1 /* linux/arch/sparc/kernel/process.c 2 * 3 * Copyright (C) 1995, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 */ 6 7 /* 8 * This file handles the architecture-dependent parts of process handling.. 9 */ 10 11 #include <stdarg.h> 12 13 #include <linux/errno.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/stddef.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/smp.h> 22 #include <linux/reboot.h> 23 #include <linux/delay.h> 24 #include <linux/pm.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 28 #include <asm/auxio.h> 29 #include <asm/oplib.h> 30 #include <asm/uaccess.h> 31 #include <asm/page.h> 32 #include <asm/pgalloc.h> 33 #include <asm/pgtable.h> 34 #include <asm/delay.h> 35 #include <asm/processor.h> 36 #include <asm/psr.h> 37 #include <asm/elf.h> 38 #include <asm/prom.h> 39 #include <asm/unistd.h> 40 #include <asm/setup.h> 41 42 /* 43 * Power management idle function 44 * Set in pm platform drivers (apc.c and pmc.c) 45 */ 46 void (*pm_idle)(void); 47 EXPORT_SYMBOL(pm_idle); 48 49 /* 50 * Power-off handler instantiation for pm.h compliance 51 * This is done via auxio, but could be used as a fallback 52 * handler when auxio is not present-- unused for now... 53 */ 54 void (*pm_power_off)(void) = machine_power_off; 55 EXPORT_SYMBOL(pm_power_off); 56 57 /* 58 * sysctl - toggle power-off restriction for serial console 59 * systems in machine_power_off() 60 */ 61 int scons_pwroff = 1; 62 63 extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *); 64 65 struct task_struct *last_task_used_math = NULL; 66 struct thread_info *current_set[NR_CPUS]; 67 68 #ifndef CONFIG_SMP 69 70 #define SUN4C_FAULT_HIGH 100 71 72 /* 73 * the idle loop on a Sparc... ;) 74 */ 75 void cpu_idle(void) 76 { 77 /* endless idle loop with no priority at all */ 78 for (;;) { 79 if (ARCH_SUN4C) { 80 static int count = HZ; 81 static unsigned long last_jiffies; 82 static unsigned long last_faults; 83 static unsigned long fps; 84 unsigned long now; 85 unsigned long faults; 86 87 extern unsigned long sun4c_kernel_faults; 88 extern void sun4c_grow_kernel_ring(void); 89 90 local_irq_disable(); 91 now = jiffies; 92 count -= (now - last_jiffies); 93 last_jiffies = now; 94 if (count < 0) { 95 count += HZ; 96 faults = sun4c_kernel_faults; 97 fps = (fps + (faults - last_faults)) >> 1; 98 last_faults = faults; 99 #if 0 100 printk("kernel faults / second = %ld\n", fps); 101 #endif 102 if (fps >= SUN4C_FAULT_HIGH) { 103 sun4c_grow_kernel_ring(); 104 } 105 } 106 local_irq_enable(); 107 } 108 109 if (pm_idle) { 110 while (!need_resched()) 111 (*pm_idle)(); 112 } else { 113 while (!need_resched()) 114 cpu_relax(); 115 } 116 schedule_preempt_disabled(); 117 check_pgt_cache(); 118 } 119 } 120 121 #else 122 123 /* This is being executed in task 0 'user space'. */ 124 void cpu_idle(void) 125 { 126 set_thread_flag(TIF_POLLING_NRFLAG); 127 /* endless idle loop with no priority at all */ 128 while(1) { 129 #ifdef CONFIG_SPARC_LEON 130 if (pm_idle) { 131 while (!need_resched()) 132 (*pm_idle)(); 133 } else 134 #endif 135 { 136 while (!need_resched()) 137 cpu_relax(); 138 } 139 schedule_preempt_disabled(); 140 check_pgt_cache(); 141 } 142 } 143 144 #endif 145 146 /* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */ 147 void machine_halt(void) 148 { 149 local_irq_enable(); 150 mdelay(8); 151 local_irq_disable(); 152 prom_halt(); 153 panic("Halt failed!"); 154 } 155 156 void machine_restart(char * cmd) 157 { 158 char *p; 159 160 local_irq_enable(); 161 mdelay(8); 162 local_irq_disable(); 163 164 p = strchr (reboot_command, '\n'); 165 if (p) *p = 0; 166 if (cmd) 167 prom_reboot(cmd); 168 if (*reboot_command) 169 prom_reboot(reboot_command); 170 prom_feval ("reset"); 171 panic("Reboot failed!"); 172 } 173 174 void machine_power_off(void) 175 { 176 if (auxio_power_register && 177 (strcmp(of_console_device->type, "serial") || scons_pwroff)) 178 *auxio_power_register |= AUXIO_POWER_OFF; 179 machine_halt(); 180 } 181 182 #if 0 183 184 static DEFINE_SPINLOCK(sparc_backtrace_lock); 185 186 void __show_backtrace(unsigned long fp) 187 { 188 struct reg_window32 *rw; 189 unsigned long flags; 190 int cpu = smp_processor_id(); 191 192 spin_lock_irqsave(&sparc_backtrace_lock, flags); 193 194 rw = (struct reg_window32 *)fp; 195 while(rw && (((unsigned long) rw) >= PAGE_OFFSET) && 196 !(((unsigned long) rw) & 0x7)) { 197 printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] " 198 "FP[%08lx] CALLER[%08lx]: ", cpu, 199 rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], 200 rw->ins[4], rw->ins[5], 201 rw->ins[6], 202 rw->ins[7]); 203 printk("%pS\n", (void *) rw->ins[7]); 204 rw = (struct reg_window32 *) rw->ins[6]; 205 } 206 spin_unlock_irqrestore(&sparc_backtrace_lock, flags); 207 } 208 209 #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t") 210 #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t") 211 #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp)) 212 213 void show_backtrace(void) 214 { 215 unsigned long fp; 216 217 __SAVE; __SAVE; __SAVE; __SAVE; 218 __SAVE; __SAVE; __SAVE; __SAVE; 219 __RESTORE; __RESTORE; __RESTORE; __RESTORE; 220 __RESTORE; __RESTORE; __RESTORE; __RESTORE; 221 222 __GET_FP(fp); 223 224 __show_backtrace(fp); 225 } 226 227 #ifdef CONFIG_SMP 228 void smp_show_backtrace_all_cpus(void) 229 { 230 xc0((smpfunc_t) show_backtrace); 231 show_backtrace(); 232 } 233 #endif 234 235 void show_stackframe(struct sparc_stackf *sf) 236 { 237 unsigned long size; 238 unsigned long *stk; 239 int i; 240 241 printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx " 242 "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n", 243 sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3], 244 sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]); 245 printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx " 246 "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n", 247 sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3], 248 sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc); 249 printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx " 250 "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n", 251 (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1], 252 sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5], 253 sf->xxargs[0]); 254 size = ((unsigned long)sf->fp) - ((unsigned long)sf); 255 size -= STACKFRAME_SZ; 256 stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ); 257 i = 0; 258 do { 259 printk("s%d: %08lx\n", i++, *stk++); 260 } while ((size -= sizeof(unsigned long))); 261 } 262 #endif 263 264 void show_regs(struct pt_regs *r) 265 { 266 struct reg_window32 *rw = (struct reg_window32 *) r->u_regs[14]; 267 268 printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n", 269 r->psr, r->pc, r->npc, r->y, print_tainted()); 270 printk("PC: <%pS>\n", (void *) r->pc); 271 printk("%%G: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", 272 r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3], 273 r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]); 274 printk("%%O: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", 275 r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11], 276 r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]); 277 printk("RPC: <%pS>\n", (void *) r->u_regs[15]); 278 279 printk("%%L: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", 280 rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3], 281 rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]); 282 printk("%%I: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", 283 rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3], 284 rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]); 285 } 286 287 /* 288 * The show_stack is an external API which we do not use ourselves. 289 * The oops is printed in die_if_kernel. 290 */ 291 void show_stack(struct task_struct *tsk, unsigned long *_ksp) 292 { 293 unsigned long pc, fp; 294 unsigned long task_base; 295 struct reg_window32 *rw; 296 int count = 0; 297 298 if (tsk != NULL) 299 task_base = (unsigned long) task_stack_page(tsk); 300 else 301 task_base = (unsigned long) current_thread_info(); 302 303 fp = (unsigned long) _ksp; 304 do { 305 /* Bogus frame pointer? */ 306 if (fp < (task_base + sizeof(struct thread_info)) || 307 fp >= (task_base + (PAGE_SIZE << 1))) 308 break; 309 rw = (struct reg_window32 *) fp; 310 pc = rw->ins[7]; 311 printk("[%08lx : ", pc); 312 printk("%pS ] ", (void *) pc); 313 fp = rw->ins[6]; 314 } while (++count < 16); 315 printk("\n"); 316 } 317 318 void dump_stack(void) 319 { 320 unsigned long *ksp; 321 322 __asm__ __volatile__("mov %%fp, %0" 323 : "=r" (ksp)); 324 show_stack(current, ksp); 325 } 326 327 EXPORT_SYMBOL(dump_stack); 328 329 /* 330 * Note: sparc64 has a pretty intricated thread_saved_pc, check it out. 331 */ 332 unsigned long thread_saved_pc(struct task_struct *tsk) 333 { 334 return task_thread_info(tsk)->kpc; 335 } 336 337 /* 338 * Free current thread data structures etc.. 339 */ 340 void exit_thread(void) 341 { 342 #ifndef CONFIG_SMP 343 if(last_task_used_math == current) { 344 #else 345 if (test_thread_flag(TIF_USEDFPU)) { 346 #endif 347 /* Keep process from leaving FPU in a bogon state. */ 348 put_psr(get_psr() | PSR_EF); 349 fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, 350 ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); 351 #ifndef CONFIG_SMP 352 last_task_used_math = NULL; 353 #else 354 clear_thread_flag(TIF_USEDFPU); 355 #endif 356 } 357 } 358 359 void flush_thread(void) 360 { 361 current_thread_info()->w_saved = 0; 362 363 #ifndef CONFIG_SMP 364 if(last_task_used_math == current) { 365 #else 366 if (test_thread_flag(TIF_USEDFPU)) { 367 #endif 368 /* Clean the fpu. */ 369 put_psr(get_psr() | PSR_EF); 370 fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, 371 ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); 372 #ifndef CONFIG_SMP 373 last_task_used_math = NULL; 374 #else 375 clear_thread_flag(TIF_USEDFPU); 376 #endif 377 } 378 379 /* This task is no longer a kernel thread. */ 380 if (current->thread.flags & SPARC_FLAG_KTHREAD) { 381 current->thread.flags &= ~SPARC_FLAG_KTHREAD; 382 383 /* We must fixup kregs as well. */ 384 /* XXX This was not fixed for ti for a while, worked. Unused? */ 385 current->thread.kregs = (struct pt_regs *) 386 (task_stack_page(current) + (THREAD_SIZE - TRACEREG_SZ)); 387 } 388 } 389 390 static inline struct sparc_stackf __user * 391 clone_stackframe(struct sparc_stackf __user *dst, 392 struct sparc_stackf __user *src) 393 { 394 unsigned long size, fp; 395 struct sparc_stackf *tmp; 396 struct sparc_stackf __user *sp; 397 398 if (get_user(tmp, &src->fp)) 399 return NULL; 400 401 fp = (unsigned long) tmp; 402 size = (fp - ((unsigned long) src)); 403 fp = (unsigned long) dst; 404 sp = (struct sparc_stackf __user *)(fp - size); 405 406 /* do_fork() grabs the parent semaphore, we must release it 407 * temporarily so we can build the child clone stack frame 408 * without deadlocking. 409 */ 410 if (__copy_user(sp, src, size)) 411 sp = NULL; 412 else if (put_user(fp, &sp->fp)) 413 sp = NULL; 414 415 return sp; 416 } 417 418 asmlinkage int sparc_do_fork(unsigned long clone_flags, 419 unsigned long stack_start, 420 struct pt_regs *regs, 421 unsigned long stack_size) 422 { 423 unsigned long parent_tid_ptr, child_tid_ptr; 424 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 425 long ret; 426 427 parent_tid_ptr = regs->u_regs[UREG_I2]; 428 child_tid_ptr = regs->u_regs[UREG_I4]; 429 430 ret = do_fork(clone_flags, stack_start, 431 regs, stack_size, 432 (int __user *) parent_tid_ptr, 433 (int __user *) child_tid_ptr); 434 435 /* If we get an error and potentially restart the system 436 * call, we're screwed because copy_thread() clobbered 437 * the parent's %o1. So detect that case and restore it 438 * here. 439 */ 440 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 441 regs->u_regs[UREG_I1] = orig_i1; 442 443 return ret; 444 } 445 446 /* Copy a Sparc thread. The fork() return value conventions 447 * under SunOS are nothing short of bletcherous: 448 * Parent --> %o0 == childs pid, %o1 == 0 449 * Child --> %o0 == parents pid, %o1 == 1 450 * 451 * NOTE: We have a separate fork kpsr/kwim because 452 * the parent could change these values between 453 * sys_fork invocation and when we reach here 454 * if the parent should sleep while trying to 455 * allocate the task_struct and kernel stack in 456 * do_fork(). 457 * XXX See comment above sys_vfork in sparc64. todo. 458 */ 459 extern void ret_from_fork(void); 460 461 int copy_thread(unsigned long clone_flags, unsigned long sp, 462 unsigned long unused, 463 struct task_struct *p, struct pt_regs *regs) 464 { 465 struct thread_info *ti = task_thread_info(p); 466 struct pt_regs *childregs; 467 char *new_stack; 468 469 #ifndef CONFIG_SMP 470 if(last_task_used_math == current) { 471 #else 472 if (test_thread_flag(TIF_USEDFPU)) { 473 #endif 474 put_psr(get_psr() | PSR_EF); 475 fpsave(&p->thread.float_regs[0], &p->thread.fsr, 476 &p->thread.fpqueue[0], &p->thread.fpqdepth); 477 #ifdef CONFIG_SMP 478 clear_thread_flag(TIF_USEDFPU); 479 #endif 480 } 481 482 /* 483 * p->thread_info new_stack childregs 484 * ! ! ! {if(PSR_PS) } 485 * V V (stk.fr.) V (pt_regs) { (stk.fr.) } 486 * +----- - - - - - ------+===========+============={+==========}+ 487 */ 488 new_stack = task_stack_page(p) + THREAD_SIZE; 489 if (regs->psr & PSR_PS) 490 new_stack -= STACKFRAME_SZ; 491 new_stack -= STACKFRAME_SZ + TRACEREG_SZ; 492 memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ); 493 childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ); 494 495 /* 496 * A new process must start with interrupts closed in 2.5, 497 * because this is how Mingo's scheduler works (see schedule_tail 498 * and finish_arch_switch). If we do not do it, a timer interrupt hits 499 * before we unlock, attempts to re-take the rq->lock, and then we die. 500 * Thus, kpsr|=PSR_PIL. 501 */ 502 ti->ksp = (unsigned long) new_stack; 503 ti->kpc = (((unsigned long) ret_from_fork) - 0x8); 504 ti->kpsr = current->thread.fork_kpsr | PSR_PIL; 505 ti->kwim = current->thread.fork_kwim; 506 507 if(regs->psr & PSR_PS) { 508 extern struct pt_regs fake_swapper_regs; 509 510 p->thread.kregs = &fake_swapper_regs; 511 new_stack += STACKFRAME_SZ + TRACEREG_SZ; 512 childregs->u_regs[UREG_FP] = (unsigned long) new_stack; 513 p->thread.flags |= SPARC_FLAG_KTHREAD; 514 p->thread.current_ds = KERNEL_DS; 515 memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ); 516 childregs->u_regs[UREG_G6] = (unsigned long) ti; 517 } else { 518 p->thread.kregs = childregs; 519 childregs->u_regs[UREG_FP] = sp; 520 p->thread.flags &= ~SPARC_FLAG_KTHREAD; 521 p->thread.current_ds = USER_DS; 522 523 if (sp != regs->u_regs[UREG_FP]) { 524 struct sparc_stackf __user *childstack; 525 struct sparc_stackf __user *parentstack; 526 527 /* 528 * This is a clone() call with supplied user stack. 529 * Set some valid stack frames to give to the child. 530 */ 531 childstack = (struct sparc_stackf __user *) 532 (sp & ~0xfUL); 533 parentstack = (struct sparc_stackf __user *) 534 regs->u_regs[UREG_FP]; 535 536 #if 0 537 printk("clone: parent stack:\n"); 538 show_stackframe(parentstack); 539 #endif 540 541 childstack = clone_stackframe(childstack, parentstack); 542 if (!childstack) 543 return -EFAULT; 544 545 #if 0 546 printk("clone: child stack:\n"); 547 show_stackframe(childstack); 548 #endif 549 550 childregs->u_regs[UREG_FP] = (unsigned long)childstack; 551 } 552 } 553 554 #ifdef CONFIG_SMP 555 /* FPU must be disabled on SMP. */ 556 childregs->psr &= ~PSR_EF; 557 #endif 558 559 /* Set the return value for the child. */ 560 childregs->u_regs[UREG_I0] = current->pid; 561 childregs->u_regs[UREG_I1] = 1; 562 563 /* Set the return value for the parent. */ 564 regs->u_regs[UREG_I1] = 0; 565 566 if (clone_flags & CLONE_SETTLS) 567 childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 568 569 return 0; 570 } 571 572 /* 573 * fill in the fpu structure for a core dump. 574 */ 575 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 576 { 577 if (used_math()) { 578 memset(fpregs, 0, sizeof(*fpregs)); 579 fpregs->pr_q_entrysize = 8; 580 return 1; 581 } 582 #ifdef CONFIG_SMP 583 if (test_thread_flag(TIF_USEDFPU)) { 584 put_psr(get_psr() | PSR_EF); 585 fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, 586 ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); 587 if (regs != NULL) { 588 regs->psr &= ~(PSR_EF); 589 clear_thread_flag(TIF_USEDFPU); 590 } 591 } 592 #else 593 if (current == last_task_used_math) { 594 put_psr(get_psr() | PSR_EF); 595 fpsave(¤t->thread.float_regs[0], ¤t->thread.fsr, 596 ¤t->thread.fpqueue[0], ¤t->thread.fpqdepth); 597 if (regs != NULL) { 598 regs->psr &= ~(PSR_EF); 599 last_task_used_math = NULL; 600 } 601 } 602 #endif 603 memcpy(&fpregs->pr_fr.pr_regs[0], 604 ¤t->thread.float_regs[0], 605 (sizeof(unsigned long) * 32)); 606 fpregs->pr_fsr = current->thread.fsr; 607 fpregs->pr_qcnt = current->thread.fpqdepth; 608 fpregs->pr_q_entrysize = 8; 609 fpregs->pr_en = 1; 610 if(fpregs->pr_qcnt != 0) { 611 memcpy(&fpregs->pr_q[0], 612 ¤t->thread.fpqueue[0], 613 sizeof(struct fpq) * fpregs->pr_qcnt); 614 } 615 /* Zero out the rest. */ 616 memset(&fpregs->pr_q[fpregs->pr_qcnt], 0, 617 sizeof(struct fpq) * (32 - fpregs->pr_qcnt)); 618 return 1; 619 } 620 621 /* 622 * sparc_execve() executes a new program after the asm stub has set 623 * things up for us. This should basically do what I want it to. 624 */ 625 asmlinkage int sparc_execve(struct pt_regs *regs) 626 { 627 int error, base = 0; 628 char *filename; 629 630 /* Check for indirect call. */ 631 if(regs->u_regs[UREG_G1] == 0) 632 base = 1; 633 634 filename = getname((char __user *)regs->u_regs[base + UREG_I0]); 635 error = PTR_ERR(filename); 636 if(IS_ERR(filename)) 637 goto out; 638 error = do_execve(filename, 639 (const char __user *const __user *) 640 regs->u_regs[base + UREG_I1], 641 (const char __user *const __user *) 642 regs->u_regs[base + UREG_I2], 643 regs); 644 putname(filename); 645 out: 646 return error; 647 } 648 649 /* 650 * This is the mechanism for creating a new kernel thread. 651 * 652 * NOTE! Only a kernel-only process(ie the swapper or direct descendants 653 * who haven't done an "execve()") should use this: it will work within 654 * a system call from a "real" process, but the process memory space will 655 * not be freed until both the parent and the child have exited. 656 */ 657 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 658 { 659 long retval; 660 661 __asm__ __volatile__("mov %4, %%g2\n\t" /* Set aside fn ptr... */ 662 "mov %5, %%g3\n\t" /* and arg. */ 663 "mov %1, %%g1\n\t" 664 "mov %2, %%o0\n\t" /* Clone flags. */ 665 "mov 0, %%o1\n\t" /* usp arg == 0 */ 666 "t 0x10\n\t" /* Linux/Sparc clone(). */ 667 "cmp %%o1, 0\n\t" 668 "be 1f\n\t" /* The parent, just return. */ 669 " nop\n\t" /* Delay slot. */ 670 "jmpl %%g2, %%o7\n\t" /* Call the function. */ 671 " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */ 672 "mov %3, %%g1\n\t" 673 "t 0x10\n\t" /* Linux/Sparc exit(). */ 674 /* Notreached by child. */ 675 "1: mov %%o0, %0\n\t" : 676 "=r" (retval) : 677 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), 678 "i" (__NR_exit), "r" (fn), "r" (arg) : 679 "g1", "g2", "g3", "o0", "o1", "memory", "cc"); 680 return retval; 681 } 682 EXPORT_SYMBOL(kernel_thread); 683 684 unsigned long get_wchan(struct task_struct *task) 685 { 686 unsigned long pc, fp, bias = 0; 687 unsigned long task_base = (unsigned long) task; 688 unsigned long ret = 0; 689 struct reg_window32 *rw; 690 int count = 0; 691 692 if (!task || task == current || 693 task->state == TASK_RUNNING) 694 goto out; 695 696 fp = task_thread_info(task)->ksp + bias; 697 do { 698 /* Bogus frame pointer? */ 699 if (fp < (task_base + sizeof(struct thread_info)) || 700 fp >= (task_base + (2 * PAGE_SIZE))) 701 break; 702 rw = (struct reg_window32 *) fp; 703 pc = rw->ins[7]; 704 if (!in_sched_functions(pc)) { 705 ret = pc; 706 goto out; 707 } 708 fp = rw->ins[6] + bias; 709 } while (++count < 16); 710 711 out: 712 return ret; 713 } 714 715