xref: /linux/arch/sparc/kernel/smp_64.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29 
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40 
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55 
56 #include "cpumap.h"
57 #include "kernel.h"
58 
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 
63 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64 EXPORT_SYMBOL(cpu_core_map);
65 
66 static cpumask_t smp_commenced_mask;
67 
68 void smp_info(struct seq_file *m)
69 {
70 	int i;
71 
72 	seq_printf(m, "State:\n");
73 	for_each_online_cpu(i)
74 		seq_printf(m, "CPU%d:\t\tonline\n", i);
75 }
76 
77 void smp_bogo(struct seq_file *m)
78 {
79 	int i;
80 
81 	for_each_online_cpu(i)
82 		seq_printf(m,
83 			   "Cpu%dClkTck\t: %016lx\n",
84 			   i, cpu_data(i).clock_tick);
85 }
86 
87 extern void setup_sparc64_timer(void);
88 
89 static volatile unsigned long callin_flag = 0;
90 
91 void smp_callin(void)
92 {
93 	int cpuid = hard_smp_processor_id();
94 
95 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
96 
97 	if (tlb_type == hypervisor)
98 		sun4v_ktsb_register();
99 
100 	__flush_tlb_all();
101 
102 	setup_sparc64_timer();
103 
104 	if (cheetah_pcache_forced_on)
105 		cheetah_enable_pcache();
106 
107 	callin_flag = 1;
108 	__asm__ __volatile__("membar #Sync\n\t"
109 			     "flush  %%g6" : : : "memory");
110 
111 	/* Clear this or we will die instantly when we
112 	 * schedule back to this idler...
113 	 */
114 	current_thread_info()->new_child = 0;
115 
116 	/* Attach to the address space of init_task. */
117 	atomic_inc(&init_mm.mm_count);
118 	current->active_mm = &init_mm;
119 
120 	/* inform the notifiers about the new cpu */
121 	notify_cpu_starting(cpuid);
122 
123 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
124 		rmb();
125 
126 	set_cpu_online(cpuid, true);
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 
131 	local_irq_enable();
132 
133 	cpu_startup_entry(CPUHP_ONLINE);
134 }
135 
136 void cpu_panic(void)
137 {
138 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139 	panic("SMP bolixed\n");
140 }
141 
142 /* This tick register synchronization scheme is taken entirely from
143  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144  *
145  * The only change I've made is to rework it so that the master
146  * initiates the synchonization instead of the slave. -DaveM
147  */
148 
149 #define MASTER	0
150 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
151 
152 #define NUM_ROUNDS	64	/* magic value */
153 #define NUM_ITERS	5	/* likewise */
154 
155 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
156 static unsigned long go[SLAVE + 1];
157 
158 #define DEBUG_TICK_SYNC	0
159 
160 static inline long get_delta (long *rt, long *master)
161 {
162 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
163 	unsigned long tcenter, t0, t1, tm;
164 	unsigned long i;
165 
166 	for (i = 0; i < NUM_ITERS; i++) {
167 		t0 = tick_ops->get_tick();
168 		go[MASTER] = 1;
169 		membar_safe("#StoreLoad");
170 		while (!(tm = go[SLAVE]))
171 			rmb();
172 		go[SLAVE] = 0;
173 		wmb();
174 		t1 = tick_ops->get_tick();
175 
176 		if (t1 - t0 < best_t1 - best_t0)
177 			best_t0 = t0, best_t1 = t1, best_tm = tm;
178 	}
179 
180 	*rt = best_t1 - best_t0;
181 	*master = best_tm - best_t0;
182 
183 	/* average best_t0 and best_t1 without overflow: */
184 	tcenter = (best_t0/2 + best_t1/2);
185 	if (best_t0 % 2 + best_t1 % 2 == 2)
186 		tcenter++;
187 	return tcenter - best_tm;
188 }
189 
190 void smp_synchronize_tick_client(void)
191 {
192 	long i, delta, adj, adjust_latency = 0, done = 0;
193 	unsigned long flags, rt, master_time_stamp;
194 #if DEBUG_TICK_SYNC
195 	struct {
196 		long rt;	/* roundtrip time */
197 		long master;	/* master's timestamp */
198 		long diff;	/* difference between midpoint and master's timestamp */
199 		long lat;	/* estimate of itc adjustment latency */
200 	} t[NUM_ROUNDS];
201 #endif
202 
203 	go[MASTER] = 1;
204 
205 	while (go[MASTER])
206 		rmb();
207 
208 	local_irq_save(flags);
209 	{
210 		for (i = 0; i < NUM_ROUNDS; i++) {
211 			delta = get_delta(&rt, &master_time_stamp);
212 			if (delta == 0)
213 				done = 1;	/* let's lock on to this... */
214 
215 			if (!done) {
216 				if (i > 0) {
217 					adjust_latency += -delta;
218 					adj = -delta + adjust_latency/4;
219 				} else
220 					adj = -delta;
221 
222 				tick_ops->add_tick(adj);
223 			}
224 #if DEBUG_TICK_SYNC
225 			t[i].rt = rt;
226 			t[i].master = master_time_stamp;
227 			t[i].diff = delta;
228 			t[i].lat = adjust_latency/4;
229 #endif
230 		}
231 	}
232 	local_irq_restore(flags);
233 
234 #if DEBUG_TICK_SYNC
235 	for (i = 0; i < NUM_ROUNDS; i++)
236 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
238 #endif
239 
240 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
242 	       smp_processor_id(), delta, rt);
243 }
244 
245 static void smp_start_sync_tick_client(int cpu);
246 
247 static void smp_synchronize_one_tick(int cpu)
248 {
249 	unsigned long flags, i;
250 
251 	go[MASTER] = 0;
252 
253 	smp_start_sync_tick_client(cpu);
254 
255 	/* wait for client to be ready */
256 	while (!go[MASTER])
257 		rmb();
258 
259 	/* now let the client proceed into his loop */
260 	go[MASTER] = 0;
261 	membar_safe("#StoreLoad");
262 
263 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
264 	{
265 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266 			while (!go[MASTER])
267 				rmb();
268 			go[MASTER] = 0;
269 			wmb();
270 			go[SLAVE] = tick_ops->get_tick();
271 			membar_safe("#StoreLoad");
272 		}
273 	}
274 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
275 }
276 
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
279 				void **descrp)
280 {
281 	extern unsigned long sparc64_ttable_tl0;
282 	extern unsigned long kern_locked_tte_data;
283 	struct hvtramp_descr *hdesc;
284 	unsigned long trampoline_ra;
285 	struct trap_per_cpu *tb;
286 	u64 tte_vaddr, tte_data;
287 	unsigned long hv_err;
288 	int i;
289 
290 	hdesc = kzalloc(sizeof(*hdesc) +
291 			(sizeof(struct hvtramp_mapping) *
292 			 num_kernel_image_mappings - 1),
293 			GFP_KERNEL);
294 	if (!hdesc) {
295 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
296 		       "hvtramp_descr.\n");
297 		return;
298 	}
299 	*descrp = hdesc;
300 
301 	hdesc->cpu = cpu;
302 	hdesc->num_mappings = num_kernel_image_mappings;
303 
304 	tb = &trap_block[cpu];
305 
306 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
307 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
308 
309 	hdesc->thread_reg = thread_reg;
310 
311 	tte_vaddr = (unsigned long) KERNBASE;
312 	tte_data = kern_locked_tte_data;
313 
314 	for (i = 0; i < hdesc->num_mappings; i++) {
315 		hdesc->maps[i].vaddr = tte_vaddr;
316 		hdesc->maps[i].tte   = tte_data;
317 		tte_vaddr += 0x400000;
318 		tte_data  += 0x400000;
319 	}
320 
321 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
322 
323 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
324 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
325 				 __pa(hdesc));
326 	if (hv_err)
327 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
328 		       "gives error %lu\n", hv_err);
329 }
330 #endif
331 
332 extern unsigned long sparc64_cpu_startup;
333 
334 /* The OBP cpu startup callback truncates the 3rd arg cookie to
335  * 32-bits (I think) so to be safe we have it read the pointer
336  * contained here so we work on >4GB machines. -DaveM
337  */
338 static struct thread_info *cpu_new_thread = NULL;
339 
340 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
341 {
342 	unsigned long entry =
343 		(unsigned long)(&sparc64_cpu_startup);
344 	unsigned long cookie =
345 		(unsigned long)(&cpu_new_thread);
346 	void *descr = NULL;
347 	int timeout, ret;
348 
349 	callin_flag = 0;
350 	cpu_new_thread = task_thread_info(idle);
351 
352 	if (tlb_type == hypervisor) {
353 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
354 		if (ldom_domaining_enabled)
355 			ldom_startcpu_cpuid(cpu,
356 					    (unsigned long) cpu_new_thread,
357 					    &descr);
358 		else
359 #endif
360 			prom_startcpu_cpuid(cpu, entry, cookie);
361 	} else {
362 		struct device_node *dp = of_find_node_by_cpuid(cpu);
363 
364 		prom_startcpu(dp->phandle, entry, cookie);
365 	}
366 
367 	for (timeout = 0; timeout < 50000; timeout++) {
368 		if (callin_flag)
369 			break;
370 		udelay(100);
371 	}
372 
373 	if (callin_flag) {
374 		ret = 0;
375 	} else {
376 		printk("Processor %d is stuck.\n", cpu);
377 		ret = -ENODEV;
378 	}
379 	cpu_new_thread = NULL;
380 
381 	kfree(descr);
382 
383 	return ret;
384 }
385 
386 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
387 {
388 	u64 result, target;
389 	int stuck, tmp;
390 
391 	if (this_is_starfire) {
392 		/* map to real upaid */
393 		cpu = (((cpu & 0x3c) << 1) |
394 			((cpu & 0x40) >> 4) |
395 			(cpu & 0x3));
396 	}
397 
398 	target = (cpu << 14) | 0x70;
399 again:
400 	/* Ok, this is the real Spitfire Errata #54.
401 	 * One must read back from a UDB internal register
402 	 * after writes to the UDB interrupt dispatch, but
403 	 * before the membar Sync for that write.
404 	 * So we use the high UDB control register (ASI 0x7f,
405 	 * ADDR 0x20) for the dummy read. -DaveM
406 	 */
407 	tmp = 0x40;
408 	__asm__ __volatile__(
409 	"wrpr	%1, %2, %%pstate\n\t"
410 	"stxa	%4, [%0] %3\n\t"
411 	"stxa	%5, [%0+%8] %3\n\t"
412 	"add	%0, %8, %0\n\t"
413 	"stxa	%6, [%0+%8] %3\n\t"
414 	"membar	#Sync\n\t"
415 	"stxa	%%g0, [%7] %3\n\t"
416 	"membar	#Sync\n\t"
417 	"mov	0x20, %%g1\n\t"
418 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
419 	"membar	#Sync"
420 	: "=r" (tmp)
421 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
422 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
423 	  "r" (0x10), "0" (tmp)
424         : "g1");
425 
426 	/* NOTE: PSTATE_IE is still clear. */
427 	stuck = 100000;
428 	do {
429 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
430 			: "=r" (result)
431 			: "i" (ASI_INTR_DISPATCH_STAT));
432 		if (result == 0) {
433 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
434 					     : : "r" (pstate));
435 			return;
436 		}
437 		stuck -= 1;
438 		if (stuck == 0)
439 			break;
440 	} while (result & 0x1);
441 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 			     : : "r" (pstate));
443 	if (stuck == 0) {
444 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
445 		       smp_processor_id(), result);
446 	} else {
447 		udelay(2);
448 		goto again;
449 	}
450 }
451 
452 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
453 {
454 	u64 *mondo, data0, data1, data2;
455 	u16 *cpu_list;
456 	u64 pstate;
457 	int i;
458 
459 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460 	cpu_list = __va(tb->cpu_list_pa);
461 	mondo = __va(tb->cpu_mondo_block_pa);
462 	data0 = mondo[0];
463 	data1 = mondo[1];
464 	data2 = mondo[2];
465 	for (i = 0; i < cnt; i++)
466 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
467 }
468 
469 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470  * packet, but we have no use for that.  However we do take advantage of
471  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
472  */
473 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
474 {
475 	int nack_busy_id, is_jbus, need_more;
476 	u64 *mondo, pstate, ver, busy_mask;
477 	u16 *cpu_list;
478 
479 	cpu_list = __va(tb->cpu_list_pa);
480 	mondo = __va(tb->cpu_mondo_block_pa);
481 
482 	/* Unfortunately, someone at Sun had the brilliant idea to make the
483 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
484 	 * derivative processor.
485 	 */
486 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
487 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
488 		   (ver >> 32) == __SERRANO_ID);
489 
490 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
491 
492 retry:
493 	need_more = 0;
494 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
495 			     : : "r" (pstate), "i" (PSTATE_IE));
496 
497 	/* Setup the dispatch data registers. */
498 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
499 			     "stxa	%1, [%4] %6\n\t"
500 			     "stxa	%2, [%5] %6\n\t"
501 			     "membar	#Sync\n\t"
502 			     : /* no outputs */
503 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
504 			       "r" (0x40), "r" (0x50), "r" (0x60),
505 			       "i" (ASI_INTR_W));
506 
507 	nack_busy_id = 0;
508 	busy_mask = 0;
509 	{
510 		int i;
511 
512 		for (i = 0; i < cnt; i++) {
513 			u64 target, nr;
514 
515 			nr = cpu_list[i];
516 			if (nr == 0xffff)
517 				continue;
518 
519 			target = (nr << 14) | 0x70;
520 			if (is_jbus) {
521 				busy_mask |= (0x1UL << (nr * 2));
522 			} else {
523 				target |= (nack_busy_id << 24);
524 				busy_mask |= (0x1UL <<
525 					      (nack_busy_id * 2));
526 			}
527 			__asm__ __volatile__(
528 				"stxa	%%g0, [%0] %1\n\t"
529 				"membar	#Sync\n\t"
530 				: /* no outputs */
531 				: "r" (target), "i" (ASI_INTR_W));
532 			nack_busy_id++;
533 			if (nack_busy_id == 32) {
534 				need_more = 1;
535 				break;
536 			}
537 		}
538 	}
539 
540 	/* Now, poll for completion. */
541 	{
542 		u64 dispatch_stat, nack_mask;
543 		long stuck;
544 
545 		stuck = 100000 * nack_busy_id;
546 		nack_mask = busy_mask << 1;
547 		do {
548 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
549 					     : "=r" (dispatch_stat)
550 					     : "i" (ASI_INTR_DISPATCH_STAT));
551 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
552 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 						     : : "r" (pstate));
554 				if (unlikely(need_more)) {
555 					int i, this_cnt = 0;
556 					for (i = 0; i < cnt; i++) {
557 						if (cpu_list[i] == 0xffff)
558 							continue;
559 						cpu_list[i] = 0xffff;
560 						this_cnt++;
561 						if (this_cnt == 32)
562 							break;
563 					}
564 					goto retry;
565 				}
566 				return;
567 			}
568 			if (!--stuck)
569 				break;
570 		} while (dispatch_stat & busy_mask);
571 
572 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
573 				     : : "r" (pstate));
574 
575 		if (dispatch_stat & busy_mask) {
576 			/* Busy bits will not clear, continue instead
577 			 * of freezing up on this cpu.
578 			 */
579 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
580 			       smp_processor_id(), dispatch_stat);
581 		} else {
582 			int i, this_busy_nack = 0;
583 
584 			/* Delay some random time with interrupts enabled
585 			 * to prevent deadlock.
586 			 */
587 			udelay(2 * nack_busy_id);
588 
589 			/* Clear out the mask bits for cpus which did not
590 			 * NACK us.
591 			 */
592 			for (i = 0; i < cnt; i++) {
593 				u64 check_mask, nr;
594 
595 				nr = cpu_list[i];
596 				if (nr == 0xffff)
597 					continue;
598 
599 				if (is_jbus)
600 					check_mask = (0x2UL << (2*nr));
601 				else
602 					check_mask = (0x2UL <<
603 						      this_busy_nack);
604 				if ((dispatch_stat & check_mask) == 0)
605 					cpu_list[i] = 0xffff;
606 				this_busy_nack += 2;
607 				if (this_busy_nack == 64)
608 					break;
609 			}
610 
611 			goto retry;
612 		}
613 	}
614 }
615 
616 /* Multi-cpu list version.  */
617 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
618 {
619 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
620 	unsigned long status;
621 	u16 *cpu_list;
622 
623 	this_cpu = smp_processor_id();
624 
625 	cpu_list = __va(tb->cpu_list_pa);
626 
627 	saw_cpu_error = 0;
628 	retries = 0;
629 	prev_sent = 0;
630 	do {
631 		int forward_progress, n_sent;
632 
633 		status = sun4v_cpu_mondo_send(cnt,
634 					      tb->cpu_list_pa,
635 					      tb->cpu_mondo_block_pa);
636 
637 		/* HV_EOK means all cpus received the xcall, we're done.  */
638 		if (likely(status == HV_EOK))
639 			break;
640 
641 		/* First, see if we made any forward progress.
642 		 *
643 		 * The hypervisor indicates successful sends by setting
644 		 * cpu list entries to the value 0xffff.
645 		 */
646 		n_sent = 0;
647 		for (i = 0; i < cnt; i++) {
648 			if (likely(cpu_list[i] == 0xffff))
649 				n_sent++;
650 		}
651 
652 		forward_progress = 0;
653 		if (n_sent > prev_sent)
654 			forward_progress = 1;
655 
656 		prev_sent = n_sent;
657 
658 		/* If we get a HV_ECPUERROR, then one or more of the cpus
659 		 * in the list are in error state.  Use the cpu_state()
660 		 * hypervisor call to find out which cpus are in error state.
661 		 */
662 		if (unlikely(status == HV_ECPUERROR)) {
663 			for (i = 0; i < cnt; i++) {
664 				long err;
665 				u16 cpu;
666 
667 				cpu = cpu_list[i];
668 				if (cpu == 0xffff)
669 					continue;
670 
671 				err = sun4v_cpu_state(cpu);
672 				if (err == HV_CPU_STATE_ERROR) {
673 					saw_cpu_error = (cpu + 1);
674 					cpu_list[i] = 0xffff;
675 				}
676 			}
677 		} else if (unlikely(status != HV_EWOULDBLOCK))
678 			goto fatal_mondo_error;
679 
680 		/* Don't bother rewriting the CPU list, just leave the
681 		 * 0xffff and non-0xffff entries in there and the
682 		 * hypervisor will do the right thing.
683 		 *
684 		 * Only advance timeout state if we didn't make any
685 		 * forward progress.
686 		 */
687 		if (unlikely(!forward_progress)) {
688 			if (unlikely(++retries > 10000))
689 				goto fatal_mondo_timeout;
690 
691 			/* Delay a little bit to let other cpus catch up
692 			 * on their cpu mondo queue work.
693 			 */
694 			udelay(2 * cnt);
695 		}
696 	} while (1);
697 
698 	if (unlikely(saw_cpu_error))
699 		goto fatal_mondo_cpu_error;
700 
701 	return;
702 
703 fatal_mondo_cpu_error:
704 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
705 	       "(including %d) were in error state\n",
706 	       this_cpu, saw_cpu_error - 1);
707 	return;
708 
709 fatal_mondo_timeout:
710 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
711 	       " progress after %d retries.\n",
712 	       this_cpu, retries);
713 	goto dump_cpu_list_and_out;
714 
715 fatal_mondo_error:
716 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
717 	       this_cpu, status);
718 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
719 	       "mondo_block_pa(%lx)\n",
720 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
721 
722 dump_cpu_list_and_out:
723 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
724 	for (i = 0; i < cnt; i++)
725 		printk("%u ", cpu_list[i]);
726 	printk("]\n");
727 }
728 
729 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
730 
731 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
732 {
733 	struct trap_per_cpu *tb;
734 	int this_cpu, i, cnt;
735 	unsigned long flags;
736 	u16 *cpu_list;
737 	u64 *mondo;
738 
739 	/* We have to do this whole thing with interrupts fully disabled.
740 	 * Otherwise if we send an xcall from interrupt context it will
741 	 * corrupt both our mondo block and cpu list state.
742 	 *
743 	 * One consequence of this is that we cannot use timeout mechanisms
744 	 * that depend upon interrupts being delivered locally.  So, for
745 	 * example, we cannot sample jiffies and expect it to advance.
746 	 *
747 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
748 	 */
749 	local_irq_save(flags);
750 
751 	this_cpu = smp_processor_id();
752 	tb = &trap_block[this_cpu];
753 
754 	mondo = __va(tb->cpu_mondo_block_pa);
755 	mondo[0] = data0;
756 	mondo[1] = data1;
757 	mondo[2] = data2;
758 	wmb();
759 
760 	cpu_list = __va(tb->cpu_list_pa);
761 
762 	/* Setup the initial cpu list.  */
763 	cnt = 0;
764 	for_each_cpu(i, mask) {
765 		if (i == this_cpu || !cpu_online(i))
766 			continue;
767 		cpu_list[cnt++] = i;
768 	}
769 
770 	if (cnt)
771 		xcall_deliver_impl(tb, cnt);
772 
773 	local_irq_restore(flags);
774 }
775 
776 /* Send cross call to all processors mentioned in MASK_P
777  * except self.  Really, there are only two cases currently,
778  * "cpu_online_mask" and "mm_cpumask(mm)".
779  */
780 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
781 {
782 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
783 
784 	xcall_deliver(data0, data1, data2, mask);
785 }
786 
787 /* Send cross call to all processors except self. */
788 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
789 {
790 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
791 }
792 
793 extern unsigned long xcall_sync_tick;
794 
795 static void smp_start_sync_tick_client(int cpu)
796 {
797 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
798 		      cpumask_of(cpu));
799 }
800 
801 extern unsigned long xcall_call_function;
802 
803 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
804 {
805 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
806 }
807 
808 extern unsigned long xcall_call_function_single;
809 
810 void arch_send_call_function_single_ipi(int cpu)
811 {
812 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
813 		      cpumask_of(cpu));
814 }
815 
816 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
817 {
818 	clear_softint(1 << irq);
819 	irq_enter();
820 	generic_smp_call_function_interrupt();
821 	irq_exit();
822 }
823 
824 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
825 {
826 	clear_softint(1 << irq);
827 	irq_enter();
828 	generic_smp_call_function_single_interrupt();
829 	irq_exit();
830 }
831 
832 static void tsb_sync(void *info)
833 {
834 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
835 	struct mm_struct *mm = info;
836 
837 	/* It is not valid to test "current->active_mm == mm" here.
838 	 *
839 	 * The value of "current" is not changed atomically with
840 	 * switch_mm().  But that's OK, we just need to check the
841 	 * current cpu's trap block PGD physical address.
842 	 */
843 	if (tp->pgd_paddr == __pa(mm->pgd))
844 		tsb_context_switch(mm);
845 }
846 
847 void smp_tsb_sync(struct mm_struct *mm)
848 {
849 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
850 }
851 
852 extern unsigned long xcall_flush_tlb_mm;
853 extern unsigned long xcall_flush_tlb_page;
854 extern unsigned long xcall_flush_tlb_kernel_range;
855 extern unsigned long xcall_fetch_glob_regs;
856 extern unsigned long xcall_fetch_glob_pmu;
857 extern unsigned long xcall_fetch_glob_pmu_n4;
858 extern unsigned long xcall_receive_signal;
859 extern unsigned long xcall_new_mmu_context_version;
860 #ifdef CONFIG_KGDB
861 extern unsigned long xcall_kgdb_capture;
862 #endif
863 
864 #ifdef DCACHE_ALIASING_POSSIBLE
865 extern unsigned long xcall_flush_dcache_page_cheetah;
866 #endif
867 extern unsigned long xcall_flush_dcache_page_spitfire;
868 
869 static inline void __local_flush_dcache_page(struct page *page)
870 {
871 #ifdef DCACHE_ALIASING_POSSIBLE
872 	__flush_dcache_page(page_address(page),
873 			    ((tlb_type == spitfire) &&
874 			     page_mapping(page) != NULL));
875 #else
876 	if (page_mapping(page) != NULL &&
877 	    tlb_type == spitfire)
878 		__flush_icache_page(__pa(page_address(page)));
879 #endif
880 }
881 
882 void smp_flush_dcache_page_impl(struct page *page, int cpu)
883 {
884 	int this_cpu;
885 
886 	if (tlb_type == hypervisor)
887 		return;
888 
889 #ifdef CONFIG_DEBUG_DCFLUSH
890 	atomic_inc(&dcpage_flushes);
891 #endif
892 
893 	this_cpu = get_cpu();
894 
895 	if (cpu == this_cpu) {
896 		__local_flush_dcache_page(page);
897 	} else if (cpu_online(cpu)) {
898 		void *pg_addr = page_address(page);
899 		u64 data0 = 0;
900 
901 		if (tlb_type == spitfire) {
902 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
903 			if (page_mapping(page) != NULL)
904 				data0 |= ((u64)1 << 32);
905 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
906 #ifdef DCACHE_ALIASING_POSSIBLE
907 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
908 #endif
909 		}
910 		if (data0) {
911 			xcall_deliver(data0, __pa(pg_addr),
912 				      (u64) pg_addr, cpumask_of(cpu));
913 #ifdef CONFIG_DEBUG_DCFLUSH
914 			atomic_inc(&dcpage_flushes_xcall);
915 #endif
916 		}
917 	}
918 
919 	put_cpu();
920 }
921 
922 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
923 {
924 	void *pg_addr;
925 	u64 data0;
926 
927 	if (tlb_type == hypervisor)
928 		return;
929 
930 	preempt_disable();
931 
932 #ifdef CONFIG_DEBUG_DCFLUSH
933 	atomic_inc(&dcpage_flushes);
934 #endif
935 	data0 = 0;
936 	pg_addr = page_address(page);
937 	if (tlb_type == spitfire) {
938 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
939 		if (page_mapping(page) != NULL)
940 			data0 |= ((u64)1 << 32);
941 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
942 #ifdef DCACHE_ALIASING_POSSIBLE
943 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
944 #endif
945 	}
946 	if (data0) {
947 		xcall_deliver(data0, __pa(pg_addr),
948 			      (u64) pg_addr, cpu_online_mask);
949 #ifdef CONFIG_DEBUG_DCFLUSH
950 		atomic_inc(&dcpage_flushes_xcall);
951 #endif
952 	}
953 	__local_flush_dcache_page(page);
954 
955 	preempt_enable();
956 }
957 
958 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
959 {
960 	struct mm_struct *mm;
961 	unsigned long flags;
962 
963 	clear_softint(1 << irq);
964 
965 	/* See if we need to allocate a new TLB context because
966 	 * the version of the one we are using is now out of date.
967 	 */
968 	mm = current->active_mm;
969 	if (unlikely(!mm || (mm == &init_mm)))
970 		return;
971 
972 	spin_lock_irqsave(&mm->context.lock, flags);
973 
974 	if (unlikely(!CTX_VALID(mm->context)))
975 		get_new_mmu_context(mm);
976 
977 	spin_unlock_irqrestore(&mm->context.lock, flags);
978 
979 	load_secondary_context(mm);
980 	__flush_tlb_mm(CTX_HWBITS(mm->context),
981 		       SECONDARY_CONTEXT);
982 }
983 
984 void smp_new_mmu_context_version(void)
985 {
986 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
987 }
988 
989 #ifdef CONFIG_KGDB
990 void kgdb_roundup_cpus(unsigned long flags)
991 {
992 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
993 }
994 #endif
995 
996 void smp_fetch_global_regs(void)
997 {
998 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
999 }
1000 
1001 void smp_fetch_global_pmu(void)
1002 {
1003 	if (tlb_type == hypervisor &&
1004 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1005 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1006 	else
1007 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1008 }
1009 
1010 /* We know that the window frames of the user have been flushed
1011  * to the stack before we get here because all callers of us
1012  * are flush_tlb_*() routines, and these run after flush_cache_*()
1013  * which performs the flushw.
1014  *
1015  * The SMP TLB coherency scheme we use works as follows:
1016  *
1017  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018  *    space has (potentially) executed on, this is the heuristic
1019  *    we use to avoid doing cross calls.
1020  *
1021  *    Also, for flushing from kswapd and also for clones, we
1022  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023  *
1024  * 2) TLB context numbers are shared globally across all processors
1025  *    in the system, this allows us to play several games to avoid
1026  *    cross calls.
1027  *
1028  *    One invariant is that when a cpu switches to a process, and
1029  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030  *    current cpu's bit set, that tlb context is flushed locally.
1031  *
1032  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033  *    cross calls when we want to flush the currently running process's
1034  *    tlb state.  This is done by clearing all cpu bits except the current
1035  *    processor's in current->mm->cpu_vm_mask and performing the
1036  *    flush locally only.  This will force any subsequent cpus which run
1037  *    this task to flush the context from the local tlb if the process
1038  *    migrates to another cpu (again).
1039  *
1040  * 3) For shared address spaces (threads) and swapping we bite the
1041  *    bullet for most cases and perform the cross call (but only to
1042  *    the cpus listed in cpu_vm_mask).
1043  *
1044  *    The performance gain from "optimizing" away the cross call for threads is
1045  *    questionable (in theory the big win for threads is the massive sharing of
1046  *    address space state across processors).
1047  */
1048 
1049 /* This currently is only used by the hugetlb arch pre-fault
1050  * hook on UltraSPARC-III+ and later when changing the pagesize
1051  * bits of the context register for an address space.
1052  */
1053 void smp_flush_tlb_mm(struct mm_struct *mm)
1054 {
1055 	u32 ctx = CTX_HWBITS(mm->context);
1056 	int cpu = get_cpu();
1057 
1058 	if (atomic_read(&mm->mm_users) == 1) {
1059 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060 		goto local_flush_and_out;
1061 	}
1062 
1063 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1064 			      ctx, 0, 0,
1065 			      mm_cpumask(mm));
1066 
1067 local_flush_and_out:
1068 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069 
1070 	put_cpu();
1071 }
1072 
1073 struct tlb_pending_info {
1074 	unsigned long ctx;
1075 	unsigned long nr;
1076 	unsigned long *vaddrs;
1077 };
1078 
1079 static void tlb_pending_func(void *info)
1080 {
1081 	struct tlb_pending_info *t = info;
1082 
1083 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1084 }
1085 
1086 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1087 {
1088 	u32 ctx = CTX_HWBITS(mm->context);
1089 	struct tlb_pending_info info;
1090 	int cpu = get_cpu();
1091 
1092 	info.ctx = ctx;
1093 	info.nr = nr;
1094 	info.vaddrs = vaddrs;
1095 
1096 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1097 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1098 	else
1099 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1100 				       &info, 1);
1101 
1102 	__flush_tlb_pending(ctx, nr, vaddrs);
1103 
1104 	put_cpu();
1105 }
1106 
1107 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1108 {
1109 	unsigned long context = CTX_HWBITS(mm->context);
1110 	int cpu = get_cpu();
1111 
1112 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1113 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1114 	else
1115 		smp_cross_call_masked(&xcall_flush_tlb_page,
1116 				      context, vaddr, 0,
1117 				      mm_cpumask(mm));
1118 	__flush_tlb_page(context, vaddr);
1119 
1120 	put_cpu();
1121 }
1122 
1123 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1124 {
1125 	start &= PAGE_MASK;
1126 	end    = PAGE_ALIGN(end);
1127 	if (start != end) {
1128 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1129 			       0, start, end);
1130 
1131 		__flush_tlb_kernel_range(start, end);
1132 	}
1133 }
1134 
1135 /* CPU capture. */
1136 /* #define CAPTURE_DEBUG */
1137 extern unsigned long xcall_capture;
1138 
1139 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1140 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1141 static unsigned long penguins_are_doing_time;
1142 
1143 void smp_capture(void)
1144 {
1145 	int result = atomic_add_return(1, &smp_capture_depth);
1146 
1147 	if (result == 1) {
1148 		int ncpus = num_online_cpus();
1149 
1150 #ifdef CAPTURE_DEBUG
1151 		printk("CPU[%d]: Sending penguins to jail...",
1152 		       smp_processor_id());
1153 #endif
1154 		penguins_are_doing_time = 1;
1155 		atomic_inc(&smp_capture_registry);
1156 		smp_cross_call(&xcall_capture, 0, 0, 0);
1157 		while (atomic_read(&smp_capture_registry) != ncpus)
1158 			rmb();
1159 #ifdef CAPTURE_DEBUG
1160 		printk("done\n");
1161 #endif
1162 	}
1163 }
1164 
1165 void smp_release(void)
1166 {
1167 	if (atomic_dec_and_test(&smp_capture_depth)) {
1168 #ifdef CAPTURE_DEBUG
1169 		printk("CPU[%d]: Giving pardon to "
1170 		       "imprisoned penguins\n",
1171 		       smp_processor_id());
1172 #endif
1173 		penguins_are_doing_time = 0;
1174 		membar_safe("#StoreLoad");
1175 		atomic_dec(&smp_capture_registry);
1176 	}
1177 }
1178 
1179 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1180  * set, so they can service tlb flush xcalls...
1181  */
1182 extern void prom_world(int);
1183 
1184 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1185 {
1186 	clear_softint(1 << irq);
1187 
1188 	preempt_disable();
1189 
1190 	__asm__ __volatile__("flushw");
1191 	prom_world(1);
1192 	atomic_inc(&smp_capture_registry);
1193 	membar_safe("#StoreLoad");
1194 	while (penguins_are_doing_time)
1195 		rmb();
1196 	atomic_dec(&smp_capture_registry);
1197 	prom_world(0);
1198 
1199 	preempt_enable();
1200 }
1201 
1202 /* /proc/profile writes can call this, don't __init it please. */
1203 int setup_profiling_timer(unsigned int multiplier)
1204 {
1205 	return -EINVAL;
1206 }
1207 
1208 void __init smp_prepare_cpus(unsigned int max_cpus)
1209 {
1210 }
1211 
1212 void smp_prepare_boot_cpu(void)
1213 {
1214 }
1215 
1216 void __init smp_setup_processor_id(void)
1217 {
1218 	if (tlb_type == spitfire)
1219 		xcall_deliver_impl = spitfire_xcall_deliver;
1220 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1221 		xcall_deliver_impl = cheetah_xcall_deliver;
1222 	else
1223 		xcall_deliver_impl = hypervisor_xcall_deliver;
1224 }
1225 
1226 void smp_fill_in_sib_core_maps(void)
1227 {
1228 	unsigned int i;
1229 
1230 	for_each_present_cpu(i) {
1231 		unsigned int j;
1232 
1233 		cpumask_clear(&cpu_core_map[i]);
1234 		if (cpu_data(i).core_id == 0) {
1235 			cpumask_set_cpu(i, &cpu_core_map[i]);
1236 			continue;
1237 		}
1238 
1239 		for_each_present_cpu(j) {
1240 			if (cpu_data(i).core_id ==
1241 			    cpu_data(j).core_id)
1242 				cpumask_set_cpu(j, &cpu_core_map[i]);
1243 		}
1244 	}
1245 
1246 	for_each_present_cpu(i) {
1247 		unsigned int j;
1248 
1249 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1250 		if (cpu_data(i).proc_id == -1) {
1251 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1252 			continue;
1253 		}
1254 
1255 		for_each_present_cpu(j) {
1256 			if (cpu_data(i).proc_id ==
1257 			    cpu_data(j).proc_id)
1258 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1259 		}
1260 	}
1261 }
1262 
1263 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1264 {
1265 	int ret = smp_boot_one_cpu(cpu, tidle);
1266 
1267 	if (!ret) {
1268 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1269 		while (!cpu_online(cpu))
1270 			mb();
1271 		if (!cpu_online(cpu)) {
1272 			ret = -ENODEV;
1273 		} else {
1274 			/* On SUN4V, writes to %tick and %stick are
1275 			 * not allowed.
1276 			 */
1277 			if (tlb_type != hypervisor)
1278 				smp_synchronize_one_tick(cpu);
1279 		}
1280 	}
1281 	return ret;
1282 }
1283 
1284 #ifdef CONFIG_HOTPLUG_CPU
1285 void cpu_play_dead(void)
1286 {
1287 	int cpu = smp_processor_id();
1288 	unsigned long pstate;
1289 
1290 	idle_task_exit();
1291 
1292 	if (tlb_type == hypervisor) {
1293 		struct trap_per_cpu *tb = &trap_block[cpu];
1294 
1295 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1296 				tb->cpu_mondo_pa, 0);
1297 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1298 				tb->dev_mondo_pa, 0);
1299 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1300 				tb->resum_mondo_pa, 0);
1301 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1302 				tb->nonresum_mondo_pa, 0);
1303 	}
1304 
1305 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1306 	membar_safe("#Sync");
1307 
1308 	local_irq_disable();
1309 
1310 	__asm__ __volatile__(
1311 		"rdpr	%%pstate, %0\n\t"
1312 		"wrpr	%0, %1, %%pstate"
1313 		: "=r" (pstate)
1314 		: "i" (PSTATE_IE));
1315 
1316 	while (1)
1317 		barrier();
1318 }
1319 
1320 int __cpu_disable(void)
1321 {
1322 	int cpu = smp_processor_id();
1323 	cpuinfo_sparc *c;
1324 	int i;
1325 
1326 	for_each_cpu(i, &cpu_core_map[cpu])
1327 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1328 	cpumask_clear(&cpu_core_map[cpu]);
1329 
1330 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1331 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1332 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1333 
1334 	c = &cpu_data(cpu);
1335 
1336 	c->core_id = 0;
1337 	c->proc_id = -1;
1338 
1339 	smp_wmb();
1340 
1341 	/* Make sure no interrupts point to this cpu.  */
1342 	fixup_irqs();
1343 
1344 	local_irq_enable();
1345 	mdelay(1);
1346 	local_irq_disable();
1347 
1348 	set_cpu_online(cpu, false);
1349 
1350 	cpu_map_rebuild();
1351 
1352 	return 0;
1353 }
1354 
1355 void __cpu_die(unsigned int cpu)
1356 {
1357 	int i;
1358 
1359 	for (i = 0; i < 100; i++) {
1360 		smp_rmb();
1361 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1362 			break;
1363 		msleep(100);
1364 	}
1365 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1366 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1367 	} else {
1368 #if defined(CONFIG_SUN_LDOMS)
1369 		unsigned long hv_err;
1370 		int limit = 100;
1371 
1372 		do {
1373 			hv_err = sun4v_cpu_stop(cpu);
1374 			if (hv_err == HV_EOK) {
1375 				set_cpu_present(cpu, false);
1376 				break;
1377 			}
1378 		} while (--limit > 0);
1379 		if (limit <= 0) {
1380 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1381 			       hv_err);
1382 		}
1383 #endif
1384 	}
1385 }
1386 #endif
1387 
1388 void __init smp_cpus_done(unsigned int max_cpus)
1389 {
1390 }
1391 
1392 void smp_send_reschedule(int cpu)
1393 {
1394 	if (cpu == smp_processor_id()) {
1395 		WARN_ON_ONCE(preemptible());
1396 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1397 	} else {
1398 		xcall_deliver((u64) &xcall_receive_signal,
1399 			      0, 0, cpumask_of(cpu));
1400 	}
1401 }
1402 
1403 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1404 {
1405 	clear_softint(1 << irq);
1406 	scheduler_ipi();
1407 }
1408 
1409 static void stop_this_cpu(void *dummy)
1410 {
1411 	prom_stopself();
1412 }
1413 
1414 void smp_send_stop(void)
1415 {
1416 	int cpu;
1417 
1418 	if (tlb_type == hypervisor) {
1419 		for_each_online_cpu(cpu) {
1420 			if (cpu == smp_processor_id())
1421 				continue;
1422 #ifdef CONFIG_SUN_LDOMS
1423 			if (ldom_domaining_enabled) {
1424 				unsigned long hv_err;
1425 				hv_err = sun4v_cpu_stop(cpu);
1426 				if (hv_err)
1427 					printk(KERN_ERR "sun4v_cpu_stop() "
1428 					       "failed err=%lu\n", hv_err);
1429 			} else
1430 #endif
1431 				prom_stopcpu_cpuid(cpu);
1432 		}
1433 	} else
1434 		smp_call_function(stop_this_cpu, NULL, 0);
1435 }
1436 
1437 /**
1438  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1439  * @cpu: cpu to allocate for
1440  * @size: size allocation in bytes
1441  * @align: alignment
1442  *
1443  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1444  * does the right thing for NUMA regardless of the current
1445  * configuration.
1446  *
1447  * RETURNS:
1448  * Pointer to the allocated area on success, NULL on failure.
1449  */
1450 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1451 					size_t align)
1452 {
1453 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1454 #ifdef CONFIG_NEED_MULTIPLE_NODES
1455 	int node = cpu_to_node(cpu);
1456 	void *ptr;
1457 
1458 	if (!node_online(node) || !NODE_DATA(node)) {
1459 		ptr = __alloc_bootmem(size, align, goal);
1460 		pr_info("cpu %d has no node %d or node-local memory\n",
1461 			cpu, node);
1462 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1463 			 cpu, size, __pa(ptr));
1464 	} else {
1465 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1466 					   size, align, goal);
1467 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1468 			 "%016lx\n", cpu, size, node, __pa(ptr));
1469 	}
1470 	return ptr;
1471 #else
1472 	return __alloc_bootmem(size, align, goal);
1473 #endif
1474 }
1475 
1476 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1477 {
1478 	free_bootmem(__pa(ptr), size);
1479 }
1480 
1481 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1482 {
1483 	if (cpu_to_node(from) == cpu_to_node(to))
1484 		return LOCAL_DISTANCE;
1485 	else
1486 		return REMOTE_DISTANCE;
1487 }
1488 
1489 static void __init pcpu_populate_pte(unsigned long addr)
1490 {
1491 	pgd_t *pgd = pgd_offset_k(addr);
1492 	pud_t *pud;
1493 	pmd_t *pmd;
1494 
1495 	if (pgd_none(*pgd)) {
1496 		pud_t *new;
1497 
1498 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1499 		pgd_populate(&init_mm, pgd, new);
1500 	}
1501 
1502 	pud = pud_offset(pgd, addr);
1503 	if (pud_none(*pud)) {
1504 		pmd_t *new;
1505 
1506 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1507 		pud_populate(&init_mm, pud, new);
1508 	}
1509 
1510 	pmd = pmd_offset(pud, addr);
1511 	if (!pmd_present(*pmd)) {
1512 		pte_t *new;
1513 
1514 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1515 		pmd_populate_kernel(&init_mm, pmd, new);
1516 	}
1517 }
1518 
1519 void __init setup_per_cpu_areas(void)
1520 {
1521 	unsigned long delta;
1522 	unsigned int cpu;
1523 	int rc = -EINVAL;
1524 
1525 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1526 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1527 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1528 					    pcpu_cpu_distance,
1529 					    pcpu_alloc_bootmem,
1530 					    pcpu_free_bootmem);
1531 		if (rc)
1532 			pr_warning("PERCPU: %s allocator failed (%d), "
1533 				   "falling back to page size\n",
1534 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1535 	}
1536 	if (rc < 0)
1537 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1538 					   pcpu_alloc_bootmem,
1539 					   pcpu_free_bootmem,
1540 					   pcpu_populate_pte);
1541 	if (rc < 0)
1542 		panic("cannot initialize percpu area (err=%d)", rc);
1543 
1544 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1545 	for_each_possible_cpu(cpu)
1546 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1547 
1548 	/* Setup %g5 for the boot cpu.  */
1549 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1550 
1551 	of_fill_in_cpu_data();
1552 	if (tlb_type == hypervisor)
1553 		mdesc_fill_in_cpu_data(cpu_all_mask);
1554 }
1555