1 /* linux/arch/sparc/kernel/time.c 2 * 3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) 5 * 6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998 7 * Added support for the intersil on the sun4/4200 8 * 9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 10 * Support for MicroSPARC-IIep, PCI CPU. 11 * 12 * This file handles the Sparc specific time handling details. 13 * 14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 15 * "A Kernel Model for Precision Timekeeping" by Dave Mills 16 */ 17 #include <linux/errno.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/param.h> 22 #include <linux/string.h> 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/time.h> 26 #include <linux/rtc/m48t59.h> 27 #include <linux/timex.h> 28 #include <linux/clocksource.h> 29 #include <linux/clockchips.h> 30 #include <linux/init.h> 31 #include <linux/pci.h> 32 #include <linux/ioport.h> 33 #include <linux/profile.h> 34 #include <linux/of.h> 35 #include <linux/of_device.h> 36 #include <linux/platform_device.h> 37 38 #include <asm/mc146818rtc.h> 39 #include <asm/oplib.h> 40 #include <asm/timex.h> 41 #include <asm/timer.h> 42 #include <asm/irq.h> 43 #include <asm/io.h> 44 #include <asm/idprom.h> 45 #include <asm/page.h> 46 #include <asm/pcic.h> 47 #include <asm/irq_regs.h> 48 #include <asm/setup.h> 49 50 #include "kernel.h" 51 #include "irq.h" 52 53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); 54 static __volatile__ u64 timer_cs_internal_counter = 0; 55 static char timer_cs_enabled = 0; 56 57 static struct clock_event_device timer_ce; 58 static char timer_ce_enabled = 0; 59 60 #ifdef CONFIG_SMP 61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); 62 #endif 63 64 DEFINE_SPINLOCK(rtc_lock); 65 EXPORT_SYMBOL(rtc_lock); 66 67 unsigned long profile_pc(struct pt_regs *regs) 68 { 69 extern char __copy_user_begin[], __copy_user_end[]; 70 extern char __bzero_begin[], __bzero_end[]; 71 72 unsigned long pc = regs->pc; 73 74 if (in_lock_functions(pc) || 75 (pc >= (unsigned long) __copy_user_begin && 76 pc < (unsigned long) __copy_user_end) || 77 (pc >= (unsigned long) __bzero_begin && 78 pc < (unsigned long) __bzero_end)) 79 pc = regs->u_regs[UREG_RETPC]; 80 return pc; 81 } 82 83 EXPORT_SYMBOL(profile_pc); 84 85 volatile u32 __iomem *master_l10_counter; 86 87 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) 88 { 89 if (timer_cs_enabled) { 90 write_seqlock(&timer_cs_lock); 91 timer_cs_internal_counter++; 92 sparc_config.clear_clock_irq(); 93 write_sequnlock(&timer_cs_lock); 94 } else { 95 sparc_config.clear_clock_irq(); 96 } 97 98 if (timer_ce_enabled) 99 timer_ce.event_handler(&timer_ce); 100 101 return IRQ_HANDLED; 102 } 103 104 static int timer_ce_shutdown(struct clock_event_device *evt) 105 { 106 timer_ce_enabled = 0; 107 smp_mb(); 108 return 0; 109 } 110 111 static int timer_ce_set_periodic(struct clock_event_device *evt) 112 { 113 timer_ce_enabled = 1; 114 smp_mb(); 115 return 0; 116 } 117 118 static __init void setup_timer_ce(void) 119 { 120 struct clock_event_device *ce = &timer_ce; 121 122 BUG_ON(smp_processor_id() != boot_cpu_id); 123 124 ce->name = "timer_ce"; 125 ce->rating = 100; 126 ce->features = CLOCK_EVT_FEAT_PERIODIC; 127 ce->set_state_shutdown = timer_ce_shutdown; 128 ce->set_state_periodic = timer_ce_set_periodic; 129 ce->tick_resume = timer_ce_set_periodic; 130 ce->cpumask = cpu_possible_mask; 131 ce->shift = 32; 132 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 133 ce->shift); 134 clockevents_register_device(ce); 135 } 136 137 static unsigned int sbus_cycles_offset(void) 138 { 139 u32 val, offset; 140 141 val = sbus_readl(master_l10_counter); 142 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; 143 144 /* Limit hit? */ 145 if (val & TIMER_LIMIT_BIT) 146 offset += sparc_config.cs_period; 147 148 return offset; 149 } 150 151 static u64 timer_cs_read(struct clocksource *cs) 152 { 153 unsigned int seq, offset; 154 u64 cycles; 155 156 do { 157 seq = read_seqbegin(&timer_cs_lock); 158 159 cycles = timer_cs_internal_counter; 160 offset = sparc_config.get_cycles_offset(); 161 } while (read_seqretry(&timer_cs_lock, seq)); 162 163 /* Count absolute cycles */ 164 cycles *= sparc_config.cs_period; 165 cycles += offset; 166 167 return cycles; 168 } 169 170 static struct clocksource timer_cs = { 171 .name = "timer_cs", 172 .rating = 100, 173 .read = timer_cs_read, 174 .mask = CLOCKSOURCE_MASK(64), 175 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 176 }; 177 178 static __init int setup_timer_cs(void) 179 { 180 timer_cs_enabled = 1; 181 return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); 182 } 183 184 #ifdef CONFIG_SMP 185 static int percpu_ce_shutdown(struct clock_event_device *evt) 186 { 187 int cpu = cpumask_first(evt->cpumask); 188 189 sparc_config.load_profile_irq(cpu, 0); 190 return 0; 191 } 192 193 static int percpu_ce_set_periodic(struct clock_event_device *evt) 194 { 195 int cpu = cpumask_first(evt->cpumask); 196 197 sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ); 198 return 0; 199 } 200 201 static int percpu_ce_set_next_event(unsigned long delta, 202 struct clock_event_device *evt) 203 { 204 int cpu = cpumask_first(evt->cpumask); 205 unsigned int next = (unsigned int)delta; 206 207 sparc_config.load_profile_irq(cpu, next); 208 return 0; 209 } 210 211 void register_percpu_ce(int cpu) 212 { 213 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); 214 unsigned int features = CLOCK_EVT_FEAT_PERIODIC; 215 216 if (sparc_config.features & FEAT_L14_ONESHOT) 217 features |= CLOCK_EVT_FEAT_ONESHOT; 218 219 ce->name = "percpu_ce"; 220 ce->rating = 200; 221 ce->features = features; 222 ce->set_state_shutdown = percpu_ce_shutdown; 223 ce->set_state_periodic = percpu_ce_set_periodic; 224 ce->set_state_oneshot = percpu_ce_shutdown; 225 ce->set_next_event = percpu_ce_set_next_event; 226 ce->cpumask = cpumask_of(cpu); 227 ce->shift = 32; 228 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 229 ce->shift); 230 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); 231 ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate; 232 ce->min_delta_ns = clockevent_delta2ns(100, ce); 233 ce->min_delta_ticks = 100; 234 235 clockevents_register_device(ce); 236 } 237 #endif 238 239 static unsigned char mostek_read_byte(struct device *dev, u32 ofs) 240 { 241 struct platform_device *pdev = to_platform_device(dev); 242 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 243 244 return readb(pdata->ioaddr + ofs); 245 } 246 247 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) 248 { 249 struct platform_device *pdev = to_platform_device(dev); 250 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 251 252 writeb(val, pdata->ioaddr + ofs); 253 } 254 255 static struct m48t59_plat_data m48t59_data = { 256 .read_byte = mostek_read_byte, 257 .write_byte = mostek_write_byte, 258 }; 259 260 /* resource is set at runtime */ 261 static struct platform_device m48t59_rtc = { 262 .name = "rtc-m48t59", 263 .id = 0, 264 .num_resources = 1, 265 .dev = { 266 .platform_data = &m48t59_data, 267 }, 268 }; 269 270 static int clock_probe(struct platform_device *op) 271 { 272 struct device_node *dp = op->dev.of_node; 273 const char *model = of_get_property(dp, "model", NULL); 274 275 if (!model) 276 return -ENODEV; 277 278 /* Only the primary RTC has an address property */ 279 if (!of_find_property(dp, "address", NULL)) 280 return -ENODEV; 281 282 m48t59_rtc.resource = &op->resource[0]; 283 if (!strcmp(model, "mk48t02")) { 284 /* Map the clock register io area read-only */ 285 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 286 2048, "rtc-m48t59"); 287 m48t59_data.type = M48T59RTC_TYPE_M48T02; 288 } else if (!strcmp(model, "mk48t08")) { 289 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 290 8192, "rtc-m48t59"); 291 m48t59_data.type = M48T59RTC_TYPE_M48T08; 292 } else 293 return -ENODEV; 294 295 if (platform_device_register(&m48t59_rtc) < 0) 296 printk(KERN_ERR "Registering RTC device failed\n"); 297 298 return 0; 299 } 300 301 static struct of_device_id clock_match[] = { 302 { 303 .name = "eeprom", 304 }, 305 {}, 306 }; 307 308 static struct platform_driver clock_driver = { 309 .probe = clock_probe, 310 .driver = { 311 .name = "rtc", 312 .of_match_table = clock_match, 313 }, 314 }; 315 316 317 /* Probe for the mostek real time clock chip. */ 318 static int __init clock_init(void) 319 { 320 return platform_driver_register(&clock_driver); 321 } 322 /* Must be after subsys_initcall() so that busses are probed. Must 323 * be before device_initcall() because things like the RTC driver 324 * need to see the clock registers. 325 */ 326 fs_initcall(clock_init); 327 328 static void __init sparc32_late_time_init(void) 329 { 330 if (sparc_config.features & FEAT_L10_CLOCKEVENT) 331 setup_timer_ce(); 332 if (sparc_config.features & FEAT_L10_CLOCKSOURCE) 333 setup_timer_cs(); 334 #ifdef CONFIG_SMP 335 register_percpu_ce(smp_processor_id()); 336 #endif 337 } 338 339 static void __init sbus_time_init(void) 340 { 341 sparc_config.get_cycles_offset = sbus_cycles_offset; 342 sparc_config.init_timers(); 343 } 344 345 void __init time_init(void) 346 { 347 sparc_config.features = 0; 348 late_time_init = sparc32_late_time_init; 349 350 if (pcic_present()) 351 pci_time_init(); 352 else 353 sbus_time_init(); 354 } 355 356