xref: /linux/arch/sparc/kernel/smp_64.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void __cpuinit smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	callin_flag = 1;
107 	__asm__ __volatile__("membar #Sync\n\t"
108 			     "flush  %%g6" : : : "memory");
109 
110 	/* Clear this or we will die instantly when we
111 	 * schedule back to this idler...
112 	 */
113 	current_thread_info()->new_child = 0;
114 
115 	/* Attach to the address space of init_task. */
116 	atomic_inc(&init_mm.mm_count);
117 	current->active_mm = &init_mm;
118 
119 	/* inform the notifiers about the new cpu */
120 	notify_cpu_starting(cpuid);
121 
122 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 		rmb();
124 
125 	set_cpu_online(cpuid, true);
126 	local_irq_enable();
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 }
131 
132 void cpu_panic(void)
133 {
134 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 	panic("SMP bolixed\n");
136 }
137 
138 /* This tick register synchronization scheme is taken entirely from
139  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140  *
141  * The only change I've made is to rework it so that the master
142  * initiates the synchonization instead of the slave. -DaveM
143  */
144 
145 #define MASTER	0
146 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
147 
148 #define NUM_ROUNDS	64	/* magic value */
149 #define NUM_ITERS	5	/* likewise */
150 
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153 
154 #define DEBUG_TICK_SYNC	0
155 
156 static inline long get_delta (long *rt, long *master)
157 {
158 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 	unsigned long tcenter, t0, t1, tm;
160 	unsigned long i;
161 
162 	for (i = 0; i < NUM_ITERS; i++) {
163 		t0 = tick_ops->get_tick();
164 		go[MASTER] = 1;
165 		membar_safe("#StoreLoad");
166 		while (!(tm = go[SLAVE]))
167 			rmb();
168 		go[SLAVE] = 0;
169 		wmb();
170 		t1 = tick_ops->get_tick();
171 
172 		if (t1 - t0 < best_t1 - best_t0)
173 			best_t0 = t0, best_t1 = t1, best_tm = tm;
174 	}
175 
176 	*rt = best_t1 - best_t0;
177 	*master = best_tm - best_t0;
178 
179 	/* average best_t0 and best_t1 without overflow: */
180 	tcenter = (best_t0/2 + best_t1/2);
181 	if (best_t0 % 2 + best_t1 % 2 == 2)
182 		tcenter++;
183 	return tcenter - best_tm;
184 }
185 
186 void smp_synchronize_tick_client(void)
187 {
188 	long i, delta, adj, adjust_latency = 0, done = 0;
189 	unsigned long flags, rt, master_time_stamp;
190 #if DEBUG_TICK_SYNC
191 	struct {
192 		long rt;	/* roundtrip time */
193 		long master;	/* master's timestamp */
194 		long diff;	/* difference between midpoint and master's timestamp */
195 		long lat;	/* estimate of itc adjustment latency */
196 	} t[NUM_ROUNDS];
197 #endif
198 
199 	go[MASTER] = 1;
200 
201 	while (go[MASTER])
202 		rmb();
203 
204 	local_irq_save(flags);
205 	{
206 		for (i = 0; i < NUM_ROUNDS; i++) {
207 			delta = get_delta(&rt, &master_time_stamp);
208 			if (delta == 0)
209 				done = 1;	/* let's lock on to this... */
210 
211 			if (!done) {
212 				if (i > 0) {
213 					adjust_latency += -delta;
214 					adj = -delta + adjust_latency/4;
215 				} else
216 					adj = -delta;
217 
218 				tick_ops->add_tick(adj);
219 			}
220 #if DEBUG_TICK_SYNC
221 			t[i].rt = rt;
222 			t[i].master = master_time_stamp;
223 			t[i].diff = delta;
224 			t[i].lat = adjust_latency/4;
225 #endif
226 		}
227 	}
228 	local_irq_restore(flags);
229 
230 #if DEBUG_TICK_SYNC
231 	for (i = 0; i < NUM_ROUNDS; i++)
232 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
233 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
234 #endif
235 
236 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
237 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
238 	       smp_processor_id(), delta, rt);
239 }
240 
241 static void smp_start_sync_tick_client(int cpu);
242 
243 static void smp_synchronize_one_tick(int cpu)
244 {
245 	unsigned long flags, i;
246 
247 	go[MASTER] = 0;
248 
249 	smp_start_sync_tick_client(cpu);
250 
251 	/* wait for client to be ready */
252 	while (!go[MASTER])
253 		rmb();
254 
255 	/* now let the client proceed into his loop */
256 	go[MASTER] = 0;
257 	membar_safe("#StoreLoad");
258 
259 	spin_lock_irqsave(&itc_sync_lock, flags);
260 	{
261 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
262 			while (!go[MASTER])
263 				rmb();
264 			go[MASTER] = 0;
265 			wmb();
266 			go[SLAVE] = tick_ops->get_tick();
267 			membar_safe("#StoreLoad");
268 		}
269 	}
270 	spin_unlock_irqrestore(&itc_sync_lock, flags);
271 }
272 
273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
274 /* XXX Put this in some common place. XXX */
275 static unsigned long kimage_addr_to_ra(void *p)
276 {
277 	unsigned long val = (unsigned long) p;
278 
279 	return kern_base + (val - KERNBASE);
280 }
281 
282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
283 {
284 	extern unsigned long sparc64_ttable_tl0;
285 	extern unsigned long kern_locked_tte_data;
286 	struct hvtramp_descr *hdesc;
287 	unsigned long trampoline_ra;
288 	struct trap_per_cpu *tb;
289 	u64 tte_vaddr, tte_data;
290 	unsigned long hv_err;
291 	int i;
292 
293 	hdesc = kzalloc(sizeof(*hdesc) +
294 			(sizeof(struct hvtramp_mapping) *
295 			 num_kernel_image_mappings - 1),
296 			GFP_KERNEL);
297 	if (!hdesc) {
298 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299 		       "hvtramp_descr.\n");
300 		return;
301 	}
302 	*descrp = hdesc;
303 
304 	hdesc->cpu = cpu;
305 	hdesc->num_mappings = num_kernel_image_mappings;
306 
307 	tb = &trap_block[cpu];
308 
309 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311 
312 	hdesc->thread_reg = thread_reg;
313 
314 	tte_vaddr = (unsigned long) KERNBASE;
315 	tte_data = kern_locked_tte_data;
316 
317 	for (i = 0; i < hdesc->num_mappings; i++) {
318 		hdesc->maps[i].vaddr = tte_vaddr;
319 		hdesc->maps[i].tte   = tte_data;
320 		tte_vaddr += 0x400000;
321 		tte_data  += 0x400000;
322 	}
323 
324 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325 
326 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
328 				 __pa(hdesc));
329 	if (hv_err)
330 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331 		       "gives error %lu\n", hv_err);
332 }
333 #endif
334 
335 extern unsigned long sparc64_cpu_startup;
336 
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338  * 32-bits (I think) so to be safe we have it read the pointer
339  * contained here so we work on >4GB machines. -DaveM
340  */
341 static struct thread_info *cpu_new_thread = NULL;
342 
343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
344 {
345 	unsigned long entry =
346 		(unsigned long)(&sparc64_cpu_startup);
347 	unsigned long cookie =
348 		(unsigned long)(&cpu_new_thread);
349 	void *descr = NULL;
350 	int timeout, ret;
351 
352 	callin_flag = 0;
353 	cpu_new_thread = task_thread_info(idle);
354 
355 	if (tlb_type == hypervisor) {
356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
357 		if (ldom_domaining_enabled)
358 			ldom_startcpu_cpuid(cpu,
359 					    (unsigned long) cpu_new_thread,
360 					    &descr);
361 		else
362 #endif
363 			prom_startcpu_cpuid(cpu, entry, cookie);
364 	} else {
365 		struct device_node *dp = of_find_node_by_cpuid(cpu);
366 
367 		prom_startcpu(dp->phandle, entry, cookie);
368 	}
369 
370 	for (timeout = 0; timeout < 50000; timeout++) {
371 		if (callin_flag)
372 			break;
373 		udelay(100);
374 	}
375 
376 	if (callin_flag) {
377 		ret = 0;
378 	} else {
379 		printk("Processor %d is stuck.\n", cpu);
380 		ret = -ENODEV;
381 	}
382 	cpu_new_thread = NULL;
383 
384 	kfree(descr);
385 
386 	return ret;
387 }
388 
389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
390 {
391 	u64 result, target;
392 	int stuck, tmp;
393 
394 	if (this_is_starfire) {
395 		/* map to real upaid */
396 		cpu = (((cpu & 0x3c) << 1) |
397 			((cpu & 0x40) >> 4) |
398 			(cpu & 0x3));
399 	}
400 
401 	target = (cpu << 14) | 0x70;
402 again:
403 	/* Ok, this is the real Spitfire Errata #54.
404 	 * One must read back from a UDB internal register
405 	 * after writes to the UDB interrupt dispatch, but
406 	 * before the membar Sync for that write.
407 	 * So we use the high UDB control register (ASI 0x7f,
408 	 * ADDR 0x20) for the dummy read. -DaveM
409 	 */
410 	tmp = 0x40;
411 	__asm__ __volatile__(
412 	"wrpr	%1, %2, %%pstate\n\t"
413 	"stxa	%4, [%0] %3\n\t"
414 	"stxa	%5, [%0+%8] %3\n\t"
415 	"add	%0, %8, %0\n\t"
416 	"stxa	%6, [%0+%8] %3\n\t"
417 	"membar	#Sync\n\t"
418 	"stxa	%%g0, [%7] %3\n\t"
419 	"membar	#Sync\n\t"
420 	"mov	0x20, %%g1\n\t"
421 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
422 	"membar	#Sync"
423 	: "=r" (tmp)
424 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
425 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
426 	  "r" (0x10), "0" (tmp)
427         : "g1");
428 
429 	/* NOTE: PSTATE_IE is still clear. */
430 	stuck = 100000;
431 	do {
432 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
433 			: "=r" (result)
434 			: "i" (ASI_INTR_DISPATCH_STAT));
435 		if (result == 0) {
436 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
437 					     : : "r" (pstate));
438 			return;
439 		}
440 		stuck -= 1;
441 		if (stuck == 0)
442 			break;
443 	} while (result & 0x1);
444 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 			     : : "r" (pstate));
446 	if (stuck == 0) {
447 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
448 		       smp_processor_id(), result);
449 	} else {
450 		udelay(2);
451 		goto again;
452 	}
453 }
454 
455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
456 {
457 	u64 *mondo, data0, data1, data2;
458 	u16 *cpu_list;
459 	u64 pstate;
460 	int i;
461 
462 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
463 	cpu_list = __va(tb->cpu_list_pa);
464 	mondo = __va(tb->cpu_mondo_block_pa);
465 	data0 = mondo[0];
466 	data1 = mondo[1];
467 	data2 = mondo[2];
468 	for (i = 0; i < cnt; i++)
469 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
470 }
471 
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473  * packet, but we have no use for that.  However we do take advantage of
474  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475  */
476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
477 {
478 	int nack_busy_id, is_jbus, need_more;
479 	u64 *mondo, pstate, ver, busy_mask;
480 	u16 *cpu_list;
481 
482 	cpu_list = __va(tb->cpu_list_pa);
483 	mondo = __va(tb->cpu_mondo_block_pa);
484 
485 	/* Unfortunately, someone at Sun had the brilliant idea to make the
486 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 	 * derivative processor.
488 	 */
489 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 		   (ver >> 32) == __SERRANO_ID);
492 
493 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494 
495 retry:
496 	need_more = 0;
497 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 			     : : "r" (pstate), "i" (PSTATE_IE));
499 
500 	/* Setup the dispatch data registers. */
501 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
502 			     "stxa	%1, [%4] %6\n\t"
503 			     "stxa	%2, [%5] %6\n\t"
504 			     "membar	#Sync\n\t"
505 			     : /* no outputs */
506 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
507 			       "r" (0x40), "r" (0x50), "r" (0x60),
508 			       "i" (ASI_INTR_W));
509 
510 	nack_busy_id = 0;
511 	busy_mask = 0;
512 	{
513 		int i;
514 
515 		for (i = 0; i < cnt; i++) {
516 			u64 target, nr;
517 
518 			nr = cpu_list[i];
519 			if (nr == 0xffff)
520 				continue;
521 
522 			target = (nr << 14) | 0x70;
523 			if (is_jbus) {
524 				busy_mask |= (0x1UL << (nr * 2));
525 			} else {
526 				target |= (nack_busy_id << 24);
527 				busy_mask |= (0x1UL <<
528 					      (nack_busy_id * 2));
529 			}
530 			__asm__ __volatile__(
531 				"stxa	%%g0, [%0] %1\n\t"
532 				"membar	#Sync\n\t"
533 				: /* no outputs */
534 				: "r" (target), "i" (ASI_INTR_W));
535 			nack_busy_id++;
536 			if (nack_busy_id == 32) {
537 				need_more = 1;
538 				break;
539 			}
540 		}
541 	}
542 
543 	/* Now, poll for completion. */
544 	{
545 		u64 dispatch_stat, nack_mask;
546 		long stuck;
547 
548 		stuck = 100000 * nack_busy_id;
549 		nack_mask = busy_mask << 1;
550 		do {
551 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
552 					     : "=r" (dispatch_stat)
553 					     : "i" (ASI_INTR_DISPATCH_STAT));
554 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
555 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
556 						     : : "r" (pstate));
557 				if (unlikely(need_more)) {
558 					int i, this_cnt = 0;
559 					for (i = 0; i < cnt; i++) {
560 						if (cpu_list[i] == 0xffff)
561 							continue;
562 						cpu_list[i] = 0xffff;
563 						this_cnt++;
564 						if (this_cnt == 32)
565 							break;
566 					}
567 					goto retry;
568 				}
569 				return;
570 			}
571 			if (!--stuck)
572 				break;
573 		} while (dispatch_stat & busy_mask);
574 
575 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
576 				     : : "r" (pstate));
577 
578 		if (dispatch_stat & busy_mask) {
579 			/* Busy bits will not clear, continue instead
580 			 * of freezing up on this cpu.
581 			 */
582 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
583 			       smp_processor_id(), dispatch_stat);
584 		} else {
585 			int i, this_busy_nack = 0;
586 
587 			/* Delay some random time with interrupts enabled
588 			 * to prevent deadlock.
589 			 */
590 			udelay(2 * nack_busy_id);
591 
592 			/* Clear out the mask bits for cpus which did not
593 			 * NACK us.
594 			 */
595 			for (i = 0; i < cnt; i++) {
596 				u64 check_mask, nr;
597 
598 				nr = cpu_list[i];
599 				if (nr == 0xffff)
600 					continue;
601 
602 				if (is_jbus)
603 					check_mask = (0x2UL << (2*nr));
604 				else
605 					check_mask = (0x2UL <<
606 						      this_busy_nack);
607 				if ((dispatch_stat & check_mask) == 0)
608 					cpu_list[i] = 0xffff;
609 				this_busy_nack += 2;
610 				if (this_busy_nack == 64)
611 					break;
612 			}
613 
614 			goto retry;
615 		}
616 	}
617 }
618 
619 /* Multi-cpu list version.  */
620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
621 {
622 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
623 	unsigned long status;
624 	u16 *cpu_list;
625 
626 	this_cpu = smp_processor_id();
627 
628 	cpu_list = __va(tb->cpu_list_pa);
629 
630 	saw_cpu_error = 0;
631 	retries = 0;
632 	prev_sent = 0;
633 	do {
634 		int forward_progress, n_sent;
635 
636 		status = sun4v_cpu_mondo_send(cnt,
637 					      tb->cpu_list_pa,
638 					      tb->cpu_mondo_block_pa);
639 
640 		/* HV_EOK means all cpus received the xcall, we're done.  */
641 		if (likely(status == HV_EOK))
642 			break;
643 
644 		/* First, see if we made any forward progress.
645 		 *
646 		 * The hypervisor indicates successful sends by setting
647 		 * cpu list entries to the value 0xffff.
648 		 */
649 		n_sent = 0;
650 		for (i = 0; i < cnt; i++) {
651 			if (likely(cpu_list[i] == 0xffff))
652 				n_sent++;
653 		}
654 
655 		forward_progress = 0;
656 		if (n_sent > prev_sent)
657 			forward_progress = 1;
658 
659 		prev_sent = n_sent;
660 
661 		/* If we get a HV_ECPUERROR, then one or more of the cpus
662 		 * in the list are in error state.  Use the cpu_state()
663 		 * hypervisor call to find out which cpus are in error state.
664 		 */
665 		if (unlikely(status == HV_ECPUERROR)) {
666 			for (i = 0; i < cnt; i++) {
667 				long err;
668 				u16 cpu;
669 
670 				cpu = cpu_list[i];
671 				if (cpu == 0xffff)
672 					continue;
673 
674 				err = sun4v_cpu_state(cpu);
675 				if (err == HV_CPU_STATE_ERROR) {
676 					saw_cpu_error = (cpu + 1);
677 					cpu_list[i] = 0xffff;
678 				}
679 			}
680 		} else if (unlikely(status != HV_EWOULDBLOCK))
681 			goto fatal_mondo_error;
682 
683 		/* Don't bother rewriting the CPU list, just leave the
684 		 * 0xffff and non-0xffff entries in there and the
685 		 * hypervisor will do the right thing.
686 		 *
687 		 * Only advance timeout state if we didn't make any
688 		 * forward progress.
689 		 */
690 		if (unlikely(!forward_progress)) {
691 			if (unlikely(++retries > 10000))
692 				goto fatal_mondo_timeout;
693 
694 			/* Delay a little bit to let other cpus catch up
695 			 * on their cpu mondo queue work.
696 			 */
697 			udelay(2 * cnt);
698 		}
699 	} while (1);
700 
701 	if (unlikely(saw_cpu_error))
702 		goto fatal_mondo_cpu_error;
703 
704 	return;
705 
706 fatal_mondo_cpu_error:
707 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
708 	       "(including %d) were in error state\n",
709 	       this_cpu, saw_cpu_error - 1);
710 	return;
711 
712 fatal_mondo_timeout:
713 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
714 	       " progress after %d retries.\n",
715 	       this_cpu, retries);
716 	goto dump_cpu_list_and_out;
717 
718 fatal_mondo_error:
719 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
720 	       this_cpu, status);
721 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
722 	       "mondo_block_pa(%lx)\n",
723 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
724 
725 dump_cpu_list_and_out:
726 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
727 	for (i = 0; i < cnt; i++)
728 		printk("%u ", cpu_list[i]);
729 	printk("]\n");
730 }
731 
732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
733 
734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
735 {
736 	struct trap_per_cpu *tb;
737 	int this_cpu, i, cnt;
738 	unsigned long flags;
739 	u16 *cpu_list;
740 	u64 *mondo;
741 
742 	/* We have to do this whole thing with interrupts fully disabled.
743 	 * Otherwise if we send an xcall from interrupt context it will
744 	 * corrupt both our mondo block and cpu list state.
745 	 *
746 	 * One consequence of this is that we cannot use timeout mechanisms
747 	 * that depend upon interrupts being delivered locally.  So, for
748 	 * example, we cannot sample jiffies and expect it to advance.
749 	 *
750 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
751 	 */
752 	local_irq_save(flags);
753 
754 	this_cpu = smp_processor_id();
755 	tb = &trap_block[this_cpu];
756 
757 	mondo = __va(tb->cpu_mondo_block_pa);
758 	mondo[0] = data0;
759 	mondo[1] = data1;
760 	mondo[2] = data2;
761 	wmb();
762 
763 	cpu_list = __va(tb->cpu_list_pa);
764 
765 	/* Setup the initial cpu list.  */
766 	cnt = 0;
767 	for_each_cpu(i, mask) {
768 		if (i == this_cpu || !cpu_online(i))
769 			continue;
770 		cpu_list[cnt++] = i;
771 	}
772 
773 	if (cnt)
774 		xcall_deliver_impl(tb, cnt);
775 
776 	local_irq_restore(flags);
777 }
778 
779 /* Send cross call to all processors mentioned in MASK_P
780  * except self.  Really, there are only two cases currently,
781  * "cpu_online_mask" and "mm_cpumask(mm)".
782  */
783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
784 {
785 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
786 
787 	xcall_deliver(data0, data1, data2, mask);
788 }
789 
790 /* Send cross call to all processors except self. */
791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
792 {
793 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
794 }
795 
796 extern unsigned long xcall_sync_tick;
797 
798 static void smp_start_sync_tick_client(int cpu)
799 {
800 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
801 		      cpumask_of(cpu));
802 }
803 
804 extern unsigned long xcall_call_function;
805 
806 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
807 {
808 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
809 }
810 
811 extern unsigned long xcall_call_function_single;
812 
813 void arch_send_call_function_single_ipi(int cpu)
814 {
815 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
816 		      cpumask_of(cpu));
817 }
818 
819 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
820 {
821 	clear_softint(1 << irq);
822 	generic_smp_call_function_interrupt();
823 }
824 
825 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
826 {
827 	clear_softint(1 << irq);
828 	generic_smp_call_function_single_interrupt();
829 }
830 
831 static void tsb_sync(void *info)
832 {
833 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
834 	struct mm_struct *mm = info;
835 
836 	/* It is not valid to test "current->active_mm == mm" here.
837 	 *
838 	 * The value of "current" is not changed atomically with
839 	 * switch_mm().  But that's OK, we just need to check the
840 	 * current cpu's trap block PGD physical address.
841 	 */
842 	if (tp->pgd_paddr == __pa(mm->pgd))
843 		tsb_context_switch(mm);
844 }
845 
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
849 }
850 
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_fetch_glob_regs;
855 extern unsigned long xcall_receive_signal;
856 extern unsigned long xcall_new_mmu_context_version;
857 #ifdef CONFIG_KGDB
858 extern unsigned long xcall_kgdb_capture;
859 #endif
860 
861 #ifdef DCACHE_ALIASING_POSSIBLE
862 extern unsigned long xcall_flush_dcache_page_cheetah;
863 #endif
864 extern unsigned long xcall_flush_dcache_page_spitfire;
865 
866 #ifdef CONFIG_DEBUG_DCFLUSH
867 extern atomic_t dcpage_flushes;
868 extern atomic_t dcpage_flushes_xcall;
869 #endif
870 
871 static inline void __local_flush_dcache_page(struct page *page)
872 {
873 #ifdef DCACHE_ALIASING_POSSIBLE
874 	__flush_dcache_page(page_address(page),
875 			    ((tlb_type == spitfire) &&
876 			     page_mapping(page) != NULL));
877 #else
878 	if (page_mapping(page) != NULL &&
879 	    tlb_type == spitfire)
880 		__flush_icache_page(__pa(page_address(page)));
881 #endif
882 }
883 
884 void smp_flush_dcache_page_impl(struct page *page, int cpu)
885 {
886 	int this_cpu;
887 
888 	if (tlb_type == hypervisor)
889 		return;
890 
891 #ifdef CONFIG_DEBUG_DCFLUSH
892 	atomic_inc(&dcpage_flushes);
893 #endif
894 
895 	this_cpu = get_cpu();
896 
897 	if (cpu == this_cpu) {
898 		__local_flush_dcache_page(page);
899 	} else if (cpu_online(cpu)) {
900 		void *pg_addr = page_address(page);
901 		u64 data0 = 0;
902 
903 		if (tlb_type == spitfire) {
904 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
905 			if (page_mapping(page) != NULL)
906 				data0 |= ((u64)1 << 32);
907 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
909 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
910 #endif
911 		}
912 		if (data0) {
913 			xcall_deliver(data0, __pa(pg_addr),
914 				      (u64) pg_addr, cpumask_of(cpu));
915 #ifdef CONFIG_DEBUG_DCFLUSH
916 			atomic_inc(&dcpage_flushes_xcall);
917 #endif
918 		}
919 	}
920 
921 	put_cpu();
922 }
923 
924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925 {
926 	void *pg_addr;
927 	u64 data0;
928 
929 	if (tlb_type == hypervisor)
930 		return;
931 
932 	preempt_disable();
933 
934 #ifdef CONFIG_DEBUG_DCFLUSH
935 	atomic_inc(&dcpage_flushes);
936 #endif
937 	data0 = 0;
938 	pg_addr = page_address(page);
939 	if (tlb_type == spitfire) {
940 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
941 		if (page_mapping(page) != NULL)
942 			data0 |= ((u64)1 << 32);
943 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
944 #ifdef DCACHE_ALIASING_POSSIBLE
945 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
946 #endif
947 	}
948 	if (data0) {
949 		xcall_deliver(data0, __pa(pg_addr),
950 			      (u64) pg_addr, cpu_online_mask);
951 #ifdef CONFIG_DEBUG_DCFLUSH
952 		atomic_inc(&dcpage_flushes_xcall);
953 #endif
954 	}
955 	__local_flush_dcache_page(page);
956 
957 	preempt_enable();
958 }
959 
960 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
961 {
962 	struct mm_struct *mm;
963 	unsigned long flags;
964 
965 	clear_softint(1 << irq);
966 
967 	/* See if we need to allocate a new TLB context because
968 	 * the version of the one we are using is now out of date.
969 	 */
970 	mm = current->active_mm;
971 	if (unlikely(!mm || (mm == &init_mm)))
972 		return;
973 
974 	spin_lock_irqsave(&mm->context.lock, flags);
975 
976 	if (unlikely(!CTX_VALID(mm->context)))
977 		get_new_mmu_context(mm);
978 
979 	spin_unlock_irqrestore(&mm->context.lock, flags);
980 
981 	load_secondary_context(mm);
982 	__flush_tlb_mm(CTX_HWBITS(mm->context),
983 		       SECONDARY_CONTEXT);
984 }
985 
986 void smp_new_mmu_context_version(void)
987 {
988 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
989 }
990 
991 #ifdef CONFIG_KGDB
992 void kgdb_roundup_cpus(unsigned long flags)
993 {
994 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
995 }
996 #endif
997 
998 void smp_fetch_global_regs(void)
999 {
1000 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1001 }
1002 
1003 /* We know that the window frames of the user have been flushed
1004  * to the stack before we get here because all callers of us
1005  * are flush_tlb_*() routines, and these run after flush_cache_*()
1006  * which performs the flushw.
1007  *
1008  * The SMP TLB coherency scheme we use works as follows:
1009  *
1010  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1011  *    space has (potentially) executed on, this is the heuristic
1012  *    we use to avoid doing cross calls.
1013  *
1014  *    Also, for flushing from kswapd and also for clones, we
1015  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1016  *
1017  * 2) TLB context numbers are shared globally across all processors
1018  *    in the system, this allows us to play several games to avoid
1019  *    cross calls.
1020  *
1021  *    One invariant is that when a cpu switches to a process, and
1022  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1023  *    current cpu's bit set, that tlb context is flushed locally.
1024  *
1025  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1026  *    cross calls when we want to flush the currently running process's
1027  *    tlb state.  This is done by clearing all cpu bits except the current
1028  *    processor's in current->mm->cpu_vm_mask and performing the
1029  *    flush locally only.  This will force any subsequent cpus which run
1030  *    this task to flush the context from the local tlb if the process
1031  *    migrates to another cpu (again).
1032  *
1033  * 3) For shared address spaces (threads) and swapping we bite the
1034  *    bullet for most cases and perform the cross call (but only to
1035  *    the cpus listed in cpu_vm_mask).
1036  *
1037  *    The performance gain from "optimizing" away the cross call for threads is
1038  *    questionable (in theory the big win for threads is the massive sharing of
1039  *    address space state across processors).
1040  */
1041 
1042 /* This currently is only used by the hugetlb arch pre-fault
1043  * hook on UltraSPARC-III+ and later when changing the pagesize
1044  * bits of the context register for an address space.
1045  */
1046 void smp_flush_tlb_mm(struct mm_struct *mm)
1047 {
1048 	u32 ctx = CTX_HWBITS(mm->context);
1049 	int cpu = get_cpu();
1050 
1051 	if (atomic_read(&mm->mm_users) == 1) {
1052 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1053 		goto local_flush_and_out;
1054 	}
1055 
1056 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1057 			      ctx, 0, 0,
1058 			      mm_cpumask(mm));
1059 
1060 local_flush_and_out:
1061 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1062 
1063 	put_cpu();
1064 }
1065 
1066 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1067 {
1068 	u32 ctx = CTX_HWBITS(mm->context);
1069 	int cpu = get_cpu();
1070 
1071 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1072 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1073 	else
1074 		smp_cross_call_masked(&xcall_flush_tlb_pending,
1075 				      ctx, nr, (unsigned long) vaddrs,
1076 				      mm_cpumask(mm));
1077 
1078 	__flush_tlb_pending(ctx, nr, vaddrs);
1079 
1080 	put_cpu();
1081 }
1082 
1083 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1084 {
1085 	start &= PAGE_MASK;
1086 	end    = PAGE_ALIGN(end);
1087 	if (start != end) {
1088 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1089 			       0, start, end);
1090 
1091 		__flush_tlb_kernel_range(start, end);
1092 	}
1093 }
1094 
1095 /* CPU capture. */
1096 /* #define CAPTURE_DEBUG */
1097 extern unsigned long xcall_capture;
1098 
1099 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1100 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1101 static unsigned long penguins_are_doing_time;
1102 
1103 void smp_capture(void)
1104 {
1105 	int result = atomic_add_ret(1, &smp_capture_depth);
1106 
1107 	if (result == 1) {
1108 		int ncpus = num_online_cpus();
1109 
1110 #ifdef CAPTURE_DEBUG
1111 		printk("CPU[%d]: Sending penguins to jail...",
1112 		       smp_processor_id());
1113 #endif
1114 		penguins_are_doing_time = 1;
1115 		atomic_inc(&smp_capture_registry);
1116 		smp_cross_call(&xcall_capture, 0, 0, 0);
1117 		while (atomic_read(&smp_capture_registry) != ncpus)
1118 			rmb();
1119 #ifdef CAPTURE_DEBUG
1120 		printk("done\n");
1121 #endif
1122 	}
1123 }
1124 
1125 void smp_release(void)
1126 {
1127 	if (atomic_dec_and_test(&smp_capture_depth)) {
1128 #ifdef CAPTURE_DEBUG
1129 		printk("CPU[%d]: Giving pardon to "
1130 		       "imprisoned penguins\n",
1131 		       smp_processor_id());
1132 #endif
1133 		penguins_are_doing_time = 0;
1134 		membar_safe("#StoreLoad");
1135 		atomic_dec(&smp_capture_registry);
1136 	}
1137 }
1138 
1139 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1140  * set, so they can service tlb flush xcalls...
1141  */
1142 extern void prom_world(int);
1143 
1144 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1145 {
1146 	clear_softint(1 << irq);
1147 
1148 	preempt_disable();
1149 
1150 	__asm__ __volatile__("flushw");
1151 	prom_world(1);
1152 	atomic_inc(&smp_capture_registry);
1153 	membar_safe("#StoreLoad");
1154 	while (penguins_are_doing_time)
1155 		rmb();
1156 	atomic_dec(&smp_capture_registry);
1157 	prom_world(0);
1158 
1159 	preempt_enable();
1160 }
1161 
1162 /* /proc/profile writes can call this, don't __init it please. */
1163 int setup_profiling_timer(unsigned int multiplier)
1164 {
1165 	return -EINVAL;
1166 }
1167 
1168 void __init smp_prepare_cpus(unsigned int max_cpus)
1169 {
1170 }
1171 
1172 void __devinit smp_prepare_boot_cpu(void)
1173 {
1174 }
1175 
1176 void __init smp_setup_processor_id(void)
1177 {
1178 	if (tlb_type == spitfire)
1179 		xcall_deliver_impl = spitfire_xcall_deliver;
1180 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1181 		xcall_deliver_impl = cheetah_xcall_deliver;
1182 	else
1183 		xcall_deliver_impl = hypervisor_xcall_deliver;
1184 }
1185 
1186 void __devinit smp_fill_in_sib_core_maps(void)
1187 {
1188 	unsigned int i;
1189 
1190 	for_each_present_cpu(i) {
1191 		unsigned int j;
1192 
1193 		cpumask_clear(&cpu_core_map[i]);
1194 		if (cpu_data(i).core_id == 0) {
1195 			cpumask_set_cpu(i, &cpu_core_map[i]);
1196 			continue;
1197 		}
1198 
1199 		for_each_present_cpu(j) {
1200 			if (cpu_data(i).core_id ==
1201 			    cpu_data(j).core_id)
1202 				cpumask_set_cpu(j, &cpu_core_map[i]);
1203 		}
1204 	}
1205 
1206 	for_each_present_cpu(i) {
1207 		unsigned int j;
1208 
1209 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1210 		if (cpu_data(i).proc_id == -1) {
1211 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1212 			continue;
1213 		}
1214 
1215 		for_each_present_cpu(j) {
1216 			if (cpu_data(i).proc_id ==
1217 			    cpu_data(j).proc_id)
1218 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1219 		}
1220 	}
1221 }
1222 
1223 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1224 {
1225 	int ret = smp_boot_one_cpu(cpu, tidle);
1226 
1227 	if (!ret) {
1228 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1229 		while (!cpu_online(cpu))
1230 			mb();
1231 		if (!cpu_online(cpu)) {
1232 			ret = -ENODEV;
1233 		} else {
1234 			/* On SUN4V, writes to %tick and %stick are
1235 			 * not allowed.
1236 			 */
1237 			if (tlb_type != hypervisor)
1238 				smp_synchronize_one_tick(cpu);
1239 		}
1240 	}
1241 	return ret;
1242 }
1243 
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 void cpu_play_dead(void)
1246 {
1247 	int cpu = smp_processor_id();
1248 	unsigned long pstate;
1249 
1250 	idle_task_exit();
1251 
1252 	if (tlb_type == hypervisor) {
1253 		struct trap_per_cpu *tb = &trap_block[cpu];
1254 
1255 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1256 				tb->cpu_mondo_pa, 0);
1257 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1258 				tb->dev_mondo_pa, 0);
1259 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1260 				tb->resum_mondo_pa, 0);
1261 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1262 				tb->nonresum_mondo_pa, 0);
1263 	}
1264 
1265 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1266 	membar_safe("#Sync");
1267 
1268 	local_irq_disable();
1269 
1270 	__asm__ __volatile__(
1271 		"rdpr	%%pstate, %0\n\t"
1272 		"wrpr	%0, %1, %%pstate"
1273 		: "=r" (pstate)
1274 		: "i" (PSTATE_IE));
1275 
1276 	while (1)
1277 		barrier();
1278 }
1279 
1280 int __cpu_disable(void)
1281 {
1282 	int cpu = smp_processor_id();
1283 	cpuinfo_sparc *c;
1284 	int i;
1285 
1286 	for_each_cpu(i, &cpu_core_map[cpu])
1287 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1288 	cpumask_clear(&cpu_core_map[cpu]);
1289 
1290 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1291 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1292 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1293 
1294 	c = &cpu_data(cpu);
1295 
1296 	c->core_id = 0;
1297 	c->proc_id = -1;
1298 
1299 	smp_wmb();
1300 
1301 	/* Make sure no interrupts point to this cpu.  */
1302 	fixup_irqs();
1303 
1304 	local_irq_enable();
1305 	mdelay(1);
1306 	local_irq_disable();
1307 
1308 	set_cpu_online(cpu, false);
1309 
1310 	cpu_map_rebuild();
1311 
1312 	return 0;
1313 }
1314 
1315 void __cpu_die(unsigned int cpu)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < 100; i++) {
1320 		smp_rmb();
1321 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1322 			break;
1323 		msleep(100);
1324 	}
1325 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1326 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1327 	} else {
1328 #if defined(CONFIG_SUN_LDOMS)
1329 		unsigned long hv_err;
1330 		int limit = 100;
1331 
1332 		do {
1333 			hv_err = sun4v_cpu_stop(cpu);
1334 			if (hv_err == HV_EOK) {
1335 				set_cpu_present(cpu, false);
1336 				break;
1337 			}
1338 		} while (--limit > 0);
1339 		if (limit <= 0) {
1340 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1341 			       hv_err);
1342 		}
1343 #endif
1344 	}
1345 }
1346 #endif
1347 
1348 void __init smp_cpus_done(unsigned int max_cpus)
1349 {
1350 	pcr_arch_init();
1351 }
1352 
1353 void smp_send_reschedule(int cpu)
1354 {
1355 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1356 		      cpumask_of(cpu));
1357 }
1358 
1359 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1360 {
1361 	clear_softint(1 << irq);
1362 	scheduler_ipi();
1363 }
1364 
1365 /* This is a nop because we capture all other cpus
1366  * anyways when making the PROM active.
1367  */
1368 void smp_send_stop(void)
1369 {
1370 }
1371 
1372 /**
1373  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1374  * @cpu: cpu to allocate for
1375  * @size: size allocation in bytes
1376  * @align: alignment
1377  *
1378  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1379  * does the right thing for NUMA regardless of the current
1380  * configuration.
1381  *
1382  * RETURNS:
1383  * Pointer to the allocated area on success, NULL on failure.
1384  */
1385 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1386 					size_t align)
1387 {
1388 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1389 #ifdef CONFIG_NEED_MULTIPLE_NODES
1390 	int node = cpu_to_node(cpu);
1391 	void *ptr;
1392 
1393 	if (!node_online(node) || !NODE_DATA(node)) {
1394 		ptr = __alloc_bootmem(size, align, goal);
1395 		pr_info("cpu %d has no node %d or node-local memory\n",
1396 			cpu, node);
1397 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1398 			 cpu, size, __pa(ptr));
1399 	} else {
1400 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1401 					   size, align, goal);
1402 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1403 			 "%016lx\n", cpu, size, node, __pa(ptr));
1404 	}
1405 	return ptr;
1406 #else
1407 	return __alloc_bootmem(size, align, goal);
1408 #endif
1409 }
1410 
1411 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1412 {
1413 	free_bootmem(__pa(ptr), size);
1414 }
1415 
1416 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1417 {
1418 	if (cpu_to_node(from) == cpu_to_node(to))
1419 		return LOCAL_DISTANCE;
1420 	else
1421 		return REMOTE_DISTANCE;
1422 }
1423 
1424 static void __init pcpu_populate_pte(unsigned long addr)
1425 {
1426 	pgd_t *pgd = pgd_offset_k(addr);
1427 	pud_t *pud;
1428 	pmd_t *pmd;
1429 
1430 	pud = pud_offset(pgd, addr);
1431 	if (pud_none(*pud)) {
1432 		pmd_t *new;
1433 
1434 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1435 		pud_populate(&init_mm, pud, new);
1436 	}
1437 
1438 	pmd = pmd_offset(pud, addr);
1439 	if (!pmd_present(*pmd)) {
1440 		pte_t *new;
1441 
1442 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1443 		pmd_populate_kernel(&init_mm, pmd, new);
1444 	}
1445 }
1446 
1447 void __init setup_per_cpu_areas(void)
1448 {
1449 	unsigned long delta;
1450 	unsigned int cpu;
1451 	int rc = -EINVAL;
1452 
1453 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1454 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1455 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1456 					    pcpu_cpu_distance,
1457 					    pcpu_alloc_bootmem,
1458 					    pcpu_free_bootmem);
1459 		if (rc)
1460 			pr_warning("PERCPU: %s allocator failed (%d), "
1461 				   "falling back to page size\n",
1462 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1463 	}
1464 	if (rc < 0)
1465 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1466 					   pcpu_alloc_bootmem,
1467 					   pcpu_free_bootmem,
1468 					   pcpu_populate_pte);
1469 	if (rc < 0)
1470 		panic("cannot initialize percpu area (err=%d)", rc);
1471 
1472 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1473 	for_each_possible_cpu(cpu)
1474 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1475 
1476 	/* Setup %g5 for the boot cpu.  */
1477 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1478 
1479 	of_fill_in_cpu_data();
1480 	if (tlb_type == hypervisor)
1481 		mdesc_fill_in_cpu_data(cpu_all_mask);
1482 }
1483