1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 #include <linux/kgdb.h> 29 30 #include <asm/head.h> 31 #include <asm/ptrace.h> 32 #include <linux/atomic.h> 33 #include <asm/tlbflush.h> 34 #include <asm/mmu_context.h> 35 #include <asm/cpudata.h> 36 #include <asm/hvtramp.h> 37 #include <asm/io.h> 38 #include <asm/timer.h> 39 #include <asm/setup.h> 40 41 #include <asm/irq.h> 42 #include <asm/irq_regs.h> 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/oplib.h> 46 #include <asm/uaccess.h> 47 #include <asm/starfire.h> 48 #include <asm/tlb.h> 49 #include <asm/sections.h> 50 #include <asm/prom.h> 51 #include <asm/mdesc.h> 52 #include <asm/ldc.h> 53 #include <asm/hypervisor.h> 54 #include <asm/pcr.h> 55 56 #include "cpumap.h" 57 #include "kernel.h" 58 59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 62 63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = { 64 [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 65 66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 67 EXPORT_SYMBOL(cpu_core_map); 68 EXPORT_SYMBOL(cpu_core_sib_map); 69 70 static cpumask_t smp_commenced_mask; 71 72 void smp_info(struct seq_file *m) 73 { 74 int i; 75 76 seq_printf(m, "State:\n"); 77 for_each_online_cpu(i) 78 seq_printf(m, "CPU%d:\t\tonline\n", i); 79 } 80 81 void smp_bogo(struct seq_file *m) 82 { 83 int i; 84 85 for_each_online_cpu(i) 86 seq_printf(m, 87 "Cpu%dClkTck\t: %016lx\n", 88 i, cpu_data(i).clock_tick); 89 } 90 91 extern void setup_sparc64_timer(void); 92 93 static volatile unsigned long callin_flag = 0; 94 95 void smp_callin(void) 96 { 97 int cpuid = hard_smp_processor_id(); 98 99 __local_per_cpu_offset = __per_cpu_offset(cpuid); 100 101 if (tlb_type == hypervisor) 102 sun4v_ktsb_register(); 103 104 __flush_tlb_all(); 105 106 setup_sparc64_timer(); 107 108 if (cheetah_pcache_forced_on) 109 cheetah_enable_pcache(); 110 111 callin_flag = 1; 112 __asm__ __volatile__("membar #Sync\n\t" 113 "flush %%g6" : : : "memory"); 114 115 /* Clear this or we will die instantly when we 116 * schedule back to this idler... 117 */ 118 current_thread_info()->new_child = 0; 119 120 /* Attach to the address space of init_task. */ 121 atomic_inc(&init_mm.mm_count); 122 current->active_mm = &init_mm; 123 124 /* inform the notifiers about the new cpu */ 125 notify_cpu_starting(cpuid); 126 127 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 128 rmb(); 129 130 set_cpu_online(cpuid, true); 131 132 /* idle thread is expected to have preempt disabled */ 133 preempt_disable(); 134 135 local_irq_enable(); 136 137 cpu_startup_entry(CPUHP_ONLINE); 138 } 139 140 void cpu_panic(void) 141 { 142 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 143 panic("SMP bolixed\n"); 144 } 145 146 /* This tick register synchronization scheme is taken entirely from 147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 148 * 149 * The only change I've made is to rework it so that the master 150 * initiates the synchonization instead of the slave. -DaveM 151 */ 152 153 #define MASTER 0 154 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 155 156 #define NUM_ROUNDS 64 /* magic value */ 157 #define NUM_ITERS 5 /* likewise */ 158 159 static DEFINE_RAW_SPINLOCK(itc_sync_lock); 160 static unsigned long go[SLAVE + 1]; 161 162 #define DEBUG_TICK_SYNC 0 163 164 static inline long get_delta (long *rt, long *master) 165 { 166 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 167 unsigned long tcenter, t0, t1, tm; 168 unsigned long i; 169 170 for (i = 0; i < NUM_ITERS; i++) { 171 t0 = tick_ops->get_tick(); 172 go[MASTER] = 1; 173 membar_safe("#StoreLoad"); 174 while (!(tm = go[SLAVE])) 175 rmb(); 176 go[SLAVE] = 0; 177 wmb(); 178 t1 = tick_ops->get_tick(); 179 180 if (t1 - t0 < best_t1 - best_t0) 181 best_t0 = t0, best_t1 = t1, best_tm = tm; 182 } 183 184 *rt = best_t1 - best_t0; 185 *master = best_tm - best_t0; 186 187 /* average best_t0 and best_t1 without overflow: */ 188 tcenter = (best_t0/2 + best_t1/2); 189 if (best_t0 % 2 + best_t1 % 2 == 2) 190 tcenter++; 191 return tcenter - best_tm; 192 } 193 194 void smp_synchronize_tick_client(void) 195 { 196 long i, delta, adj, adjust_latency = 0, done = 0; 197 unsigned long flags, rt, master_time_stamp; 198 #if DEBUG_TICK_SYNC 199 struct { 200 long rt; /* roundtrip time */ 201 long master; /* master's timestamp */ 202 long diff; /* difference between midpoint and master's timestamp */ 203 long lat; /* estimate of itc adjustment latency */ 204 } t[NUM_ROUNDS]; 205 #endif 206 207 go[MASTER] = 1; 208 209 while (go[MASTER]) 210 rmb(); 211 212 local_irq_save(flags); 213 { 214 for (i = 0; i < NUM_ROUNDS; i++) { 215 delta = get_delta(&rt, &master_time_stamp); 216 if (delta == 0) 217 done = 1; /* let's lock on to this... */ 218 219 if (!done) { 220 if (i > 0) { 221 adjust_latency += -delta; 222 adj = -delta + adjust_latency/4; 223 } else 224 adj = -delta; 225 226 tick_ops->add_tick(adj); 227 } 228 #if DEBUG_TICK_SYNC 229 t[i].rt = rt; 230 t[i].master = master_time_stamp; 231 t[i].diff = delta; 232 t[i].lat = adjust_latency/4; 233 #endif 234 } 235 } 236 local_irq_restore(flags); 237 238 #if DEBUG_TICK_SYNC 239 for (i = 0; i < NUM_ROUNDS; i++) 240 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 241 t[i].rt, t[i].master, t[i].diff, t[i].lat); 242 #endif 243 244 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 245 "(last diff %ld cycles, maxerr %lu cycles)\n", 246 smp_processor_id(), delta, rt); 247 } 248 249 static void smp_start_sync_tick_client(int cpu); 250 251 static void smp_synchronize_one_tick(int cpu) 252 { 253 unsigned long flags, i; 254 255 go[MASTER] = 0; 256 257 smp_start_sync_tick_client(cpu); 258 259 /* wait for client to be ready */ 260 while (!go[MASTER]) 261 rmb(); 262 263 /* now let the client proceed into his loop */ 264 go[MASTER] = 0; 265 membar_safe("#StoreLoad"); 266 267 raw_spin_lock_irqsave(&itc_sync_lock, flags); 268 { 269 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 270 while (!go[MASTER]) 271 rmb(); 272 go[MASTER] = 0; 273 wmb(); 274 go[SLAVE] = tick_ops->get_tick(); 275 membar_safe("#StoreLoad"); 276 } 277 } 278 raw_spin_unlock_irqrestore(&itc_sync_lock, flags); 279 } 280 281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, 283 void **descrp) 284 { 285 extern unsigned long sparc64_ttable_tl0; 286 extern unsigned long kern_locked_tte_data; 287 struct hvtramp_descr *hdesc; 288 unsigned long trampoline_ra; 289 struct trap_per_cpu *tb; 290 u64 tte_vaddr, tte_data; 291 unsigned long hv_err; 292 int i; 293 294 hdesc = kzalloc(sizeof(*hdesc) + 295 (sizeof(struct hvtramp_mapping) * 296 num_kernel_image_mappings - 1), 297 GFP_KERNEL); 298 if (!hdesc) { 299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 300 "hvtramp_descr.\n"); 301 return; 302 } 303 *descrp = hdesc; 304 305 hdesc->cpu = cpu; 306 hdesc->num_mappings = num_kernel_image_mappings; 307 308 tb = &trap_block[cpu]; 309 310 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 312 313 hdesc->thread_reg = thread_reg; 314 315 tte_vaddr = (unsigned long) KERNBASE; 316 tte_data = kern_locked_tte_data; 317 318 for (i = 0; i < hdesc->num_mappings; i++) { 319 hdesc->maps[i].vaddr = tte_vaddr; 320 hdesc->maps[i].tte = tte_data; 321 tte_vaddr += 0x400000; 322 tte_data += 0x400000; 323 } 324 325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 326 327 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 328 kimage_addr_to_ra(&sparc64_ttable_tl0), 329 __pa(hdesc)); 330 if (hv_err) 331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 332 "gives error %lu\n", hv_err); 333 } 334 #endif 335 336 extern unsigned long sparc64_cpu_startup; 337 338 /* The OBP cpu startup callback truncates the 3rd arg cookie to 339 * 32-bits (I think) so to be safe we have it read the pointer 340 * contained here so we work on >4GB machines. -DaveM 341 */ 342 static struct thread_info *cpu_new_thread = NULL; 343 344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 345 { 346 unsigned long entry = 347 (unsigned long)(&sparc64_cpu_startup); 348 unsigned long cookie = 349 (unsigned long)(&cpu_new_thread); 350 void *descr = NULL; 351 int timeout, ret; 352 353 callin_flag = 0; 354 cpu_new_thread = task_thread_info(idle); 355 356 if (tlb_type == hypervisor) { 357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 358 if (ldom_domaining_enabled) 359 ldom_startcpu_cpuid(cpu, 360 (unsigned long) cpu_new_thread, 361 &descr); 362 else 363 #endif 364 prom_startcpu_cpuid(cpu, entry, cookie); 365 } else { 366 struct device_node *dp = of_find_node_by_cpuid(cpu); 367 368 prom_startcpu(dp->phandle, entry, cookie); 369 } 370 371 for (timeout = 0; timeout < 50000; timeout++) { 372 if (callin_flag) 373 break; 374 udelay(100); 375 } 376 377 if (callin_flag) { 378 ret = 0; 379 } else { 380 printk("Processor %d is stuck.\n", cpu); 381 ret = -ENODEV; 382 } 383 cpu_new_thread = NULL; 384 385 kfree(descr); 386 387 return ret; 388 } 389 390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 391 { 392 u64 result, target; 393 int stuck, tmp; 394 395 if (this_is_starfire) { 396 /* map to real upaid */ 397 cpu = (((cpu & 0x3c) << 1) | 398 ((cpu & 0x40) >> 4) | 399 (cpu & 0x3)); 400 } 401 402 target = (cpu << 14) | 0x70; 403 again: 404 /* Ok, this is the real Spitfire Errata #54. 405 * One must read back from a UDB internal register 406 * after writes to the UDB interrupt dispatch, but 407 * before the membar Sync for that write. 408 * So we use the high UDB control register (ASI 0x7f, 409 * ADDR 0x20) for the dummy read. -DaveM 410 */ 411 tmp = 0x40; 412 __asm__ __volatile__( 413 "wrpr %1, %2, %%pstate\n\t" 414 "stxa %4, [%0] %3\n\t" 415 "stxa %5, [%0+%8] %3\n\t" 416 "add %0, %8, %0\n\t" 417 "stxa %6, [%0+%8] %3\n\t" 418 "membar #Sync\n\t" 419 "stxa %%g0, [%7] %3\n\t" 420 "membar #Sync\n\t" 421 "mov 0x20, %%g1\n\t" 422 "ldxa [%%g1] 0x7f, %%g0\n\t" 423 "membar #Sync" 424 : "=r" (tmp) 425 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 426 "r" (data0), "r" (data1), "r" (data2), "r" (target), 427 "r" (0x10), "0" (tmp) 428 : "g1"); 429 430 /* NOTE: PSTATE_IE is still clear. */ 431 stuck = 100000; 432 do { 433 __asm__ __volatile__("ldxa [%%g0] %1, %0" 434 : "=r" (result) 435 : "i" (ASI_INTR_DISPATCH_STAT)); 436 if (result == 0) { 437 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 438 : : "r" (pstate)); 439 return; 440 } 441 stuck -= 1; 442 if (stuck == 0) 443 break; 444 } while (result & 0x1); 445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 446 : : "r" (pstate)); 447 if (stuck == 0) { 448 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 449 smp_processor_id(), result); 450 } else { 451 udelay(2); 452 goto again; 453 } 454 } 455 456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 457 { 458 u64 *mondo, data0, data1, data2; 459 u16 *cpu_list; 460 u64 pstate; 461 int i; 462 463 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 464 cpu_list = __va(tb->cpu_list_pa); 465 mondo = __va(tb->cpu_mondo_block_pa); 466 data0 = mondo[0]; 467 data1 = mondo[1]; 468 data2 = mondo[2]; 469 for (i = 0; i < cnt; i++) 470 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 471 } 472 473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 474 * packet, but we have no use for that. However we do take advantage of 475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 476 */ 477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 478 { 479 int nack_busy_id, is_jbus, need_more; 480 u64 *mondo, pstate, ver, busy_mask; 481 u16 *cpu_list; 482 483 cpu_list = __va(tb->cpu_list_pa); 484 mondo = __va(tb->cpu_mondo_block_pa); 485 486 /* Unfortunately, someone at Sun had the brilliant idea to make the 487 * busy/nack fields hard-coded by ITID number for this Ultra-III 488 * derivative processor. 489 */ 490 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 491 is_jbus = ((ver >> 32) == __JALAPENO_ID || 492 (ver >> 32) == __SERRANO_ID); 493 494 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 495 496 retry: 497 need_more = 0; 498 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 499 : : "r" (pstate), "i" (PSTATE_IE)); 500 501 /* Setup the dispatch data registers. */ 502 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 503 "stxa %1, [%4] %6\n\t" 504 "stxa %2, [%5] %6\n\t" 505 "membar #Sync\n\t" 506 : /* no outputs */ 507 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 508 "r" (0x40), "r" (0x50), "r" (0x60), 509 "i" (ASI_INTR_W)); 510 511 nack_busy_id = 0; 512 busy_mask = 0; 513 { 514 int i; 515 516 for (i = 0; i < cnt; i++) { 517 u64 target, nr; 518 519 nr = cpu_list[i]; 520 if (nr == 0xffff) 521 continue; 522 523 target = (nr << 14) | 0x70; 524 if (is_jbus) { 525 busy_mask |= (0x1UL << (nr * 2)); 526 } else { 527 target |= (nack_busy_id << 24); 528 busy_mask |= (0x1UL << 529 (nack_busy_id * 2)); 530 } 531 __asm__ __volatile__( 532 "stxa %%g0, [%0] %1\n\t" 533 "membar #Sync\n\t" 534 : /* no outputs */ 535 : "r" (target), "i" (ASI_INTR_W)); 536 nack_busy_id++; 537 if (nack_busy_id == 32) { 538 need_more = 1; 539 break; 540 } 541 } 542 } 543 544 /* Now, poll for completion. */ 545 { 546 u64 dispatch_stat, nack_mask; 547 long stuck; 548 549 stuck = 100000 * nack_busy_id; 550 nack_mask = busy_mask << 1; 551 do { 552 __asm__ __volatile__("ldxa [%%g0] %1, %0" 553 : "=r" (dispatch_stat) 554 : "i" (ASI_INTR_DISPATCH_STAT)); 555 if (!(dispatch_stat & (busy_mask | nack_mask))) { 556 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 557 : : "r" (pstate)); 558 if (unlikely(need_more)) { 559 int i, this_cnt = 0; 560 for (i = 0; i < cnt; i++) { 561 if (cpu_list[i] == 0xffff) 562 continue; 563 cpu_list[i] = 0xffff; 564 this_cnt++; 565 if (this_cnt == 32) 566 break; 567 } 568 goto retry; 569 } 570 return; 571 } 572 if (!--stuck) 573 break; 574 } while (dispatch_stat & busy_mask); 575 576 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 577 : : "r" (pstate)); 578 579 if (dispatch_stat & busy_mask) { 580 /* Busy bits will not clear, continue instead 581 * of freezing up on this cpu. 582 */ 583 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 584 smp_processor_id(), dispatch_stat); 585 } else { 586 int i, this_busy_nack = 0; 587 588 /* Delay some random time with interrupts enabled 589 * to prevent deadlock. 590 */ 591 udelay(2 * nack_busy_id); 592 593 /* Clear out the mask bits for cpus which did not 594 * NACK us. 595 */ 596 for (i = 0; i < cnt; i++) { 597 u64 check_mask, nr; 598 599 nr = cpu_list[i]; 600 if (nr == 0xffff) 601 continue; 602 603 if (is_jbus) 604 check_mask = (0x2UL << (2*nr)); 605 else 606 check_mask = (0x2UL << 607 this_busy_nack); 608 if ((dispatch_stat & check_mask) == 0) 609 cpu_list[i] = 0xffff; 610 this_busy_nack += 2; 611 if (this_busy_nack == 64) 612 break; 613 } 614 615 goto retry; 616 } 617 } 618 } 619 620 /* Multi-cpu list version. */ 621 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 622 { 623 int retries, this_cpu, prev_sent, i, saw_cpu_error; 624 unsigned long status; 625 u16 *cpu_list; 626 627 this_cpu = smp_processor_id(); 628 629 cpu_list = __va(tb->cpu_list_pa); 630 631 saw_cpu_error = 0; 632 retries = 0; 633 prev_sent = 0; 634 do { 635 int forward_progress, n_sent; 636 637 status = sun4v_cpu_mondo_send(cnt, 638 tb->cpu_list_pa, 639 tb->cpu_mondo_block_pa); 640 641 /* HV_EOK means all cpus received the xcall, we're done. */ 642 if (likely(status == HV_EOK)) 643 break; 644 645 /* First, see if we made any forward progress. 646 * 647 * The hypervisor indicates successful sends by setting 648 * cpu list entries to the value 0xffff. 649 */ 650 n_sent = 0; 651 for (i = 0; i < cnt; i++) { 652 if (likely(cpu_list[i] == 0xffff)) 653 n_sent++; 654 } 655 656 forward_progress = 0; 657 if (n_sent > prev_sent) 658 forward_progress = 1; 659 660 prev_sent = n_sent; 661 662 /* If we get a HV_ECPUERROR, then one or more of the cpus 663 * in the list are in error state. Use the cpu_state() 664 * hypervisor call to find out which cpus are in error state. 665 */ 666 if (unlikely(status == HV_ECPUERROR)) { 667 for (i = 0; i < cnt; i++) { 668 long err; 669 u16 cpu; 670 671 cpu = cpu_list[i]; 672 if (cpu == 0xffff) 673 continue; 674 675 err = sun4v_cpu_state(cpu); 676 if (err == HV_CPU_STATE_ERROR) { 677 saw_cpu_error = (cpu + 1); 678 cpu_list[i] = 0xffff; 679 } 680 } 681 } else if (unlikely(status != HV_EWOULDBLOCK)) 682 goto fatal_mondo_error; 683 684 /* Don't bother rewriting the CPU list, just leave the 685 * 0xffff and non-0xffff entries in there and the 686 * hypervisor will do the right thing. 687 * 688 * Only advance timeout state if we didn't make any 689 * forward progress. 690 */ 691 if (unlikely(!forward_progress)) { 692 if (unlikely(++retries > 10000)) 693 goto fatal_mondo_timeout; 694 695 /* Delay a little bit to let other cpus catch up 696 * on their cpu mondo queue work. 697 */ 698 udelay(2 * cnt); 699 } 700 } while (1); 701 702 if (unlikely(saw_cpu_error)) 703 goto fatal_mondo_cpu_error; 704 705 return; 706 707 fatal_mondo_cpu_error: 708 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 709 "(including %d) were in error state\n", 710 this_cpu, saw_cpu_error - 1); 711 return; 712 713 fatal_mondo_timeout: 714 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 715 " progress after %d retries.\n", 716 this_cpu, retries); 717 goto dump_cpu_list_and_out; 718 719 fatal_mondo_error: 720 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 721 this_cpu, status); 722 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 723 "mondo_block_pa(%lx)\n", 724 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 725 726 dump_cpu_list_and_out: 727 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 728 for (i = 0; i < cnt; i++) 729 printk("%u ", cpu_list[i]); 730 printk("]\n"); 731 } 732 733 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 734 735 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 736 { 737 struct trap_per_cpu *tb; 738 int this_cpu, i, cnt; 739 unsigned long flags; 740 u16 *cpu_list; 741 u64 *mondo; 742 743 /* We have to do this whole thing with interrupts fully disabled. 744 * Otherwise if we send an xcall from interrupt context it will 745 * corrupt both our mondo block and cpu list state. 746 * 747 * One consequence of this is that we cannot use timeout mechanisms 748 * that depend upon interrupts being delivered locally. So, for 749 * example, we cannot sample jiffies and expect it to advance. 750 * 751 * Fortunately, udelay() uses %stick/%tick so we can use that. 752 */ 753 local_irq_save(flags); 754 755 this_cpu = smp_processor_id(); 756 tb = &trap_block[this_cpu]; 757 758 mondo = __va(tb->cpu_mondo_block_pa); 759 mondo[0] = data0; 760 mondo[1] = data1; 761 mondo[2] = data2; 762 wmb(); 763 764 cpu_list = __va(tb->cpu_list_pa); 765 766 /* Setup the initial cpu list. */ 767 cnt = 0; 768 for_each_cpu(i, mask) { 769 if (i == this_cpu || !cpu_online(i)) 770 continue; 771 cpu_list[cnt++] = i; 772 } 773 774 if (cnt) 775 xcall_deliver_impl(tb, cnt); 776 777 local_irq_restore(flags); 778 } 779 780 /* Send cross call to all processors mentioned in MASK_P 781 * except self. Really, there are only two cases currently, 782 * "cpu_online_mask" and "mm_cpumask(mm)". 783 */ 784 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 785 { 786 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 787 788 xcall_deliver(data0, data1, data2, mask); 789 } 790 791 /* Send cross call to all processors except self. */ 792 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 793 { 794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 795 } 796 797 extern unsigned long xcall_sync_tick; 798 799 static void smp_start_sync_tick_client(int cpu) 800 { 801 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 802 cpumask_of(cpu)); 803 } 804 805 extern unsigned long xcall_call_function; 806 807 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 808 { 809 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 810 } 811 812 extern unsigned long xcall_call_function_single; 813 814 void arch_send_call_function_single_ipi(int cpu) 815 { 816 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 817 cpumask_of(cpu)); 818 } 819 820 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 821 { 822 clear_softint(1 << irq); 823 irq_enter(); 824 generic_smp_call_function_interrupt(); 825 irq_exit(); 826 } 827 828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 829 { 830 clear_softint(1 << irq); 831 irq_enter(); 832 generic_smp_call_function_single_interrupt(); 833 irq_exit(); 834 } 835 836 static void tsb_sync(void *info) 837 { 838 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 839 struct mm_struct *mm = info; 840 841 /* It is not valid to test "current->active_mm == mm" here. 842 * 843 * The value of "current" is not changed atomically with 844 * switch_mm(). But that's OK, we just need to check the 845 * current cpu's trap block PGD physical address. 846 */ 847 if (tp->pgd_paddr == __pa(mm->pgd)) 848 tsb_context_switch(mm); 849 } 850 851 void smp_tsb_sync(struct mm_struct *mm) 852 { 853 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 854 } 855 856 extern unsigned long xcall_flush_tlb_mm; 857 extern unsigned long xcall_flush_tlb_page; 858 extern unsigned long xcall_flush_tlb_kernel_range; 859 extern unsigned long xcall_fetch_glob_regs; 860 extern unsigned long xcall_fetch_glob_pmu; 861 extern unsigned long xcall_fetch_glob_pmu_n4; 862 extern unsigned long xcall_receive_signal; 863 extern unsigned long xcall_new_mmu_context_version; 864 #ifdef CONFIG_KGDB 865 extern unsigned long xcall_kgdb_capture; 866 #endif 867 868 #ifdef DCACHE_ALIASING_POSSIBLE 869 extern unsigned long xcall_flush_dcache_page_cheetah; 870 #endif 871 extern unsigned long xcall_flush_dcache_page_spitfire; 872 873 static inline void __local_flush_dcache_page(struct page *page) 874 { 875 #ifdef DCACHE_ALIASING_POSSIBLE 876 __flush_dcache_page(page_address(page), 877 ((tlb_type == spitfire) && 878 page_mapping(page) != NULL)); 879 #else 880 if (page_mapping(page) != NULL && 881 tlb_type == spitfire) 882 __flush_icache_page(__pa(page_address(page))); 883 #endif 884 } 885 886 void smp_flush_dcache_page_impl(struct page *page, int cpu) 887 { 888 int this_cpu; 889 890 if (tlb_type == hypervisor) 891 return; 892 893 #ifdef CONFIG_DEBUG_DCFLUSH 894 atomic_inc(&dcpage_flushes); 895 #endif 896 897 this_cpu = get_cpu(); 898 899 if (cpu == this_cpu) { 900 __local_flush_dcache_page(page); 901 } else if (cpu_online(cpu)) { 902 void *pg_addr = page_address(page); 903 u64 data0 = 0; 904 905 if (tlb_type == spitfire) { 906 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 907 if (page_mapping(page) != NULL) 908 data0 |= ((u64)1 << 32); 909 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 910 #ifdef DCACHE_ALIASING_POSSIBLE 911 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 912 #endif 913 } 914 if (data0) { 915 xcall_deliver(data0, __pa(pg_addr), 916 (u64) pg_addr, cpumask_of(cpu)); 917 #ifdef CONFIG_DEBUG_DCFLUSH 918 atomic_inc(&dcpage_flushes_xcall); 919 #endif 920 } 921 } 922 923 put_cpu(); 924 } 925 926 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 927 { 928 void *pg_addr; 929 u64 data0; 930 931 if (tlb_type == hypervisor) 932 return; 933 934 preempt_disable(); 935 936 #ifdef CONFIG_DEBUG_DCFLUSH 937 atomic_inc(&dcpage_flushes); 938 #endif 939 data0 = 0; 940 pg_addr = page_address(page); 941 if (tlb_type == spitfire) { 942 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 943 if (page_mapping(page) != NULL) 944 data0 |= ((u64)1 << 32); 945 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 946 #ifdef DCACHE_ALIASING_POSSIBLE 947 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 948 #endif 949 } 950 if (data0) { 951 xcall_deliver(data0, __pa(pg_addr), 952 (u64) pg_addr, cpu_online_mask); 953 #ifdef CONFIG_DEBUG_DCFLUSH 954 atomic_inc(&dcpage_flushes_xcall); 955 #endif 956 } 957 __local_flush_dcache_page(page); 958 959 preempt_enable(); 960 } 961 962 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 963 { 964 struct mm_struct *mm; 965 unsigned long flags; 966 967 clear_softint(1 << irq); 968 969 /* See if we need to allocate a new TLB context because 970 * the version of the one we are using is now out of date. 971 */ 972 mm = current->active_mm; 973 if (unlikely(!mm || (mm == &init_mm))) 974 return; 975 976 spin_lock_irqsave(&mm->context.lock, flags); 977 978 if (unlikely(!CTX_VALID(mm->context))) 979 get_new_mmu_context(mm); 980 981 spin_unlock_irqrestore(&mm->context.lock, flags); 982 983 load_secondary_context(mm); 984 __flush_tlb_mm(CTX_HWBITS(mm->context), 985 SECONDARY_CONTEXT); 986 } 987 988 void smp_new_mmu_context_version(void) 989 { 990 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 991 } 992 993 #ifdef CONFIG_KGDB 994 void kgdb_roundup_cpus(unsigned long flags) 995 { 996 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 997 } 998 #endif 999 1000 void smp_fetch_global_regs(void) 1001 { 1002 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1003 } 1004 1005 void smp_fetch_global_pmu(void) 1006 { 1007 if (tlb_type == hypervisor && 1008 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1009 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1010 else 1011 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1012 } 1013 1014 /* We know that the window frames of the user have been flushed 1015 * to the stack before we get here because all callers of us 1016 * are flush_tlb_*() routines, and these run after flush_cache_*() 1017 * which performs the flushw. 1018 * 1019 * The SMP TLB coherency scheme we use works as follows: 1020 * 1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1022 * space has (potentially) executed on, this is the heuristic 1023 * we use to avoid doing cross calls. 1024 * 1025 * Also, for flushing from kswapd and also for clones, we 1026 * use cpu_vm_mask as the list of cpus to make run the TLB. 1027 * 1028 * 2) TLB context numbers are shared globally across all processors 1029 * in the system, this allows us to play several games to avoid 1030 * cross calls. 1031 * 1032 * One invariant is that when a cpu switches to a process, and 1033 * that processes tsk->active_mm->cpu_vm_mask does not have the 1034 * current cpu's bit set, that tlb context is flushed locally. 1035 * 1036 * If the address space is non-shared (ie. mm->count == 1) we avoid 1037 * cross calls when we want to flush the currently running process's 1038 * tlb state. This is done by clearing all cpu bits except the current 1039 * processor's in current->mm->cpu_vm_mask and performing the 1040 * flush locally only. This will force any subsequent cpus which run 1041 * this task to flush the context from the local tlb if the process 1042 * migrates to another cpu (again). 1043 * 1044 * 3) For shared address spaces (threads) and swapping we bite the 1045 * bullet for most cases and perform the cross call (but only to 1046 * the cpus listed in cpu_vm_mask). 1047 * 1048 * The performance gain from "optimizing" away the cross call for threads is 1049 * questionable (in theory the big win for threads is the massive sharing of 1050 * address space state across processors). 1051 */ 1052 1053 /* This currently is only used by the hugetlb arch pre-fault 1054 * hook on UltraSPARC-III+ and later when changing the pagesize 1055 * bits of the context register for an address space. 1056 */ 1057 void smp_flush_tlb_mm(struct mm_struct *mm) 1058 { 1059 u32 ctx = CTX_HWBITS(mm->context); 1060 int cpu = get_cpu(); 1061 1062 if (atomic_read(&mm->mm_users) == 1) { 1063 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1064 goto local_flush_and_out; 1065 } 1066 1067 smp_cross_call_masked(&xcall_flush_tlb_mm, 1068 ctx, 0, 0, 1069 mm_cpumask(mm)); 1070 1071 local_flush_and_out: 1072 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1073 1074 put_cpu(); 1075 } 1076 1077 struct tlb_pending_info { 1078 unsigned long ctx; 1079 unsigned long nr; 1080 unsigned long *vaddrs; 1081 }; 1082 1083 static void tlb_pending_func(void *info) 1084 { 1085 struct tlb_pending_info *t = info; 1086 1087 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1088 } 1089 1090 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1091 { 1092 u32 ctx = CTX_HWBITS(mm->context); 1093 struct tlb_pending_info info; 1094 int cpu = get_cpu(); 1095 1096 info.ctx = ctx; 1097 info.nr = nr; 1098 info.vaddrs = vaddrs; 1099 1100 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1101 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1102 else 1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1104 &info, 1); 1105 1106 __flush_tlb_pending(ctx, nr, vaddrs); 1107 1108 put_cpu(); 1109 } 1110 1111 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1112 { 1113 unsigned long context = CTX_HWBITS(mm->context); 1114 int cpu = get_cpu(); 1115 1116 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1117 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1118 else 1119 smp_cross_call_masked(&xcall_flush_tlb_page, 1120 context, vaddr, 0, 1121 mm_cpumask(mm)); 1122 __flush_tlb_page(context, vaddr); 1123 1124 put_cpu(); 1125 } 1126 1127 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1128 { 1129 start &= PAGE_MASK; 1130 end = PAGE_ALIGN(end); 1131 if (start != end) { 1132 smp_cross_call(&xcall_flush_tlb_kernel_range, 1133 0, start, end); 1134 1135 __flush_tlb_kernel_range(start, end); 1136 } 1137 } 1138 1139 /* CPU capture. */ 1140 /* #define CAPTURE_DEBUG */ 1141 extern unsigned long xcall_capture; 1142 1143 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1144 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1145 static unsigned long penguins_are_doing_time; 1146 1147 void smp_capture(void) 1148 { 1149 int result = atomic_add_return(1, &smp_capture_depth); 1150 1151 if (result == 1) { 1152 int ncpus = num_online_cpus(); 1153 1154 #ifdef CAPTURE_DEBUG 1155 printk("CPU[%d]: Sending penguins to jail...", 1156 smp_processor_id()); 1157 #endif 1158 penguins_are_doing_time = 1; 1159 atomic_inc(&smp_capture_registry); 1160 smp_cross_call(&xcall_capture, 0, 0, 0); 1161 while (atomic_read(&smp_capture_registry) != ncpus) 1162 rmb(); 1163 #ifdef CAPTURE_DEBUG 1164 printk("done\n"); 1165 #endif 1166 } 1167 } 1168 1169 void smp_release(void) 1170 { 1171 if (atomic_dec_and_test(&smp_capture_depth)) { 1172 #ifdef CAPTURE_DEBUG 1173 printk("CPU[%d]: Giving pardon to " 1174 "imprisoned penguins\n", 1175 smp_processor_id()); 1176 #endif 1177 penguins_are_doing_time = 0; 1178 membar_safe("#StoreLoad"); 1179 atomic_dec(&smp_capture_registry); 1180 } 1181 } 1182 1183 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1184 * set, so they can service tlb flush xcalls... 1185 */ 1186 extern void prom_world(int); 1187 1188 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1189 { 1190 clear_softint(1 << irq); 1191 1192 preempt_disable(); 1193 1194 __asm__ __volatile__("flushw"); 1195 prom_world(1); 1196 atomic_inc(&smp_capture_registry); 1197 membar_safe("#StoreLoad"); 1198 while (penguins_are_doing_time) 1199 rmb(); 1200 atomic_dec(&smp_capture_registry); 1201 prom_world(0); 1202 1203 preempt_enable(); 1204 } 1205 1206 /* /proc/profile writes can call this, don't __init it please. */ 1207 int setup_profiling_timer(unsigned int multiplier) 1208 { 1209 return -EINVAL; 1210 } 1211 1212 void __init smp_prepare_cpus(unsigned int max_cpus) 1213 { 1214 } 1215 1216 void smp_prepare_boot_cpu(void) 1217 { 1218 } 1219 1220 void __init smp_setup_processor_id(void) 1221 { 1222 if (tlb_type == spitfire) 1223 xcall_deliver_impl = spitfire_xcall_deliver; 1224 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1225 xcall_deliver_impl = cheetah_xcall_deliver; 1226 else 1227 xcall_deliver_impl = hypervisor_xcall_deliver; 1228 } 1229 1230 void smp_fill_in_sib_core_maps(void) 1231 { 1232 unsigned int i; 1233 1234 for_each_present_cpu(i) { 1235 unsigned int j; 1236 1237 cpumask_clear(&cpu_core_map[i]); 1238 if (cpu_data(i).core_id == 0) { 1239 cpumask_set_cpu(i, &cpu_core_map[i]); 1240 continue; 1241 } 1242 1243 for_each_present_cpu(j) { 1244 if (cpu_data(i).core_id == 1245 cpu_data(j).core_id) 1246 cpumask_set_cpu(j, &cpu_core_map[i]); 1247 } 1248 } 1249 1250 for_each_present_cpu(i) { 1251 unsigned int j; 1252 1253 for_each_present_cpu(j) { 1254 if (cpu_data(i).sock_id == cpu_data(j).sock_id) 1255 cpumask_set_cpu(j, &cpu_core_sib_map[i]); 1256 } 1257 } 1258 1259 for_each_present_cpu(i) { 1260 unsigned int j; 1261 1262 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1263 if (cpu_data(i).proc_id == -1) { 1264 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1265 continue; 1266 } 1267 1268 for_each_present_cpu(j) { 1269 if (cpu_data(i).proc_id == 1270 cpu_data(j).proc_id) 1271 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1272 } 1273 } 1274 } 1275 1276 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1277 { 1278 int ret = smp_boot_one_cpu(cpu, tidle); 1279 1280 if (!ret) { 1281 cpumask_set_cpu(cpu, &smp_commenced_mask); 1282 while (!cpu_online(cpu)) 1283 mb(); 1284 if (!cpu_online(cpu)) { 1285 ret = -ENODEV; 1286 } else { 1287 /* On SUN4V, writes to %tick and %stick are 1288 * not allowed. 1289 */ 1290 if (tlb_type != hypervisor) 1291 smp_synchronize_one_tick(cpu); 1292 } 1293 } 1294 return ret; 1295 } 1296 1297 #ifdef CONFIG_HOTPLUG_CPU 1298 void cpu_play_dead(void) 1299 { 1300 int cpu = smp_processor_id(); 1301 unsigned long pstate; 1302 1303 idle_task_exit(); 1304 1305 if (tlb_type == hypervisor) { 1306 struct trap_per_cpu *tb = &trap_block[cpu]; 1307 1308 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1309 tb->cpu_mondo_pa, 0); 1310 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1311 tb->dev_mondo_pa, 0); 1312 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1313 tb->resum_mondo_pa, 0); 1314 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1315 tb->nonresum_mondo_pa, 0); 1316 } 1317 1318 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1319 membar_safe("#Sync"); 1320 1321 local_irq_disable(); 1322 1323 __asm__ __volatile__( 1324 "rdpr %%pstate, %0\n\t" 1325 "wrpr %0, %1, %%pstate" 1326 : "=r" (pstate) 1327 : "i" (PSTATE_IE)); 1328 1329 while (1) 1330 barrier(); 1331 } 1332 1333 int __cpu_disable(void) 1334 { 1335 int cpu = smp_processor_id(); 1336 cpuinfo_sparc *c; 1337 int i; 1338 1339 for_each_cpu(i, &cpu_core_map[cpu]) 1340 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1341 cpumask_clear(&cpu_core_map[cpu]); 1342 1343 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1344 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1345 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1346 1347 c = &cpu_data(cpu); 1348 1349 c->core_id = 0; 1350 c->proc_id = -1; 1351 1352 smp_wmb(); 1353 1354 /* Make sure no interrupts point to this cpu. */ 1355 fixup_irqs(); 1356 1357 local_irq_enable(); 1358 mdelay(1); 1359 local_irq_disable(); 1360 1361 set_cpu_online(cpu, false); 1362 1363 cpu_map_rebuild(); 1364 1365 return 0; 1366 } 1367 1368 void __cpu_die(unsigned int cpu) 1369 { 1370 int i; 1371 1372 for (i = 0; i < 100; i++) { 1373 smp_rmb(); 1374 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1375 break; 1376 msleep(100); 1377 } 1378 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1379 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1380 } else { 1381 #if defined(CONFIG_SUN_LDOMS) 1382 unsigned long hv_err; 1383 int limit = 100; 1384 1385 do { 1386 hv_err = sun4v_cpu_stop(cpu); 1387 if (hv_err == HV_EOK) { 1388 set_cpu_present(cpu, false); 1389 break; 1390 } 1391 } while (--limit > 0); 1392 if (limit <= 0) { 1393 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1394 hv_err); 1395 } 1396 #endif 1397 } 1398 } 1399 #endif 1400 1401 void __init smp_cpus_done(unsigned int max_cpus) 1402 { 1403 } 1404 1405 void smp_send_reschedule(int cpu) 1406 { 1407 if (cpu == smp_processor_id()) { 1408 WARN_ON_ONCE(preemptible()); 1409 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1410 } else { 1411 xcall_deliver((u64) &xcall_receive_signal, 1412 0, 0, cpumask_of(cpu)); 1413 } 1414 } 1415 1416 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1417 { 1418 clear_softint(1 << irq); 1419 scheduler_ipi(); 1420 } 1421 1422 static void stop_this_cpu(void *dummy) 1423 { 1424 prom_stopself(); 1425 } 1426 1427 void smp_send_stop(void) 1428 { 1429 int cpu; 1430 1431 if (tlb_type == hypervisor) { 1432 for_each_online_cpu(cpu) { 1433 if (cpu == smp_processor_id()) 1434 continue; 1435 #ifdef CONFIG_SUN_LDOMS 1436 if (ldom_domaining_enabled) { 1437 unsigned long hv_err; 1438 hv_err = sun4v_cpu_stop(cpu); 1439 if (hv_err) 1440 printk(KERN_ERR "sun4v_cpu_stop() " 1441 "failed err=%lu\n", hv_err); 1442 } else 1443 #endif 1444 prom_stopcpu_cpuid(cpu); 1445 } 1446 } else 1447 smp_call_function(stop_this_cpu, NULL, 0); 1448 } 1449 1450 /** 1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1452 * @cpu: cpu to allocate for 1453 * @size: size allocation in bytes 1454 * @align: alignment 1455 * 1456 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1457 * does the right thing for NUMA regardless of the current 1458 * configuration. 1459 * 1460 * RETURNS: 1461 * Pointer to the allocated area on success, NULL on failure. 1462 */ 1463 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1464 size_t align) 1465 { 1466 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1467 #ifdef CONFIG_NEED_MULTIPLE_NODES 1468 int node = cpu_to_node(cpu); 1469 void *ptr; 1470 1471 if (!node_online(node) || !NODE_DATA(node)) { 1472 ptr = __alloc_bootmem(size, align, goal); 1473 pr_info("cpu %d has no node %d or node-local memory\n", 1474 cpu, node); 1475 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1476 cpu, size, __pa(ptr)); 1477 } else { 1478 ptr = __alloc_bootmem_node(NODE_DATA(node), 1479 size, align, goal); 1480 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1481 "%016lx\n", cpu, size, node, __pa(ptr)); 1482 } 1483 return ptr; 1484 #else 1485 return __alloc_bootmem(size, align, goal); 1486 #endif 1487 } 1488 1489 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1490 { 1491 free_bootmem(__pa(ptr), size); 1492 } 1493 1494 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1495 { 1496 if (cpu_to_node(from) == cpu_to_node(to)) 1497 return LOCAL_DISTANCE; 1498 else 1499 return REMOTE_DISTANCE; 1500 } 1501 1502 static void __init pcpu_populate_pte(unsigned long addr) 1503 { 1504 pgd_t *pgd = pgd_offset_k(addr); 1505 pud_t *pud; 1506 pmd_t *pmd; 1507 1508 if (pgd_none(*pgd)) { 1509 pud_t *new; 1510 1511 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1512 pgd_populate(&init_mm, pgd, new); 1513 } 1514 1515 pud = pud_offset(pgd, addr); 1516 if (pud_none(*pud)) { 1517 pmd_t *new; 1518 1519 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1520 pud_populate(&init_mm, pud, new); 1521 } 1522 1523 pmd = pmd_offset(pud, addr); 1524 if (!pmd_present(*pmd)) { 1525 pte_t *new; 1526 1527 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1528 pmd_populate_kernel(&init_mm, pmd, new); 1529 } 1530 } 1531 1532 void __init setup_per_cpu_areas(void) 1533 { 1534 unsigned long delta; 1535 unsigned int cpu; 1536 int rc = -EINVAL; 1537 1538 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1539 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1540 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1541 pcpu_cpu_distance, 1542 pcpu_alloc_bootmem, 1543 pcpu_free_bootmem); 1544 if (rc) 1545 pr_warning("PERCPU: %s allocator failed (%d), " 1546 "falling back to page size\n", 1547 pcpu_fc_names[pcpu_chosen_fc], rc); 1548 } 1549 if (rc < 0) 1550 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1551 pcpu_alloc_bootmem, 1552 pcpu_free_bootmem, 1553 pcpu_populate_pte); 1554 if (rc < 0) 1555 panic("cannot initialize percpu area (err=%d)", rc); 1556 1557 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1558 for_each_possible_cpu(cpu) 1559 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1560 1561 /* Setup %g5 for the boot cpu. */ 1562 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1563 1564 of_fill_in_cpu_data(); 1565 if (tlb_type == hypervisor) 1566 mdesc_fill_in_cpu_data(cpu_all_mask); 1567 } 1568