1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 29 #include <asm/head.h> 30 #include <asm/ptrace.h> 31 #include <linux/atomic.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/cpudata.h> 35 #include <asm/hvtramp.h> 36 #include <asm/io.h> 37 #include <asm/timer.h> 38 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/oplib.h> 44 #include <asm/uaccess.h> 45 #include <asm/starfire.h> 46 #include <asm/tlb.h> 47 #include <asm/sections.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/ldc.h> 51 #include <asm/hypervisor.h> 52 #include <asm/pcr.h> 53 54 #include "cpumap.h" 55 56 int sparc64_multi_core __read_mostly; 57 58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 61 62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 63 EXPORT_SYMBOL(cpu_core_map); 64 65 static cpumask_t smp_commenced_mask; 66 67 void smp_info(struct seq_file *m) 68 { 69 int i; 70 71 seq_printf(m, "State:\n"); 72 for_each_online_cpu(i) 73 seq_printf(m, "CPU%d:\t\tonline\n", i); 74 } 75 76 void smp_bogo(struct seq_file *m) 77 { 78 int i; 79 80 for_each_online_cpu(i) 81 seq_printf(m, 82 "Cpu%dClkTck\t: %016lx\n", 83 i, cpu_data(i).clock_tick); 84 } 85 86 extern void setup_sparc64_timer(void); 87 88 static volatile unsigned long callin_flag = 0; 89 90 void __cpuinit smp_callin(void) 91 { 92 int cpuid = hard_smp_processor_id(); 93 94 __local_per_cpu_offset = __per_cpu_offset(cpuid); 95 96 if (tlb_type == hypervisor) 97 sun4v_ktsb_register(); 98 99 __flush_tlb_all(); 100 101 setup_sparc64_timer(); 102 103 if (cheetah_pcache_forced_on) 104 cheetah_enable_pcache(); 105 106 callin_flag = 1; 107 __asm__ __volatile__("membar #Sync\n\t" 108 "flush %%g6" : : : "memory"); 109 110 /* Clear this or we will die instantly when we 111 * schedule back to this idler... 112 */ 113 current_thread_info()->new_child = 0; 114 115 /* Attach to the address space of init_task. */ 116 atomic_inc(&init_mm.mm_count); 117 current->active_mm = &init_mm; 118 119 /* inform the notifiers about the new cpu */ 120 notify_cpu_starting(cpuid); 121 122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 123 rmb(); 124 125 set_cpu_online(cpuid, true); 126 local_irq_enable(); 127 128 /* idle thread is expected to have preempt disabled */ 129 preempt_disable(); 130 } 131 132 void cpu_panic(void) 133 { 134 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 135 panic("SMP bolixed\n"); 136 } 137 138 /* This tick register synchronization scheme is taken entirely from 139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 140 * 141 * The only change I've made is to rework it so that the master 142 * initiates the synchonization instead of the slave. -DaveM 143 */ 144 145 #define MASTER 0 146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 147 148 #define NUM_ROUNDS 64 /* magic value */ 149 #define NUM_ITERS 5 /* likewise */ 150 151 static DEFINE_SPINLOCK(itc_sync_lock); 152 static unsigned long go[SLAVE + 1]; 153 154 #define DEBUG_TICK_SYNC 0 155 156 static inline long get_delta (long *rt, long *master) 157 { 158 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 159 unsigned long tcenter, t0, t1, tm; 160 unsigned long i; 161 162 for (i = 0; i < NUM_ITERS; i++) { 163 t0 = tick_ops->get_tick(); 164 go[MASTER] = 1; 165 membar_safe("#StoreLoad"); 166 while (!(tm = go[SLAVE])) 167 rmb(); 168 go[SLAVE] = 0; 169 wmb(); 170 t1 = tick_ops->get_tick(); 171 172 if (t1 - t0 < best_t1 - best_t0) 173 best_t0 = t0, best_t1 = t1, best_tm = tm; 174 } 175 176 *rt = best_t1 - best_t0; 177 *master = best_tm - best_t0; 178 179 /* average best_t0 and best_t1 without overflow: */ 180 tcenter = (best_t0/2 + best_t1/2); 181 if (best_t0 % 2 + best_t1 % 2 == 2) 182 tcenter++; 183 return tcenter - best_tm; 184 } 185 186 void smp_synchronize_tick_client(void) 187 { 188 long i, delta, adj, adjust_latency = 0, done = 0; 189 unsigned long flags, rt, master_time_stamp; 190 #if DEBUG_TICK_SYNC 191 struct { 192 long rt; /* roundtrip time */ 193 long master; /* master's timestamp */ 194 long diff; /* difference between midpoint and master's timestamp */ 195 long lat; /* estimate of itc adjustment latency */ 196 } t[NUM_ROUNDS]; 197 #endif 198 199 go[MASTER] = 1; 200 201 while (go[MASTER]) 202 rmb(); 203 204 local_irq_save(flags); 205 { 206 for (i = 0; i < NUM_ROUNDS; i++) { 207 delta = get_delta(&rt, &master_time_stamp); 208 if (delta == 0) 209 done = 1; /* let's lock on to this... */ 210 211 if (!done) { 212 if (i > 0) { 213 adjust_latency += -delta; 214 adj = -delta + adjust_latency/4; 215 } else 216 adj = -delta; 217 218 tick_ops->add_tick(adj); 219 } 220 #if DEBUG_TICK_SYNC 221 t[i].rt = rt; 222 t[i].master = master_time_stamp; 223 t[i].diff = delta; 224 t[i].lat = adjust_latency/4; 225 #endif 226 } 227 } 228 local_irq_restore(flags); 229 230 #if DEBUG_TICK_SYNC 231 for (i = 0; i < NUM_ROUNDS; i++) 232 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 233 t[i].rt, t[i].master, t[i].diff, t[i].lat); 234 #endif 235 236 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 237 "(last diff %ld cycles, maxerr %lu cycles)\n", 238 smp_processor_id(), delta, rt); 239 } 240 241 static void smp_start_sync_tick_client(int cpu); 242 243 static void smp_synchronize_one_tick(int cpu) 244 { 245 unsigned long flags, i; 246 247 go[MASTER] = 0; 248 249 smp_start_sync_tick_client(cpu); 250 251 /* wait for client to be ready */ 252 while (!go[MASTER]) 253 rmb(); 254 255 /* now let the client proceed into his loop */ 256 go[MASTER] = 0; 257 membar_safe("#StoreLoad"); 258 259 spin_lock_irqsave(&itc_sync_lock, flags); 260 { 261 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 262 while (!go[MASTER]) 263 rmb(); 264 go[MASTER] = 0; 265 wmb(); 266 go[SLAVE] = tick_ops->get_tick(); 267 membar_safe("#StoreLoad"); 268 } 269 } 270 spin_unlock_irqrestore(&itc_sync_lock, flags); 271 } 272 273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 274 /* XXX Put this in some common place. XXX */ 275 static unsigned long kimage_addr_to_ra(void *p) 276 { 277 unsigned long val = (unsigned long) p; 278 279 return kern_base + (val - KERNBASE); 280 } 281 282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp) 283 { 284 extern unsigned long sparc64_ttable_tl0; 285 extern unsigned long kern_locked_tte_data; 286 struct hvtramp_descr *hdesc; 287 unsigned long trampoline_ra; 288 struct trap_per_cpu *tb; 289 u64 tte_vaddr, tte_data; 290 unsigned long hv_err; 291 int i; 292 293 hdesc = kzalloc(sizeof(*hdesc) + 294 (sizeof(struct hvtramp_mapping) * 295 num_kernel_image_mappings - 1), 296 GFP_KERNEL); 297 if (!hdesc) { 298 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 299 "hvtramp_descr.\n"); 300 return; 301 } 302 *descrp = hdesc; 303 304 hdesc->cpu = cpu; 305 hdesc->num_mappings = num_kernel_image_mappings; 306 307 tb = &trap_block[cpu]; 308 309 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 310 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 311 312 hdesc->thread_reg = thread_reg; 313 314 tte_vaddr = (unsigned long) KERNBASE; 315 tte_data = kern_locked_tte_data; 316 317 for (i = 0; i < hdesc->num_mappings; i++) { 318 hdesc->maps[i].vaddr = tte_vaddr; 319 hdesc->maps[i].tte = tte_data; 320 tte_vaddr += 0x400000; 321 tte_data += 0x400000; 322 } 323 324 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 325 326 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 327 kimage_addr_to_ra(&sparc64_ttable_tl0), 328 __pa(hdesc)); 329 if (hv_err) 330 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 331 "gives error %lu\n", hv_err); 332 } 333 #endif 334 335 extern unsigned long sparc64_cpu_startup; 336 337 /* The OBP cpu startup callback truncates the 3rd arg cookie to 338 * 32-bits (I think) so to be safe we have it read the pointer 339 * contained here so we work on >4GB machines. -DaveM 340 */ 341 static struct thread_info *cpu_new_thread = NULL; 342 343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 344 { 345 unsigned long entry = 346 (unsigned long)(&sparc64_cpu_startup); 347 unsigned long cookie = 348 (unsigned long)(&cpu_new_thread); 349 void *descr = NULL; 350 int timeout, ret; 351 352 callin_flag = 0; 353 cpu_new_thread = task_thread_info(idle); 354 355 if (tlb_type == hypervisor) { 356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 357 if (ldom_domaining_enabled) 358 ldom_startcpu_cpuid(cpu, 359 (unsigned long) cpu_new_thread, 360 &descr); 361 else 362 #endif 363 prom_startcpu_cpuid(cpu, entry, cookie); 364 } else { 365 struct device_node *dp = of_find_node_by_cpuid(cpu); 366 367 prom_startcpu(dp->phandle, entry, cookie); 368 } 369 370 for (timeout = 0; timeout < 50000; timeout++) { 371 if (callin_flag) 372 break; 373 udelay(100); 374 } 375 376 if (callin_flag) { 377 ret = 0; 378 } else { 379 printk("Processor %d is stuck.\n", cpu); 380 ret = -ENODEV; 381 } 382 cpu_new_thread = NULL; 383 384 kfree(descr); 385 386 return ret; 387 } 388 389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 390 { 391 u64 result, target; 392 int stuck, tmp; 393 394 if (this_is_starfire) { 395 /* map to real upaid */ 396 cpu = (((cpu & 0x3c) << 1) | 397 ((cpu & 0x40) >> 4) | 398 (cpu & 0x3)); 399 } 400 401 target = (cpu << 14) | 0x70; 402 again: 403 /* Ok, this is the real Spitfire Errata #54. 404 * One must read back from a UDB internal register 405 * after writes to the UDB interrupt dispatch, but 406 * before the membar Sync for that write. 407 * So we use the high UDB control register (ASI 0x7f, 408 * ADDR 0x20) for the dummy read. -DaveM 409 */ 410 tmp = 0x40; 411 __asm__ __volatile__( 412 "wrpr %1, %2, %%pstate\n\t" 413 "stxa %4, [%0] %3\n\t" 414 "stxa %5, [%0+%8] %3\n\t" 415 "add %0, %8, %0\n\t" 416 "stxa %6, [%0+%8] %3\n\t" 417 "membar #Sync\n\t" 418 "stxa %%g0, [%7] %3\n\t" 419 "membar #Sync\n\t" 420 "mov 0x20, %%g1\n\t" 421 "ldxa [%%g1] 0x7f, %%g0\n\t" 422 "membar #Sync" 423 : "=r" (tmp) 424 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 425 "r" (data0), "r" (data1), "r" (data2), "r" (target), 426 "r" (0x10), "0" (tmp) 427 : "g1"); 428 429 /* NOTE: PSTATE_IE is still clear. */ 430 stuck = 100000; 431 do { 432 __asm__ __volatile__("ldxa [%%g0] %1, %0" 433 : "=r" (result) 434 : "i" (ASI_INTR_DISPATCH_STAT)); 435 if (result == 0) { 436 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 437 : : "r" (pstate)); 438 return; 439 } 440 stuck -= 1; 441 if (stuck == 0) 442 break; 443 } while (result & 0x1); 444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 445 : : "r" (pstate)); 446 if (stuck == 0) { 447 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 448 smp_processor_id(), result); 449 } else { 450 udelay(2); 451 goto again; 452 } 453 } 454 455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 456 { 457 u64 *mondo, data0, data1, data2; 458 u16 *cpu_list; 459 u64 pstate; 460 int i; 461 462 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 463 cpu_list = __va(tb->cpu_list_pa); 464 mondo = __va(tb->cpu_mondo_block_pa); 465 data0 = mondo[0]; 466 data1 = mondo[1]; 467 data2 = mondo[2]; 468 for (i = 0; i < cnt; i++) 469 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 470 } 471 472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 473 * packet, but we have no use for that. However we do take advantage of 474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 475 */ 476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 477 { 478 int nack_busy_id, is_jbus, need_more; 479 u64 *mondo, pstate, ver, busy_mask; 480 u16 *cpu_list; 481 482 cpu_list = __va(tb->cpu_list_pa); 483 mondo = __va(tb->cpu_mondo_block_pa); 484 485 /* Unfortunately, someone at Sun had the brilliant idea to make the 486 * busy/nack fields hard-coded by ITID number for this Ultra-III 487 * derivative processor. 488 */ 489 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 490 is_jbus = ((ver >> 32) == __JALAPENO_ID || 491 (ver >> 32) == __SERRANO_ID); 492 493 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 494 495 retry: 496 need_more = 0; 497 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 498 : : "r" (pstate), "i" (PSTATE_IE)); 499 500 /* Setup the dispatch data registers. */ 501 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 502 "stxa %1, [%4] %6\n\t" 503 "stxa %2, [%5] %6\n\t" 504 "membar #Sync\n\t" 505 : /* no outputs */ 506 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 507 "r" (0x40), "r" (0x50), "r" (0x60), 508 "i" (ASI_INTR_W)); 509 510 nack_busy_id = 0; 511 busy_mask = 0; 512 { 513 int i; 514 515 for (i = 0; i < cnt; i++) { 516 u64 target, nr; 517 518 nr = cpu_list[i]; 519 if (nr == 0xffff) 520 continue; 521 522 target = (nr << 14) | 0x70; 523 if (is_jbus) { 524 busy_mask |= (0x1UL << (nr * 2)); 525 } else { 526 target |= (nack_busy_id << 24); 527 busy_mask |= (0x1UL << 528 (nack_busy_id * 2)); 529 } 530 __asm__ __volatile__( 531 "stxa %%g0, [%0] %1\n\t" 532 "membar #Sync\n\t" 533 : /* no outputs */ 534 : "r" (target), "i" (ASI_INTR_W)); 535 nack_busy_id++; 536 if (nack_busy_id == 32) { 537 need_more = 1; 538 break; 539 } 540 } 541 } 542 543 /* Now, poll for completion. */ 544 { 545 u64 dispatch_stat, nack_mask; 546 long stuck; 547 548 stuck = 100000 * nack_busy_id; 549 nack_mask = busy_mask << 1; 550 do { 551 __asm__ __volatile__("ldxa [%%g0] %1, %0" 552 : "=r" (dispatch_stat) 553 : "i" (ASI_INTR_DISPATCH_STAT)); 554 if (!(dispatch_stat & (busy_mask | nack_mask))) { 555 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 556 : : "r" (pstate)); 557 if (unlikely(need_more)) { 558 int i, this_cnt = 0; 559 for (i = 0; i < cnt; i++) { 560 if (cpu_list[i] == 0xffff) 561 continue; 562 cpu_list[i] = 0xffff; 563 this_cnt++; 564 if (this_cnt == 32) 565 break; 566 } 567 goto retry; 568 } 569 return; 570 } 571 if (!--stuck) 572 break; 573 } while (dispatch_stat & busy_mask); 574 575 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 576 : : "r" (pstate)); 577 578 if (dispatch_stat & busy_mask) { 579 /* Busy bits will not clear, continue instead 580 * of freezing up on this cpu. 581 */ 582 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 583 smp_processor_id(), dispatch_stat); 584 } else { 585 int i, this_busy_nack = 0; 586 587 /* Delay some random time with interrupts enabled 588 * to prevent deadlock. 589 */ 590 udelay(2 * nack_busy_id); 591 592 /* Clear out the mask bits for cpus which did not 593 * NACK us. 594 */ 595 for (i = 0; i < cnt; i++) { 596 u64 check_mask, nr; 597 598 nr = cpu_list[i]; 599 if (nr == 0xffff) 600 continue; 601 602 if (is_jbus) 603 check_mask = (0x2UL << (2*nr)); 604 else 605 check_mask = (0x2UL << 606 this_busy_nack); 607 if ((dispatch_stat & check_mask) == 0) 608 cpu_list[i] = 0xffff; 609 this_busy_nack += 2; 610 if (this_busy_nack == 64) 611 break; 612 } 613 614 goto retry; 615 } 616 } 617 } 618 619 /* Multi-cpu list version. */ 620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 621 { 622 int retries, this_cpu, prev_sent, i, saw_cpu_error; 623 unsigned long status; 624 u16 *cpu_list; 625 626 this_cpu = smp_processor_id(); 627 628 cpu_list = __va(tb->cpu_list_pa); 629 630 saw_cpu_error = 0; 631 retries = 0; 632 prev_sent = 0; 633 do { 634 int forward_progress, n_sent; 635 636 status = sun4v_cpu_mondo_send(cnt, 637 tb->cpu_list_pa, 638 tb->cpu_mondo_block_pa); 639 640 /* HV_EOK means all cpus received the xcall, we're done. */ 641 if (likely(status == HV_EOK)) 642 break; 643 644 /* First, see if we made any forward progress. 645 * 646 * The hypervisor indicates successful sends by setting 647 * cpu list entries to the value 0xffff. 648 */ 649 n_sent = 0; 650 for (i = 0; i < cnt; i++) { 651 if (likely(cpu_list[i] == 0xffff)) 652 n_sent++; 653 } 654 655 forward_progress = 0; 656 if (n_sent > prev_sent) 657 forward_progress = 1; 658 659 prev_sent = n_sent; 660 661 /* If we get a HV_ECPUERROR, then one or more of the cpus 662 * in the list are in error state. Use the cpu_state() 663 * hypervisor call to find out which cpus are in error state. 664 */ 665 if (unlikely(status == HV_ECPUERROR)) { 666 for (i = 0; i < cnt; i++) { 667 long err; 668 u16 cpu; 669 670 cpu = cpu_list[i]; 671 if (cpu == 0xffff) 672 continue; 673 674 err = sun4v_cpu_state(cpu); 675 if (err == HV_CPU_STATE_ERROR) { 676 saw_cpu_error = (cpu + 1); 677 cpu_list[i] = 0xffff; 678 } 679 } 680 } else if (unlikely(status != HV_EWOULDBLOCK)) 681 goto fatal_mondo_error; 682 683 /* Don't bother rewriting the CPU list, just leave the 684 * 0xffff and non-0xffff entries in there and the 685 * hypervisor will do the right thing. 686 * 687 * Only advance timeout state if we didn't make any 688 * forward progress. 689 */ 690 if (unlikely(!forward_progress)) { 691 if (unlikely(++retries > 10000)) 692 goto fatal_mondo_timeout; 693 694 /* Delay a little bit to let other cpus catch up 695 * on their cpu mondo queue work. 696 */ 697 udelay(2 * cnt); 698 } 699 } while (1); 700 701 if (unlikely(saw_cpu_error)) 702 goto fatal_mondo_cpu_error; 703 704 return; 705 706 fatal_mondo_cpu_error: 707 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 708 "(including %d) were in error state\n", 709 this_cpu, saw_cpu_error - 1); 710 return; 711 712 fatal_mondo_timeout: 713 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 714 " progress after %d retries.\n", 715 this_cpu, retries); 716 goto dump_cpu_list_and_out; 717 718 fatal_mondo_error: 719 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 720 this_cpu, status); 721 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 722 "mondo_block_pa(%lx)\n", 723 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 724 725 dump_cpu_list_and_out: 726 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 727 for (i = 0; i < cnt; i++) 728 printk("%u ", cpu_list[i]); 729 printk("]\n"); 730 } 731 732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 733 734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 735 { 736 struct trap_per_cpu *tb; 737 int this_cpu, i, cnt; 738 unsigned long flags; 739 u16 *cpu_list; 740 u64 *mondo; 741 742 /* We have to do this whole thing with interrupts fully disabled. 743 * Otherwise if we send an xcall from interrupt context it will 744 * corrupt both our mondo block and cpu list state. 745 * 746 * One consequence of this is that we cannot use timeout mechanisms 747 * that depend upon interrupts being delivered locally. So, for 748 * example, we cannot sample jiffies and expect it to advance. 749 * 750 * Fortunately, udelay() uses %stick/%tick so we can use that. 751 */ 752 local_irq_save(flags); 753 754 this_cpu = smp_processor_id(); 755 tb = &trap_block[this_cpu]; 756 757 mondo = __va(tb->cpu_mondo_block_pa); 758 mondo[0] = data0; 759 mondo[1] = data1; 760 mondo[2] = data2; 761 wmb(); 762 763 cpu_list = __va(tb->cpu_list_pa); 764 765 /* Setup the initial cpu list. */ 766 cnt = 0; 767 for_each_cpu(i, mask) { 768 if (i == this_cpu || !cpu_online(i)) 769 continue; 770 cpu_list[cnt++] = i; 771 } 772 773 if (cnt) 774 xcall_deliver_impl(tb, cnt); 775 776 local_irq_restore(flags); 777 } 778 779 /* Send cross call to all processors mentioned in MASK_P 780 * except self. Really, there are only two cases currently, 781 * "cpu_online_mask" and "mm_cpumask(mm)". 782 */ 783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 784 { 785 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 786 787 xcall_deliver(data0, data1, data2, mask); 788 } 789 790 /* Send cross call to all processors except self. */ 791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 792 { 793 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 794 } 795 796 extern unsigned long xcall_sync_tick; 797 798 static void smp_start_sync_tick_client(int cpu) 799 { 800 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 801 cpumask_of(cpu)); 802 } 803 804 extern unsigned long xcall_call_function; 805 806 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 807 { 808 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 809 } 810 811 extern unsigned long xcall_call_function_single; 812 813 void arch_send_call_function_single_ipi(int cpu) 814 { 815 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 816 cpumask_of(cpu)); 817 } 818 819 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 820 { 821 clear_softint(1 << irq); 822 generic_smp_call_function_interrupt(); 823 } 824 825 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 826 { 827 clear_softint(1 << irq); 828 generic_smp_call_function_single_interrupt(); 829 } 830 831 static void tsb_sync(void *info) 832 { 833 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 834 struct mm_struct *mm = info; 835 836 /* It is not valid to test "current->active_mm == mm" here. 837 * 838 * The value of "current" is not changed atomically with 839 * switch_mm(). But that's OK, we just need to check the 840 * current cpu's trap block PGD physical address. 841 */ 842 if (tp->pgd_paddr == __pa(mm->pgd)) 843 tsb_context_switch(mm); 844 } 845 846 void smp_tsb_sync(struct mm_struct *mm) 847 { 848 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 849 } 850 851 extern unsigned long xcall_flush_tlb_mm; 852 extern unsigned long xcall_flush_tlb_pending; 853 extern unsigned long xcall_flush_tlb_kernel_range; 854 extern unsigned long xcall_fetch_glob_regs; 855 extern unsigned long xcall_receive_signal; 856 extern unsigned long xcall_new_mmu_context_version; 857 #ifdef CONFIG_KGDB 858 extern unsigned long xcall_kgdb_capture; 859 #endif 860 861 #ifdef DCACHE_ALIASING_POSSIBLE 862 extern unsigned long xcall_flush_dcache_page_cheetah; 863 #endif 864 extern unsigned long xcall_flush_dcache_page_spitfire; 865 866 #ifdef CONFIG_DEBUG_DCFLUSH 867 extern atomic_t dcpage_flushes; 868 extern atomic_t dcpage_flushes_xcall; 869 #endif 870 871 static inline void __local_flush_dcache_page(struct page *page) 872 { 873 #ifdef DCACHE_ALIASING_POSSIBLE 874 __flush_dcache_page(page_address(page), 875 ((tlb_type == spitfire) && 876 page_mapping(page) != NULL)); 877 #else 878 if (page_mapping(page) != NULL && 879 tlb_type == spitfire) 880 __flush_icache_page(__pa(page_address(page))); 881 #endif 882 } 883 884 void smp_flush_dcache_page_impl(struct page *page, int cpu) 885 { 886 int this_cpu; 887 888 if (tlb_type == hypervisor) 889 return; 890 891 #ifdef CONFIG_DEBUG_DCFLUSH 892 atomic_inc(&dcpage_flushes); 893 #endif 894 895 this_cpu = get_cpu(); 896 897 if (cpu == this_cpu) { 898 __local_flush_dcache_page(page); 899 } else if (cpu_online(cpu)) { 900 void *pg_addr = page_address(page); 901 u64 data0 = 0; 902 903 if (tlb_type == spitfire) { 904 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 905 if (page_mapping(page) != NULL) 906 data0 |= ((u64)1 << 32); 907 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 908 #ifdef DCACHE_ALIASING_POSSIBLE 909 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 910 #endif 911 } 912 if (data0) { 913 xcall_deliver(data0, __pa(pg_addr), 914 (u64) pg_addr, cpumask_of(cpu)); 915 #ifdef CONFIG_DEBUG_DCFLUSH 916 atomic_inc(&dcpage_flushes_xcall); 917 #endif 918 } 919 } 920 921 put_cpu(); 922 } 923 924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 925 { 926 void *pg_addr; 927 u64 data0; 928 929 if (tlb_type == hypervisor) 930 return; 931 932 preempt_disable(); 933 934 #ifdef CONFIG_DEBUG_DCFLUSH 935 atomic_inc(&dcpage_flushes); 936 #endif 937 data0 = 0; 938 pg_addr = page_address(page); 939 if (tlb_type == spitfire) { 940 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 941 if (page_mapping(page) != NULL) 942 data0 |= ((u64)1 << 32); 943 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 944 #ifdef DCACHE_ALIASING_POSSIBLE 945 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 946 #endif 947 } 948 if (data0) { 949 xcall_deliver(data0, __pa(pg_addr), 950 (u64) pg_addr, cpu_online_mask); 951 #ifdef CONFIG_DEBUG_DCFLUSH 952 atomic_inc(&dcpage_flushes_xcall); 953 #endif 954 } 955 __local_flush_dcache_page(page); 956 957 preempt_enable(); 958 } 959 960 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 961 { 962 struct mm_struct *mm; 963 unsigned long flags; 964 965 clear_softint(1 << irq); 966 967 /* See if we need to allocate a new TLB context because 968 * the version of the one we are using is now out of date. 969 */ 970 mm = current->active_mm; 971 if (unlikely(!mm || (mm == &init_mm))) 972 return; 973 974 spin_lock_irqsave(&mm->context.lock, flags); 975 976 if (unlikely(!CTX_VALID(mm->context))) 977 get_new_mmu_context(mm); 978 979 spin_unlock_irqrestore(&mm->context.lock, flags); 980 981 load_secondary_context(mm); 982 __flush_tlb_mm(CTX_HWBITS(mm->context), 983 SECONDARY_CONTEXT); 984 } 985 986 void smp_new_mmu_context_version(void) 987 { 988 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 989 } 990 991 #ifdef CONFIG_KGDB 992 void kgdb_roundup_cpus(unsigned long flags) 993 { 994 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 995 } 996 #endif 997 998 void smp_fetch_global_regs(void) 999 { 1000 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1001 } 1002 1003 /* We know that the window frames of the user have been flushed 1004 * to the stack before we get here because all callers of us 1005 * are flush_tlb_*() routines, and these run after flush_cache_*() 1006 * which performs the flushw. 1007 * 1008 * The SMP TLB coherency scheme we use works as follows: 1009 * 1010 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1011 * space has (potentially) executed on, this is the heuristic 1012 * we use to avoid doing cross calls. 1013 * 1014 * Also, for flushing from kswapd and also for clones, we 1015 * use cpu_vm_mask as the list of cpus to make run the TLB. 1016 * 1017 * 2) TLB context numbers are shared globally across all processors 1018 * in the system, this allows us to play several games to avoid 1019 * cross calls. 1020 * 1021 * One invariant is that when a cpu switches to a process, and 1022 * that processes tsk->active_mm->cpu_vm_mask does not have the 1023 * current cpu's bit set, that tlb context is flushed locally. 1024 * 1025 * If the address space is non-shared (ie. mm->count == 1) we avoid 1026 * cross calls when we want to flush the currently running process's 1027 * tlb state. This is done by clearing all cpu bits except the current 1028 * processor's in current->mm->cpu_vm_mask and performing the 1029 * flush locally only. This will force any subsequent cpus which run 1030 * this task to flush the context from the local tlb if the process 1031 * migrates to another cpu (again). 1032 * 1033 * 3) For shared address spaces (threads) and swapping we bite the 1034 * bullet for most cases and perform the cross call (but only to 1035 * the cpus listed in cpu_vm_mask). 1036 * 1037 * The performance gain from "optimizing" away the cross call for threads is 1038 * questionable (in theory the big win for threads is the massive sharing of 1039 * address space state across processors). 1040 */ 1041 1042 /* This currently is only used by the hugetlb arch pre-fault 1043 * hook on UltraSPARC-III+ and later when changing the pagesize 1044 * bits of the context register for an address space. 1045 */ 1046 void smp_flush_tlb_mm(struct mm_struct *mm) 1047 { 1048 u32 ctx = CTX_HWBITS(mm->context); 1049 int cpu = get_cpu(); 1050 1051 if (atomic_read(&mm->mm_users) == 1) { 1052 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1053 goto local_flush_and_out; 1054 } 1055 1056 smp_cross_call_masked(&xcall_flush_tlb_mm, 1057 ctx, 0, 0, 1058 mm_cpumask(mm)); 1059 1060 local_flush_and_out: 1061 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1062 1063 put_cpu(); 1064 } 1065 1066 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1067 { 1068 u32 ctx = CTX_HWBITS(mm->context); 1069 int cpu = get_cpu(); 1070 1071 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1072 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1073 else 1074 smp_cross_call_masked(&xcall_flush_tlb_pending, 1075 ctx, nr, (unsigned long) vaddrs, 1076 mm_cpumask(mm)); 1077 1078 __flush_tlb_pending(ctx, nr, vaddrs); 1079 1080 put_cpu(); 1081 } 1082 1083 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1084 { 1085 start &= PAGE_MASK; 1086 end = PAGE_ALIGN(end); 1087 if (start != end) { 1088 smp_cross_call(&xcall_flush_tlb_kernel_range, 1089 0, start, end); 1090 1091 __flush_tlb_kernel_range(start, end); 1092 } 1093 } 1094 1095 /* CPU capture. */ 1096 /* #define CAPTURE_DEBUG */ 1097 extern unsigned long xcall_capture; 1098 1099 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1100 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1101 static unsigned long penguins_are_doing_time; 1102 1103 void smp_capture(void) 1104 { 1105 int result = atomic_add_ret(1, &smp_capture_depth); 1106 1107 if (result == 1) { 1108 int ncpus = num_online_cpus(); 1109 1110 #ifdef CAPTURE_DEBUG 1111 printk("CPU[%d]: Sending penguins to jail...", 1112 smp_processor_id()); 1113 #endif 1114 penguins_are_doing_time = 1; 1115 atomic_inc(&smp_capture_registry); 1116 smp_cross_call(&xcall_capture, 0, 0, 0); 1117 while (atomic_read(&smp_capture_registry) != ncpus) 1118 rmb(); 1119 #ifdef CAPTURE_DEBUG 1120 printk("done\n"); 1121 #endif 1122 } 1123 } 1124 1125 void smp_release(void) 1126 { 1127 if (atomic_dec_and_test(&smp_capture_depth)) { 1128 #ifdef CAPTURE_DEBUG 1129 printk("CPU[%d]: Giving pardon to " 1130 "imprisoned penguins\n", 1131 smp_processor_id()); 1132 #endif 1133 penguins_are_doing_time = 0; 1134 membar_safe("#StoreLoad"); 1135 atomic_dec(&smp_capture_registry); 1136 } 1137 } 1138 1139 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1140 * set, so they can service tlb flush xcalls... 1141 */ 1142 extern void prom_world(int); 1143 1144 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1145 { 1146 clear_softint(1 << irq); 1147 1148 preempt_disable(); 1149 1150 __asm__ __volatile__("flushw"); 1151 prom_world(1); 1152 atomic_inc(&smp_capture_registry); 1153 membar_safe("#StoreLoad"); 1154 while (penguins_are_doing_time) 1155 rmb(); 1156 atomic_dec(&smp_capture_registry); 1157 prom_world(0); 1158 1159 preempt_enable(); 1160 } 1161 1162 /* /proc/profile writes can call this, don't __init it please. */ 1163 int setup_profiling_timer(unsigned int multiplier) 1164 { 1165 return -EINVAL; 1166 } 1167 1168 void __init smp_prepare_cpus(unsigned int max_cpus) 1169 { 1170 } 1171 1172 void __devinit smp_prepare_boot_cpu(void) 1173 { 1174 } 1175 1176 void __init smp_setup_processor_id(void) 1177 { 1178 if (tlb_type == spitfire) 1179 xcall_deliver_impl = spitfire_xcall_deliver; 1180 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1181 xcall_deliver_impl = cheetah_xcall_deliver; 1182 else 1183 xcall_deliver_impl = hypervisor_xcall_deliver; 1184 } 1185 1186 void __devinit smp_fill_in_sib_core_maps(void) 1187 { 1188 unsigned int i; 1189 1190 for_each_present_cpu(i) { 1191 unsigned int j; 1192 1193 cpumask_clear(&cpu_core_map[i]); 1194 if (cpu_data(i).core_id == 0) { 1195 cpumask_set_cpu(i, &cpu_core_map[i]); 1196 continue; 1197 } 1198 1199 for_each_present_cpu(j) { 1200 if (cpu_data(i).core_id == 1201 cpu_data(j).core_id) 1202 cpumask_set_cpu(j, &cpu_core_map[i]); 1203 } 1204 } 1205 1206 for_each_present_cpu(i) { 1207 unsigned int j; 1208 1209 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1210 if (cpu_data(i).proc_id == -1) { 1211 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1212 continue; 1213 } 1214 1215 for_each_present_cpu(j) { 1216 if (cpu_data(i).proc_id == 1217 cpu_data(j).proc_id) 1218 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1219 } 1220 } 1221 } 1222 1223 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 1224 { 1225 int ret = smp_boot_one_cpu(cpu, tidle); 1226 1227 if (!ret) { 1228 cpumask_set_cpu(cpu, &smp_commenced_mask); 1229 while (!cpu_online(cpu)) 1230 mb(); 1231 if (!cpu_online(cpu)) { 1232 ret = -ENODEV; 1233 } else { 1234 /* On SUN4V, writes to %tick and %stick are 1235 * not allowed. 1236 */ 1237 if (tlb_type != hypervisor) 1238 smp_synchronize_one_tick(cpu); 1239 } 1240 } 1241 return ret; 1242 } 1243 1244 #ifdef CONFIG_HOTPLUG_CPU 1245 void cpu_play_dead(void) 1246 { 1247 int cpu = smp_processor_id(); 1248 unsigned long pstate; 1249 1250 idle_task_exit(); 1251 1252 if (tlb_type == hypervisor) { 1253 struct trap_per_cpu *tb = &trap_block[cpu]; 1254 1255 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1256 tb->cpu_mondo_pa, 0); 1257 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1258 tb->dev_mondo_pa, 0); 1259 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1260 tb->resum_mondo_pa, 0); 1261 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1262 tb->nonresum_mondo_pa, 0); 1263 } 1264 1265 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1266 membar_safe("#Sync"); 1267 1268 local_irq_disable(); 1269 1270 __asm__ __volatile__( 1271 "rdpr %%pstate, %0\n\t" 1272 "wrpr %0, %1, %%pstate" 1273 : "=r" (pstate) 1274 : "i" (PSTATE_IE)); 1275 1276 while (1) 1277 barrier(); 1278 } 1279 1280 int __cpu_disable(void) 1281 { 1282 int cpu = smp_processor_id(); 1283 cpuinfo_sparc *c; 1284 int i; 1285 1286 for_each_cpu(i, &cpu_core_map[cpu]) 1287 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1288 cpumask_clear(&cpu_core_map[cpu]); 1289 1290 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1291 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1292 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1293 1294 c = &cpu_data(cpu); 1295 1296 c->core_id = 0; 1297 c->proc_id = -1; 1298 1299 smp_wmb(); 1300 1301 /* Make sure no interrupts point to this cpu. */ 1302 fixup_irqs(); 1303 1304 local_irq_enable(); 1305 mdelay(1); 1306 local_irq_disable(); 1307 1308 set_cpu_online(cpu, false); 1309 1310 cpu_map_rebuild(); 1311 1312 return 0; 1313 } 1314 1315 void __cpu_die(unsigned int cpu) 1316 { 1317 int i; 1318 1319 for (i = 0; i < 100; i++) { 1320 smp_rmb(); 1321 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1322 break; 1323 msleep(100); 1324 } 1325 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1326 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1327 } else { 1328 #if defined(CONFIG_SUN_LDOMS) 1329 unsigned long hv_err; 1330 int limit = 100; 1331 1332 do { 1333 hv_err = sun4v_cpu_stop(cpu); 1334 if (hv_err == HV_EOK) { 1335 set_cpu_present(cpu, false); 1336 break; 1337 } 1338 } while (--limit > 0); 1339 if (limit <= 0) { 1340 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1341 hv_err); 1342 } 1343 #endif 1344 } 1345 } 1346 #endif 1347 1348 void __init smp_cpus_done(unsigned int max_cpus) 1349 { 1350 pcr_arch_init(); 1351 } 1352 1353 void smp_send_reschedule(int cpu) 1354 { 1355 xcall_deliver((u64) &xcall_receive_signal, 0, 0, 1356 cpumask_of(cpu)); 1357 } 1358 1359 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1360 { 1361 clear_softint(1 << irq); 1362 scheduler_ipi(); 1363 } 1364 1365 /* This is a nop because we capture all other cpus 1366 * anyways when making the PROM active. 1367 */ 1368 void smp_send_stop(void) 1369 { 1370 } 1371 1372 /** 1373 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1374 * @cpu: cpu to allocate for 1375 * @size: size allocation in bytes 1376 * @align: alignment 1377 * 1378 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1379 * does the right thing for NUMA regardless of the current 1380 * configuration. 1381 * 1382 * RETURNS: 1383 * Pointer to the allocated area on success, NULL on failure. 1384 */ 1385 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1386 size_t align) 1387 { 1388 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1389 #ifdef CONFIG_NEED_MULTIPLE_NODES 1390 int node = cpu_to_node(cpu); 1391 void *ptr; 1392 1393 if (!node_online(node) || !NODE_DATA(node)) { 1394 ptr = __alloc_bootmem(size, align, goal); 1395 pr_info("cpu %d has no node %d or node-local memory\n", 1396 cpu, node); 1397 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1398 cpu, size, __pa(ptr)); 1399 } else { 1400 ptr = __alloc_bootmem_node(NODE_DATA(node), 1401 size, align, goal); 1402 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1403 "%016lx\n", cpu, size, node, __pa(ptr)); 1404 } 1405 return ptr; 1406 #else 1407 return __alloc_bootmem(size, align, goal); 1408 #endif 1409 } 1410 1411 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1412 { 1413 free_bootmem(__pa(ptr), size); 1414 } 1415 1416 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1417 { 1418 if (cpu_to_node(from) == cpu_to_node(to)) 1419 return LOCAL_DISTANCE; 1420 else 1421 return REMOTE_DISTANCE; 1422 } 1423 1424 static void __init pcpu_populate_pte(unsigned long addr) 1425 { 1426 pgd_t *pgd = pgd_offset_k(addr); 1427 pud_t *pud; 1428 pmd_t *pmd; 1429 1430 pud = pud_offset(pgd, addr); 1431 if (pud_none(*pud)) { 1432 pmd_t *new; 1433 1434 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1435 pud_populate(&init_mm, pud, new); 1436 } 1437 1438 pmd = pmd_offset(pud, addr); 1439 if (!pmd_present(*pmd)) { 1440 pte_t *new; 1441 1442 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1443 pmd_populate_kernel(&init_mm, pmd, new); 1444 } 1445 } 1446 1447 void __init setup_per_cpu_areas(void) 1448 { 1449 unsigned long delta; 1450 unsigned int cpu; 1451 int rc = -EINVAL; 1452 1453 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1454 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1455 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1456 pcpu_cpu_distance, 1457 pcpu_alloc_bootmem, 1458 pcpu_free_bootmem); 1459 if (rc) 1460 pr_warning("PERCPU: %s allocator failed (%d), " 1461 "falling back to page size\n", 1462 pcpu_fc_names[pcpu_chosen_fc], rc); 1463 } 1464 if (rc < 0) 1465 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1466 pcpu_alloc_bootmem, 1467 pcpu_free_bootmem, 1468 pcpu_populate_pte); 1469 if (rc < 0) 1470 panic("cannot initialize percpu area (err=%d)", rc); 1471 1472 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1473 for_each_possible_cpu(cpu) 1474 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1475 1476 /* Setup %g5 for the boot cpu. */ 1477 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1478 1479 of_fill_in_cpu_data(); 1480 if (tlb_type == hypervisor) 1481 mdesc_fill_in_cpu_data(cpu_all_mask); 1482 } 1483