xref: /linux/arch/sparc/kernel/sun4m_smp.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  sun4m SMP support.
3  *
4  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5  */
6 
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/sched.h>
12 #include <linux/cpu.h>
13 
14 #include <asm/cacheflush.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlbflush.h>
17 #include <asm/timer.h>
18 #include <asm/oplib.h>
19 
20 #include "irq.h"
21 #include "kernel.h"
22 
23 #define IRQ_IPI_SINGLE		12
24 #define IRQ_IPI_MASK		13
25 #define IRQ_IPI_RESCHED		14
26 #define IRQ_CROSS_CALL		15
27 
28 static inline unsigned long
29 swap_ulong(volatile unsigned long *ptr, unsigned long val)
30 {
31 	__asm__ __volatile__("swap [%1], %0\n\t" :
32 			     "=&r" (val), "=&r" (ptr) :
33 			     "0" (val), "1" (ptr));
34 	return val;
35 }
36 
37 void __cpuinit smp4m_callin(void)
38 {
39 	int cpuid = hard_smp_processor_id();
40 
41 	local_ops->cache_all();
42 	local_ops->tlb_all();
43 
44 	notify_cpu_starting(cpuid);
45 
46 	register_percpu_ce(cpuid);
47 
48 	calibrate_delay();
49 	smp_store_cpu_info(cpuid);
50 
51 	local_ops->cache_all();
52 	local_ops->tlb_all();
53 
54 	/*
55 	 * Unblock the master CPU _only_ when the scheduler state
56 	 * of all secondary CPUs will be up-to-date, so after
57 	 * the SMP initialization the master will be just allowed
58 	 * to call the scheduler code.
59 	 */
60 	/* Allow master to continue. */
61 	swap_ulong(&cpu_callin_map[cpuid], 1);
62 
63 	/* XXX: What's up with all the flushes? */
64 	local_ops->cache_all();
65 	local_ops->tlb_all();
66 
67 	/* Fix idle thread fields. */
68 	__asm__ __volatile__("ld [%0], %%g6\n\t"
69 			     : : "r" (&current_set[cpuid])
70 			     : "memory" /* paranoid */);
71 
72 	/* Attach to the address space of init_task. */
73 	atomic_inc(&init_mm.mm_count);
74 	current->active_mm = &init_mm;
75 
76 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
77 		mb();
78 
79 	local_irq_enable();
80 
81 	set_cpu_online(cpuid, true);
82 }
83 
84 /*
85  *	Cycle through the processors asking the PROM to start each one.
86  */
87 void __init smp4m_boot_cpus(void)
88 {
89 	sun4m_unmask_profile_irq();
90 	local_ops->cache_all();
91 }
92 
93 int __cpuinit smp4m_boot_one_cpu(int i, struct task_struct *idle)
94 {
95 	unsigned long *entry = &sun4m_cpu_startup;
96 	int timeout;
97 	int cpu_node;
98 
99 	cpu_find_by_mid(i, &cpu_node);
100 	current_set[i] = task_thread_info(idle);
101 
102 	/* See trampoline.S for details... */
103 	entry += ((i - 1) * 3);
104 
105 	/*
106 	 * Initialize the contexts table
107 	 * Since the call to prom_startcpu() trashes the structure,
108 	 * we need to re-initialize it for each cpu
109 	 */
110 	smp_penguin_ctable.which_io = 0;
111 	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
112 	smp_penguin_ctable.reg_size = 0;
113 
114 	/* whirrr, whirrr, whirrrrrrrrr... */
115 	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
116 	local_ops->cache_all();
117 	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
118 
119 	/* wheee... it's going... */
120 	for (timeout = 0; timeout < 10000; timeout++) {
121 		if (cpu_callin_map[i])
122 			break;
123 		udelay(200);
124 	}
125 
126 	if (!(cpu_callin_map[i])) {
127 		printk(KERN_ERR "Processor %d is stuck.\n", i);
128 		return -ENODEV;
129 	}
130 
131 	local_ops->cache_all();
132 	return 0;
133 }
134 
135 void __init smp4m_smp_done(void)
136 {
137 	int i, first;
138 	int *prev;
139 
140 	/* setup cpu list for irq rotation */
141 	first = 0;
142 	prev = &first;
143 	for_each_online_cpu(i) {
144 		*prev = i;
145 		prev = &cpu_data(i).next;
146 	}
147 	*prev = first;
148 	local_ops->cache_all();
149 
150 	/* Ok, they are spinning and ready to go. */
151 }
152 
153 static void sun4m_send_ipi(int cpu, int level)
154 {
155 	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
156 }
157 
158 static void sun4m_ipi_resched(int cpu)
159 {
160 	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
161 }
162 
163 static void sun4m_ipi_single(int cpu)
164 {
165 	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
166 }
167 
168 static void sun4m_ipi_mask_one(int cpu)
169 {
170 	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
171 }
172 
173 static struct smp_funcall {
174 	smpfunc_t func;
175 	unsigned long arg1;
176 	unsigned long arg2;
177 	unsigned long arg3;
178 	unsigned long arg4;
179 	unsigned long arg5;
180 	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
181 	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
182 } ccall_info;
183 
184 static DEFINE_SPINLOCK(cross_call_lock);
185 
186 /* Cross calls must be serialized, at least currently. */
187 static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
188 			     unsigned long arg2, unsigned long arg3,
189 			     unsigned long arg4)
190 {
191 		register int ncpus = SUN4M_NCPUS;
192 		unsigned long flags;
193 
194 		spin_lock_irqsave(&cross_call_lock, flags);
195 
196 		/* Init function glue. */
197 		ccall_info.func = func;
198 		ccall_info.arg1 = arg1;
199 		ccall_info.arg2 = arg2;
200 		ccall_info.arg3 = arg3;
201 		ccall_info.arg4 = arg4;
202 		ccall_info.arg5 = 0;
203 
204 		/* Init receive/complete mapping, plus fire the IPI's off. */
205 		{
206 			register int i;
207 
208 			cpumask_clear_cpu(smp_processor_id(), &mask);
209 			cpumask_and(&mask, cpu_online_mask, &mask);
210 			for (i = 0; i < ncpus; i++) {
211 				if (cpumask_test_cpu(i, &mask)) {
212 					ccall_info.processors_in[i] = 0;
213 					ccall_info.processors_out[i] = 0;
214 					sun4m_send_ipi(i, IRQ_CROSS_CALL);
215 				} else {
216 					ccall_info.processors_in[i] = 1;
217 					ccall_info.processors_out[i] = 1;
218 				}
219 			}
220 		}
221 
222 		{
223 			register int i;
224 
225 			i = 0;
226 			do {
227 				if (!cpumask_test_cpu(i, &mask))
228 					continue;
229 				while (!ccall_info.processors_in[i])
230 					barrier();
231 			} while (++i < ncpus);
232 
233 			i = 0;
234 			do {
235 				if (!cpumask_test_cpu(i, &mask))
236 					continue;
237 				while (!ccall_info.processors_out[i])
238 					barrier();
239 			} while (++i < ncpus);
240 		}
241 		spin_unlock_irqrestore(&cross_call_lock, flags);
242 }
243 
244 /* Running cross calls. */
245 void smp4m_cross_call_irq(void)
246 {
247 	int i = smp_processor_id();
248 
249 	ccall_info.processors_in[i] = 1;
250 	ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
251 			ccall_info.arg4, ccall_info.arg5);
252 	ccall_info.processors_out[i] = 1;
253 }
254 
255 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
256 {
257 	struct pt_regs *old_regs;
258 	struct clock_event_device *ce;
259 	int cpu = smp_processor_id();
260 
261 	old_regs = set_irq_regs(regs);
262 
263 	ce = &per_cpu(sparc32_clockevent, cpu);
264 
265 	if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
266 		sun4m_clear_profile_irq(cpu);
267 	else
268 		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
269 
270 	irq_enter();
271 	ce->event_handler(ce);
272 	irq_exit();
273 
274 	set_irq_regs(old_regs);
275 }
276 
277 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
278 	.cross_call = sun4m_cross_call,
279 	.resched    = sun4m_ipi_resched,
280 	.single     = sun4m_ipi_single,
281 	.mask_one   = sun4m_ipi_mask_one,
282 };
283 
284 void __init sun4m_init_smp(void)
285 {
286 	sparc32_ipi_ops = &sun4m_ipi_ops;
287 }
288