xref: /linux/arch/sparc/kernel/smp_64.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3  *
4  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5  */
6 
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31 
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42 
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57 
58 #include "cpumap.h"
59 #include "kernel.h"
60 
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64 
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
67 
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70 
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75 
76 static cpumask_t smp_commenced_mask;
77 
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80 
81 void smp_info(struct seq_file *m)
82 {
83 	int i;
84 
85 	seq_printf(m, "State:\n");
86 	for_each_online_cpu(i)
87 		seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89 
90 void smp_bogo(struct seq_file *m)
91 {
92 	int i;
93 
94 	for_each_online_cpu(i)
95 		seq_printf(m,
96 			   "Cpu%dClkTck\t: %016lx\n",
97 			   i, cpu_data(i).clock_tick);
98 }
99 
100 extern void setup_sparc64_timer(void);
101 
102 static volatile unsigned long callin_flag = 0;
103 
104 void smp_callin(void)
105 {
106 	int cpuid = hard_smp_processor_id();
107 
108 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
109 
110 	if (tlb_type == hypervisor)
111 		sun4v_ktsb_register();
112 
113 	__flush_tlb_all();
114 
115 	setup_sparc64_timer();
116 
117 	if (cheetah_pcache_forced_on)
118 		cheetah_enable_pcache();
119 
120 	callin_flag = 1;
121 	__asm__ __volatile__("membar #Sync\n\t"
122 			     "flush  %%g6" : : : "memory");
123 
124 	/* Clear this or we will die instantly when we
125 	 * schedule back to this idler...
126 	 */
127 	current_thread_info()->new_child = 0;
128 
129 	/* Attach to the address space of init_task. */
130 	mmgrab(&init_mm);
131 	current->active_mm = &init_mm;
132 
133 	/* inform the notifiers about the new cpu */
134 	notify_cpu_starting(cpuid);
135 
136 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 		rmb();
138 
139 	set_cpu_online(cpuid, true);
140 
141 	local_irq_enable();
142 
143 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144 }
145 
146 void cpu_panic(void)
147 {
148 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 	panic("SMP bolixed\n");
150 }
151 
152 /* This tick register synchronization scheme is taken entirely from
153  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154  *
155  * The only change I've made is to rework it so that the master
156  * initiates the synchonization instead of the slave. -DaveM
157  */
158 
159 #define MASTER	0
160 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
161 
162 #define NUM_ROUNDS	64	/* magic value */
163 #define NUM_ITERS	5	/* likewise */
164 
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
167 
168 #define DEBUG_TICK_SYNC	0
169 
170 static inline long get_delta (long *rt, long *master)
171 {
172 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 	unsigned long tcenter, t0, t1, tm;
174 	unsigned long i;
175 
176 	for (i = 0; i < NUM_ITERS; i++) {
177 		t0 = tick_ops->get_tick();
178 		go[MASTER] = 1;
179 		membar_safe("#StoreLoad");
180 		while (!(tm = go[SLAVE]))
181 			rmb();
182 		go[SLAVE] = 0;
183 		wmb();
184 		t1 = tick_ops->get_tick();
185 
186 		if (t1 - t0 < best_t1 - best_t0)
187 			best_t0 = t0, best_t1 = t1, best_tm = tm;
188 	}
189 
190 	*rt = best_t1 - best_t0;
191 	*master = best_tm - best_t0;
192 
193 	/* average best_t0 and best_t1 without overflow: */
194 	tcenter = (best_t0/2 + best_t1/2);
195 	if (best_t0 % 2 + best_t1 % 2 == 2)
196 		tcenter++;
197 	return tcenter - best_tm;
198 }
199 
200 void smp_synchronize_tick_client(void)
201 {
202 	long i, delta, adj, adjust_latency = 0, done = 0;
203 	unsigned long flags, rt, master_time_stamp;
204 #if DEBUG_TICK_SYNC
205 	struct {
206 		long rt;	/* roundtrip time */
207 		long master;	/* master's timestamp */
208 		long diff;	/* difference between midpoint and master's timestamp */
209 		long lat;	/* estimate of itc adjustment latency */
210 	} t[NUM_ROUNDS];
211 #endif
212 
213 	go[MASTER] = 1;
214 
215 	while (go[MASTER])
216 		rmb();
217 
218 	local_irq_save(flags);
219 	{
220 		for (i = 0; i < NUM_ROUNDS; i++) {
221 			delta = get_delta(&rt, &master_time_stamp);
222 			if (delta == 0)
223 				done = 1;	/* let's lock on to this... */
224 
225 			if (!done) {
226 				if (i > 0) {
227 					adjust_latency += -delta;
228 					adj = -delta + adjust_latency/4;
229 				} else
230 					adj = -delta;
231 
232 				tick_ops->add_tick(adj);
233 			}
234 #if DEBUG_TICK_SYNC
235 			t[i].rt = rt;
236 			t[i].master = master_time_stamp;
237 			t[i].diff = delta;
238 			t[i].lat = adjust_latency/4;
239 #endif
240 		}
241 	}
242 	local_irq_restore(flags);
243 
244 #if DEBUG_TICK_SYNC
245 	for (i = 0; i < NUM_ROUNDS; i++)
246 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249 
250 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
252 	       smp_processor_id(), delta, rt);
253 }
254 
255 static void smp_start_sync_tick_client(int cpu);
256 
257 static void smp_synchronize_one_tick(int cpu)
258 {
259 	unsigned long flags, i;
260 
261 	go[MASTER] = 0;
262 
263 	smp_start_sync_tick_client(cpu);
264 
265 	/* wait for client to be ready */
266 	while (!go[MASTER])
267 		rmb();
268 
269 	/* now let the client proceed into his loop */
270 	go[MASTER] = 0;
271 	membar_safe("#StoreLoad");
272 
273 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
274 	{
275 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 			while (!go[MASTER])
277 				rmb();
278 			go[MASTER] = 0;
279 			wmb();
280 			go[SLAVE] = tick_ops->get_tick();
281 			membar_safe("#StoreLoad");
282 		}
283 	}
284 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 }
286 
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 				void **descrp)
290 {
291 	extern unsigned long sparc64_ttable_tl0;
292 	extern unsigned long kern_locked_tte_data;
293 	struct hvtramp_descr *hdesc;
294 	unsigned long trampoline_ra;
295 	struct trap_per_cpu *tb;
296 	u64 tte_vaddr, tte_data;
297 	unsigned long hv_err;
298 	int i;
299 
300 	hdesc = kzalloc(struct_size(hdesc, maps, num_kernel_image_mappings),
301 			GFP_KERNEL);
302 	if (!hdesc) {
303 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304 		       "hvtramp_descr.\n");
305 		return;
306 	}
307 	*descrp = hdesc;
308 
309 	hdesc->cpu = cpu;
310 	hdesc->num_mappings = num_kernel_image_mappings;
311 
312 	tb = &trap_block[cpu];
313 
314 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316 
317 	hdesc->thread_reg = thread_reg;
318 
319 	tte_vaddr = (unsigned long) KERNBASE;
320 	tte_data = kern_locked_tte_data;
321 
322 	for (i = 0; i < hdesc->num_mappings; i++) {
323 		hdesc->maps[i].vaddr = tte_vaddr;
324 		hdesc->maps[i].tte   = tte_data;
325 		tte_vaddr += 0x400000;
326 		tte_data  += 0x400000;
327 	}
328 
329 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330 
331 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 				 __pa(hdesc));
334 	if (hv_err)
335 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 		       "gives error %lu\n", hv_err);
337 }
338 #endif
339 
340 extern unsigned long sparc64_cpu_startup;
341 
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347 
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350 	unsigned long entry =
351 		(unsigned long)(&sparc64_cpu_startup);
352 	unsigned long cookie =
353 		(unsigned long)(&cpu_new_thread);
354 	void *descr = NULL;
355 	int timeout, ret;
356 
357 	callin_flag = 0;
358 	cpu_new_thread = task_thread_info(idle);
359 
360 	if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 		if (ldom_domaining_enabled)
363 			ldom_startcpu_cpuid(cpu,
364 					    (unsigned long) cpu_new_thread,
365 					    &descr);
366 		else
367 #endif
368 			prom_startcpu_cpuid(cpu, entry, cookie);
369 	} else {
370 		struct device_node *dp = of_find_node_by_cpuid(cpu);
371 
372 		prom_startcpu(dp->phandle, entry, cookie);
373 	}
374 
375 	for (timeout = 0; timeout < 50000; timeout++) {
376 		if (callin_flag)
377 			break;
378 		udelay(100);
379 	}
380 
381 	if (callin_flag) {
382 		ret = 0;
383 	} else {
384 		printk("Processor %d is stuck.\n", cpu);
385 		ret = -ENODEV;
386 	}
387 	cpu_new_thread = NULL;
388 
389 	kfree(descr);
390 
391 	return ret;
392 }
393 
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396 	u64 result, target;
397 	int stuck, tmp;
398 
399 	if (this_is_starfire) {
400 		/* map to real upaid */
401 		cpu = (((cpu & 0x3c) << 1) |
402 			((cpu & 0x40) >> 4) |
403 			(cpu & 0x3));
404 	}
405 
406 	target = (cpu << 14) | 0x70;
407 again:
408 	/* Ok, this is the real Spitfire Errata #54.
409 	 * One must read back from a UDB internal register
410 	 * after writes to the UDB interrupt dispatch, but
411 	 * before the membar Sync for that write.
412 	 * So we use the high UDB control register (ASI 0x7f,
413 	 * ADDR 0x20) for the dummy read. -DaveM
414 	 */
415 	tmp = 0x40;
416 	__asm__ __volatile__(
417 	"wrpr	%1, %2, %%pstate\n\t"
418 	"stxa	%4, [%0] %3\n\t"
419 	"stxa	%5, [%0+%8] %3\n\t"
420 	"add	%0, %8, %0\n\t"
421 	"stxa	%6, [%0+%8] %3\n\t"
422 	"membar	#Sync\n\t"
423 	"stxa	%%g0, [%7] %3\n\t"
424 	"membar	#Sync\n\t"
425 	"mov	0x20, %%g1\n\t"
426 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
427 	"membar	#Sync"
428 	: "=r" (tmp)
429 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 	  "r" (0x10), "0" (tmp)
432         : "g1");
433 
434 	/* NOTE: PSTATE_IE is still clear. */
435 	stuck = 100000;
436 	do {
437 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
438 			: "=r" (result)
439 			: "i" (ASI_INTR_DISPATCH_STAT));
440 		if (result == 0) {
441 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 					     : : "r" (pstate));
443 			return;
444 		}
445 		stuck -= 1;
446 		if (stuck == 0)
447 			break;
448 	} while (result & 0x1);
449 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 			     : : "r" (pstate));
451 	if (stuck == 0) {
452 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 		       smp_processor_id(), result);
454 	} else {
455 		udelay(2);
456 		goto again;
457 	}
458 }
459 
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462 	u64 *mondo, data0, data1, data2;
463 	u16 *cpu_list;
464 	u64 pstate;
465 	int i;
466 
467 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 	cpu_list = __va(tb->cpu_list_pa);
469 	mondo = __va(tb->cpu_mondo_block_pa);
470 	data0 = mondo[0];
471 	data1 = mondo[1];
472 	data2 = mondo[2];
473 	for (i = 0; i < cnt; i++)
474 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476 
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483 	int nack_busy_id, is_jbus, need_more;
484 	u64 *mondo, pstate, ver, busy_mask;
485 	u16 *cpu_list;
486 
487 	cpu_list = __va(tb->cpu_list_pa);
488 	mondo = __va(tb->cpu_mondo_block_pa);
489 
490 	/* Unfortunately, someone at Sun had the brilliant idea to make the
491 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 	 * derivative processor.
493 	 */
494 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 		   (ver >> 32) == __SERRANO_ID);
497 
498 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499 
500 retry:
501 	need_more = 0;
502 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 			     : : "r" (pstate), "i" (PSTATE_IE));
504 
505 	/* Setup the dispatch data registers. */
506 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
507 			     "stxa	%1, [%4] %6\n\t"
508 			     "stxa	%2, [%5] %6\n\t"
509 			     "membar	#Sync\n\t"
510 			     : /* no outputs */
511 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 			       "r" (0x40), "r" (0x50), "r" (0x60),
513 			       "i" (ASI_INTR_W));
514 
515 	nack_busy_id = 0;
516 	busy_mask = 0;
517 	{
518 		int i;
519 
520 		for (i = 0; i < cnt; i++) {
521 			u64 target, nr;
522 
523 			nr = cpu_list[i];
524 			if (nr == 0xffff)
525 				continue;
526 
527 			target = (nr << 14) | 0x70;
528 			if (is_jbus) {
529 				busy_mask |= (0x1UL << (nr * 2));
530 			} else {
531 				target |= (nack_busy_id << 24);
532 				busy_mask |= (0x1UL <<
533 					      (nack_busy_id * 2));
534 			}
535 			__asm__ __volatile__(
536 				"stxa	%%g0, [%0] %1\n\t"
537 				"membar	#Sync\n\t"
538 				: /* no outputs */
539 				: "r" (target), "i" (ASI_INTR_W));
540 			nack_busy_id++;
541 			if (nack_busy_id == 32) {
542 				need_more = 1;
543 				break;
544 			}
545 		}
546 	}
547 
548 	/* Now, poll for completion. */
549 	{
550 		u64 dispatch_stat, nack_mask;
551 		long stuck;
552 
553 		stuck = 100000 * nack_busy_id;
554 		nack_mask = busy_mask << 1;
555 		do {
556 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
557 					     : "=r" (dispatch_stat)
558 					     : "i" (ASI_INTR_DISPATCH_STAT));
559 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 						     : : "r" (pstate));
562 				if (unlikely(need_more)) {
563 					int i, this_cnt = 0;
564 					for (i = 0; i < cnt; i++) {
565 						if (cpu_list[i] == 0xffff)
566 							continue;
567 						cpu_list[i] = 0xffff;
568 						this_cnt++;
569 						if (this_cnt == 32)
570 							break;
571 					}
572 					goto retry;
573 				}
574 				return;
575 			}
576 			if (!--stuck)
577 				break;
578 		} while (dispatch_stat & busy_mask);
579 
580 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 				     : : "r" (pstate));
582 
583 		if (dispatch_stat & busy_mask) {
584 			/* Busy bits will not clear, continue instead
585 			 * of freezing up on this cpu.
586 			 */
587 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 			       smp_processor_id(), dispatch_stat);
589 		} else {
590 			int i, this_busy_nack = 0;
591 
592 			/* Delay some random time with interrupts enabled
593 			 * to prevent deadlock.
594 			 */
595 			udelay(2 * nack_busy_id);
596 
597 			/* Clear out the mask bits for cpus which did not
598 			 * NACK us.
599 			 */
600 			for (i = 0; i < cnt; i++) {
601 				u64 check_mask, nr;
602 
603 				nr = cpu_list[i];
604 				if (nr == 0xffff)
605 					continue;
606 
607 				if (is_jbus)
608 					check_mask = (0x2UL << (2*nr));
609 				else
610 					check_mask = (0x2UL <<
611 						      this_busy_nack);
612 				if ((dispatch_stat & check_mask) == 0)
613 					cpu_list[i] = 0xffff;
614 				this_busy_nack += 2;
615 				if (this_busy_nack == 64)
616 					break;
617 			}
618 
619 			goto retry;
620 		}
621 	}
622 }
623 
624 #define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
625 #define	MONDO_USEC_WAIT_MIN		2
626 #define	MONDO_USEC_WAIT_MAX		100
627 #define	MONDO_RETRY_LIMIT		500000
628 
629 /* Multi-cpu list version.
630  *
631  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
632  * Sometimes not all cpus receive the mondo, requiring us to re-send
633  * the mondo until all cpus have received, or cpus are truly stuck
634  * unable to receive mondo, and we timeout.
635  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
636  * perform guest service, such as PCIe error handling. Consider the
637  * service time, 1 second overall wait is reasonable for 1 cpu.
638  * Here two in-between mondo check wait time are defined: 2 usec for
639  * single cpu quick turn around and up to 100usec for large cpu count.
640  * Deliver mondo to large number of cpus could take longer, we adjusts
641  * the retry count as long as target cpus are making forward progress.
642  */
643 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
644 {
645 	int this_cpu, tot_cpus, prev_sent, i, rem;
646 	int usec_wait, retries, tot_retries;
647 	u16 first_cpu = 0xffff;
648 	unsigned long xc_rcvd = 0;
649 	unsigned long status;
650 	int ecpuerror_id = 0;
651 	int enocpu_id = 0;
652 	u16 *cpu_list;
653 	u16 cpu;
654 
655 	this_cpu = smp_processor_id();
656 	cpu_list = __va(tb->cpu_list_pa);
657 	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
658 	if (usec_wait > MONDO_USEC_WAIT_MAX)
659 		usec_wait = MONDO_USEC_WAIT_MAX;
660 	retries = tot_retries = 0;
661 	tot_cpus = cnt;
662 	prev_sent = 0;
663 
664 	do {
665 		int n_sent, mondo_delivered, target_cpu_busy;
666 
667 		status = sun4v_cpu_mondo_send(cnt,
668 					      tb->cpu_list_pa,
669 					      tb->cpu_mondo_block_pa);
670 
671 		/* HV_EOK means all cpus received the xcall, we're done.  */
672 		if (likely(status == HV_EOK))
673 			goto xcall_done;
674 
675 		/* If not these non-fatal errors, panic */
676 		if (unlikely((status != HV_EWOULDBLOCK) &&
677 			(status != HV_ECPUERROR) &&
678 			(status != HV_ENOCPU)))
679 			goto fatal_errors;
680 
681 		/* First, see if we made any forward progress.
682 		 *
683 		 * Go through the cpu_list, count the target cpus that have
684 		 * received our mondo (n_sent), and those that did not (rem).
685 		 * Re-pack cpu_list with the cpus remain to be retried in the
686 		 * front - this simplifies tracking the truly stalled cpus.
687 		 *
688 		 * The hypervisor indicates successful sends by setting
689 		 * cpu list entries to the value 0xffff.
690 		 *
691 		 * EWOULDBLOCK means some target cpus did not receive the
692 		 * mondo and retry usually helps.
693 		 *
694 		 * ECPUERROR means at least one target cpu is in error state,
695 		 * it's usually safe to skip the faulty cpu and retry.
696 		 *
697 		 * ENOCPU means one of the target cpu doesn't belong to the
698 		 * domain, perhaps offlined which is unexpected, but not
699 		 * fatal and it's okay to skip the offlined cpu.
700 		 */
701 		rem = 0;
702 		n_sent = 0;
703 		for (i = 0; i < cnt; i++) {
704 			cpu = cpu_list[i];
705 			if (likely(cpu == 0xffff)) {
706 				n_sent++;
707 			} else if ((status == HV_ECPUERROR) &&
708 				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
709 				ecpuerror_id = cpu + 1;
710 			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
711 				enocpu_id = cpu + 1;
712 			} else {
713 				cpu_list[rem++] = cpu;
714 			}
715 		}
716 
717 		/* No cpu remained, we're done. */
718 		if (rem == 0)
719 			break;
720 
721 		/* Otherwise, update the cpu count for retry. */
722 		cnt = rem;
723 
724 		/* Record the overall number of mondos received by the
725 		 * first of the remaining cpus.
726 		 */
727 		if (first_cpu != cpu_list[0]) {
728 			first_cpu = cpu_list[0];
729 			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
730 		}
731 
732 		/* Was any mondo delivered successfully? */
733 		mondo_delivered = (n_sent > prev_sent);
734 		prev_sent = n_sent;
735 
736 		/* or, was any target cpu busy processing other mondos? */
737 		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
738 		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
739 
740 		/* Retry count is for no progress. If we're making progress,
741 		 * reset the retry count.
742 		 */
743 		if (likely(mondo_delivered || target_cpu_busy)) {
744 			tot_retries += retries;
745 			retries = 0;
746 		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
747 			goto fatal_mondo_timeout;
748 		}
749 
750 		/* Delay a little bit to let other cpus catch up on
751 		 * their cpu mondo queue work.
752 		 */
753 		if (!mondo_delivered)
754 			udelay(usec_wait);
755 
756 		retries++;
757 	} while (1);
758 
759 xcall_done:
760 	if (unlikely(ecpuerror_id > 0)) {
761 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
762 		       this_cpu, ecpuerror_id - 1);
763 	} else if (unlikely(enocpu_id > 0)) {
764 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
765 		       this_cpu, enocpu_id - 1);
766 	}
767 	return;
768 
769 fatal_errors:
770 	/* fatal errors include bad alignment, etc */
771 	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
772 	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
773 	panic("Unexpected SUN4V mondo error %lu\n", status);
774 
775 fatal_mondo_timeout:
776 	/* some cpus being non-responsive to the cpu mondo */
777 	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
778 	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
779 	panic("SUN4V mondo timeout panic\n");
780 }
781 
782 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
783 
784 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786 	struct trap_per_cpu *tb;
787 	int this_cpu, i, cnt;
788 	unsigned long flags;
789 	u16 *cpu_list;
790 	u64 *mondo;
791 
792 	/* We have to do this whole thing with interrupts fully disabled.
793 	 * Otherwise if we send an xcall from interrupt context it will
794 	 * corrupt both our mondo block and cpu list state.
795 	 *
796 	 * One consequence of this is that we cannot use timeout mechanisms
797 	 * that depend upon interrupts being delivered locally.  So, for
798 	 * example, we cannot sample jiffies and expect it to advance.
799 	 *
800 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
801 	 */
802 	local_irq_save(flags);
803 
804 	this_cpu = smp_processor_id();
805 	tb = &trap_block[this_cpu];
806 
807 	mondo = __va(tb->cpu_mondo_block_pa);
808 	mondo[0] = data0;
809 	mondo[1] = data1;
810 	mondo[2] = data2;
811 	wmb();
812 
813 	cpu_list = __va(tb->cpu_list_pa);
814 
815 	/* Setup the initial cpu list.  */
816 	cnt = 0;
817 	for_each_cpu(i, mask) {
818 		if (i == this_cpu || !cpu_online(i))
819 			continue;
820 		cpu_list[cnt++] = i;
821 	}
822 
823 	if (cnt)
824 		xcall_deliver_impl(tb, cnt);
825 
826 	local_irq_restore(flags);
827 }
828 
829 /* Send cross call to all processors mentioned in MASK_P
830  * except self.  Really, there are only two cases currently,
831  * "cpu_online_mask" and "mm_cpumask(mm)".
832  */
833 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
834 {
835 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
836 
837 	xcall_deliver(data0, data1, data2, mask);
838 }
839 
840 /* Send cross call to all processors except self. */
841 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
842 {
843 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
844 }
845 
846 extern unsigned long xcall_sync_tick;
847 
848 static void smp_start_sync_tick_client(int cpu)
849 {
850 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
851 		      cpumask_of(cpu));
852 }
853 
854 extern unsigned long xcall_call_function;
855 
856 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
857 {
858 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
859 }
860 
861 extern unsigned long xcall_call_function_single;
862 
863 void arch_send_call_function_single_ipi(int cpu)
864 {
865 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
866 		      cpumask_of(cpu));
867 }
868 
869 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
870 {
871 	clear_softint(1 << irq);
872 	irq_enter();
873 	generic_smp_call_function_interrupt();
874 	irq_exit();
875 }
876 
877 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
878 {
879 	clear_softint(1 << irq);
880 	irq_enter();
881 	generic_smp_call_function_single_interrupt();
882 	irq_exit();
883 }
884 
885 static void tsb_sync(void *info)
886 {
887 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
888 	struct mm_struct *mm = info;
889 
890 	/* It is not valid to test "current->active_mm == mm" here.
891 	 *
892 	 * The value of "current" is not changed atomically with
893 	 * switch_mm().  But that's OK, we just need to check the
894 	 * current cpu's trap block PGD physical address.
895 	 */
896 	if (tp->pgd_paddr == __pa(mm->pgd))
897 		tsb_context_switch(mm);
898 }
899 
900 void smp_tsb_sync(struct mm_struct *mm)
901 {
902 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
903 }
904 
905 extern unsigned long xcall_flush_tlb_mm;
906 extern unsigned long xcall_flush_tlb_page;
907 extern unsigned long xcall_flush_tlb_kernel_range;
908 extern unsigned long xcall_fetch_glob_regs;
909 extern unsigned long xcall_fetch_glob_pmu;
910 extern unsigned long xcall_fetch_glob_pmu_n4;
911 extern unsigned long xcall_receive_signal;
912 extern unsigned long xcall_new_mmu_context_version;
913 #ifdef CONFIG_KGDB
914 extern unsigned long xcall_kgdb_capture;
915 #endif
916 
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 extern unsigned long xcall_flush_dcache_page_cheetah;
919 #endif
920 extern unsigned long xcall_flush_dcache_page_spitfire;
921 
922 static inline void __local_flush_dcache_folio(struct folio *folio)
923 {
924 	unsigned int i, nr = folio_nr_pages(folio);
925 
926 #ifdef DCACHE_ALIASING_POSSIBLE
927 	for (i = 0; i < nr; i++)
928 		__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
929 			    ((tlb_type == spitfire) &&
930 			     folio_flush_mapping(folio) != NULL));
931 #else
932 	if (folio_flush_mapping(folio) != NULL &&
933 	    tlb_type == spitfire) {
934 		unsigned long pfn = folio_pfn(folio)
935 		for (i = 0; i < nr; i++)
936 			__flush_icache_page((pfn + i) * PAGE_SIZE);
937 	}
938 #endif
939 }
940 
941 void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
942 {
943 	int this_cpu;
944 
945 	if (tlb_type == hypervisor)
946 		return;
947 
948 #ifdef CONFIG_DEBUG_DCFLUSH
949 	atomic_inc(&dcpage_flushes);
950 #endif
951 
952 	this_cpu = get_cpu();
953 
954 	if (cpu == this_cpu) {
955 		__local_flush_dcache_folio(folio);
956 	} else if (cpu_online(cpu)) {
957 		void *pg_addr = folio_address(folio);
958 		u64 data0 = 0;
959 
960 		if (tlb_type == spitfire) {
961 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
962 			if (folio_flush_mapping(folio) != NULL)
963 				data0 |= ((u64)1 << 32);
964 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
965 #ifdef DCACHE_ALIASING_POSSIBLE
966 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
967 #endif
968 		}
969 		if (data0) {
970 			unsigned int i, nr = folio_nr_pages(folio);
971 
972 			for (i = 0; i < nr; i++) {
973 				xcall_deliver(data0, __pa(pg_addr),
974 					      (u64) pg_addr, cpumask_of(cpu));
975 #ifdef CONFIG_DEBUG_DCFLUSH
976 				atomic_inc(&dcpage_flushes_xcall);
977 #endif
978 				pg_addr += PAGE_SIZE;
979 			}
980 		}
981 	}
982 
983 	put_cpu();
984 }
985 
986 void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
987 {
988 	void *pg_addr;
989 	u64 data0;
990 
991 	if (tlb_type == hypervisor)
992 		return;
993 
994 	preempt_disable();
995 
996 #ifdef CONFIG_DEBUG_DCFLUSH
997 	atomic_inc(&dcpage_flushes);
998 #endif
999 	data0 = 0;
1000 	pg_addr = folio_address(folio);
1001 	if (tlb_type == spitfire) {
1002 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1003 		if (folio_flush_mapping(folio) != NULL)
1004 			data0 |= ((u64)1 << 32);
1005 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006 #ifdef DCACHE_ALIASING_POSSIBLE
1007 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008 #endif
1009 	}
1010 	if (data0) {
1011 		unsigned int i, nr = folio_nr_pages(folio);
1012 
1013 		for (i = 0; i < nr; i++) {
1014 			xcall_deliver(data0, __pa(pg_addr),
1015 				      (u64) pg_addr, cpu_online_mask);
1016 #ifdef CONFIG_DEBUG_DCFLUSH
1017 			atomic_inc(&dcpage_flushes_xcall);
1018 #endif
1019 			pg_addr += PAGE_SIZE;
1020 		}
1021 	}
1022 	__local_flush_dcache_folio(folio);
1023 
1024 	preempt_enable();
1025 }
1026 
1027 #ifdef CONFIG_KGDB
1028 void kgdb_roundup_cpus(void)
1029 {
1030 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1031 }
1032 #endif
1033 
1034 void smp_fetch_global_regs(void)
1035 {
1036 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1037 }
1038 
1039 void smp_fetch_global_pmu(void)
1040 {
1041 	if (tlb_type == hypervisor &&
1042 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1043 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1044 	else
1045 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1046 }
1047 
1048 /* We know that the window frames of the user have been flushed
1049  * to the stack before we get here because all callers of us
1050  * are flush_tlb_*() routines, and these run after flush_cache_*()
1051  * which performs the flushw.
1052  *
1053  * mm->cpu_vm_mask is a bit mask of which cpus an address
1054  * space has (potentially) executed on, this is the heuristic
1055  * we use to limit cross calls.
1056  */
1057 
1058 /* This currently is only used by the hugetlb arch pre-fault
1059  * hook on UltraSPARC-III+ and later when changing the pagesize
1060  * bits of the context register for an address space.
1061  */
1062 void smp_flush_tlb_mm(struct mm_struct *mm)
1063 {
1064 	u32 ctx = CTX_HWBITS(mm->context);
1065 
1066 	get_cpu();
1067 
1068 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1069 			      ctx, 0, 0,
1070 			      mm_cpumask(mm));
1071 
1072 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073 
1074 	put_cpu();
1075 }
1076 
1077 struct tlb_pending_info {
1078 	unsigned long ctx;
1079 	unsigned long nr;
1080 	unsigned long *vaddrs;
1081 };
1082 
1083 static void tlb_pending_func(void *info)
1084 {
1085 	struct tlb_pending_info *t = info;
1086 
1087 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088 }
1089 
1090 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091 {
1092 	u32 ctx = CTX_HWBITS(mm->context);
1093 	struct tlb_pending_info info;
1094 
1095 	get_cpu();
1096 
1097 	info.ctx = ctx;
1098 	info.nr = nr;
1099 	info.vaddrs = vaddrs;
1100 
1101 	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1102 			       &info, 1);
1103 
1104 	__flush_tlb_pending(ctx, nr, vaddrs);
1105 
1106 	put_cpu();
1107 }
1108 
1109 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1110 {
1111 	unsigned long context = CTX_HWBITS(mm->context);
1112 
1113 	get_cpu();
1114 
1115 	smp_cross_call_masked(&xcall_flush_tlb_page,
1116 			      context, vaddr, 0,
1117 			      mm_cpumask(mm));
1118 
1119 	__flush_tlb_page(context, vaddr);
1120 
1121 	put_cpu();
1122 }
1123 
1124 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125 {
1126 	start &= PAGE_MASK;
1127 	end    = PAGE_ALIGN(end);
1128 	if (start != end) {
1129 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1130 			       0, start, end);
1131 
1132 		__flush_tlb_kernel_range(start, end);
1133 	}
1134 }
1135 
1136 /* CPU capture. */
1137 /* #define CAPTURE_DEBUG */
1138 extern unsigned long xcall_capture;
1139 
1140 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1141 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1142 static unsigned long penguins_are_doing_time;
1143 
1144 void smp_capture(void)
1145 {
1146 	int result = atomic_add_return(1, &smp_capture_depth);
1147 
1148 	if (result == 1) {
1149 		int ncpus = num_online_cpus();
1150 
1151 #ifdef CAPTURE_DEBUG
1152 		printk("CPU[%d]: Sending penguins to jail...",
1153 		       smp_processor_id());
1154 #endif
1155 		penguins_are_doing_time = 1;
1156 		atomic_inc(&smp_capture_registry);
1157 		smp_cross_call(&xcall_capture, 0, 0, 0);
1158 		while (atomic_read(&smp_capture_registry) != ncpus)
1159 			rmb();
1160 #ifdef CAPTURE_DEBUG
1161 		printk("done\n");
1162 #endif
1163 	}
1164 }
1165 
1166 void smp_release(void)
1167 {
1168 	if (atomic_dec_and_test(&smp_capture_depth)) {
1169 #ifdef CAPTURE_DEBUG
1170 		printk("CPU[%d]: Giving pardon to "
1171 		       "imprisoned penguins\n",
1172 		       smp_processor_id());
1173 #endif
1174 		penguins_are_doing_time = 0;
1175 		membar_safe("#StoreLoad");
1176 		atomic_dec(&smp_capture_registry);
1177 	}
1178 }
1179 
1180 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1181  * set, so they can service tlb flush xcalls...
1182  */
1183 extern void prom_world(int);
1184 
1185 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186 {
1187 	clear_softint(1 << irq);
1188 
1189 	preempt_disable();
1190 
1191 	__asm__ __volatile__("flushw");
1192 	prom_world(1);
1193 	atomic_inc(&smp_capture_registry);
1194 	membar_safe("#StoreLoad");
1195 	while (penguins_are_doing_time)
1196 		rmb();
1197 	atomic_dec(&smp_capture_registry);
1198 	prom_world(0);
1199 
1200 	preempt_enable();
1201 }
1202 
1203 void __init smp_prepare_cpus(unsigned int max_cpus)
1204 {
1205 }
1206 
1207 void __init smp_setup_processor_id(void)
1208 {
1209 	if (tlb_type == spitfire)
1210 		xcall_deliver_impl = spitfire_xcall_deliver;
1211 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1212 		xcall_deliver_impl = cheetah_xcall_deliver;
1213 	else
1214 		xcall_deliver_impl = hypervisor_xcall_deliver;
1215 }
1216 
1217 void smp_fill_in_sib_core_maps(void)
1218 {
1219 	unsigned int i;
1220 
1221 	for_each_present_cpu(i) {
1222 		unsigned int j;
1223 
1224 		cpumask_clear(&cpu_core_map[i]);
1225 		if (cpu_data(i).core_id == 0) {
1226 			cpumask_set_cpu(i, &cpu_core_map[i]);
1227 			continue;
1228 		}
1229 
1230 		for_each_present_cpu(j) {
1231 			if (cpu_data(i).core_id ==
1232 			    cpu_data(j).core_id)
1233 				cpumask_set_cpu(j, &cpu_core_map[i]);
1234 		}
1235 	}
1236 
1237 	for_each_present_cpu(i)  {
1238 		unsigned int j;
1239 
1240 		for_each_present_cpu(j)  {
1241 			if (cpu_data(i).max_cache_id ==
1242 			    cpu_data(j).max_cache_id)
1243 				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1244 
1245 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1246 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1247 		}
1248 	}
1249 
1250 	for_each_present_cpu(i) {
1251 		unsigned int j;
1252 
1253 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1254 		if (cpu_data(i).proc_id == -1) {
1255 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1256 			continue;
1257 		}
1258 
1259 		for_each_present_cpu(j) {
1260 			if (cpu_data(i).proc_id ==
1261 			    cpu_data(j).proc_id)
1262 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263 		}
1264 	}
1265 }
1266 
1267 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268 {
1269 	int ret = smp_boot_one_cpu(cpu, tidle);
1270 
1271 	if (!ret) {
1272 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1273 		while (!cpu_online(cpu))
1274 			mb();
1275 		if (!cpu_online(cpu)) {
1276 			ret = -ENODEV;
1277 		} else {
1278 			/* On SUN4V, writes to %tick and %stick are
1279 			 * not allowed.
1280 			 */
1281 			if (tlb_type != hypervisor)
1282 				smp_synchronize_one_tick(cpu);
1283 		}
1284 	}
1285 	return ret;
1286 }
1287 
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 void cpu_play_dead(void)
1290 {
1291 	int cpu = smp_processor_id();
1292 	unsigned long pstate;
1293 
1294 	idle_task_exit();
1295 
1296 	if (tlb_type == hypervisor) {
1297 		struct trap_per_cpu *tb = &trap_block[cpu];
1298 
1299 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1300 				tb->cpu_mondo_pa, 0);
1301 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1302 				tb->dev_mondo_pa, 0);
1303 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1304 				tb->resum_mondo_pa, 0);
1305 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1306 				tb->nonresum_mondo_pa, 0);
1307 	}
1308 
1309 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1310 	membar_safe("#Sync");
1311 
1312 	local_irq_disable();
1313 
1314 	__asm__ __volatile__(
1315 		"rdpr	%%pstate, %0\n\t"
1316 		"wrpr	%0, %1, %%pstate"
1317 		: "=r" (pstate)
1318 		: "i" (PSTATE_IE));
1319 
1320 	while (1)
1321 		barrier();
1322 }
1323 
1324 int __cpu_disable(void)
1325 {
1326 	int cpu = smp_processor_id();
1327 	cpuinfo_sparc *c;
1328 	int i;
1329 
1330 	for_each_cpu(i, &cpu_core_map[cpu])
1331 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1332 	cpumask_clear(&cpu_core_map[cpu]);
1333 
1334 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1335 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1336 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1337 
1338 	c = &cpu_data(cpu);
1339 
1340 	c->core_id = 0;
1341 	c->proc_id = -1;
1342 
1343 	smp_wmb();
1344 
1345 	/* Make sure no interrupts point to this cpu.  */
1346 	fixup_irqs();
1347 
1348 	local_irq_enable();
1349 	mdelay(1);
1350 	local_irq_disable();
1351 
1352 	set_cpu_online(cpu, false);
1353 
1354 	cpu_map_rebuild();
1355 
1356 	return 0;
1357 }
1358 
1359 void __cpu_die(unsigned int cpu)
1360 {
1361 	int i;
1362 
1363 	for (i = 0; i < 100; i++) {
1364 		smp_rmb();
1365 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1366 			break;
1367 		msleep(100);
1368 	}
1369 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1370 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1371 	} else {
1372 #if defined(CONFIG_SUN_LDOMS)
1373 		unsigned long hv_err;
1374 		int limit = 100;
1375 
1376 		do {
1377 			hv_err = sun4v_cpu_stop(cpu);
1378 			if (hv_err == HV_EOK) {
1379 				set_cpu_present(cpu, false);
1380 				break;
1381 			}
1382 		} while (--limit > 0);
1383 		if (limit <= 0) {
1384 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1385 			       hv_err);
1386 		}
1387 #endif
1388 	}
1389 }
1390 #endif
1391 
1392 void __init smp_cpus_done(unsigned int max_cpus)
1393 {
1394 }
1395 
1396 static void send_cpu_ipi(int cpu)
1397 {
1398 	xcall_deliver((u64) &xcall_receive_signal,
1399 			0, 0, cpumask_of(cpu));
1400 }
1401 
1402 void scheduler_poke(void)
1403 {
1404 	if (!cpu_poke)
1405 		return;
1406 
1407 	if (!__this_cpu_read(poke))
1408 		return;
1409 
1410 	__this_cpu_write(poke, false);
1411 	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1412 }
1413 
1414 static unsigned long send_cpu_poke(int cpu)
1415 {
1416 	unsigned long hv_err;
1417 
1418 	per_cpu(poke, cpu) = true;
1419 	hv_err = sun4v_cpu_poke(cpu);
1420 	if (hv_err != HV_EOK) {
1421 		per_cpu(poke, cpu) = false;
1422 		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1423 				    __func__, hv_err);
1424 	}
1425 
1426 	return hv_err;
1427 }
1428 
1429 void arch_smp_send_reschedule(int cpu)
1430 {
1431 	if (cpu == smp_processor_id()) {
1432 		WARN_ON_ONCE(preemptible());
1433 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1434 		return;
1435 	}
1436 
1437 	/* Use cpu poke to resume idle cpu if supported. */
1438 	if (cpu_poke && idle_cpu(cpu)) {
1439 		unsigned long ret;
1440 
1441 		ret = send_cpu_poke(cpu);
1442 		if (ret == HV_EOK)
1443 			return;
1444 	}
1445 
1446 	/* Use IPI in following cases:
1447 	 * - cpu poke not supported
1448 	 * - cpu not idle
1449 	 * - send_cpu_poke() returns with error
1450 	 */
1451 	send_cpu_ipi(cpu);
1452 }
1453 
1454 void smp_init_cpu_poke(void)
1455 {
1456 	unsigned long major;
1457 	unsigned long minor;
1458 	int ret;
1459 
1460 	if (tlb_type != hypervisor)
1461 		return;
1462 
1463 	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1464 	if (ret) {
1465 		pr_debug("HV_GRP_CORE is not registered\n");
1466 		return;
1467 	}
1468 
1469 	if (major == 1 && minor >= 6) {
1470 		/* CPU POKE is registered. */
1471 		cpu_poke = true;
1472 		return;
1473 	}
1474 
1475 	pr_debug("CPU_POKE not supported\n");
1476 }
1477 
1478 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1479 {
1480 	clear_softint(1 << irq);
1481 	scheduler_ipi();
1482 }
1483 
1484 static void stop_this_cpu(void *dummy)
1485 {
1486 	set_cpu_online(smp_processor_id(), false);
1487 	prom_stopself();
1488 }
1489 
1490 void smp_send_stop(void)
1491 {
1492 	int cpu;
1493 
1494 	if (tlb_type == hypervisor) {
1495 		int this_cpu = smp_processor_id();
1496 #ifdef CONFIG_SERIAL_SUNHV
1497 		sunhv_migrate_hvcons_irq(this_cpu);
1498 #endif
1499 		for_each_online_cpu(cpu) {
1500 			if (cpu == this_cpu)
1501 				continue;
1502 
1503 			set_cpu_online(cpu, false);
1504 #ifdef CONFIG_SUN_LDOMS
1505 			if (ldom_domaining_enabled) {
1506 				unsigned long hv_err;
1507 				hv_err = sun4v_cpu_stop(cpu);
1508 				if (hv_err)
1509 					printk(KERN_ERR "sun4v_cpu_stop() "
1510 					       "failed err=%lu\n", hv_err);
1511 			} else
1512 #endif
1513 				prom_stopcpu_cpuid(cpu);
1514 		}
1515 	} else
1516 		smp_call_function(stop_this_cpu, NULL, 0);
1517 }
1518 
1519 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1520 {
1521 	if (cpu_to_node(from) == cpu_to_node(to))
1522 		return LOCAL_DISTANCE;
1523 	else
1524 		return REMOTE_DISTANCE;
1525 }
1526 
1527 static int __init pcpu_cpu_to_node(int cpu)
1528 {
1529 	return cpu_to_node(cpu);
1530 }
1531 
1532 void __init setup_per_cpu_areas(void)
1533 {
1534 	unsigned long delta;
1535 	unsigned int cpu;
1536 	int rc = -EINVAL;
1537 
1538 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541 					    pcpu_cpu_distance,
1542 					    pcpu_cpu_to_node);
1543 		if (rc)
1544 			pr_warn("PERCPU: %s allocator failed (%d), "
1545 				"falling back to page size\n",
1546 				pcpu_fc_names[pcpu_chosen_fc], rc);
1547 	}
1548 	if (rc < 0)
1549 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550 					   pcpu_cpu_to_node);
1551 	if (rc < 0)
1552 		panic("cannot initialize percpu area (err=%d)", rc);
1553 
1554 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1555 	for_each_possible_cpu(cpu)
1556 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1557 
1558 	/* Setup %g5 for the boot cpu.  */
1559 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1560 
1561 	of_fill_in_cpu_data();
1562 	if (tlb_type == hypervisor)
1563 		mdesc_fill_in_cpu_data(cpu_all_mask);
1564 }
1565