979 }
980 
981 static void cheetah_flush_ecache_line(unsigned long physaddr)
982 {
983 	unsigned long alias;
984 
985 	physaddr &= ~(8UL - 1UL);
986 	physaddr = (ecache_flush_physbase +
987 		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
988 	alias = physaddr + (ecache_flush_size >> 1UL);
989 	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
990 			     "ldxa [%1] %2, %%g0\n\t"
991 			     "membar #Sync"
992 			     : /* no outputs */
993 			     : "r" (physaddr), "r" (alias),
994 			       "i" (ASI_PHYS_USE_EC));
995 }
996 
997 /* Unfortunately, the diagnostic access to the I-cache tags we need to
998  * use to clear the thing interferes with I-cache coherency transactions.
999  *
1000  * So we must only flush the I-cache when it is disabled.
1001  */
1002 static void __cheetah_flush_icache(void)
1003 {
1004 	unsigned int icache_size, icache_line_size;
1005 	unsigned long addr;
1006 
1007 	icache_size = local_cpu_data().icache_size;
1008 	icache_line_size = local_cpu_data().icache_line_size;
1009 
1010 	/* Clear the valid bits in all the tags. */
1011 	for (addr = 0; addr < icache_size; addr += icache_line_size) {
1012 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1013 				     "membar #Sync"
1014 				     : /* no outputs */
1015 				     : "r" (addr | (2 << 3)),
1016 				       "i" (ASI_IC_TAG));
1017 	}
1018 }
1019 
1020 static void cheetah_flush_icache(void)
1021 {
1022 	unsigned long dcu_save;
1023 
1024 	/* Save current DCU, disable I-cache. */
1025 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1026 			     "or %0, %2, %%g1\n\t"
1027 			     "stxa %%g1, [%%g0] %1\n\t"
1028 			     "membar #Sync"
1029 			     : "=r" (dcu_save)
1030 			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1031 			     : "g1");
1032 
1033 	__cheetah_flush_icache();
1034 
1035 	/* Restore DCU register */
1036 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1037 			     "membar #Sync"
1038 			     : /* no outputs */
1039 			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1040 }
1041 
1042 static void cheetah_flush_dcache(void)
1043 {
1044 	unsigned int dcache_size, dcache_line_size;
1045 	unsigned long addr;
1046 
1047 	dcache_size = local_cpu_data().dcache_size;
1048 	dcache_line_size = local_cpu_data().dcache_line_size;
1049 
1050 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1051 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1052 				     "membar #Sync"
1053 				     : /* no outputs */
1054 				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1055 	}
1056 }
1057 
1058 /* In order to make the even parity correct we must do two things.
1059  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1060  * Next, we clear out all 32-bytes of data for that line.  Data of
1061  * all-zero + tag parity value of zero == correct parity.
1062  */
1063 static void cheetah_plus_zap_dcache_parity(void)
1064 {
1065 	unsigned int dcache_size, dcache_line_size;
1066 	unsigned long addr;
1067 
1068 	dcache_size = local_cpu_data().dcache_size;
1069 	dcache_line_size = local_cpu_data().dcache_line_size;
1070 
1071 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1072 		unsigned long tag = (addr >> 14);
1073 		unsigned long line;
1074 
1075 		__asm__ __volatile__("membar	#Sync\n\t"
1076 				     "stxa	%0, [%1] %2\n\t"
1077 				     "membar	#Sync"
1078 				     : /* no outputs */
1079 				     : "r" (tag), "r" (addr),
1080 				       "i" (ASI_DCACHE_UTAG));
1081 		for (line = addr; line < addr + dcache_line_size; line += 8)
1082 			__asm__ __volatile__("membar	#Sync\n\t"
1083 					     "stxa	%%g0, [%0] %1\n\t"
1084 					     "membar	#Sync"
1085 					     : /* no outputs */
1086 					     : "r" (line),
1087 					       "i" (ASI_DCACHE_DATA));
1088 	}
1089 }
1090 
1091 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1092  * something palatable to the memory controller driver get_unumber
1093  * routine.
1094  */
1095 #define MT0	137
1096 #define MT1	138
1097 #define MT2	139
1098 #define NONE	254
1099 #define MTC0	140
1100 #define MTC1	141
1101 #define MTC2	142
1102 #define MTC3	143
1103 #define C0	128
1104 #define C1	129
1105 #define C2	130
1106 #define C3	131
1107 #define C4	132
1108 #define C5	133
1109 #define C6	134
1110 #define C7	135
1111 #define C8	136
1112 #define M2	144
1113 #define M3	145
1114 #define M4	146
1115 #define M	147
1116 static unsigned char cheetah_ecc_syntab[] = {
1117 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1118 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1119 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1120 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1121 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1122 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1123 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1124 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1125 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1126 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1127 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1128 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1129 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1130 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1131 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1132 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1133 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1134 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1135 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1136 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1137 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1138 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1139 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1140 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1141 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1142 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1143 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1144 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1145 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1146 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1147 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1148 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1149 };
1150 static unsigned char cheetah_mtag_syntab[] = {
1151        NONE, MTC0,
1152        MTC1, NONE,
1153        MTC2, NONE,
1154        NONE, MT0,
1155        MTC3, NONE,
1156        NONE, MT1,
1157        NONE, MT2,
1158        NONE, NONE
1159 };
1160 
1161 /* Return the highest priority error conditon mentioned. */
1162 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1163 {
1164 	unsigned long tmp = 0;
1165 	int i;
1166 
1167 	for (i = 0; cheetah_error_table[i].mask; i++) {
1168 		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1169 			return tmp;
1170 	}
1171 	return tmp;
1172 }
1173 
1174 static const char *cheetah_get_string(unsigned long bit)
1175 {
1176 	int i;
1177 
1178 	for (i = 0; cheetah_error_table[i].mask; i++) {
1179 		if ((bit & cheetah_error_table[i].mask) != 0UL)
1180 			return cheetah_error_table[i].name;
1181 	}
1182 	return "???";
1183 }
1184 
1185 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1186 			       unsigned long afsr, unsigned long afar, int recoverable)
1187 {
1188 	unsigned long hipri;
1189 	char unum[256];
1190 
1191 	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1192 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193 	       afsr, afar,
1194 	       (afsr & CHAFSR_TL1) ? 1 : 0);
1195 	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1196 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1197 	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1198 	printk("%s" "ERROR(%d): ",
1199 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1200 	printk("TPC<%pS>\n", (void *) regs->tpc);
1201 	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1202 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1203 	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1204 	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1205 	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1206 	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1207 	hipri = cheetah_get_hipri(afsr);
1208 	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1209 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1210 	       hipri, cheetah_get_string(hipri));
1211 
1212 	/* Try to get unumber if relevant. */
1213 #define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1214 			 CHAFSR_CPC | CHAFSR_CPU | \
1215 			 CHAFSR_UE  | CHAFSR_CE  | \
1216 			 CHAFSR_EDC | CHAFSR_EDU  | \
1217 			 CHAFSR_UCC | CHAFSR_UCU  | \
1218 			 CHAFSR_WDU | CHAFSR_WDC)
1219 #define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1220 	if (afsr & ESYND_ERRORS) {
1221 		int syndrome;
1222 		int ret;
1223 
1224 		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1225 		syndrome = cheetah_ecc_syntab[syndrome];
1226 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1227 		if (ret != -1)
1228 			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1229 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1230 			       smp_processor_id(), unum);
1231 	} else if (afsr & MSYND_ERRORS) {
1232 		int syndrome;
1233 		int ret;
1234 
1235 		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1236 		syndrome = cheetah_mtag_syntab[syndrome];
1237 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1238 		if (ret != -1)
1239 			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1240 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1241 			       smp_processor_id(), unum);
1242 	}
1243 
1244 	/* Now dump the cache snapshots. */
1245 	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1246 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1247 	       (int) info->dcache_index,
1248 	       info->dcache_tag,
1249 	       info->dcache_utag,
1250 	       info->dcache_stag);
1251 	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1252 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1253 	       info->dcache_data[0],
1254 	       info->dcache_data[1],
1255 	       info->dcache_data[2],
1256 	       info->dcache_data[3]);
1257 	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1258 	       "u[%016llx] l[%016llx]\n",
1259 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1260 	       (int) info->icache_index,
1261 	       info->icache_tag,
1262 	       info->icache_utag,
1263 	       info->icache_stag,
1264 	       info->icache_upper,
1265 	       info->icache_lower);
1266 	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1267 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268 	       info->icache_data[0],
1269 	       info->icache_data[1],
1270 	       info->icache_data[2],
1271 	       info->icache_data[3]);
1272 	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1273 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1274 	       info->icache_data[4],
1275 	       info->icache_data[5],
1276 	       info->icache_data[6],
1277 	       info->icache_data[7]);
1278 	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1279 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1280 	       (int) info->ecache_index, info->ecache_tag);
1281 	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1282 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1283 	       info->ecache_data[0],
1284 	       info->ecache_data[1],
1285 	       info->ecache_data[2],
1286 	       info->ecache_data[3]);
1287 
1288 	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1289 	while (afsr != 0UL) {
1290 		unsigned long bit = cheetah_get_hipri(afsr);
1291 
1292 		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1293 		       (recoverable ? KERN_WARNING : KERN_CRIT),
1294 		       bit, cheetah_get_string(bit));
1295 
1296 		afsr &= ~bit;
1297 	}
1298 
1299 	if (!recoverable)
1300 		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1301 }
1302 
1303 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1304 {
1305 	unsigned long afsr, afar;
1306 	int ret = 0;
1307 
1308 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1309 			     : "=r" (afsr)
1310 			     : "i" (ASI_AFSR));
1311 	if ((afsr & cheetah_afsr_errors) != 0) {
1312 		if (logp != NULL) {
1313 			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1314 					     : "=r" (afar)
1315 					     : "i" (ASI_AFAR));
1316 			logp->afsr = afsr;
1317 			logp->afar = afar;
1318 		}
1319 		ret = 1;
1320 	}
1321 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1322 			     "membar #Sync\n\t"
1323 			     : : "r" (afsr), "i" (ASI_AFSR));
1324 
1325 	return ret;
1326 }
1327 
1328 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1329 {
1330 	struct cheetah_err_info local_snapshot, *p;
1331 	int recoverable;
1332 
1333 	/* Flush E-cache */
1334 	cheetah_flush_ecache();
1335 
1336 	p = cheetah_get_error_log(afsr);
1337 	if (!p) {
1338 		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1339 			    afsr, afar);
1340 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1341 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1342 		prom_halt();
1343 	}
1344 
1345 	/* Grab snapshot of logged error. */
1346 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1347 
1348 	/* If the current trap snapshot does not match what the
1349 	 * trap handler passed along into our args, big trouble.
1350 	 * In such a case, mark the local copy as invalid.
1351 	 *
1352 	 * Else, it matches and we mark the afsr in the non-local
1353 	 * copy as invalid so we may log new error traps there.
1354 	 */
1355 	if (p->afsr != afsr || p->afar != afar)
1356 		local_snapshot.afsr = CHAFSR_INVALID;
1357 	else
1358 		p->afsr = CHAFSR_INVALID;
1359 
1360 	cheetah_flush_icache();
1361 	cheetah_flush_dcache();
1362 
1363 	/* Re-enable I-cache/D-cache */
1364 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1365 			     "or %%g1, %1, %%g1\n\t"
1366 			     "stxa %%g1, [%%g0] %0\n\t"
1367 			     "membar #Sync"
1368 			     : /* no outputs */
1369 			     : "i" (ASI_DCU_CONTROL_REG),
1370 			       "i" (DCU_DC | DCU_IC)
1371 			     : "g1");
1372 
1373 	/* Re-enable error reporting */
1374 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1375 			     "or %%g1, %1, %%g1\n\t"
1376 			     "stxa %%g1, [%%g0] %0\n\t"
1377 			     "membar #Sync"
1378 			     : /* no outputs */
1379 			     : "i" (ASI_ESTATE_ERROR_EN),
1380 			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1381 			     : "g1");
1382 
1383 	/* Decide if we can continue after handling this trap and
1384 	 * logging the error.
1385 	 */
1386 	recoverable = 1;
1387 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1388 		recoverable = 0;
1389 
1390 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1391 	 * error was logged while we had error reporting traps disabled.
1392 	 */
1393 	if (cheetah_recheck_errors(&local_snapshot)) {
1394 		unsigned long new_afsr = local_snapshot.afsr;
1395 
1396 		/* If we got a new asynchronous error, die... */
1397 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1398 				CHAFSR_WDU | CHAFSR_CPU |
1399 				CHAFSR_IVU | CHAFSR_UE |
1400 				CHAFSR_BERR | CHAFSR_TO))
1401 			recoverable = 0;
1402 	}
1403 
1404 	/* Log errors. */
1405 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1406 
1407 	if (!recoverable)
1408 		panic("Irrecoverable Fast-ECC error trap.\n");
1409 
1410 	/* Flush E-cache to kick the error trap handlers out. */
1411 	cheetah_flush_ecache();
1412 }
1413 
1414 /* Try to fix a correctable error by pushing the line out from
1415  * the E-cache.  Recheck error reporting registers to see if the
1416  * problem is intermittent.
1417  */
1418 static int cheetah_fix_ce(unsigned long physaddr)
1419 {
1420 	unsigned long orig_estate;
1421 	unsigned long alias1, alias2;
1422 	int ret;
1423 
1424 	/* Make sure correctable error traps are disabled. */
1425 	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1426 			     "andn	%0, %1, %%g1\n\t"
1427 			     "stxa	%%g1, [%%g0] %2\n\t"
1428 			     "membar	#Sync"
1429 			     : "=&r" (orig_estate)
1430 			     : "i" (ESTATE_ERROR_CEEN),
1431 			       "i" (ASI_ESTATE_ERROR_EN)
1432 			     : "g1");
1433 
1434 	/* We calculate alias addresses that will force the
1435 	 * cache line in question out of the E-cache.  Then
1436 	 * we bring it back in with an atomic instruction so
1437 	 * that we get it in some modified/exclusive state,
1438 	 * then we displace it again to try and get proper ECC
1439 	 * pushed back into the system.
1440 	 */
1441 	physaddr &= ~(8UL - 1UL);
1442 	alias1 = (ecache_flush_physbase +
1443 		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1444 	alias2 = alias1 + (ecache_flush_size >> 1);
1445 	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1446 			     "ldxa	[%1] %3, %%g0\n\t"
1447 			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1448 			     "ldxa	[%0] %3, %%g0\n\t"
1449 			     "ldxa	[%1] %3, %%g0\n\t"
1450 			     "membar	#Sync"
1451 			     : /* no outputs */
1452 			     : "r" (alias1), "r" (alias2),
1453 			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1454 
1455 	/* Did that trigger another error? */
1456 	if (cheetah_recheck_errors(NULL)) {
1457 		/* Try one more time. */
1458 		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1459 				     "membar #Sync"
1460 				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1461 		if (cheetah_recheck_errors(NULL))
1462 			ret = 2;
1463 		else
1464 			ret = 1;
1465 	} else {
1466 		/* No new error, intermittent problem. */
1467 		ret = 0;
1468 	}
1469 
1470 	/* Restore error enables. */
1471 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1472 			     "membar	#Sync"
1473 			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1474 
1475 	return ret;
1476 }
1477 
1478 /* Return non-zero if PADDR is a valid physical memory address. */
1479 static int cheetah_check_main_memory(unsigned long paddr)
1480 {
1481 	unsigned long vaddr = PAGE_OFFSET + paddr;
1482 
1483 	if (vaddr > (unsigned long) high_memory)
1484 		return 0;
1485 
1486 	return kern_addr_valid(vaddr);
1487 }
1488 
1489 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1490 {
1491 	struct cheetah_err_info local_snapshot, *p;
1492 	int recoverable, is_memory;
1493 
1494 	p = cheetah_get_error_log(afsr);
1495 	if (!p) {
1496 		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1497 			    afsr, afar);
1498 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1499 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1500 		prom_halt();
1501 	}
1502 
1503 	/* Grab snapshot of logged error. */
1504 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1505 
1506 	/* If the current trap snapshot does not match what the
1507 	 * trap handler passed along into our args, big trouble.
1508 	 * In such a case, mark the local copy as invalid.
1509 	 *
1510 	 * Else, it matches and we mark the afsr in the non-local
1511 	 * copy as invalid so we may log new error traps there.
1512 	 */
1513 	if (p->afsr != afsr || p->afar != afar)
1514 		local_snapshot.afsr = CHAFSR_INVALID;
1515 	else
1516 		p->afsr = CHAFSR_INVALID;
1517 
1518 	is_memory = cheetah_check_main_memory(afar);
1519 
1520 	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1521 		/* XXX Might want to log the results of this operation
1522 		 * XXX somewhere... -DaveM
1523 		 */
1524 		cheetah_fix_ce(afar);
1525 	}
1526 
1527 	{
1528 		int flush_all, flush_line;
1529 
1530 		flush_all = flush_line = 0;
1531 		if ((afsr & CHAFSR_EDC) != 0UL) {
1532 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1533 				flush_line = 1;
1534 			else
1535 				flush_all = 1;
1536 		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1537 			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1538 				flush_line = 1;
1539 			else
1540 				flush_all = 1;
1541 		}
1542 
1543 		/* Trap handler only disabled I-cache, flush it. */
1544 		cheetah_flush_icache();
1545 
1546 		/* Re-enable I-cache */
1547 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548 				     "or %%g1, %1, %%g1\n\t"
1549 				     "stxa %%g1, [%%g0] %0\n\t"
1550 				     "membar #Sync"
1551 				     : /* no outputs */
1552 				     : "i" (ASI_DCU_CONTROL_REG),
1553 				     "i" (DCU_IC)
1554 				     : "g1");
1555 
1556 		if (flush_all)
1557 			cheetah_flush_ecache();
1558 		else if (flush_line)
1559 			cheetah_flush_ecache_line(afar);
1560 	}
1561 
1562 	/* Re-enable error reporting */
1563 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564 			     "or %%g1, %1, %%g1\n\t"
1565 			     "stxa %%g1, [%%g0] %0\n\t"
1566 			     "membar #Sync"
1567 			     : /* no outputs */
1568 			     : "i" (ASI_ESTATE_ERROR_EN),
1569 			       "i" (ESTATE_ERROR_CEEN)
1570 			     : "g1");
1571 
1572 	/* Decide if we can continue after handling this trap and
1573 	 * logging the error.
1574 	 */
1575 	recoverable = 1;
1576 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1577 		recoverable = 0;
1578 
1579 	/* Re-check AFSR/AFAR */
1580 	(void) cheetah_recheck_errors(&local_snapshot);
1581 
1582 	/* Log errors. */
1583 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1584 
1585 	if (!recoverable)
1586 		panic("Irrecoverable Correctable-ECC error trap.\n");
1587 }
1588 
1589 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1590 {
1591 	struct cheetah_err_info local_snapshot, *p;
1592 	int recoverable, is_memory;
1593 
1594 #ifdef CONFIG_PCI
1595 	/* Check for the special PCI poke sequence. */
1596 	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1597 		cheetah_flush_icache();
1598 		cheetah_flush_dcache();
1599 
1600 		/* Re-enable I-cache/D-cache */
1601 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1602 				     "or %%g1, %1, %%g1\n\t"
1603 				     "stxa %%g1, [%%g0] %0\n\t"
1604 				     "membar #Sync"
1605 				     : /* no outputs */
1606 				     : "i" (ASI_DCU_CONTROL_REG),
1607 				       "i" (DCU_DC | DCU_IC)
1608 				     : "g1");
1609 
1610 		/* Re-enable error reporting */
1611 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1612 				     "or %%g1, %1, %%g1\n\t"
1613 				     "stxa %%g1, [%%g0] %0\n\t"
1614 				     "membar #Sync"
1615 				     : /* no outputs */
1616 				     : "i" (ASI_ESTATE_ERROR_EN),
1617 				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1618 				     : "g1");
1619 
1620 		(void) cheetah_recheck_errors(NULL);
1621 
1622 		pci_poke_faulted = 1;
1623 		regs->tpc += 4;
1624 		regs->tnpc = regs->tpc + 4;
1625 		return;
1626 	}
1627 #endif
1628 
1629 	p = cheetah_get_error_log(afsr);
1630 	if (!p) {
1631 		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1632 			    afsr, afar);
1633 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1634 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1635 		prom_halt();
1636 	}
1637 
1638 	/* Grab snapshot of logged error. */
1639 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1640 
1641 	/* If the current trap snapshot does not match what the
1642 	 * trap handler passed along into our args, big trouble.
1643 	 * In such a case, mark the local copy as invalid.
1644 	 *
1645 	 * Else, it matches and we mark the afsr in the non-local
1646 	 * copy as invalid so we may log new error traps there.
1647 	 */
1648 	if (p->afsr != afsr || p->afar != afar)
1649 		local_snapshot.afsr = CHAFSR_INVALID;
1650 	else
1651 		p->afsr = CHAFSR_INVALID;
1652 
1653 	is_memory = cheetah_check_main_memory(afar);
1654 
1655 	{
1656 		int flush_all, flush_line;
1657 
1658 		flush_all = flush_line = 0;
1659 		if ((afsr & CHAFSR_EDU) != 0UL) {
1660 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1661 				flush_line = 1;
1662 			else
1663 				flush_all = 1;
1664 		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1665 			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1666 				flush_line = 1;
1667 			else
1668 				flush_all = 1;
1669 		}
1670 
1671 		cheetah_flush_icache();
1672 		cheetah_flush_dcache();
1673 
1674 		/* Re-enable I/D caches */
1675 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676 				     "or %%g1, %1, %%g1\n\t"
1677 				     "stxa %%g1, [%%g0] %0\n\t"
1678 				     "membar #Sync"
1679 				     : /* no outputs */
1680 				     : "i" (ASI_DCU_CONTROL_REG),
1681 				     "i" (DCU_IC | DCU_DC)
1682 				     : "g1");
1683 
1684 		if (flush_all)
1685 			cheetah_flush_ecache();
1686 		else if (flush_line)
1687 			cheetah_flush_ecache_line(afar);
1688 	}
1689 
1690 	/* Re-enable error reporting */
1691 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1692 			     "or %%g1, %1, %%g1\n\t"
1693 			     "stxa %%g1, [%%g0] %0\n\t"
1694 			     "membar #Sync"
1695 			     : /* no outputs */
1696 			     : "i" (ASI_ESTATE_ERROR_EN),
1697 			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1698 			     : "g1");
1699 
1700 	/* Decide if we can continue after handling this trap and
1701 	 * logging the error.
1702 	 */
1703 	recoverable = 1;
1704 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1705 		recoverable = 0;
1706 
1707 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1708 	 * error was logged while we had error reporting traps disabled.
1709 	 */
1710 	if (cheetah_recheck_errors(&local_snapshot)) {
1711 		unsigned long new_afsr = local_snapshot.afsr;
1712 
1713 		/* If we got a new asynchronous error, die... */
1714 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1715 				CHAFSR_WDU | CHAFSR_CPU |
1716 				CHAFSR_IVU | CHAFSR_UE |
1717 				CHAFSR_BERR | CHAFSR_TO))
1718 			recoverable = 0;
1719 	}
1720 
1721 	/* Log errors. */
1722 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1723 
1724 	/* "Recoverable" here means we try to yank the page from ever
1725 	 * being newly used again.  This depends upon a few things:
1726 	 * 1) Must be main memory, and AFAR must be valid.
1727 	 * 2) If we trapped from user, OK.
1728 	 * 3) Else, if we trapped from kernel we must find exception
1729 	 *    table entry (ie. we have to have been accessing user
1730 	 *    space).
1731 	 *
1732 	 * If AFAR is not in main memory, or we trapped from kernel
1733 	 * and cannot find an exception table entry, it is unacceptable
1734 	 * to try and continue.
1735 	 */
1736 	if (recoverable && is_memory) {
1737 		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1738 			/* OK, usermode access. */
1739 			recoverable = 1;
1740 		} else {
1741 			const struct exception_table_entry *entry;
1742 
1743 			entry = search_exception_tables(regs->tpc);
1744 			if (entry) {
1745 				/* OK, kernel access to userspace. */
1746 				recoverable = 1;
1747 
1748 			} else {
1749 				/* BAD, privileged state is corrupted. */
1750 				recoverable = 0;
1751 			}
1752 
1753 			if (recoverable) {
1754 				if (pfn_valid(afar >> PAGE_SHIFT))
1755 					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1756 				else
1757 					recoverable = 0;
1758 
1759 				/* Only perform fixup if we still have a
1760 				 * recoverable condition.
1761 				 */
1762 				if (recoverable) {
1763 					regs->tpc = entry->fixup;
1764 					regs->tnpc = regs->tpc + 4;
1765 				}
1766 			}
1767 		}
1768 	} else {
1769 		recoverable = 0;
1770 	}
1771 
1772 	if (!recoverable)
1773 		panic("Irrecoverable deferred error trap.\n");
1774 }
1775 
1776 /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1777  *
1778  * Bit0:	0=dcache,1=icache
1779  * Bit1:	0=recoverable,1=unrecoverable
1780  *
1781  * The hardware has disabled both the I-cache and D-cache in
1782  * the %dcr register.
1783  */
1784 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1785 {
1786 	if (type & 0x1)
1787 		__cheetah_flush_icache();
1788 	else
1789 		cheetah_plus_zap_dcache_parity();
1790 	cheetah_flush_dcache();
1791 
1792 	/* Re-enable I-cache/D-cache */
1793 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1794 			     "or %%g1, %1, %%g1\n\t"
1795 			     "stxa %%g1, [%%g0] %0\n\t"
1796 			     "membar #Sync"
1797 			     : /* no outputs */
1798 			     : "i" (ASI_DCU_CONTROL_REG),
1799 			       "i" (DCU_DC | DCU_IC)
1800 			     : "g1");
1801 
1802 	if (type & 0x2) {
1803 		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1804 		       smp_processor_id(),
1805 		       (type & 0x1) ? 'I' : 'D',
1806 		       regs->tpc);
1807 		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1808 		panic("Irrecoverable Cheetah+ parity error.");
1809 	}
1810 
1811 	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1812 	       smp_processor_id(),
1813 	       (type & 0x1) ? 'I' : 'D',
1814 	       regs->tpc);
1815 	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1816 }
1817 
1818 struct sun4v_error_entry {
1819 	/* Unique error handle */
1820 /*0x00*/u64		err_handle;
1821 
1822 	/* %stick value at the time of the error */
1823 /*0x08*/u64		err_stick;
1824 
1825 /*0x10*/u8		reserved_1[3];
1826 
1827 	/* Error type */
1828 /*0x13*/u8		err_type;
1829 #define SUN4V_ERR_TYPE_UNDEFINED	0
1830 #define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1831 #define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1832 #define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1833 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1834 #define SUN4V_ERR_TYPE_DUMP_CORE	5
1835 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1836 #define SUN4V_ERR_TYPE_NUM		7
1837 
1838 	/* Error attributes */
1839 /*0x14*/u32		err_attrs;
1840 #define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1841 #define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1842 #define SUN4V_ERR_ATTRS_PIO		0x00000004
1843 #define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1844 #define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1845 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1846 #define SUN4V_ERR_ATTRS_ASR		0x00000040
1847 #define SUN4V_ERR_ATTRS_ASI		0x00000080
1848 #define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1849 #define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1850 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1851 #define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1852 #define SUN4V_ERR_ATTRS_MODE_SHFT	24
1853 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1854 
1855 #define SUN4V_ERR_SPSTATE_FAULTED	0
1856 #define SUN4V_ERR_SPSTATE_AVAILABLE	1
1857 #define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1858 
1859 #define SUN4V_ERR_MODE_USER		1
1860 #define SUN4V_ERR_MODE_PRIV		2
1861 
1862 	/* Real address of the memory region or PIO transaction */
1863 /*0x18*/u64		err_raddr;
1864 
1865 	/* Size of the operation triggering the error, in bytes */
1866 /*0x20*/u32		err_size;
1867 
1868 	/* ID of the CPU */
1869 /*0x24*/u16		err_cpu;
1870 
1871 	/* Grace periof for shutdown, in seconds */
1872 /*0x26*/u16		err_secs;
1873 
1874 	/* Value of the %asi register */
1875 /*0x28*/u8		err_asi;
1876 
1877 /*0x29*/u8		reserved_2;
1878 
1879 	/* Value of the ASR register number */
1880 /*0x2a*/u16		err_asr;
1881 #define SUN4V_ERR_ASR_VALID		0x8000
1882 
1883 /*0x2c*/u32		reserved_3;
1884 /*0x30*/u64		reserved_4;
1885 /*0x38*/u64		reserved_5;
1886 };
1887 
1888 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1889 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1890 
1891 static const char *sun4v_err_type_to_str(u8 type)
1892 {
1893 	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1894 		"undefined",
1895 		"uncorrected resumable",
1896 		"precise nonresumable",
1897 		"deferred nonresumable",
1898 		"shutdown request",
1899 		"dump core",
1900 		"SP state change",
1901 	};
1902 
1903 	if (type < SUN4V_ERR_TYPE_NUM)
1904 		return types[type];
1905 
1906 	return "unknown";
1907 }
1908 
1909 static void sun4v_emit_err_attr_strings(u32 attrs)
1910 {
1911 	static const char *attr_names[] = {
1912 		"processor",
1913 		"memory",
1914 		"PIO",
1915 		"int-registers",
1916 		"fpu-registers",
1917 		"shutdown-request",
1918 		"ASR",
1919 		"ASI",
1920 		"priv-reg",
1921 	};
1922 	static const char *sp_states[] = {
1923 		"sp-faulted",
1924 		"sp-available",
1925 		"sp-not-present",
1926 		"sp-state-reserved",
1927 	};
1928 	static const char *modes[] = {
1929 		"mode-reserved0",
1930 		"user",
1931 		"priv",
1932 		"mode-reserved1",
1933 	};
1934 	u32 sp_state, mode;
1935 	int i;
1936 
1937 	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1938 		if (attrs & (1U << i)) {
1939 			const char *s = attr_names[i];
1940 
1941 			pr_cont("%s ", s);
1942 		}
1943 	}
1944 
1945 	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1946 		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1947 	pr_cont("%s ", sp_states[sp_state]);
1948 
1949 	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1950 		SUN4V_ERR_ATTRS_MODE_SHFT);
1951 	pr_cont("%s ", modes[mode]);
1952 
1953 	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1954 		pr_cont("res-queue-full ");
1955 }
1956 
1957 /* When the report contains a real-address of "-1" it means that the
1958  * hardware did not provide the address.  So we compute the effective
1959  * address of the load or store instruction at regs->tpc and report
1960  * that.  Usually when this happens it's a PIO and in such a case we
1961  * are using physical addresses with bypass ASIs anyways, so what we
1962  * report here is exactly what we want.
1963  */
1964 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1965 {
1966 	unsigned int insn;
1967 	u64 addr;
1968 
1969 	if (!(regs->tstate & TSTATE_PRIV))
1970 		return;
1971 
1972 	insn = *(unsigned int *) regs->tpc;
1973 
1974 	addr = compute_effective_address(regs, insn, 0);
1975 
1976 	printk("%s: insn effective address [0x%016llx]\n",
1977 	       pfx, addr);
1978 }
1979 
1980 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1981 			    int cpu, const char *pfx, atomic_t *ocnt)
1982 {
1983 	u64 *raw_ptr = (u64 *) ent;
1984 	u32 attrs;
1985 	int cnt;
1986 
1987 	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1988 	printk("%s: TPC [0x%016lx] <%pS>\n",
1989 	       pfx, regs->tpc, (void *) regs->tpc);
1990 
1991 	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1992 	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1993 	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1994 	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1995 
1996 	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1997 	       pfx, ent->err_handle, ent->err_stick);
1998 
1999 	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
2000 
2001 	attrs = ent->err_attrs;
2002 	printk("%s: attrs [0x%08x] < ", pfx, attrs);
2003 	sun4v_emit_err_attr_strings(attrs);
2004 	pr_cont(">\n");
2005 
2006 	/* Various fields in the error report are only valid if
2007 	 * certain attribute bits are set.
2008 	 */
2009 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
2010 		     SUN4V_ERR_ATTRS_PIO |
2011 		     SUN4V_ERR_ATTRS_ASI)) {
2012 		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2013 
2014 		if (ent->err_raddr == ~(u64)0)
2015 			sun4v_report_real_raddr(pfx, regs);
2016 	}
2017 
2018 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2019 		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2020 
2021 	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2022 		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2023 		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2024 		     SUN4V_ERR_ATTRS_PRIV_REG))
2025 		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2026 
2027 	if (attrs & SUN4V_ERR_ATTRS_ASI)
2028 		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2029 
2030 	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2031 		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2032 		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2033 	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2034 		printk("%s: reg [0x%04x]\n",
2035 		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2036 
2037 	show_regs(regs);
2038 
2039 	if ((cnt = atomic_read(ocnt)) != 0) {
2040 		atomic_set(ocnt, 0);
2041 		wmb();
2042 		printk("%s: Queue overflowed %d times.\n",
2043 		       pfx, cnt);
2044 	}
2045 }
2046 
2047 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2048  * Log the event and clear the first word of the entry.
2049  */
2050 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2051 {
2052 	enum ctx_state prev_state = exception_enter();
2053 	struct sun4v_error_entry *ent, local_copy;
2054 	struct trap_per_cpu *tb;
2055 	unsigned long paddr;
2056 	int cpu;
2057 
2058 	cpu = get_cpu();
2059 
2060 	tb = &trap_block[cpu];
2061 	paddr = tb->resum_kernel_buf_pa + offset;
2062 	ent = __va(paddr);
2063 
2064 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2065 
2066 	/* We have a local copy now, so release the entry.  */
2067 	ent->err_handle = 0;
2068 	wmb();
2069 
2070 	put_cpu();
2071 
2072 	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2073 		/* We should really take the seconds field of
2074 		 * the error report and use it for the shutdown
2075 		 * invocation, but for now do the same thing we
2076 		 * do for a DS shutdown request.
2077 		 */
2078 		pr_info("Shutdown request, %u seconds...\n",
2079 			local_copy.err_secs);
2080 		orderly_poweroff(true);
2081 		goto out;
2082 	}
2083 
2084 	sun4v_log_error(regs, &local_copy, cpu,
2085 			KERN_ERR "RESUMABLE ERROR",
2086 			&sun4v_resum_oflow_cnt);
2087 out:
2088 	exception_exit(prev_state);
2089 }
2090 
2091 /* If we try to printk() we'll probably make matters worse, by trying
2092  * to retake locks this cpu already holds or causing more errors. So
2093  * just bump a counter, and we'll report these counter bumps above.
2094  */
2095 void sun4v_resum_overflow(struct pt_regs *regs)
2096 {
2097 	atomic_inc(&sun4v_resum_oflow_cnt);
2098 }
2099 
2100 /* Given a set of registers, get the virtual addressi that was being accessed
2101  * by the faulting instructions at tpc.
2102  */
2103 static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2104 {
2105 	unsigned int insn;
2106 
2107 	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2108 		return compute_effective_address(regs, insn,
2109 						 (insn >> 25) & 0x1f);
2110 	}
2111 	return 0;
2112 }
2113 
2114 /* Attempt to handle non-resumable errors generated from userspace.
2115  * Returns true if the signal was handled, false otherwise.
2116  */
2117 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2118 				  struct sun4v_error_entry *ent) {
2119 
2120 	unsigned int attrs = ent->err_attrs;
2121 
2122 	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2123 		unsigned long addr = ent->err_raddr;
2124 		siginfo_t info;
2125 
2126 		if (addr == ~(u64)0) {
2127 			/* This seems highly unlikely to ever occur */
2128 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2129 		} else {
2130 			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2131 							      PAGE_SIZE);
2132 
2133 			/* Break the unfortunate news. */
2134 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2135 				 addr);
2136 			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2137 				 page_cnt);
2138 
2139 			while (page_cnt-- > 0) {
2140 				if (pfn_valid(addr >> PAGE_SHIFT))
2141 					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2142 				addr += PAGE_SIZE;
2143 			}
2144 		}
2145 		info.si_signo = SIGKILL;
2146 		info.si_errno = 0;
2147 		info.si_trapno = 0;
2148 		force_sig_info(info.si_signo, &info, current);
2149 
2150 		return true;
2151 	}
2152 	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2153 		siginfo_t info;
2154 
2155 		info.si_signo = SIGBUS;
2156 		info.si_code = BUS_ADRERR;
2157 		info.si_addr = (void __user *)sun4v_get_vaddr(regs);
2158 		force_sig_info(info.si_signo, &info, current);
2159 
2160 		return true;
2161 	}
2162 
2163 	/* Default to doing nothing */
2164 	return false;
2165 }
2166 
2167 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2168  * Log the event, clear the first word of the entry, and die.
2169  */
2170 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2171 {
2172 	struct sun4v_error_entry *ent, local_copy;
2173 	struct trap_per_cpu *tb;
2174 	unsigned long paddr;
2175 	int cpu;
2176 
2177 	cpu = get_cpu();
2178 
2179 	tb = &trap_block[cpu];
2180 	paddr = tb->nonresum_kernel_buf_pa + offset;
2181 	ent = __va(paddr);
2182 
2183 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2184 
2185 	/* We have a local copy now, so release the entry.  */
2186 	ent->err_handle = 0;
2187 	wmb();
2188 
2189 	put_cpu();
2190 
2191 	if (!(regs->tstate & TSTATE_PRIV) &&
2192 	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2193 		/* DON'T PANIC: This userspace error was handled. */
2194 		return;
2195 	}
2196 
2197 #ifdef CONFIG_PCI
2198 	/* Check for the special PCI poke sequence. */
2199 	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2200 		pci_poke_faulted = 1;
2201 		regs->tpc += 4;
2202 		regs->tnpc = regs->tpc + 4;
2203 		return;
2204 	}
2205 #endif
2206 
2207 	sun4v_log_error(regs, &local_copy, cpu,
2208 			KERN_EMERG "NON-RESUMABLE ERROR",
2209 			&sun4v_nonresum_oflow_cnt);
2210 
2211 	panic("Non-resumable error.");
2212 }
2213 
2214 /* If we try to printk() we'll probably make matters worse, by trying
2215  * to retake locks this cpu already holds or causing more errors. So
2216  * just bump a counter, and we'll report these counter bumps above.
2217  */
2218 void sun4v_nonresum_overflow(struct pt_regs *regs)
2219 {
2220 	/* XXX Actually even this can make not that much sense.  Perhaps
2221 	 * XXX we should just pull the plug and panic directly from here?
2222 	 */
2223 	atomic_inc(&sun4v_nonresum_oflow_cnt);
2224 }
2225 
2226 static void sun4v_tlb_error(struct pt_regs *regs)
2227 {
2228 	die_if_kernel("TLB/TSB error", regs);
2229 }
2230 
2231 unsigned long sun4v_err_itlb_vaddr;
2232 unsigned long sun4v_err_itlb_ctx;
2233 unsigned long sun4v_err_itlb_pte;
2234 unsigned long sun4v_err_itlb_error;
2235 
2236 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2237 {
2238 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2239 
2240 	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2241 	       regs->tpc, tl);
2242 	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2243 	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2244 	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2245 	       (void *) regs->u_regs[UREG_I7]);
2246 	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2247 	       "pte[%lx] error[%lx]\n",
2248 	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2249 	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2250 
2251 	sun4v_tlb_error(regs);
2252 }
2253 
2254 unsigned long sun4v_err_dtlb_vaddr;
2255 unsigned long sun4v_err_dtlb_ctx;
2256 unsigned long sun4v_err_dtlb_pte;
2257 unsigned long sun4v_err_dtlb_error;
2258 
2259 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2260 {
2261 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2262 
2263 	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2264 	       regs->tpc, tl);
2265 	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2266 	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2267 	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2268 	       (void *) regs->u_regs[UREG_I7]);
2269 	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2270 	       "pte[%lx] error[%lx]\n",
2271 	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2272 	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2273 
2274 	sun4v_tlb_error(regs);
2275 }
2276 
2277 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2278 {
2279 	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2280 	       err, op);
2281 }
2282 
2283 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2284 {
2285 	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2286 	       err, op);
2287 }
2288 
2289 static void do_fpe_common(struct pt_regs *regs)
2290 {
2291 	if (regs->tstate & TSTATE_PRIV) {
2292 		regs->tpc = regs->tnpc;
2293 		regs->tnpc += 4;
2294 	} else {
2295 		unsigned long fsr = current_thread_info()->xfsr[0];
2296 		siginfo_t info;
2297 
2298 		if (test_thread_flag(TIF_32BIT)) {
2299 			regs->tpc &= 0xffffffff;
2300 			regs->tnpc &= 0xffffffff;
2301 		}
2302 		info.si_signo = SIGFPE;
2303 		info.si_errno = 0;
2304 		info.si_addr = (void __user *)regs->tpc;
2305 		info.si_trapno = 0;
2306 		info.si_code = FPE_FIXME;
2307 		if ((fsr & 0x1c000) == (1 << 14)) {
2308 			if (fsr & 0x10)
2309 				info.si_code = FPE_FLTINV;
2310 			else if (fsr & 0x08)
2311 				info.si_code = FPE_FLTOVF;
2312 			else if (fsr & 0x04)
2313 				info.si_code = FPE_FLTUND;
2314 			else if (fsr & 0x02)
2315 				info.si_code = FPE_FLTDIV;
2316 			else if (fsr & 0x01)
2317 				info.si_code = FPE_FLTRES;
2318 		}
2319 		force_sig_info(SIGFPE, &info, current);
2320 	}
2321 }
2322 
2323 void do_fpieee(struct pt_regs *regs)
2324 {
2325 	enum ctx_state prev_state = exception_enter();
2326 
2327 	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2328 		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2329 		goto out;
2330 
2331 	do_fpe_common(regs);
2332 out:
2333 	exception_exit(prev_state);
2334 }
2335 
2336 void do_fpother(struct pt_regs *regs)
2337 {
2338 	enum ctx_state prev_state = exception_enter();
2339 	struct fpustate *f = FPUSTATE;
2340 	int ret = 0;
2341 
2342 	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2343 		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2344 		goto out;
2345 
2346 	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2347 	case (2 << 14): /* unfinished_FPop */
2348 	case (3 << 14): /* unimplemented_FPop */
2349 		ret = do_mathemu(regs, f, false);
2350 		break;
2351 	}
2352 	if (ret)
2353 		goto out;
2354 	do_fpe_common(regs);
2355 out:
2356 	exception_exit(prev_state);
2357 }
2358 
2359 void do_tof(struct pt_regs *regs)
2360 {
2361 	enum ctx_state prev_state = exception_enter();
2362 	siginfo_t info;
2363 
2364 	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2365 		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2366 		goto out;
2367 
2368 	if (regs->tstate & TSTATE_PRIV)
2369 		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2370 	if (test_thread_flag(TIF_32BIT)) {
2371 		regs->tpc &= 0xffffffff;
2372 		regs->tnpc &= 0xffffffff;
2373 	}
2374 	info.si_signo = SIGEMT;
2375 	info.si_errno = 0;
2376 	info.si_code = EMT_TAGOVF;
2377 	info.si_addr = (void __user *)regs->tpc;
2378 	info.si_trapno = 0;
2379 	force_sig_info(SIGEMT, &info, current);
2380 out:
2381 	exception_exit(prev_state);
2382 }
2383 
2384 void do_div0(struct pt_regs *regs)
2385 {
2386 	enum ctx_state prev_state = exception_enter();
2387 	siginfo_t info;
2388 
2389 	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2390 		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2391 		goto out;
2392 
2393 	if (regs->tstate & TSTATE_PRIV)
2394 		die_if_kernel("TL0: Kernel divide by zero.", regs);
2395 	if (test_thread_flag(TIF_32BIT)) {
2396 		regs->tpc &= 0xffffffff;
2397 		regs->tnpc &= 0xffffffff;
2398 	}
2399 	info.si_signo = SIGFPE;
2400 	info.si_errno = 0;
2401 	info.si_code = FPE_INTDIV;
2402 	info.si_addr = (void __user *)regs->tpc;
2403 	info.si_trapno = 0;
2404 	force_sig_info(SIGFPE, &info, current);
2405 out:
2406 	exception_exit(prev_state);
2407 }
2408 
2409 static void instruction_dump(unsigned int *pc)
2410 {
2411 	int i;
2412 
2413 	if ((((unsigned long) pc) & 3))
2414 		return;
2415 
2416 	printk("Instruction DUMP:");
2417 	for (i = -3; i < 6; i++)
2418 		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2419 	printk("\n");
2420 }
2421 
2422 static void user_instruction_dump(unsigned int __user *pc)
2423 {
2424 	int i;
2425 	unsigned int buf[9];
2426 
2427 	if ((((unsigned long) pc) & 3))
2428 		return;
2429 
2430 	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2431 		return;
2432 
2433 	printk("Instruction DUMP:");
2434 	for (i = 0; i < 9; i++)
2435 		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2436 	printk("\n");
2437 }
2438 
2439 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2440 {
2441 	unsigned long fp, ksp;
2442 	struct thread_info *tp;
2443 	int count = 0;
2444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2445 	int graph = 0;
2446 #endif
2447 
2448 	ksp = (unsigned long) _ksp;
2449 	if (!tsk)
2450 		tsk = current;
2451 	tp = task_thread_info(tsk);
2452 	if (ksp == 0UL) {
2453 		if (tsk == current)
2454 			asm("mov %%fp, %0" : "=r" (ksp));
2455 		else
2456 			ksp = tp->ksp;
2457 	}
2458 	if (tp == current_thread_info())
2459 		flushw_all();
2460 
2461 	fp = ksp + STACK_BIAS;
2462 
2463 	printk("Call Trace:\n");
2464 	do {
2465 		struct sparc_stackf *sf;
2466 		struct pt_regs *regs;
2467 		unsigned long pc;
2468 
2469 		if (!kstack_valid(tp, fp))
2470 			break;
2471 		sf = (struct sparc_stackf *) fp;
2472 		regs = (struct pt_regs *) (sf + 1);
2473 
2474 		if (kstack_is_trap_frame(tp, regs)) {
2475 			if (!(regs->tstate & TSTATE_PRIV))
2476 				break;
2477 			pc = regs->tpc;
2478 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2479 		} else {
2480 			pc = sf->callers_pc;
2481 			fp = (unsigned long)sf->fp + STACK_BIAS;
2482 		}
2483 
2484 		printk(" [%016lx] %pS\n", pc, (void *) pc);
2485 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2486 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2487 			int index = tsk->curr_ret_stack;
2488 			if (tsk->ret_stack && index >= graph) {
2489 				pc = tsk->ret_stack[index - graph].ret;
2490 				printk(" [%016lx] %pS\n", pc, (void *) pc);
2491 				graph++;
2492 			}
2493 		}
2494 #endif
2495 	} while (++count < 16);
2496 }
2497 
2498 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2499 {
2500 	unsigned long fp = rw->ins[6];
2501 
2502 	if (!fp)
2503 		return NULL;
2504 
2505 	return (struct reg_window *) (fp + STACK_BIAS);
2506 }
2507 
2508 void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2509 {
2510 	static int die_counter;
2511 	int count = 0;
2512 
2513 	/* Amuse the user. */
2514 	printk(
2515 "              \\|/ ____ \\|/\n"
2516 "              \"@'/ .. \\`@\"\n"
2517 "              /_| \\__/ |_\\\n"
2518 "                 \\__U_/\n");
2519 
2520 	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2521 	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2522 	__asm__ __volatile__("flushw");
2523 	show_regs(regs);
2524 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2525 	if (regs->tstate & TSTATE_PRIV) {
2526 		struct thread_info *tp = current_thread_info();
2527 		struct reg_window *rw = (struct reg_window *)
2528 			(regs->u_regs[UREG_FP] + STACK_BIAS);
2529 
2530 		/* Stop the back trace when we hit userland or we
2531 		 * find some badly aligned kernel stack.
2532 		 */
2533 		while (rw &&
2534 		       count++ < 30 &&
2535 		       kstack_valid(tp, (unsigned long) rw)) {
2536 			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2537 			       (void *) rw->ins[7]);
2538 
2539 			rw = kernel_stack_up(rw);
2540 		}
2541 		instruction_dump ((unsigned int *) regs->tpc);
2542 	} else {
2543 		if (test_thread_flag(TIF_32BIT)) {
2544 			regs->tpc &= 0xffffffff;
2545 			regs->tnpc &= 0xffffffff;
2546 		}
2547 		user_instruction_dump ((unsigned int __user *) regs->tpc);
2548 	}
2549 	if (panic_on_oops)
2550 		panic("Fatal exception");
2551 	if (regs->tstate & TSTATE_PRIV)
2552 		do_exit(SIGKILL);
2553 	do_exit(SIGSEGV);
2554 }
2555 EXPORT_SYMBOL(die_if_kernel);
2556 
2557 #define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2558 #define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2559 
2560 void do_illegal_instruction(struct pt_regs *regs)
2561 {
2562 	enum ctx_state prev_state = exception_enter();
2563 	unsigned long pc = regs->tpc;
2564 	unsigned long tstate = regs->tstate;
2565 	u32 insn;
2566 	siginfo_t info;
2567 
2568 	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2569 		       0, 0x10, SIGILL) == NOTIFY_STOP)
2570 		goto out;
2571 
2572 	if (tstate & TSTATE_PRIV)
2573 		die_if_kernel("Kernel illegal instruction", regs);
2574 	if (test_thread_flag(TIF_32BIT))
2575 		pc = (u32)pc;
2576 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2577 		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2578 			if (handle_popc(insn, regs))
2579 				goto out;
2580 		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2581 			if (handle_ldf_stq(insn, regs))
2582 				goto out;
2583 		} else if (tlb_type == hypervisor) {
2584 			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2585 				if (!vis_emul(regs, insn))
2586 					goto out;
2587 			} else {
2588 				struct fpustate *f = FPUSTATE;
2589 
2590 				/* On UltraSPARC T2 and later, FPU insns which
2591 				 * are not implemented in HW signal an illegal
2592 				 * instruction trap and do not set the FP Trap
2593 				 * Trap in the %fsr to unimplemented_FPop.
2594 				 */
2595 				if (do_mathemu(regs, f, true))
2596 					goto out;
2597 			}
2598 		}
2599 	}
2600 	info.si_signo = SIGILL;
2601 	info.si_errno = 0;
2602 	info.si_code = ILL_ILLOPC;
2603 	info.si_addr = (void __user *)pc;
2604 	info.si_trapno = 0;
2605 	force_sig_info(SIGILL, &info, current);
2606 out:
2607 	exception_exit(prev_state);
2608 }
2609 
2610 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2611 {
2612 	enum ctx_state prev_state = exception_enter();
2613 	siginfo_t info;
2614 
2615 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2616 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2617 		goto out;
2618 
2619 	if (regs->tstate & TSTATE_PRIV) {
2620 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2621 		goto out;
2622 	}
2623 	if (is_no_fault_exception(regs))
2624 		return;
2625 
2626 	info.si_signo = SIGBUS;
2627 	info.si_errno = 0;
2628 	info.si_code = BUS_ADRALN;
2629 	info.si_addr = (void __user *)sfar;
2630 	info.si_trapno = 0;
2631 	force_sig_info(SIGBUS, &info, current);
2632 out:
2633 	exception_exit(prev_state);
2634 }
2635 
2636 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2637 {
2638 	siginfo_t info;
2639 
2640 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2641 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2642 		return;
2643 
2644 	if (regs->tstate & TSTATE_PRIV) {
2645 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2646 		return;
2647 	}
2648 	if (is_no_fault_exception(regs))
2649 		return;
2650 
2651 	info.si_signo = SIGBUS;
2652 	info.si_errno = 0;
2653 	info.si_code = BUS_ADRALN;
2654 	info.si_addr = (void __user *) addr;
2655 	info.si_trapno = 0;
2656 	force_sig_info(SIGBUS, &info, current);
2657 }
2658 
2659 void do_privop(struct pt_regs *regs)
2660 {
2661 	enum ctx_state prev_state = exception_enter();
2662 	siginfo_t info;
2663 
2664 	if (notify_die(DIE_TRAP, "privileged operation", regs,
2665 		       0, 0x11, SIGILL) == NOTIFY_STOP)
2666 		goto out;
2667 
2668 	if (test_thread_flag(TIF_32BIT)) {
2669 		regs->tpc &= 0xffffffff;
2670 		regs->tnpc &= 0xffffffff;
2671 	}
2672 	info.si_signo = SIGILL;
2673 	info.si_errno = 0;
2674 	info.si_code = ILL_PRVOPC;
2675 	info.si_addr = (void __user *)regs->tpc;
2676 	info.si_trapno = 0;
2677 	force_sig_info(SIGILL, &info, current);
2678 out:
2679 	exception_exit(prev_state);
2680 }
2681 
2682 void do_privact(struct pt_regs *regs)
2683 {
2684 	do_privop(regs);
2685 }
2686 
2687 /* Trap level 1 stuff or other traps we should never see... */
2688 void do_cee(struct pt_regs *regs)
2689 {
2690 	exception_enter();
2691 	die_if_kernel("TL0: Cache Error Exception", regs);
2692 }
2693 
2694 void do_div0_tl1(struct pt_regs *regs)
2695 {
2696 	exception_enter();
2697 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2698 	die_if_kernel("TL1: DIV0 Exception", regs);
2699 }
2700 
2701 void do_fpieee_tl1(struct pt_regs *regs)
2702 {
2703 	exception_enter();
2704 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2705 	die_if_kernel("TL1: FPU IEEE Exception", regs);
2706 }
2707 
2708 void do_fpother_tl1(struct pt_regs *regs)
2709 {
2710 	exception_enter();
2711 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2712 	die_if_kernel("TL1: FPU Other Exception", regs);
2713 }
2714 
2715 void do_ill_tl1(struct pt_regs *regs)
2716 {
2717 	exception_enter();
2718 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2719 	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2720 }
2721 
2722 void do_irq_tl1(struct pt_regs *regs)
2723 {
2724 	exception_enter();
2725 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2726 	die_if_kernel("TL1: IRQ Exception", regs);
2727 }
2728 
2729 void do_lddfmna_tl1(struct pt_regs *regs)
2730 {
2731 	exception_enter();
2732 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2733 	die_if_kernel("TL1: LDDF Exception", regs);
2734 }
2735 
2736 void do_stdfmna_tl1(struct pt_regs *regs)
2737 {
2738 	exception_enter();
2739 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2740 	die_if_kernel("TL1: STDF Exception", regs);
2741 }
2742 
2743 void do_paw(struct pt_regs *regs)
2744 {
2745 	exception_enter();
2746 	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2747 }
2748 
2749 void do_paw_tl1(struct pt_regs *regs)
2750 {
2751 	exception_enter();
2752 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2753 	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2754 }
2755 
2756 void do_vaw(struct pt_regs *regs)
2757 {
2758 	exception_enter();
2759 	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2760 }
2761 
2762 void do_vaw_tl1(struct pt_regs *regs)
2763 {
2764 	exception_enter();
2765 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2766 	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2767 }
2768 
2769 void do_tof_tl1(struct pt_regs *regs)
2770 {
2771 	exception_enter();
2772 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2773 	die_if_kernel("TL1: Tag Overflow Exception", regs);
2774 }
2775 
2776 void do_getpsr(struct pt_regs *regs)
2777 {
2778 	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2779 	regs->tpc   = regs->tnpc;
2780 	regs->tnpc += 4;
2781 	if (test_thread_flag(TIF_32BIT)) {
2782 		regs->tpc &= 0xffffffff;
2783 		regs->tnpc &= 0xffffffff;
2784 	}
2785 }
2786 
2787 u64 cpu_mondo_counter[NR_CPUS] = {0};
2788 struct trap_per_cpu trap_block[NR_CPUS];
2789 EXPORT_SYMBOL(trap_block);
2790 
2791 /* This can get invoked before sched_init() so play it super safe
2792  * and use hard_smp_processor_id().
2793  */
2794 void notrace init_cur_cpu_trap(struct thread_info *t)
2795 {
2796 	int cpu = hard_smp_processor_id();
2797 	struct trap_per_cpu *p = &trap_block[cpu];
2798 
2799 	p->thread = t;
2800 	p->pgd_paddr = 0;
2801 }
2802 
2803 extern void thread_info_offsets_are_bolixed_dave(void);
2804 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2805 extern void tsb_config_offsets_are_bolixed_dave(void);
2806 
2807 /* Only invoked on boot processor. */
2808 void __init trap_init(void)
2809 {
2810 	/* Compile time sanity check. */
2811 	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2812 		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2813 		     TI_CPU != offsetof(struct thread_info, cpu) ||
2814 		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2815 		     TI_KSP != offsetof(struct thread_info, ksp) ||
2816 		     TI_FAULT_ADDR != offsetof(struct thread_info,
2817 					       fault_address) ||
2818 		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2819 		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2820 		     TI_REG_WINDOW != offsetof(struct thread_info,
2821 					       reg_window) ||
2822 		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2823 					       rwbuf_stkptrs) ||
2824 		     TI_GSR != offsetof(struct thread_info, gsr) ||
2825 		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2826 		     TI_PRE_COUNT != offsetof(struct thread_info,
2827 					      preempt_count) ||
2828 		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2829 		     TI_CURRENT_DS != offsetof(struct thread_info,
2830 						current_ds) ||
2831 		     TI_KUNA_REGS != offsetof(struct thread_info,
2832 					      kern_una_regs) ||
2833 		     TI_KUNA_INSN != offsetof(struct thread_info,
2834 					      kern_una_insn) ||
2835 		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2836 		     (TI_FPREGS & (64 - 1)));
2837 
2838 	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2839 						     thread) ||
2840 		     (TRAP_PER_CPU_PGD_PADDR !=
2841 		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2842 		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2843 		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2844 		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2845 		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2846 		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2847 		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2848 		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2849 		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2850 		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2851 		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2852 		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2853 		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2854 		     (TRAP_PER_CPU_FAULT_INFO !=
2855 		      offsetof(struct trap_per_cpu, fault_info)) ||
2856 		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2857 		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2858 		     (TRAP_PER_CPU_CPU_LIST_PA !=
2859 		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2860 		     (TRAP_PER_CPU_TSB_HUGE !=
2861 		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2862 		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2863 		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2864 		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2865 		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2866 		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2867 		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2868 		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2869 		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2870 		     (TRAP_PER_CPU_RESUM_QMASK !=
2871 		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2872 		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2873 		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2874 		     (TRAP_PER_CPU_PER_CPU_BASE !=
2875 		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2876 
2877 	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2878 		      offsetof(struct tsb_config, tsb)) ||
2879 		     (TSB_CONFIG_RSS_LIMIT !=
2880 		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2881 		     (TSB_CONFIG_NENTRIES !=
2882 		      offsetof(struct tsb_config, tsb_nentries)) ||
2883 		     (TSB_CONFIG_REG_VAL !=
2884 		      offsetof(struct tsb_config, tsb_reg_val)) ||
2885 		     (TSB_CONFIG_MAP_VADDR !=
2886 		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2887 		     (TSB_CONFIG_MAP_PTE !=
2888 		      offsetof(struct tsb_config, tsb_map_pte)));
2889 
2890 	/* Attach to the address space of init_task.  On SMP we
2891 	 * do this in smp.c:smp_callin for other cpus.
2892 	 */
2893 	mmgrab(&init_mm);
2894 	current->active_mm = &init_mm;
2895 }
2896