xref: /linux/arch/sparc/kernel/smp_64.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29 
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40 
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55 
56 #include "cpumap.h"
57 #include "kernel.h"
58 
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
65 
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67 EXPORT_SYMBOL(cpu_core_map);
68 EXPORT_SYMBOL(cpu_core_sib_map);
69 
70 static cpumask_t smp_commenced_mask;
71 
72 void smp_info(struct seq_file *m)
73 {
74 	int i;
75 
76 	seq_printf(m, "State:\n");
77 	for_each_online_cpu(i)
78 		seq_printf(m, "CPU%d:\t\tonline\n", i);
79 }
80 
81 void smp_bogo(struct seq_file *m)
82 {
83 	int i;
84 
85 	for_each_online_cpu(i)
86 		seq_printf(m,
87 			   "Cpu%dClkTck\t: %016lx\n",
88 			   i, cpu_data(i).clock_tick);
89 }
90 
91 extern void setup_sparc64_timer(void);
92 
93 static volatile unsigned long callin_flag = 0;
94 
95 void smp_callin(void)
96 {
97 	int cpuid = hard_smp_processor_id();
98 
99 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
100 
101 	if (tlb_type == hypervisor)
102 		sun4v_ktsb_register();
103 
104 	__flush_tlb_all();
105 
106 	setup_sparc64_timer();
107 
108 	if (cheetah_pcache_forced_on)
109 		cheetah_enable_pcache();
110 
111 	callin_flag = 1;
112 	__asm__ __volatile__("membar #Sync\n\t"
113 			     "flush  %%g6" : : : "memory");
114 
115 	/* Clear this or we will die instantly when we
116 	 * schedule back to this idler...
117 	 */
118 	current_thread_info()->new_child = 0;
119 
120 	/* Attach to the address space of init_task. */
121 	atomic_inc(&init_mm.mm_count);
122 	current->active_mm = &init_mm;
123 
124 	/* inform the notifiers about the new cpu */
125 	notify_cpu_starting(cpuid);
126 
127 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128 		rmb();
129 
130 	set_cpu_online(cpuid, true);
131 
132 	/* idle thread is expected to have preempt disabled */
133 	preempt_disable();
134 
135 	local_irq_enable();
136 
137 	cpu_startup_entry(CPUHP_ONLINE);
138 }
139 
140 void cpu_panic(void)
141 {
142 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143 	panic("SMP bolixed\n");
144 }
145 
146 /* This tick register synchronization scheme is taken entirely from
147  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148  *
149  * The only change I've made is to rework it so that the master
150  * initiates the synchonization instead of the slave. -DaveM
151  */
152 
153 #define MASTER	0
154 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
155 
156 #define NUM_ROUNDS	64	/* magic value */
157 #define NUM_ITERS	5	/* likewise */
158 
159 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160 static unsigned long go[SLAVE + 1];
161 
162 #define DEBUG_TICK_SYNC	0
163 
164 static inline long get_delta (long *rt, long *master)
165 {
166 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167 	unsigned long tcenter, t0, t1, tm;
168 	unsigned long i;
169 
170 	for (i = 0; i < NUM_ITERS; i++) {
171 		t0 = tick_ops->get_tick();
172 		go[MASTER] = 1;
173 		membar_safe("#StoreLoad");
174 		while (!(tm = go[SLAVE]))
175 			rmb();
176 		go[SLAVE] = 0;
177 		wmb();
178 		t1 = tick_ops->get_tick();
179 
180 		if (t1 - t0 < best_t1 - best_t0)
181 			best_t0 = t0, best_t1 = t1, best_tm = tm;
182 	}
183 
184 	*rt = best_t1 - best_t0;
185 	*master = best_tm - best_t0;
186 
187 	/* average best_t0 and best_t1 without overflow: */
188 	tcenter = (best_t0/2 + best_t1/2);
189 	if (best_t0 % 2 + best_t1 % 2 == 2)
190 		tcenter++;
191 	return tcenter - best_tm;
192 }
193 
194 void smp_synchronize_tick_client(void)
195 {
196 	long i, delta, adj, adjust_latency = 0, done = 0;
197 	unsigned long flags, rt, master_time_stamp;
198 #if DEBUG_TICK_SYNC
199 	struct {
200 		long rt;	/* roundtrip time */
201 		long master;	/* master's timestamp */
202 		long diff;	/* difference between midpoint and master's timestamp */
203 		long lat;	/* estimate of itc adjustment latency */
204 	} t[NUM_ROUNDS];
205 #endif
206 
207 	go[MASTER] = 1;
208 
209 	while (go[MASTER])
210 		rmb();
211 
212 	local_irq_save(flags);
213 	{
214 		for (i = 0; i < NUM_ROUNDS; i++) {
215 			delta = get_delta(&rt, &master_time_stamp);
216 			if (delta == 0)
217 				done = 1;	/* let's lock on to this... */
218 
219 			if (!done) {
220 				if (i > 0) {
221 					adjust_latency += -delta;
222 					adj = -delta + adjust_latency/4;
223 				} else
224 					adj = -delta;
225 
226 				tick_ops->add_tick(adj);
227 			}
228 #if DEBUG_TICK_SYNC
229 			t[i].rt = rt;
230 			t[i].master = master_time_stamp;
231 			t[i].diff = delta;
232 			t[i].lat = adjust_latency/4;
233 #endif
234 		}
235 	}
236 	local_irq_restore(flags);
237 
238 #if DEBUG_TICK_SYNC
239 	for (i = 0; i < NUM_ROUNDS; i++)
240 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
242 #endif
243 
244 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
246 	       smp_processor_id(), delta, rt);
247 }
248 
249 static void smp_start_sync_tick_client(int cpu);
250 
251 static void smp_synchronize_one_tick(int cpu)
252 {
253 	unsigned long flags, i;
254 
255 	go[MASTER] = 0;
256 
257 	smp_start_sync_tick_client(cpu);
258 
259 	/* wait for client to be ready */
260 	while (!go[MASTER])
261 		rmb();
262 
263 	/* now let the client proceed into his loop */
264 	go[MASTER] = 0;
265 	membar_safe("#StoreLoad");
266 
267 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
268 	{
269 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270 			while (!go[MASTER])
271 				rmb();
272 			go[MASTER] = 0;
273 			wmb();
274 			go[SLAVE] = tick_ops->get_tick();
275 			membar_safe("#StoreLoad");
276 		}
277 	}
278 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
279 }
280 
281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283 				void **descrp)
284 {
285 	extern unsigned long sparc64_ttable_tl0;
286 	extern unsigned long kern_locked_tte_data;
287 	struct hvtramp_descr *hdesc;
288 	unsigned long trampoline_ra;
289 	struct trap_per_cpu *tb;
290 	u64 tte_vaddr, tte_data;
291 	unsigned long hv_err;
292 	int i;
293 
294 	hdesc = kzalloc(sizeof(*hdesc) +
295 			(sizeof(struct hvtramp_mapping) *
296 			 num_kernel_image_mappings - 1),
297 			GFP_KERNEL);
298 	if (!hdesc) {
299 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 		       "hvtramp_descr.\n");
301 		return;
302 	}
303 	*descrp = hdesc;
304 
305 	hdesc->cpu = cpu;
306 	hdesc->num_mappings = num_kernel_image_mappings;
307 
308 	tb = &trap_block[cpu];
309 
310 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312 
313 	hdesc->thread_reg = thread_reg;
314 
315 	tte_vaddr = (unsigned long) KERNBASE;
316 	tte_data = kern_locked_tte_data;
317 
318 	for (i = 0; i < hdesc->num_mappings; i++) {
319 		hdesc->maps[i].vaddr = tte_vaddr;
320 		hdesc->maps[i].tte   = tte_data;
321 		tte_vaddr += 0x400000;
322 		tte_data  += 0x400000;
323 	}
324 
325 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326 
327 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 				 __pa(hdesc));
330 	if (hv_err)
331 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 		       "gives error %lu\n", hv_err);
333 }
334 #endif
335 
336 extern unsigned long sparc64_cpu_startup;
337 
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339  * 32-bits (I think) so to be safe we have it read the pointer
340  * contained here so we work on >4GB machines. -DaveM
341  */
342 static struct thread_info *cpu_new_thread = NULL;
343 
344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
345 {
346 	unsigned long entry =
347 		(unsigned long)(&sparc64_cpu_startup);
348 	unsigned long cookie =
349 		(unsigned long)(&cpu_new_thread);
350 	void *descr = NULL;
351 	int timeout, ret;
352 
353 	callin_flag = 0;
354 	cpu_new_thread = task_thread_info(idle);
355 
356 	if (tlb_type == hypervisor) {
357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358 		if (ldom_domaining_enabled)
359 			ldom_startcpu_cpuid(cpu,
360 					    (unsigned long) cpu_new_thread,
361 					    &descr);
362 		else
363 #endif
364 			prom_startcpu_cpuid(cpu, entry, cookie);
365 	} else {
366 		struct device_node *dp = of_find_node_by_cpuid(cpu);
367 
368 		prom_startcpu(dp->phandle, entry, cookie);
369 	}
370 
371 	for (timeout = 0; timeout < 50000; timeout++) {
372 		if (callin_flag)
373 			break;
374 		udelay(100);
375 	}
376 
377 	if (callin_flag) {
378 		ret = 0;
379 	} else {
380 		printk("Processor %d is stuck.\n", cpu);
381 		ret = -ENODEV;
382 	}
383 	cpu_new_thread = NULL;
384 
385 	kfree(descr);
386 
387 	return ret;
388 }
389 
390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391 {
392 	u64 result, target;
393 	int stuck, tmp;
394 
395 	if (this_is_starfire) {
396 		/* map to real upaid */
397 		cpu = (((cpu & 0x3c) << 1) |
398 			((cpu & 0x40) >> 4) |
399 			(cpu & 0x3));
400 	}
401 
402 	target = (cpu << 14) | 0x70;
403 again:
404 	/* Ok, this is the real Spitfire Errata #54.
405 	 * One must read back from a UDB internal register
406 	 * after writes to the UDB interrupt dispatch, but
407 	 * before the membar Sync for that write.
408 	 * So we use the high UDB control register (ASI 0x7f,
409 	 * ADDR 0x20) for the dummy read. -DaveM
410 	 */
411 	tmp = 0x40;
412 	__asm__ __volatile__(
413 	"wrpr	%1, %2, %%pstate\n\t"
414 	"stxa	%4, [%0] %3\n\t"
415 	"stxa	%5, [%0+%8] %3\n\t"
416 	"add	%0, %8, %0\n\t"
417 	"stxa	%6, [%0+%8] %3\n\t"
418 	"membar	#Sync\n\t"
419 	"stxa	%%g0, [%7] %3\n\t"
420 	"membar	#Sync\n\t"
421 	"mov	0x20, %%g1\n\t"
422 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
423 	"membar	#Sync"
424 	: "=r" (tmp)
425 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
427 	  "r" (0x10), "0" (tmp)
428         : "g1");
429 
430 	/* NOTE: PSTATE_IE is still clear. */
431 	stuck = 100000;
432 	do {
433 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
434 			: "=r" (result)
435 			: "i" (ASI_INTR_DISPATCH_STAT));
436 		if (result == 0) {
437 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438 					     : : "r" (pstate));
439 			return;
440 		}
441 		stuck -= 1;
442 		if (stuck == 0)
443 			break;
444 	} while (result & 0x1);
445 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 			     : : "r" (pstate));
447 	if (stuck == 0) {
448 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449 		       smp_processor_id(), result);
450 	} else {
451 		udelay(2);
452 		goto again;
453 	}
454 }
455 
456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
457 {
458 	u64 *mondo, data0, data1, data2;
459 	u16 *cpu_list;
460 	u64 pstate;
461 	int i;
462 
463 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464 	cpu_list = __va(tb->cpu_list_pa);
465 	mondo = __va(tb->cpu_mondo_block_pa);
466 	data0 = mondo[0];
467 	data1 = mondo[1];
468 	data2 = mondo[2];
469 	for (i = 0; i < cnt; i++)
470 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
471 }
472 
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474  * packet, but we have no use for that.  However we do take advantage of
475  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476  */
477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
478 {
479 	int nack_busy_id, is_jbus, need_more;
480 	u64 *mondo, pstate, ver, busy_mask;
481 	u16 *cpu_list;
482 
483 	cpu_list = __va(tb->cpu_list_pa);
484 	mondo = __va(tb->cpu_mondo_block_pa);
485 
486 	/* Unfortunately, someone at Sun had the brilliant idea to make the
487 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
488 	 * derivative processor.
489 	 */
490 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
491 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492 		   (ver >> 32) == __SERRANO_ID);
493 
494 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495 
496 retry:
497 	need_more = 0;
498 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499 			     : : "r" (pstate), "i" (PSTATE_IE));
500 
501 	/* Setup the dispatch data registers. */
502 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
503 			     "stxa	%1, [%4] %6\n\t"
504 			     "stxa	%2, [%5] %6\n\t"
505 			     "membar	#Sync\n\t"
506 			     : /* no outputs */
507 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508 			       "r" (0x40), "r" (0x50), "r" (0x60),
509 			       "i" (ASI_INTR_W));
510 
511 	nack_busy_id = 0;
512 	busy_mask = 0;
513 	{
514 		int i;
515 
516 		for (i = 0; i < cnt; i++) {
517 			u64 target, nr;
518 
519 			nr = cpu_list[i];
520 			if (nr == 0xffff)
521 				continue;
522 
523 			target = (nr << 14) | 0x70;
524 			if (is_jbus) {
525 				busy_mask |= (0x1UL << (nr * 2));
526 			} else {
527 				target |= (nack_busy_id << 24);
528 				busy_mask |= (0x1UL <<
529 					      (nack_busy_id * 2));
530 			}
531 			__asm__ __volatile__(
532 				"stxa	%%g0, [%0] %1\n\t"
533 				"membar	#Sync\n\t"
534 				: /* no outputs */
535 				: "r" (target), "i" (ASI_INTR_W));
536 			nack_busy_id++;
537 			if (nack_busy_id == 32) {
538 				need_more = 1;
539 				break;
540 			}
541 		}
542 	}
543 
544 	/* Now, poll for completion. */
545 	{
546 		u64 dispatch_stat, nack_mask;
547 		long stuck;
548 
549 		stuck = 100000 * nack_busy_id;
550 		nack_mask = busy_mask << 1;
551 		do {
552 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
553 					     : "=r" (dispatch_stat)
554 					     : "i" (ASI_INTR_DISPATCH_STAT));
555 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
556 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557 						     : : "r" (pstate));
558 				if (unlikely(need_more)) {
559 					int i, this_cnt = 0;
560 					for (i = 0; i < cnt; i++) {
561 						if (cpu_list[i] == 0xffff)
562 							continue;
563 						cpu_list[i] = 0xffff;
564 						this_cnt++;
565 						if (this_cnt == 32)
566 							break;
567 					}
568 					goto retry;
569 				}
570 				return;
571 			}
572 			if (!--stuck)
573 				break;
574 		} while (dispatch_stat & busy_mask);
575 
576 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577 				     : : "r" (pstate));
578 
579 		if (dispatch_stat & busy_mask) {
580 			/* Busy bits will not clear, continue instead
581 			 * of freezing up on this cpu.
582 			 */
583 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584 			       smp_processor_id(), dispatch_stat);
585 		} else {
586 			int i, this_busy_nack = 0;
587 
588 			/* Delay some random time with interrupts enabled
589 			 * to prevent deadlock.
590 			 */
591 			udelay(2 * nack_busy_id);
592 
593 			/* Clear out the mask bits for cpus which did not
594 			 * NACK us.
595 			 */
596 			for (i = 0; i < cnt; i++) {
597 				u64 check_mask, nr;
598 
599 				nr = cpu_list[i];
600 				if (nr == 0xffff)
601 					continue;
602 
603 				if (is_jbus)
604 					check_mask = (0x2UL << (2*nr));
605 				else
606 					check_mask = (0x2UL <<
607 						      this_busy_nack);
608 				if ((dispatch_stat & check_mask) == 0)
609 					cpu_list[i] = 0xffff;
610 				this_busy_nack += 2;
611 				if (this_busy_nack == 64)
612 					break;
613 			}
614 
615 			goto retry;
616 		}
617 	}
618 }
619 
620 /* Multi-cpu list version.  */
621 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
622 {
623 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
624 	unsigned long status;
625 	u16 *cpu_list;
626 
627 	this_cpu = smp_processor_id();
628 
629 	cpu_list = __va(tb->cpu_list_pa);
630 
631 	saw_cpu_error = 0;
632 	retries = 0;
633 	prev_sent = 0;
634 	do {
635 		int forward_progress, n_sent;
636 
637 		status = sun4v_cpu_mondo_send(cnt,
638 					      tb->cpu_list_pa,
639 					      tb->cpu_mondo_block_pa);
640 
641 		/* HV_EOK means all cpus received the xcall, we're done.  */
642 		if (likely(status == HV_EOK))
643 			break;
644 
645 		/* First, see if we made any forward progress.
646 		 *
647 		 * The hypervisor indicates successful sends by setting
648 		 * cpu list entries to the value 0xffff.
649 		 */
650 		n_sent = 0;
651 		for (i = 0; i < cnt; i++) {
652 			if (likely(cpu_list[i] == 0xffff))
653 				n_sent++;
654 		}
655 
656 		forward_progress = 0;
657 		if (n_sent > prev_sent)
658 			forward_progress = 1;
659 
660 		prev_sent = n_sent;
661 
662 		/* If we get a HV_ECPUERROR, then one or more of the cpus
663 		 * in the list are in error state.  Use the cpu_state()
664 		 * hypervisor call to find out which cpus are in error state.
665 		 */
666 		if (unlikely(status == HV_ECPUERROR)) {
667 			for (i = 0; i < cnt; i++) {
668 				long err;
669 				u16 cpu;
670 
671 				cpu = cpu_list[i];
672 				if (cpu == 0xffff)
673 					continue;
674 
675 				err = sun4v_cpu_state(cpu);
676 				if (err == HV_CPU_STATE_ERROR) {
677 					saw_cpu_error = (cpu + 1);
678 					cpu_list[i] = 0xffff;
679 				}
680 			}
681 		} else if (unlikely(status != HV_EWOULDBLOCK))
682 			goto fatal_mondo_error;
683 
684 		/* Don't bother rewriting the CPU list, just leave the
685 		 * 0xffff and non-0xffff entries in there and the
686 		 * hypervisor will do the right thing.
687 		 *
688 		 * Only advance timeout state if we didn't make any
689 		 * forward progress.
690 		 */
691 		if (unlikely(!forward_progress)) {
692 			if (unlikely(++retries > 10000))
693 				goto fatal_mondo_timeout;
694 
695 			/* Delay a little bit to let other cpus catch up
696 			 * on their cpu mondo queue work.
697 			 */
698 			udelay(2 * cnt);
699 		}
700 	} while (1);
701 
702 	if (unlikely(saw_cpu_error))
703 		goto fatal_mondo_cpu_error;
704 
705 	return;
706 
707 fatal_mondo_cpu_error:
708 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
709 	       "(including %d) were in error state\n",
710 	       this_cpu, saw_cpu_error - 1);
711 	return;
712 
713 fatal_mondo_timeout:
714 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
715 	       " progress after %d retries.\n",
716 	       this_cpu, retries);
717 	goto dump_cpu_list_and_out;
718 
719 fatal_mondo_error:
720 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
721 	       this_cpu, status);
722 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
723 	       "mondo_block_pa(%lx)\n",
724 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
725 
726 dump_cpu_list_and_out:
727 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
728 	for (i = 0; i < cnt; i++)
729 		printk("%u ", cpu_list[i]);
730 	printk("]\n");
731 }
732 
733 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
734 
735 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
736 {
737 	struct trap_per_cpu *tb;
738 	int this_cpu, i, cnt;
739 	unsigned long flags;
740 	u16 *cpu_list;
741 	u64 *mondo;
742 
743 	/* We have to do this whole thing with interrupts fully disabled.
744 	 * Otherwise if we send an xcall from interrupt context it will
745 	 * corrupt both our mondo block and cpu list state.
746 	 *
747 	 * One consequence of this is that we cannot use timeout mechanisms
748 	 * that depend upon interrupts being delivered locally.  So, for
749 	 * example, we cannot sample jiffies and expect it to advance.
750 	 *
751 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
752 	 */
753 	local_irq_save(flags);
754 
755 	this_cpu = smp_processor_id();
756 	tb = &trap_block[this_cpu];
757 
758 	mondo = __va(tb->cpu_mondo_block_pa);
759 	mondo[0] = data0;
760 	mondo[1] = data1;
761 	mondo[2] = data2;
762 	wmb();
763 
764 	cpu_list = __va(tb->cpu_list_pa);
765 
766 	/* Setup the initial cpu list.  */
767 	cnt = 0;
768 	for_each_cpu(i, mask) {
769 		if (i == this_cpu || !cpu_online(i))
770 			continue;
771 		cpu_list[cnt++] = i;
772 	}
773 
774 	if (cnt)
775 		xcall_deliver_impl(tb, cnt);
776 
777 	local_irq_restore(flags);
778 }
779 
780 /* Send cross call to all processors mentioned in MASK_P
781  * except self.  Really, there are only two cases currently,
782  * "cpu_online_mask" and "mm_cpumask(mm)".
783  */
784 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
787 
788 	xcall_deliver(data0, data1, data2, mask);
789 }
790 
791 /* Send cross call to all processors except self. */
792 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
793 {
794 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
795 }
796 
797 extern unsigned long xcall_sync_tick;
798 
799 static void smp_start_sync_tick_client(int cpu)
800 {
801 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
802 		      cpumask_of(cpu));
803 }
804 
805 extern unsigned long xcall_call_function;
806 
807 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
808 {
809 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
810 }
811 
812 extern unsigned long xcall_call_function_single;
813 
814 void arch_send_call_function_single_ipi(int cpu)
815 {
816 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
817 		      cpumask_of(cpu));
818 }
819 
820 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
821 {
822 	clear_softint(1 << irq);
823 	irq_enter();
824 	generic_smp_call_function_interrupt();
825 	irq_exit();
826 }
827 
828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
829 {
830 	clear_softint(1 << irq);
831 	irq_enter();
832 	generic_smp_call_function_single_interrupt();
833 	irq_exit();
834 }
835 
836 static void tsb_sync(void *info)
837 {
838 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839 	struct mm_struct *mm = info;
840 
841 	/* It is not valid to test "current->active_mm == mm" here.
842 	 *
843 	 * The value of "current" is not changed atomically with
844 	 * switch_mm().  But that's OK, we just need to check the
845 	 * current cpu's trap block PGD physical address.
846 	 */
847 	if (tp->pgd_paddr == __pa(mm->pgd))
848 		tsb_context_switch(mm);
849 }
850 
851 void smp_tsb_sync(struct mm_struct *mm)
852 {
853 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854 }
855 
856 extern unsigned long xcall_flush_tlb_mm;
857 extern unsigned long xcall_flush_tlb_page;
858 extern unsigned long xcall_flush_tlb_kernel_range;
859 extern unsigned long xcall_fetch_glob_regs;
860 extern unsigned long xcall_fetch_glob_pmu;
861 extern unsigned long xcall_fetch_glob_pmu_n4;
862 extern unsigned long xcall_receive_signal;
863 extern unsigned long xcall_new_mmu_context_version;
864 #ifdef CONFIG_KGDB
865 extern unsigned long xcall_kgdb_capture;
866 #endif
867 
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 extern unsigned long xcall_flush_dcache_page_cheetah;
870 #endif
871 extern unsigned long xcall_flush_dcache_page_spitfire;
872 
873 static inline void __local_flush_dcache_page(struct page *page)
874 {
875 #ifdef DCACHE_ALIASING_POSSIBLE
876 	__flush_dcache_page(page_address(page),
877 			    ((tlb_type == spitfire) &&
878 			     page_mapping(page) != NULL));
879 #else
880 	if (page_mapping(page) != NULL &&
881 	    tlb_type == spitfire)
882 		__flush_icache_page(__pa(page_address(page)));
883 #endif
884 }
885 
886 void smp_flush_dcache_page_impl(struct page *page, int cpu)
887 {
888 	int this_cpu;
889 
890 	if (tlb_type == hypervisor)
891 		return;
892 
893 #ifdef CONFIG_DEBUG_DCFLUSH
894 	atomic_inc(&dcpage_flushes);
895 #endif
896 
897 	this_cpu = get_cpu();
898 
899 	if (cpu == this_cpu) {
900 		__local_flush_dcache_page(page);
901 	} else if (cpu_online(cpu)) {
902 		void *pg_addr = page_address(page);
903 		u64 data0 = 0;
904 
905 		if (tlb_type == spitfire) {
906 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
907 			if (page_mapping(page) != NULL)
908 				data0 |= ((u64)1 << 32);
909 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
910 #ifdef DCACHE_ALIASING_POSSIBLE
911 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
912 #endif
913 		}
914 		if (data0) {
915 			xcall_deliver(data0, __pa(pg_addr),
916 				      (u64) pg_addr, cpumask_of(cpu));
917 #ifdef CONFIG_DEBUG_DCFLUSH
918 			atomic_inc(&dcpage_flushes_xcall);
919 #endif
920 		}
921 	}
922 
923 	put_cpu();
924 }
925 
926 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927 {
928 	void *pg_addr;
929 	u64 data0;
930 
931 	if (tlb_type == hypervisor)
932 		return;
933 
934 	preempt_disable();
935 
936 #ifdef CONFIG_DEBUG_DCFLUSH
937 	atomic_inc(&dcpage_flushes);
938 #endif
939 	data0 = 0;
940 	pg_addr = page_address(page);
941 	if (tlb_type == spitfire) {
942 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 		if (page_mapping(page) != NULL)
944 			data0 |= ((u64)1 << 32);
945 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946 #ifdef DCACHE_ALIASING_POSSIBLE
947 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948 #endif
949 	}
950 	if (data0) {
951 		xcall_deliver(data0, __pa(pg_addr),
952 			      (u64) pg_addr, cpu_online_mask);
953 #ifdef CONFIG_DEBUG_DCFLUSH
954 		atomic_inc(&dcpage_flushes_xcall);
955 #endif
956 	}
957 	__local_flush_dcache_page(page);
958 
959 	preempt_enable();
960 }
961 
962 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
963 {
964 	struct mm_struct *mm;
965 	unsigned long flags;
966 
967 	clear_softint(1 << irq);
968 
969 	/* See if we need to allocate a new TLB context because
970 	 * the version of the one we are using is now out of date.
971 	 */
972 	mm = current->active_mm;
973 	if (unlikely(!mm || (mm == &init_mm)))
974 		return;
975 
976 	spin_lock_irqsave(&mm->context.lock, flags);
977 
978 	if (unlikely(!CTX_VALID(mm->context)))
979 		get_new_mmu_context(mm);
980 
981 	spin_unlock_irqrestore(&mm->context.lock, flags);
982 
983 	load_secondary_context(mm);
984 	__flush_tlb_mm(CTX_HWBITS(mm->context),
985 		       SECONDARY_CONTEXT);
986 }
987 
988 void smp_new_mmu_context_version(void)
989 {
990 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
991 }
992 
993 #ifdef CONFIG_KGDB
994 void kgdb_roundup_cpus(unsigned long flags)
995 {
996 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997 }
998 #endif
999 
1000 void smp_fetch_global_regs(void)
1001 {
1002 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003 }
1004 
1005 void smp_fetch_global_pmu(void)
1006 {
1007 	if (tlb_type == hypervisor &&
1008 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010 	else
1011 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012 }
1013 
1014 /* We know that the window frames of the user have been flushed
1015  * to the stack before we get here because all callers of us
1016  * are flush_tlb_*() routines, and these run after flush_cache_*()
1017  * which performs the flushw.
1018  *
1019  * The SMP TLB coherency scheme we use works as follows:
1020  *
1021  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022  *    space has (potentially) executed on, this is the heuristic
1023  *    we use to avoid doing cross calls.
1024  *
1025  *    Also, for flushing from kswapd and also for clones, we
1026  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027  *
1028  * 2) TLB context numbers are shared globally across all processors
1029  *    in the system, this allows us to play several games to avoid
1030  *    cross calls.
1031  *
1032  *    One invariant is that when a cpu switches to a process, and
1033  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034  *    current cpu's bit set, that tlb context is flushed locally.
1035  *
1036  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037  *    cross calls when we want to flush the currently running process's
1038  *    tlb state.  This is done by clearing all cpu bits except the current
1039  *    processor's in current->mm->cpu_vm_mask and performing the
1040  *    flush locally only.  This will force any subsequent cpus which run
1041  *    this task to flush the context from the local tlb if the process
1042  *    migrates to another cpu (again).
1043  *
1044  * 3) For shared address spaces (threads) and swapping we bite the
1045  *    bullet for most cases and perform the cross call (but only to
1046  *    the cpus listed in cpu_vm_mask).
1047  *
1048  *    The performance gain from "optimizing" away the cross call for threads is
1049  *    questionable (in theory the big win for threads is the massive sharing of
1050  *    address space state across processors).
1051  */
1052 
1053 /* This currently is only used by the hugetlb arch pre-fault
1054  * hook on UltraSPARC-III+ and later when changing the pagesize
1055  * bits of the context register for an address space.
1056  */
1057 void smp_flush_tlb_mm(struct mm_struct *mm)
1058 {
1059 	u32 ctx = CTX_HWBITS(mm->context);
1060 	int cpu = get_cpu();
1061 
1062 	if (atomic_read(&mm->mm_users) == 1) {
1063 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064 		goto local_flush_and_out;
1065 	}
1066 
1067 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068 			      ctx, 0, 0,
1069 			      mm_cpumask(mm));
1070 
1071 local_flush_and_out:
1072 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073 
1074 	put_cpu();
1075 }
1076 
1077 struct tlb_pending_info {
1078 	unsigned long ctx;
1079 	unsigned long nr;
1080 	unsigned long *vaddrs;
1081 };
1082 
1083 static void tlb_pending_func(void *info)
1084 {
1085 	struct tlb_pending_info *t = info;
1086 
1087 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088 }
1089 
1090 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091 {
1092 	u32 ctx = CTX_HWBITS(mm->context);
1093 	struct tlb_pending_info info;
1094 	int cpu = get_cpu();
1095 
1096 	info.ctx = ctx;
1097 	info.nr = nr;
1098 	info.vaddrs = vaddrs;
1099 
1100 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102 	else
1103 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 				       &info, 1);
1105 
1106 	__flush_tlb_pending(ctx, nr, vaddrs);
1107 
1108 	put_cpu();
1109 }
1110 
1111 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112 {
1113 	unsigned long context = CTX_HWBITS(mm->context);
1114 	int cpu = get_cpu();
1115 
1116 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118 	else
1119 		smp_cross_call_masked(&xcall_flush_tlb_page,
1120 				      context, vaddr, 0,
1121 				      mm_cpumask(mm));
1122 	__flush_tlb_page(context, vaddr);
1123 
1124 	put_cpu();
1125 }
1126 
1127 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128 {
1129 	start &= PAGE_MASK;
1130 	end    = PAGE_ALIGN(end);
1131 	if (start != end) {
1132 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1133 			       0, start, end);
1134 
1135 		__flush_tlb_kernel_range(start, end);
1136 	}
1137 }
1138 
1139 /* CPU capture. */
1140 /* #define CAPTURE_DEBUG */
1141 extern unsigned long xcall_capture;
1142 
1143 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145 static unsigned long penguins_are_doing_time;
1146 
1147 void smp_capture(void)
1148 {
1149 	int result = atomic_add_return(1, &smp_capture_depth);
1150 
1151 	if (result == 1) {
1152 		int ncpus = num_online_cpus();
1153 
1154 #ifdef CAPTURE_DEBUG
1155 		printk("CPU[%d]: Sending penguins to jail...",
1156 		       smp_processor_id());
1157 #endif
1158 		penguins_are_doing_time = 1;
1159 		atomic_inc(&smp_capture_registry);
1160 		smp_cross_call(&xcall_capture, 0, 0, 0);
1161 		while (atomic_read(&smp_capture_registry) != ncpus)
1162 			rmb();
1163 #ifdef CAPTURE_DEBUG
1164 		printk("done\n");
1165 #endif
1166 	}
1167 }
1168 
1169 void smp_release(void)
1170 {
1171 	if (atomic_dec_and_test(&smp_capture_depth)) {
1172 #ifdef CAPTURE_DEBUG
1173 		printk("CPU[%d]: Giving pardon to "
1174 		       "imprisoned penguins\n",
1175 		       smp_processor_id());
1176 #endif
1177 		penguins_are_doing_time = 0;
1178 		membar_safe("#StoreLoad");
1179 		atomic_dec(&smp_capture_registry);
1180 	}
1181 }
1182 
1183 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184  * set, so they can service tlb flush xcalls...
1185  */
1186 extern void prom_world(int);
1187 
1188 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189 {
1190 	clear_softint(1 << irq);
1191 
1192 	preempt_disable();
1193 
1194 	__asm__ __volatile__("flushw");
1195 	prom_world(1);
1196 	atomic_inc(&smp_capture_registry);
1197 	membar_safe("#StoreLoad");
1198 	while (penguins_are_doing_time)
1199 		rmb();
1200 	atomic_dec(&smp_capture_registry);
1201 	prom_world(0);
1202 
1203 	preempt_enable();
1204 }
1205 
1206 /* /proc/profile writes can call this, don't __init it please. */
1207 int setup_profiling_timer(unsigned int multiplier)
1208 {
1209 	return -EINVAL;
1210 }
1211 
1212 void __init smp_prepare_cpus(unsigned int max_cpus)
1213 {
1214 }
1215 
1216 void smp_prepare_boot_cpu(void)
1217 {
1218 }
1219 
1220 void __init smp_setup_processor_id(void)
1221 {
1222 	if (tlb_type == spitfire)
1223 		xcall_deliver_impl = spitfire_xcall_deliver;
1224 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225 		xcall_deliver_impl = cheetah_xcall_deliver;
1226 	else
1227 		xcall_deliver_impl = hypervisor_xcall_deliver;
1228 }
1229 
1230 void smp_fill_in_sib_core_maps(void)
1231 {
1232 	unsigned int i;
1233 
1234 	for_each_present_cpu(i) {
1235 		unsigned int j;
1236 
1237 		cpumask_clear(&cpu_core_map[i]);
1238 		if (cpu_data(i).core_id == 0) {
1239 			cpumask_set_cpu(i, &cpu_core_map[i]);
1240 			continue;
1241 		}
1242 
1243 		for_each_present_cpu(j) {
1244 			if (cpu_data(i).core_id ==
1245 			    cpu_data(j).core_id)
1246 				cpumask_set_cpu(j, &cpu_core_map[i]);
1247 		}
1248 	}
1249 
1250 	for_each_present_cpu(i)  {
1251 		unsigned int j;
1252 
1253 		for_each_present_cpu(j)  {
1254 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256 		}
1257 	}
1258 
1259 	for_each_present_cpu(i) {
1260 		unsigned int j;
1261 
1262 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263 		if (cpu_data(i).proc_id == -1) {
1264 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265 			continue;
1266 		}
1267 
1268 		for_each_present_cpu(j) {
1269 			if (cpu_data(i).proc_id ==
1270 			    cpu_data(j).proc_id)
1271 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272 		}
1273 	}
1274 }
1275 
1276 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277 {
1278 	int ret = smp_boot_one_cpu(cpu, tidle);
1279 
1280 	if (!ret) {
1281 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1282 		while (!cpu_online(cpu))
1283 			mb();
1284 		if (!cpu_online(cpu)) {
1285 			ret = -ENODEV;
1286 		} else {
1287 			/* On SUN4V, writes to %tick and %stick are
1288 			 * not allowed.
1289 			 */
1290 			if (tlb_type != hypervisor)
1291 				smp_synchronize_one_tick(cpu);
1292 		}
1293 	}
1294 	return ret;
1295 }
1296 
1297 #ifdef CONFIG_HOTPLUG_CPU
1298 void cpu_play_dead(void)
1299 {
1300 	int cpu = smp_processor_id();
1301 	unsigned long pstate;
1302 
1303 	idle_task_exit();
1304 
1305 	if (tlb_type == hypervisor) {
1306 		struct trap_per_cpu *tb = &trap_block[cpu];
1307 
1308 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309 				tb->cpu_mondo_pa, 0);
1310 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311 				tb->dev_mondo_pa, 0);
1312 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313 				tb->resum_mondo_pa, 0);
1314 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315 				tb->nonresum_mondo_pa, 0);
1316 	}
1317 
1318 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319 	membar_safe("#Sync");
1320 
1321 	local_irq_disable();
1322 
1323 	__asm__ __volatile__(
1324 		"rdpr	%%pstate, %0\n\t"
1325 		"wrpr	%0, %1, %%pstate"
1326 		: "=r" (pstate)
1327 		: "i" (PSTATE_IE));
1328 
1329 	while (1)
1330 		barrier();
1331 }
1332 
1333 int __cpu_disable(void)
1334 {
1335 	int cpu = smp_processor_id();
1336 	cpuinfo_sparc *c;
1337 	int i;
1338 
1339 	for_each_cpu(i, &cpu_core_map[cpu])
1340 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341 	cpumask_clear(&cpu_core_map[cpu]);
1342 
1343 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346 
1347 	c = &cpu_data(cpu);
1348 
1349 	c->core_id = 0;
1350 	c->proc_id = -1;
1351 
1352 	smp_wmb();
1353 
1354 	/* Make sure no interrupts point to this cpu.  */
1355 	fixup_irqs();
1356 
1357 	local_irq_enable();
1358 	mdelay(1);
1359 	local_irq_disable();
1360 
1361 	set_cpu_online(cpu, false);
1362 
1363 	cpu_map_rebuild();
1364 
1365 	return 0;
1366 }
1367 
1368 void __cpu_die(unsigned int cpu)
1369 {
1370 	int i;
1371 
1372 	for (i = 0; i < 100; i++) {
1373 		smp_rmb();
1374 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375 			break;
1376 		msleep(100);
1377 	}
1378 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380 	} else {
1381 #if defined(CONFIG_SUN_LDOMS)
1382 		unsigned long hv_err;
1383 		int limit = 100;
1384 
1385 		do {
1386 			hv_err = sun4v_cpu_stop(cpu);
1387 			if (hv_err == HV_EOK) {
1388 				set_cpu_present(cpu, false);
1389 				break;
1390 			}
1391 		} while (--limit > 0);
1392 		if (limit <= 0) {
1393 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394 			       hv_err);
1395 		}
1396 #endif
1397 	}
1398 }
1399 #endif
1400 
1401 void __init smp_cpus_done(unsigned int max_cpus)
1402 {
1403 }
1404 
1405 void smp_send_reschedule(int cpu)
1406 {
1407 	if (cpu == smp_processor_id()) {
1408 		WARN_ON_ONCE(preemptible());
1409 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410 	} else {
1411 		xcall_deliver((u64) &xcall_receive_signal,
1412 			      0, 0, cpumask_of(cpu));
1413 	}
1414 }
1415 
1416 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417 {
1418 	clear_softint(1 << irq);
1419 	scheduler_ipi();
1420 }
1421 
1422 static void stop_this_cpu(void *dummy)
1423 {
1424 	prom_stopself();
1425 }
1426 
1427 void smp_send_stop(void)
1428 {
1429 	int cpu;
1430 
1431 	if (tlb_type == hypervisor) {
1432 		for_each_online_cpu(cpu) {
1433 			if (cpu == smp_processor_id())
1434 				continue;
1435 #ifdef CONFIG_SUN_LDOMS
1436 			if (ldom_domaining_enabled) {
1437 				unsigned long hv_err;
1438 				hv_err = sun4v_cpu_stop(cpu);
1439 				if (hv_err)
1440 					printk(KERN_ERR "sun4v_cpu_stop() "
1441 					       "failed err=%lu\n", hv_err);
1442 			} else
1443 #endif
1444 				prom_stopcpu_cpuid(cpu);
1445 		}
1446 	} else
1447 		smp_call_function(stop_this_cpu, NULL, 0);
1448 }
1449 
1450 /**
1451  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452  * @cpu: cpu to allocate for
1453  * @size: size allocation in bytes
1454  * @align: alignment
1455  *
1456  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457  * does the right thing for NUMA regardless of the current
1458  * configuration.
1459  *
1460  * RETURNS:
1461  * Pointer to the allocated area on success, NULL on failure.
1462  */
1463 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464 					size_t align)
1465 {
1466 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467 #ifdef CONFIG_NEED_MULTIPLE_NODES
1468 	int node = cpu_to_node(cpu);
1469 	void *ptr;
1470 
1471 	if (!node_online(node) || !NODE_DATA(node)) {
1472 		ptr = __alloc_bootmem(size, align, goal);
1473 		pr_info("cpu %d has no node %d or node-local memory\n",
1474 			cpu, node);
1475 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476 			 cpu, size, __pa(ptr));
1477 	} else {
1478 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1479 					   size, align, goal);
1480 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481 			 "%016lx\n", cpu, size, node, __pa(ptr));
1482 	}
1483 	return ptr;
1484 #else
1485 	return __alloc_bootmem(size, align, goal);
1486 #endif
1487 }
1488 
1489 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490 {
1491 	free_bootmem(__pa(ptr), size);
1492 }
1493 
1494 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495 {
1496 	if (cpu_to_node(from) == cpu_to_node(to))
1497 		return LOCAL_DISTANCE;
1498 	else
1499 		return REMOTE_DISTANCE;
1500 }
1501 
1502 static void __init pcpu_populate_pte(unsigned long addr)
1503 {
1504 	pgd_t *pgd = pgd_offset_k(addr);
1505 	pud_t *pud;
1506 	pmd_t *pmd;
1507 
1508 	if (pgd_none(*pgd)) {
1509 		pud_t *new;
1510 
1511 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512 		pgd_populate(&init_mm, pgd, new);
1513 	}
1514 
1515 	pud = pud_offset(pgd, addr);
1516 	if (pud_none(*pud)) {
1517 		pmd_t *new;
1518 
1519 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520 		pud_populate(&init_mm, pud, new);
1521 	}
1522 
1523 	pmd = pmd_offset(pud, addr);
1524 	if (!pmd_present(*pmd)) {
1525 		pte_t *new;
1526 
1527 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528 		pmd_populate_kernel(&init_mm, pmd, new);
1529 	}
1530 }
1531 
1532 void __init setup_per_cpu_areas(void)
1533 {
1534 	unsigned long delta;
1535 	unsigned int cpu;
1536 	int rc = -EINVAL;
1537 
1538 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541 					    pcpu_cpu_distance,
1542 					    pcpu_alloc_bootmem,
1543 					    pcpu_free_bootmem);
1544 		if (rc)
1545 			pr_warning("PERCPU: %s allocator failed (%d), "
1546 				   "falling back to page size\n",
1547 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1548 	}
1549 	if (rc < 0)
1550 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551 					   pcpu_alloc_bootmem,
1552 					   pcpu_free_bootmem,
1553 					   pcpu_populate_pte);
1554 	if (rc < 0)
1555 		panic("cannot initialize percpu area (err=%d)", rc);
1556 
1557 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558 	for_each_possible_cpu(cpu)
1559 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560 
1561 	/* Setup %g5 for the boot cpu.  */
1562 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563 
1564 	of_fill_in_cpu_data();
1565 	if (tlb_type == hypervisor)
1566 		mdesc_fill_in_cpu_data(cpu_all_mask);
1567 }
1568