xref: /linux/arch/sparc/kernel/perf_event.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 
29 #include "kstack.h"
30 
31 /* Sparc64 chips have two performance counters, 32-bits each, with
32  * overflow interrupts generated on transition from 0xffffffff to 0.
33  * The counters are accessed in one go using a 64-bit register.
34  *
35  * Both counters are controlled using a single control register.  The
36  * only way to stop all sampling is to clear all of the context (user,
37  * supervisor, hypervisor) sampling enable bits.  But these bits apply
38  * to both counters, thus the two counters can't be enabled/disabled
39  * individually.
40  *
41  * The control register has two event fields, one for each of the two
42  * counters.  It's thus nearly impossible to have one counter going
43  * while keeping the other one stopped.  Therefore it is possible to
44  * get overflow interrupts for counters not currently "in use" and
45  * that condition must be checked in the overflow interrupt handler.
46  *
47  * So we use a hack, in that we program inactive counters with the
48  * "sw_count0" and "sw_count1" events.  These count how many times
49  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
50  * unusual way to encode a NOP and therefore will not trigger in
51  * normal code.
52  */
53 
54 #define MAX_HWEVENTS			2
55 #define MAX_PERIOD			((1UL << 32) - 1)
56 
57 #define PIC_UPPER_INDEX			0
58 #define PIC_LOWER_INDEX			1
59 #define PIC_NO_INDEX			-1
60 
61 struct cpu_hw_events {
62 	/* Number of events currently scheduled onto this cpu.
63 	 * This tells how many entries in the arrays below
64 	 * are valid.
65 	 */
66 	int			n_events;
67 
68 	/* Number of new events added since the last hw_perf_disable().
69 	 * This works because the perf event layer always adds new
70 	 * events inside of a perf_{disable,enable}() sequence.
71 	 */
72 	int			n_added;
73 
74 	/* Array of events current scheduled on this cpu.  */
75 	struct perf_event	*event[MAX_HWEVENTS];
76 
77 	/* Array of encoded longs, specifying the %pcr register
78 	 * encoding and the mask of PIC counters this even can
79 	 * be scheduled on.  See perf_event_encode() et al.
80 	 */
81 	unsigned long		events[MAX_HWEVENTS];
82 
83 	/* The current counter index assigned to an event.  When the
84 	 * event hasn't been programmed into the cpu yet, this will
85 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
86 	 * we ought to schedule the event.
87 	 */
88 	int			current_idx[MAX_HWEVENTS];
89 
90 	/* Software copy of %pcr register on this cpu.  */
91 	u64			pcr;
92 
93 	/* Enabled/disable state.  */
94 	int			enabled;
95 };
96 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
97 
98 /* An event map describes the characteristics of a performance
99  * counter event.  In particular it gives the encoding as well as
100  * a mask telling which counters the event can be measured on.
101  */
102 struct perf_event_map {
103 	u16	encoding;
104 	u8	pic_mask;
105 #define PIC_NONE	0x00
106 #define PIC_UPPER	0x01
107 #define PIC_LOWER	0x02
108 };
109 
110 /* Encode a perf_event_map entry into a long.  */
111 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
112 {
113 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
114 }
115 
116 static u8 perf_event_get_msk(unsigned long val)
117 {
118 	return val & 0xff;
119 }
120 
121 static u64 perf_event_get_enc(unsigned long val)
122 {
123 	return val >> 16;
124 }
125 
126 #define C(x) PERF_COUNT_HW_CACHE_##x
127 
128 #define CACHE_OP_UNSUPPORTED	0xfffe
129 #define CACHE_OP_NONSENSE	0xffff
130 
131 typedef struct perf_event_map cache_map_t
132 				[PERF_COUNT_HW_CACHE_MAX]
133 				[PERF_COUNT_HW_CACHE_OP_MAX]
134 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
135 
136 struct sparc_pmu {
137 	const struct perf_event_map	*(*event_map)(int);
138 	const cache_map_t		*cache_map;
139 	int				max_events;
140 	int				upper_shift;
141 	int				lower_shift;
142 	int				event_mask;
143 	int				hv_bit;
144 	int				irq_bit;
145 	int				upper_nop;
146 	int				lower_nop;
147 };
148 
149 static const struct perf_event_map ultra3_perfmon_event_map[] = {
150 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
151 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
152 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
153 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
154 };
155 
156 static const struct perf_event_map *ultra3_event_map(int event_id)
157 {
158 	return &ultra3_perfmon_event_map[event_id];
159 }
160 
161 static const cache_map_t ultra3_cache_map = {
162 [C(L1D)] = {
163 	[C(OP_READ)] = {
164 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
165 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
166 	},
167 	[C(OP_WRITE)] = {
168 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
169 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
170 	},
171 	[C(OP_PREFETCH)] = {
172 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
173 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
174 	},
175 },
176 [C(L1I)] = {
177 	[C(OP_READ)] = {
178 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
179 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
180 	},
181 	[ C(OP_WRITE) ] = {
182 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
183 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
184 	},
185 	[ C(OP_PREFETCH) ] = {
186 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
187 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
188 	},
189 },
190 [C(LL)] = {
191 	[C(OP_READ)] = {
192 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
193 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
194 	},
195 	[C(OP_WRITE)] = {
196 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
197 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
198 	},
199 	[C(OP_PREFETCH)] = {
200 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
201 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
202 	},
203 },
204 [C(DTLB)] = {
205 	[C(OP_READ)] = {
206 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
207 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
208 	},
209 	[ C(OP_WRITE) ] = {
210 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
211 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
212 	},
213 	[ C(OP_PREFETCH) ] = {
214 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
215 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
216 	},
217 },
218 [C(ITLB)] = {
219 	[C(OP_READ)] = {
220 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
221 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
222 	},
223 	[ C(OP_WRITE) ] = {
224 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
225 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
226 	},
227 	[ C(OP_PREFETCH) ] = {
228 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
229 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
230 	},
231 },
232 [C(BPU)] = {
233 	[C(OP_READ)] = {
234 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
235 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
236 	},
237 	[ C(OP_WRITE) ] = {
238 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
239 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
240 	},
241 	[ C(OP_PREFETCH) ] = {
242 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
243 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
244 	},
245 },
246 };
247 
248 static const struct sparc_pmu ultra3_pmu = {
249 	.event_map	= ultra3_event_map,
250 	.cache_map	= &ultra3_cache_map,
251 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
252 	.upper_shift	= 11,
253 	.lower_shift	= 4,
254 	.event_mask	= 0x3f,
255 	.upper_nop	= 0x1c,
256 	.lower_nop	= 0x14,
257 };
258 
259 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
260  * only instructions, so it is free running which creates all kinds of
261  * problems.  Some hardware designs make one wonder if the creator
262  * even looked at how this stuff gets used by software.
263  */
264 static const struct perf_event_map niagara1_perfmon_event_map[] = {
265 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
266 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
267 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
268 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
269 };
270 
271 static const struct perf_event_map *niagara1_event_map(int event_id)
272 {
273 	return &niagara1_perfmon_event_map[event_id];
274 }
275 
276 static const cache_map_t niagara1_cache_map = {
277 [C(L1D)] = {
278 	[C(OP_READ)] = {
279 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
280 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
281 	},
282 	[C(OP_WRITE)] = {
283 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
284 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
285 	},
286 	[C(OP_PREFETCH)] = {
287 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
288 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
289 	},
290 },
291 [C(L1I)] = {
292 	[C(OP_READ)] = {
293 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
294 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
295 	},
296 	[ C(OP_WRITE) ] = {
297 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
298 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
299 	},
300 	[ C(OP_PREFETCH) ] = {
301 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
302 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
303 	},
304 },
305 [C(LL)] = {
306 	[C(OP_READ)] = {
307 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
308 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
309 	},
310 	[C(OP_WRITE)] = {
311 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
312 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
313 	},
314 	[C(OP_PREFETCH)] = {
315 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
316 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
317 	},
318 },
319 [C(DTLB)] = {
320 	[C(OP_READ)] = {
321 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
322 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
323 	},
324 	[ C(OP_WRITE) ] = {
325 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
326 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
327 	},
328 	[ C(OP_PREFETCH) ] = {
329 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
330 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
331 	},
332 },
333 [C(ITLB)] = {
334 	[C(OP_READ)] = {
335 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
336 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
337 	},
338 	[ C(OP_WRITE) ] = {
339 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
340 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
341 	},
342 	[ C(OP_PREFETCH) ] = {
343 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
344 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
345 	},
346 },
347 [C(BPU)] = {
348 	[C(OP_READ)] = {
349 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
350 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
351 	},
352 	[ C(OP_WRITE) ] = {
353 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
354 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
355 	},
356 	[ C(OP_PREFETCH) ] = {
357 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
358 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
359 	},
360 },
361 };
362 
363 static const struct sparc_pmu niagara1_pmu = {
364 	.event_map	= niagara1_event_map,
365 	.cache_map	= &niagara1_cache_map,
366 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
367 	.upper_shift	= 0,
368 	.lower_shift	= 4,
369 	.event_mask	= 0x7,
370 	.upper_nop	= 0x0,
371 	.lower_nop	= 0x0,
372 };
373 
374 static const struct perf_event_map niagara2_perfmon_event_map[] = {
375 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
376 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
377 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
378 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
379 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
380 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
381 };
382 
383 static const struct perf_event_map *niagara2_event_map(int event_id)
384 {
385 	return &niagara2_perfmon_event_map[event_id];
386 }
387 
388 static const cache_map_t niagara2_cache_map = {
389 [C(L1D)] = {
390 	[C(OP_READ)] = {
391 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
392 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
393 	},
394 	[C(OP_WRITE)] = {
395 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
396 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
397 	},
398 	[C(OP_PREFETCH)] = {
399 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
400 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
401 	},
402 },
403 [C(L1I)] = {
404 	[C(OP_READ)] = {
405 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
406 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
407 	},
408 	[ C(OP_WRITE) ] = {
409 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
410 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
411 	},
412 	[ C(OP_PREFETCH) ] = {
413 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
414 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
415 	},
416 },
417 [C(LL)] = {
418 	[C(OP_READ)] = {
419 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
420 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
421 	},
422 	[C(OP_WRITE)] = {
423 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
424 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
425 	},
426 	[C(OP_PREFETCH)] = {
427 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
428 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
429 	},
430 },
431 [C(DTLB)] = {
432 	[C(OP_READ)] = {
433 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
434 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
435 	},
436 	[ C(OP_WRITE) ] = {
437 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
439 	},
440 	[ C(OP_PREFETCH) ] = {
441 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
442 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
443 	},
444 },
445 [C(ITLB)] = {
446 	[C(OP_READ)] = {
447 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
448 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
456 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
457 	},
458 },
459 [C(BPU)] = {
460 	[C(OP_READ)] = {
461 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
462 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
463 	},
464 	[ C(OP_WRITE) ] = {
465 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
466 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
467 	},
468 	[ C(OP_PREFETCH) ] = {
469 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
470 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
471 	},
472 },
473 };
474 
475 static const struct sparc_pmu niagara2_pmu = {
476 	.event_map	= niagara2_event_map,
477 	.cache_map	= &niagara2_cache_map,
478 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
479 	.upper_shift	= 19,
480 	.lower_shift	= 6,
481 	.event_mask	= 0xfff,
482 	.hv_bit		= 0x8,
483 	.irq_bit	= 0x30,
484 	.upper_nop	= 0x220,
485 	.lower_nop	= 0x220,
486 };
487 
488 static const struct sparc_pmu *sparc_pmu __read_mostly;
489 
490 static u64 event_encoding(u64 event_id, int idx)
491 {
492 	if (idx == PIC_UPPER_INDEX)
493 		event_id <<= sparc_pmu->upper_shift;
494 	else
495 		event_id <<= sparc_pmu->lower_shift;
496 	return event_id;
497 }
498 
499 static u64 mask_for_index(int idx)
500 {
501 	return event_encoding(sparc_pmu->event_mask, idx);
502 }
503 
504 static u64 nop_for_index(int idx)
505 {
506 	return event_encoding(idx == PIC_UPPER_INDEX ?
507 			      sparc_pmu->upper_nop :
508 			      sparc_pmu->lower_nop, idx);
509 }
510 
511 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
512 {
513 	u64 val, mask = mask_for_index(idx);
514 
515 	val = cpuc->pcr;
516 	val &= ~mask;
517 	val |= hwc->config;
518 	cpuc->pcr = val;
519 
520 	pcr_ops->write(cpuc->pcr);
521 }
522 
523 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
524 {
525 	u64 mask = mask_for_index(idx);
526 	u64 nop = nop_for_index(idx);
527 	u64 val;
528 
529 	val = cpuc->pcr;
530 	val &= ~mask;
531 	val |= nop;
532 	cpuc->pcr = val;
533 
534 	pcr_ops->write(cpuc->pcr);
535 }
536 
537 static u32 read_pmc(int idx)
538 {
539 	u64 val;
540 
541 	read_pic(val);
542 	if (idx == PIC_UPPER_INDEX)
543 		val >>= 32;
544 
545 	return val & 0xffffffff;
546 }
547 
548 static void write_pmc(int idx, u64 val)
549 {
550 	u64 shift, mask, pic;
551 
552 	shift = 0;
553 	if (idx == PIC_UPPER_INDEX)
554 		shift = 32;
555 
556 	mask = ((u64) 0xffffffff) << shift;
557 	val <<= shift;
558 
559 	read_pic(pic);
560 	pic &= ~mask;
561 	pic |= val;
562 	write_pic(pic);
563 }
564 
565 static u64 sparc_perf_event_update(struct perf_event *event,
566 				   struct hw_perf_event *hwc, int idx)
567 {
568 	int shift = 64 - 32;
569 	u64 prev_raw_count, new_raw_count;
570 	s64 delta;
571 
572 again:
573 	prev_raw_count = atomic64_read(&hwc->prev_count);
574 	new_raw_count = read_pmc(idx);
575 
576 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
577 			     new_raw_count) != prev_raw_count)
578 		goto again;
579 
580 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
581 	delta >>= shift;
582 
583 	atomic64_add(delta, &event->count);
584 	atomic64_sub(delta, &hwc->period_left);
585 
586 	return new_raw_count;
587 }
588 
589 static int sparc_perf_event_set_period(struct perf_event *event,
590 				       struct hw_perf_event *hwc, int idx)
591 {
592 	s64 left = atomic64_read(&hwc->period_left);
593 	s64 period = hwc->sample_period;
594 	int ret = 0;
595 
596 	if (unlikely(left <= -period)) {
597 		left = period;
598 		atomic64_set(&hwc->period_left, left);
599 		hwc->last_period = period;
600 		ret = 1;
601 	}
602 
603 	if (unlikely(left <= 0)) {
604 		left += period;
605 		atomic64_set(&hwc->period_left, left);
606 		hwc->last_period = period;
607 		ret = 1;
608 	}
609 	if (left > MAX_PERIOD)
610 		left = MAX_PERIOD;
611 
612 	atomic64_set(&hwc->prev_count, (u64)-left);
613 
614 	write_pmc(idx, (u64)(-left) & 0xffffffff);
615 
616 	perf_event_update_userpage(event);
617 
618 	return ret;
619 }
620 
621 /* If performance event entries have been added, move existing
622  * events around (if necessary) and then assign new entries to
623  * counters.
624  */
625 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
626 {
627 	int i;
628 
629 	if (!cpuc->n_added)
630 		goto out;
631 
632 	/* Read in the counters which are moving.  */
633 	for (i = 0; i < cpuc->n_events; i++) {
634 		struct perf_event *cp = cpuc->event[i];
635 
636 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
637 		    cpuc->current_idx[i] != cp->hw.idx) {
638 			sparc_perf_event_update(cp, &cp->hw,
639 						cpuc->current_idx[i]);
640 			cpuc->current_idx[i] = PIC_NO_INDEX;
641 		}
642 	}
643 
644 	/* Assign to counters all unassigned events.  */
645 	for (i = 0; i < cpuc->n_events; i++) {
646 		struct perf_event *cp = cpuc->event[i];
647 		struct hw_perf_event *hwc = &cp->hw;
648 		int idx = hwc->idx;
649 		u64 enc;
650 
651 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
652 			continue;
653 
654 		sparc_perf_event_set_period(cp, hwc, idx);
655 		cpuc->current_idx[i] = idx;
656 
657 		enc = perf_event_get_enc(cpuc->events[i]);
658 		pcr |= event_encoding(enc, idx);
659 	}
660 out:
661 	return pcr;
662 }
663 
664 void hw_perf_enable(void)
665 {
666 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
667 	u64 pcr;
668 
669 	if (cpuc->enabled)
670 		return;
671 
672 	cpuc->enabled = 1;
673 	barrier();
674 
675 	pcr = cpuc->pcr;
676 	if (!cpuc->n_events) {
677 		pcr = 0;
678 	} else {
679 		pcr = maybe_change_configuration(cpuc, pcr);
680 
681 		/* We require that all of the events have the same
682 		 * configuration, so just fetch the settings from the
683 		 * first entry.
684 		 */
685 		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
686 	}
687 
688 	pcr_ops->write(cpuc->pcr);
689 }
690 
691 void hw_perf_disable(void)
692 {
693 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
694 	u64 val;
695 
696 	if (!cpuc->enabled)
697 		return;
698 
699 	cpuc->enabled = 0;
700 	cpuc->n_added = 0;
701 
702 	val = cpuc->pcr;
703 	val &= ~(PCR_UTRACE | PCR_STRACE |
704 		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
705 	cpuc->pcr = val;
706 
707 	pcr_ops->write(cpuc->pcr);
708 }
709 
710 static void sparc_pmu_disable(struct perf_event *event)
711 {
712 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
713 	struct hw_perf_event *hwc = &event->hw;
714 	unsigned long flags;
715 	int i;
716 
717 	local_irq_save(flags);
718 	perf_disable();
719 
720 	for (i = 0; i < cpuc->n_events; i++) {
721 		if (event == cpuc->event[i]) {
722 			int idx = cpuc->current_idx[i];
723 
724 			/* Shift remaining entries down into
725 			 * the existing slot.
726 			 */
727 			while (++i < cpuc->n_events) {
728 				cpuc->event[i - 1] = cpuc->event[i];
729 				cpuc->events[i - 1] = cpuc->events[i];
730 				cpuc->current_idx[i - 1] =
731 					cpuc->current_idx[i];
732 			}
733 
734 			/* Absorb the final count and turn off the
735 			 * event.
736 			 */
737 			sparc_pmu_disable_event(cpuc, hwc, idx);
738 			barrier();
739 			sparc_perf_event_update(event, hwc, idx);
740 
741 			perf_event_update_userpage(event);
742 
743 			cpuc->n_events--;
744 			break;
745 		}
746 	}
747 
748 	perf_enable();
749 	local_irq_restore(flags);
750 }
751 
752 static int active_event_index(struct cpu_hw_events *cpuc,
753 			      struct perf_event *event)
754 {
755 	int i;
756 
757 	for (i = 0; i < cpuc->n_events; i++) {
758 		if (cpuc->event[i] == event)
759 			break;
760 	}
761 	BUG_ON(i == cpuc->n_events);
762 	return cpuc->current_idx[i];
763 }
764 
765 static void sparc_pmu_read(struct perf_event *event)
766 {
767 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
768 	int idx = active_event_index(cpuc, event);
769 	struct hw_perf_event *hwc = &event->hw;
770 
771 	sparc_perf_event_update(event, hwc, idx);
772 }
773 
774 static void sparc_pmu_unthrottle(struct perf_event *event)
775 {
776 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
777 	int idx = active_event_index(cpuc, event);
778 	struct hw_perf_event *hwc = &event->hw;
779 
780 	sparc_pmu_enable_event(cpuc, hwc, idx);
781 }
782 
783 static atomic_t active_events = ATOMIC_INIT(0);
784 static DEFINE_MUTEX(pmc_grab_mutex);
785 
786 static void perf_stop_nmi_watchdog(void *unused)
787 {
788 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
789 
790 	stop_nmi_watchdog(NULL);
791 	cpuc->pcr = pcr_ops->read();
792 }
793 
794 void perf_event_grab_pmc(void)
795 {
796 	if (atomic_inc_not_zero(&active_events))
797 		return;
798 
799 	mutex_lock(&pmc_grab_mutex);
800 	if (atomic_read(&active_events) == 0) {
801 		if (atomic_read(&nmi_active) > 0) {
802 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
803 			BUG_ON(atomic_read(&nmi_active) != 0);
804 		}
805 		atomic_inc(&active_events);
806 	}
807 	mutex_unlock(&pmc_grab_mutex);
808 }
809 
810 void perf_event_release_pmc(void)
811 {
812 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
813 		if (atomic_read(&nmi_active) == 0)
814 			on_each_cpu(start_nmi_watchdog, NULL, 1);
815 		mutex_unlock(&pmc_grab_mutex);
816 	}
817 }
818 
819 static const struct perf_event_map *sparc_map_cache_event(u64 config)
820 {
821 	unsigned int cache_type, cache_op, cache_result;
822 	const struct perf_event_map *pmap;
823 
824 	if (!sparc_pmu->cache_map)
825 		return ERR_PTR(-ENOENT);
826 
827 	cache_type = (config >>  0) & 0xff;
828 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
829 		return ERR_PTR(-EINVAL);
830 
831 	cache_op = (config >>  8) & 0xff;
832 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
833 		return ERR_PTR(-EINVAL);
834 
835 	cache_result = (config >> 16) & 0xff;
836 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
837 		return ERR_PTR(-EINVAL);
838 
839 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
840 
841 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
842 		return ERR_PTR(-ENOENT);
843 
844 	if (pmap->encoding == CACHE_OP_NONSENSE)
845 		return ERR_PTR(-EINVAL);
846 
847 	return pmap;
848 }
849 
850 static void hw_perf_event_destroy(struct perf_event *event)
851 {
852 	perf_event_release_pmc();
853 }
854 
855 /* Make sure all events can be scheduled into the hardware at
856  * the same time.  This is simplified by the fact that we only
857  * need to support 2 simultaneous HW events.
858  *
859  * As a side effect, the evts[]->hw.idx values will be assigned
860  * on success.  These are pending indexes.  When the events are
861  * actually programmed into the chip, these values will propagate
862  * to the per-cpu cpuc->current_idx[] slots, see the code in
863  * maybe_change_configuration() for details.
864  */
865 static int sparc_check_constraints(struct perf_event **evts,
866 				   unsigned long *events, int n_ev)
867 {
868 	u8 msk0 = 0, msk1 = 0;
869 	int idx0 = 0;
870 
871 	/* This case is possible when we are invoked from
872 	 * hw_perf_group_sched_in().
873 	 */
874 	if (!n_ev)
875 		return 0;
876 
877 	if (n_ev > perf_max_events)
878 		return -1;
879 
880 	msk0 = perf_event_get_msk(events[0]);
881 	if (n_ev == 1) {
882 		if (msk0 & PIC_LOWER)
883 			idx0 = 1;
884 		goto success;
885 	}
886 	BUG_ON(n_ev != 2);
887 	msk1 = perf_event_get_msk(events[1]);
888 
889 	/* If both events can go on any counter, OK.  */
890 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
891 	    msk1 == (PIC_UPPER | PIC_LOWER))
892 		goto success;
893 
894 	/* If one event is limited to a specific counter,
895 	 * and the other can go on both, OK.
896 	 */
897 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
898 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
899 		if (msk0 & PIC_LOWER)
900 			idx0 = 1;
901 		goto success;
902 	}
903 
904 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
905 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
906 		if (msk1 & PIC_UPPER)
907 			idx0 = 1;
908 		goto success;
909 	}
910 
911 	/* If the events are fixed to different counters, OK.  */
912 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
913 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
914 		if (msk0 & PIC_LOWER)
915 			idx0 = 1;
916 		goto success;
917 	}
918 
919 	/* Otherwise, there is a conflict.  */
920 	return -1;
921 
922 success:
923 	evts[0]->hw.idx = idx0;
924 	if (n_ev == 2)
925 		evts[1]->hw.idx = idx0 ^ 1;
926 	return 0;
927 }
928 
929 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
930 {
931 	int eu = 0, ek = 0, eh = 0;
932 	struct perf_event *event;
933 	int i, n, first;
934 
935 	n = n_prev + n_new;
936 	if (n <= 1)
937 		return 0;
938 
939 	first = 1;
940 	for (i = 0; i < n; i++) {
941 		event = evts[i];
942 		if (first) {
943 			eu = event->attr.exclude_user;
944 			ek = event->attr.exclude_kernel;
945 			eh = event->attr.exclude_hv;
946 			first = 0;
947 		} else if (event->attr.exclude_user != eu ||
948 			   event->attr.exclude_kernel != ek ||
949 			   event->attr.exclude_hv != eh) {
950 			return -EAGAIN;
951 		}
952 	}
953 
954 	return 0;
955 }
956 
957 static int collect_events(struct perf_event *group, int max_count,
958 			  struct perf_event *evts[], unsigned long *events,
959 			  int *current_idx)
960 {
961 	struct perf_event *event;
962 	int n = 0;
963 
964 	if (!is_software_event(group)) {
965 		if (n >= max_count)
966 			return -1;
967 		evts[n] = group;
968 		events[n] = group->hw.event_base;
969 		current_idx[n++] = PIC_NO_INDEX;
970 	}
971 	list_for_each_entry(event, &group->sibling_list, group_entry) {
972 		if (!is_software_event(event) &&
973 		    event->state != PERF_EVENT_STATE_OFF) {
974 			if (n >= max_count)
975 				return -1;
976 			evts[n] = event;
977 			events[n] = event->hw.event_base;
978 			current_idx[n++] = PIC_NO_INDEX;
979 		}
980 	}
981 	return n;
982 }
983 
984 static void event_sched_in(struct perf_event *event)
985 {
986 	event->state = PERF_EVENT_STATE_ACTIVE;
987 	event->oncpu = smp_processor_id();
988 	event->tstamp_running += event->ctx->time - event->tstamp_stopped;
989 	if (is_software_event(event))
990 		event->pmu->enable(event);
991 }
992 
993 int hw_perf_group_sched_in(struct perf_event *group_leader,
994 			   struct perf_cpu_context *cpuctx,
995 			   struct perf_event_context *ctx)
996 {
997 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
998 	struct perf_event *sub;
999 	int n0, n;
1000 
1001 	if (!sparc_pmu)
1002 		return 0;
1003 
1004 	n0 = cpuc->n_events;
1005 	n = collect_events(group_leader, perf_max_events - n0,
1006 			   &cpuc->event[n0], &cpuc->events[n0],
1007 			   &cpuc->current_idx[n0]);
1008 	if (n < 0)
1009 		return -EAGAIN;
1010 	if (check_excludes(cpuc->event, n0, n))
1011 		return -EINVAL;
1012 	if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
1013 		return -EAGAIN;
1014 	cpuc->n_events = n0 + n;
1015 	cpuc->n_added += n;
1016 
1017 	cpuctx->active_oncpu += n;
1018 	n = 1;
1019 	event_sched_in(group_leader);
1020 	list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
1021 		if (sub->state != PERF_EVENT_STATE_OFF) {
1022 			event_sched_in(sub);
1023 			n++;
1024 		}
1025 	}
1026 	ctx->nr_active += n;
1027 
1028 	return 1;
1029 }
1030 
1031 static int sparc_pmu_enable(struct perf_event *event)
1032 {
1033 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1034 	int n0, ret = -EAGAIN;
1035 	unsigned long flags;
1036 
1037 	local_irq_save(flags);
1038 	perf_disable();
1039 
1040 	n0 = cpuc->n_events;
1041 	if (n0 >= perf_max_events)
1042 		goto out;
1043 
1044 	cpuc->event[n0] = event;
1045 	cpuc->events[n0] = event->hw.event_base;
1046 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1047 
1048 	if (check_excludes(cpuc->event, n0, 1))
1049 		goto out;
1050 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1051 		goto out;
1052 
1053 	cpuc->n_events++;
1054 	cpuc->n_added++;
1055 
1056 	ret = 0;
1057 out:
1058 	perf_enable();
1059 	local_irq_restore(flags);
1060 	return ret;
1061 }
1062 
1063 static int __hw_perf_event_init(struct perf_event *event)
1064 {
1065 	struct perf_event_attr *attr = &event->attr;
1066 	struct perf_event *evts[MAX_HWEVENTS];
1067 	struct hw_perf_event *hwc = &event->hw;
1068 	unsigned long events[MAX_HWEVENTS];
1069 	int current_idx_dmy[MAX_HWEVENTS];
1070 	const struct perf_event_map *pmap;
1071 	int n;
1072 
1073 	if (atomic_read(&nmi_active) < 0)
1074 		return -ENODEV;
1075 
1076 	if (attr->type == PERF_TYPE_HARDWARE) {
1077 		if (attr->config >= sparc_pmu->max_events)
1078 			return -EINVAL;
1079 		pmap = sparc_pmu->event_map(attr->config);
1080 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
1081 		pmap = sparc_map_cache_event(attr->config);
1082 		if (IS_ERR(pmap))
1083 			return PTR_ERR(pmap);
1084 	} else
1085 		return -EOPNOTSUPP;
1086 
1087 	/* We save the enable bits in the config_base.  */
1088 	hwc->config_base = sparc_pmu->irq_bit;
1089 	if (!attr->exclude_user)
1090 		hwc->config_base |= PCR_UTRACE;
1091 	if (!attr->exclude_kernel)
1092 		hwc->config_base |= PCR_STRACE;
1093 	if (!attr->exclude_hv)
1094 		hwc->config_base |= sparc_pmu->hv_bit;
1095 
1096 	hwc->event_base = perf_event_encode(pmap);
1097 
1098 	n = 0;
1099 	if (event->group_leader != event) {
1100 		n = collect_events(event->group_leader,
1101 				   perf_max_events - 1,
1102 				   evts, events, current_idx_dmy);
1103 		if (n < 0)
1104 			return -EINVAL;
1105 	}
1106 	events[n] = hwc->event_base;
1107 	evts[n] = event;
1108 
1109 	if (check_excludes(evts, n, 1))
1110 		return -EINVAL;
1111 
1112 	if (sparc_check_constraints(evts, events, n + 1))
1113 		return -EINVAL;
1114 
1115 	hwc->idx = PIC_NO_INDEX;
1116 
1117 	/* Try to do all error checking before this point, as unwinding
1118 	 * state after grabbing the PMC is difficult.
1119 	 */
1120 	perf_event_grab_pmc();
1121 	event->destroy = hw_perf_event_destroy;
1122 
1123 	if (!hwc->sample_period) {
1124 		hwc->sample_period = MAX_PERIOD;
1125 		hwc->last_period = hwc->sample_period;
1126 		atomic64_set(&hwc->period_left, hwc->sample_period);
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static const struct pmu pmu = {
1133 	.enable		= sparc_pmu_enable,
1134 	.disable	= sparc_pmu_disable,
1135 	.read		= sparc_pmu_read,
1136 	.unthrottle	= sparc_pmu_unthrottle,
1137 };
1138 
1139 const struct pmu *hw_perf_event_init(struct perf_event *event)
1140 {
1141 	int err = __hw_perf_event_init(event);
1142 
1143 	if (err)
1144 		return ERR_PTR(err);
1145 	return &pmu;
1146 }
1147 
1148 void perf_event_print_debug(void)
1149 {
1150 	unsigned long flags;
1151 	u64 pcr, pic;
1152 	int cpu;
1153 
1154 	if (!sparc_pmu)
1155 		return;
1156 
1157 	local_irq_save(flags);
1158 
1159 	cpu = smp_processor_id();
1160 
1161 	pcr = pcr_ops->read();
1162 	read_pic(pic);
1163 
1164 	pr_info("\n");
1165 	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1166 		cpu, pcr, pic);
1167 
1168 	local_irq_restore(flags);
1169 }
1170 
1171 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1172 					    unsigned long cmd, void *__args)
1173 {
1174 	struct die_args *args = __args;
1175 	struct perf_sample_data data;
1176 	struct cpu_hw_events *cpuc;
1177 	struct pt_regs *regs;
1178 	int i;
1179 
1180 	if (!atomic_read(&active_events))
1181 		return NOTIFY_DONE;
1182 
1183 	switch (cmd) {
1184 	case DIE_NMI:
1185 		break;
1186 
1187 	default:
1188 		return NOTIFY_DONE;
1189 	}
1190 
1191 	regs = args->regs;
1192 
1193 	perf_sample_data_init(&data, 0);
1194 
1195 	cpuc = &__get_cpu_var(cpu_hw_events);
1196 
1197 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1198 	 * dummy write to the %pcr to clear the overflow bits and thus
1199 	 * the interrupt.
1200 	 *
1201 	 * Do this before we peek at the counters to determine
1202 	 * overflow so we don't lose any events.
1203 	 */
1204 	if (sparc_pmu->irq_bit)
1205 		pcr_ops->write(cpuc->pcr);
1206 
1207 	for (i = 0; i < cpuc->n_events; i++) {
1208 		struct perf_event *event = cpuc->event[i];
1209 		int idx = cpuc->current_idx[i];
1210 		struct hw_perf_event *hwc;
1211 		u64 val;
1212 
1213 		hwc = &event->hw;
1214 		val = sparc_perf_event_update(event, hwc, idx);
1215 		if (val & (1ULL << 31))
1216 			continue;
1217 
1218 		data.period = event->hw.last_period;
1219 		if (!sparc_perf_event_set_period(event, hwc, idx))
1220 			continue;
1221 
1222 		if (perf_event_overflow(event, 1, &data, regs))
1223 			sparc_pmu_disable_event(cpuc, hwc, idx);
1224 	}
1225 
1226 	return NOTIFY_STOP;
1227 }
1228 
1229 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1230 	.notifier_call		= perf_event_nmi_handler,
1231 };
1232 
1233 static bool __init supported_pmu(void)
1234 {
1235 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1236 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1237 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1238 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1239 		sparc_pmu = &ultra3_pmu;
1240 		return true;
1241 	}
1242 	if (!strcmp(sparc_pmu_type, "niagara")) {
1243 		sparc_pmu = &niagara1_pmu;
1244 		return true;
1245 	}
1246 	if (!strcmp(sparc_pmu_type, "niagara2")) {
1247 		sparc_pmu = &niagara2_pmu;
1248 		return true;
1249 	}
1250 	return false;
1251 }
1252 
1253 void __init init_hw_perf_events(void)
1254 {
1255 	pr_info("Performance events: ");
1256 
1257 	if (!supported_pmu()) {
1258 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1259 		return;
1260 	}
1261 
1262 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1263 
1264 	/* All sparc64 PMUs currently have 2 events.  */
1265 	perf_max_events = 2;
1266 
1267 	register_die_notifier(&perf_event_nmi_notifier);
1268 }
1269 
1270 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1271 {
1272 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1273 		entry->ip[entry->nr++] = ip;
1274 }
1275 
1276 static void perf_callchain_kernel(struct pt_regs *regs,
1277 				  struct perf_callchain_entry *entry)
1278 {
1279 	unsigned long ksp, fp;
1280 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1281 	int graph = 0;
1282 #endif
1283 
1284 	callchain_store(entry, PERF_CONTEXT_KERNEL);
1285 	callchain_store(entry, regs->tpc);
1286 
1287 	ksp = regs->u_regs[UREG_I6];
1288 	fp = ksp + STACK_BIAS;
1289 	do {
1290 		struct sparc_stackf *sf;
1291 		struct pt_regs *regs;
1292 		unsigned long pc;
1293 
1294 		if (!kstack_valid(current_thread_info(), fp))
1295 			break;
1296 
1297 		sf = (struct sparc_stackf *) fp;
1298 		regs = (struct pt_regs *) (sf + 1);
1299 
1300 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1301 			if (user_mode(regs))
1302 				break;
1303 			pc = regs->tpc;
1304 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1305 		} else {
1306 			pc = sf->callers_pc;
1307 			fp = (unsigned long)sf->fp + STACK_BIAS;
1308 		}
1309 		callchain_store(entry, pc);
1310 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1311 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1312 			int index = current->curr_ret_stack;
1313 			if (current->ret_stack && index >= graph) {
1314 				pc = current->ret_stack[index - graph].ret;
1315 				callchain_store(entry, pc);
1316 				graph++;
1317 			}
1318 		}
1319 #endif
1320 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1321 }
1322 
1323 static void perf_callchain_user_64(struct pt_regs *regs,
1324 				   struct perf_callchain_entry *entry)
1325 {
1326 	unsigned long ufp;
1327 
1328 	callchain_store(entry, PERF_CONTEXT_USER);
1329 	callchain_store(entry, regs->tpc);
1330 
1331 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1332 	do {
1333 		struct sparc_stackf *usf, sf;
1334 		unsigned long pc;
1335 
1336 		usf = (struct sparc_stackf *) ufp;
1337 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1338 			break;
1339 
1340 		pc = sf.callers_pc;
1341 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1342 		callchain_store(entry, pc);
1343 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1344 }
1345 
1346 static void perf_callchain_user_32(struct pt_regs *regs,
1347 				   struct perf_callchain_entry *entry)
1348 {
1349 	unsigned long ufp;
1350 
1351 	callchain_store(entry, PERF_CONTEXT_USER);
1352 	callchain_store(entry, regs->tpc);
1353 
1354 	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1355 	do {
1356 		struct sparc_stackf32 *usf, sf;
1357 		unsigned long pc;
1358 
1359 		usf = (struct sparc_stackf32 *) ufp;
1360 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1361 			break;
1362 
1363 		pc = sf.callers_pc;
1364 		ufp = (unsigned long)sf.fp;
1365 		callchain_store(entry, pc);
1366 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1367 }
1368 
1369 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1370  * so no need for separate NMI and IRQ chains as on x86.
1371  */
1372 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1373 
1374 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1375 {
1376 	struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1377 
1378 	entry->nr = 0;
1379 	if (!user_mode(regs)) {
1380 		stack_trace_flush();
1381 		perf_callchain_kernel(regs, entry);
1382 		if (current->mm)
1383 			regs = task_pt_regs(current);
1384 		else
1385 			regs = NULL;
1386 	}
1387 	if (regs) {
1388 		flushw_user();
1389 		if (test_thread_flag(TIF_32BIT))
1390 			perf_callchain_user_32(regs, entry);
1391 		else
1392 			perf_callchain_user_64(regs, entry);
1393 	}
1394 	return entry;
1395 }
1396