xref: /linux/arch/sparc/kernel/irq_64.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/linkage.h>
10 #include <linux/ptrace.h>
11 #include <linux/errno.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/ftrace.h>
23 #include <linux/irq.h>
24 #include <linux/kmemleak.h>
25 
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46 
47 #include "entry.h"
48 #include "cpumap.h"
49 #include "kstack.h"
50 
51 #define NUM_IVECS	(IMAP_INR + 1)
52 
53 struct ino_bucket *ivector_table;
54 unsigned long ivector_table_pa;
55 
56 /* On several sun4u processors, it is illegal to mix bypass and
57  * non-bypass accesses.  Therefore we access all INO buckets
58  * using bypass accesses only.
59  */
60 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
61 {
62 	unsigned long ret;
63 
64 	__asm__ __volatile__("ldxa	[%1] %2, %0"
65 			     : "=&r" (ret)
66 			     : "r" (bucket_pa +
67 				    offsetof(struct ino_bucket,
68 					     __irq_chain_pa)),
69 			       "i" (ASI_PHYS_USE_EC));
70 
71 	return ret;
72 }
73 
74 static void bucket_clear_chain_pa(unsigned long bucket_pa)
75 {
76 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
77 			     : /* no outputs */
78 			     : "r" (bucket_pa +
79 				    offsetof(struct ino_bucket,
80 					     __irq_chain_pa)),
81 			       "i" (ASI_PHYS_USE_EC));
82 }
83 
84 static unsigned int bucket_get_irq(unsigned long bucket_pa)
85 {
86 	unsigned int ret;
87 
88 	__asm__ __volatile__("lduwa	[%1] %2, %0"
89 			     : "=&r" (ret)
90 			     : "r" (bucket_pa +
91 				    offsetof(struct ino_bucket,
92 					     __irq)),
93 			       "i" (ASI_PHYS_USE_EC));
94 
95 	return ret;
96 }
97 
98 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
99 {
100 	__asm__ __volatile__("stwa	%0, [%1] %2"
101 			     : /* no outputs */
102 			     : "r" (irq),
103 			       "r" (bucket_pa +
104 				    offsetof(struct ino_bucket,
105 					     __irq)),
106 			       "i" (ASI_PHYS_USE_EC));
107 }
108 
109 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
110 
111 static struct {
112 	unsigned int dev_handle;
113 	unsigned int dev_ino;
114 	unsigned int in_use;
115 } irq_table[NR_IRQS];
116 static DEFINE_SPINLOCK(irq_alloc_lock);
117 
118 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
119 {
120 	unsigned long flags;
121 	unsigned char ent;
122 
123 	BUILD_BUG_ON(NR_IRQS >= 256);
124 
125 	spin_lock_irqsave(&irq_alloc_lock, flags);
126 
127 	for (ent = 1; ent < NR_IRQS; ent++) {
128 		if (!irq_table[ent].in_use)
129 			break;
130 	}
131 	if (ent >= NR_IRQS) {
132 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 		ent = 0;
134 	} else {
135 		irq_table[ent].dev_handle = dev_handle;
136 		irq_table[ent].dev_ino = dev_ino;
137 		irq_table[ent].in_use = 1;
138 	}
139 
140 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
141 
142 	return ent;
143 }
144 
145 #ifdef CONFIG_PCI_MSI
146 void irq_free(unsigned int irq)
147 {
148 	unsigned long flags;
149 
150 	if (irq >= NR_IRQS)
151 		return;
152 
153 	spin_lock_irqsave(&irq_alloc_lock, flags);
154 
155 	irq_table[irq].in_use = 0;
156 
157 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
158 }
159 #endif
160 
161 /*
162  * /proc/interrupts printing:
163  */
164 int arch_show_interrupts(struct seq_file *p, int prec)
165 {
166 	int j;
167 
168 	seq_printf(p, "NMI: ");
169 	for_each_online_cpu(j)
170 		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
171 	seq_printf(p, "     Non-maskable interrupts\n");
172 	return 0;
173 }
174 
175 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
176 {
177 	unsigned int tid;
178 
179 	if (this_is_starfire) {
180 		tid = starfire_translate(imap, cpuid);
181 		tid <<= IMAP_TID_SHIFT;
182 		tid &= IMAP_TID_UPA;
183 	} else {
184 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
185 			unsigned long ver;
186 
187 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
188 			if ((ver >> 32UL) == __JALAPENO_ID ||
189 			    (ver >> 32UL) == __SERRANO_ID) {
190 				tid = cpuid << IMAP_TID_SHIFT;
191 				tid &= IMAP_TID_JBUS;
192 			} else {
193 				unsigned int a = cpuid & 0x1f;
194 				unsigned int n = (cpuid >> 5) & 0x1f;
195 
196 				tid = ((a << IMAP_AID_SHIFT) |
197 				       (n << IMAP_NID_SHIFT));
198 				tid &= (IMAP_AID_SAFARI |
199 					IMAP_NID_SAFARI);
200 			}
201 		} else {
202 			tid = cpuid << IMAP_TID_SHIFT;
203 			tid &= IMAP_TID_UPA;
204 		}
205 	}
206 
207 	return tid;
208 }
209 
210 struct irq_handler_data {
211 	unsigned long	iclr;
212 	unsigned long	imap;
213 
214 	void		(*pre_handler)(unsigned int, void *, void *);
215 	void		*arg1;
216 	void		*arg2;
217 };
218 
219 #ifdef CONFIG_SMP
220 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
221 {
222 	cpumask_t mask;
223 	int cpuid;
224 
225 	cpumask_copy(&mask, affinity);
226 	if (cpumask_equal(&mask, cpu_online_mask)) {
227 		cpuid = map_to_cpu(irq);
228 	} else {
229 		cpumask_t tmp;
230 
231 		cpumask_and(&tmp, cpu_online_mask, &mask);
232 		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
233 	}
234 
235 	return cpuid;
236 }
237 #else
238 #define irq_choose_cpu(irq, affinity)	\
239 	real_hard_smp_processor_id()
240 #endif
241 
242 static void sun4u_irq_enable(struct irq_data *data)
243 {
244 	struct irq_handler_data *handler_data = data->handler_data;
245 
246 	if (likely(handler_data)) {
247 		unsigned long cpuid, imap, val;
248 		unsigned int tid;
249 
250 		cpuid = irq_choose_cpu(data->irq, data->affinity);
251 		imap = handler_data->imap;
252 
253 		tid = sun4u_compute_tid(imap, cpuid);
254 
255 		val = upa_readq(imap);
256 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
257 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
258 		val |= tid | IMAP_VALID;
259 		upa_writeq(val, imap);
260 		upa_writeq(ICLR_IDLE, handler_data->iclr);
261 	}
262 }
263 
264 static int sun4u_set_affinity(struct irq_data *data,
265 			       const struct cpumask *mask, bool force)
266 {
267 	struct irq_handler_data *handler_data = data->handler_data;
268 
269 	if (likely(handler_data)) {
270 		unsigned long cpuid, imap, val;
271 		unsigned int tid;
272 
273 		cpuid = irq_choose_cpu(data->irq, mask);
274 		imap = handler_data->imap;
275 
276 		tid = sun4u_compute_tid(imap, cpuid);
277 
278 		val = upa_readq(imap);
279 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
280 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
281 		val |= tid | IMAP_VALID;
282 		upa_writeq(val, imap);
283 		upa_writeq(ICLR_IDLE, handler_data->iclr);
284 	}
285 
286 	return 0;
287 }
288 
289 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
290  * handler_irq() will skip the handler call and that will leave the
291  * interrupt in the sent state.  The next ->enable() call will hit the
292  * ICLR register to reset the state machine.
293  *
294  * This scheme is necessary, instead of clearing the Valid bit in the
295  * IMAP register, to handle the case of IMAP registers being shared by
296  * multiple INOs (and thus ICLR registers).  Since we use a different
297  * virtual IRQ for each shared IMAP instance, the generic code thinks
298  * there is only one user so it prematurely calls ->disable() on
299  * free_irq().
300  *
301  * We have to provide an explicit ->disable() method instead of using
302  * NULL to get the default.  The reason is that if the generic code
303  * sees that, it also hooks up a default ->shutdown method which
304  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
305  */
306 static void sun4u_irq_disable(struct irq_data *data)
307 {
308 }
309 
310 static void sun4u_irq_eoi(struct irq_data *data)
311 {
312 	struct irq_handler_data *handler_data = data->handler_data;
313 
314 	if (likely(handler_data))
315 		upa_writeq(ICLR_IDLE, handler_data->iclr);
316 }
317 
318 static void sun4v_irq_enable(struct irq_data *data)
319 {
320 	unsigned int ino = irq_table[data->irq].dev_ino;
321 	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
322 	int err;
323 
324 	err = sun4v_intr_settarget(ino, cpuid);
325 	if (err != HV_EOK)
326 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
327 		       "err(%d)\n", ino, cpuid, err);
328 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
329 	if (err != HV_EOK)
330 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
331 		       "err(%d)\n", ino, err);
332 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
333 	if (err != HV_EOK)
334 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
335 		       ino, err);
336 }
337 
338 static int sun4v_set_affinity(struct irq_data *data,
339 			       const struct cpumask *mask, bool force)
340 {
341 	unsigned int ino = irq_table[data->irq].dev_ino;
342 	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
343 	int err;
344 
345 	err = sun4v_intr_settarget(ino, cpuid);
346 	if (err != HV_EOK)
347 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
348 		       "err(%d)\n", ino, cpuid, err);
349 
350 	return 0;
351 }
352 
353 static void sun4v_irq_disable(struct irq_data *data)
354 {
355 	unsigned int ino = irq_table[data->irq].dev_ino;
356 	int err;
357 
358 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
359 	if (err != HV_EOK)
360 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
361 		       "err(%d)\n", ino, err);
362 }
363 
364 static void sun4v_irq_eoi(struct irq_data *data)
365 {
366 	unsigned int ino = irq_table[data->irq].dev_ino;
367 	int err;
368 
369 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
370 	if (err != HV_EOK)
371 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
372 		       "err(%d)\n", ino, err);
373 }
374 
375 static void sun4v_virq_enable(struct irq_data *data)
376 {
377 	unsigned long cpuid, dev_handle, dev_ino;
378 	int err;
379 
380 	cpuid = irq_choose_cpu(data->irq, data->affinity);
381 
382 	dev_handle = irq_table[data->irq].dev_handle;
383 	dev_ino = irq_table[data->irq].dev_ino;
384 
385 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
386 	if (err != HV_EOK)
387 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
388 		       "err(%d)\n",
389 		       dev_handle, dev_ino, cpuid, err);
390 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
391 				    HV_INTR_STATE_IDLE);
392 	if (err != HV_EOK)
393 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
394 		       "HV_INTR_STATE_IDLE): err(%d)\n",
395 		       dev_handle, dev_ino, err);
396 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
397 				    HV_INTR_ENABLED);
398 	if (err != HV_EOK)
399 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
400 		       "HV_INTR_ENABLED): err(%d)\n",
401 		       dev_handle, dev_ino, err);
402 }
403 
404 static int sun4v_virt_set_affinity(struct irq_data *data,
405 				    const struct cpumask *mask, bool force)
406 {
407 	unsigned long cpuid, dev_handle, dev_ino;
408 	int err;
409 
410 	cpuid = irq_choose_cpu(data->irq, mask);
411 
412 	dev_handle = irq_table[data->irq].dev_handle;
413 	dev_ino = irq_table[data->irq].dev_ino;
414 
415 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
416 	if (err != HV_EOK)
417 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
418 		       "err(%d)\n",
419 		       dev_handle, dev_ino, cpuid, err);
420 
421 	return 0;
422 }
423 
424 static void sun4v_virq_disable(struct irq_data *data)
425 {
426 	unsigned long dev_handle, dev_ino;
427 	int err;
428 
429 	dev_handle = irq_table[data->irq].dev_handle;
430 	dev_ino = irq_table[data->irq].dev_ino;
431 
432 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
433 				    HV_INTR_DISABLED);
434 	if (err != HV_EOK)
435 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
436 		       "HV_INTR_DISABLED): err(%d)\n",
437 		       dev_handle, dev_ino, err);
438 }
439 
440 static void sun4v_virq_eoi(struct irq_data *data)
441 {
442 	unsigned long dev_handle, dev_ino;
443 	int err;
444 
445 	dev_handle = irq_table[data->irq].dev_handle;
446 	dev_ino = irq_table[data->irq].dev_ino;
447 
448 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
449 				    HV_INTR_STATE_IDLE);
450 	if (err != HV_EOK)
451 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
452 		       "HV_INTR_STATE_IDLE): err(%d)\n",
453 		       dev_handle, dev_ino, err);
454 }
455 
456 static struct irq_chip sun4u_irq = {
457 	.name			= "sun4u",
458 	.irq_enable		= sun4u_irq_enable,
459 	.irq_disable		= sun4u_irq_disable,
460 	.irq_eoi		= sun4u_irq_eoi,
461 	.irq_set_affinity	= sun4u_set_affinity,
462 	.flags			= IRQCHIP_EOI_IF_HANDLED,
463 };
464 
465 static struct irq_chip sun4v_irq = {
466 	.name			= "sun4v",
467 	.irq_enable		= sun4v_irq_enable,
468 	.irq_disable		= sun4v_irq_disable,
469 	.irq_eoi		= sun4v_irq_eoi,
470 	.irq_set_affinity	= sun4v_set_affinity,
471 	.flags			= IRQCHIP_EOI_IF_HANDLED,
472 };
473 
474 static struct irq_chip sun4v_virq = {
475 	.name			= "vsun4v",
476 	.irq_enable		= sun4v_virq_enable,
477 	.irq_disable		= sun4v_virq_disable,
478 	.irq_eoi		= sun4v_virq_eoi,
479 	.irq_set_affinity	= sun4v_virt_set_affinity,
480 	.flags			= IRQCHIP_EOI_IF_HANDLED,
481 };
482 
483 static void pre_flow_handler(struct irq_data *d)
484 {
485 	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
486 	unsigned int ino = irq_table[d->irq].dev_ino;
487 
488 	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
489 }
490 
491 void irq_install_pre_handler(int irq,
492 			     void (*func)(unsigned int, void *, void *),
493 			     void *arg1, void *arg2)
494 {
495 	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
496 
497 	handler_data->pre_handler = func;
498 	handler_data->arg1 = arg1;
499 	handler_data->arg2 = arg2;
500 
501 	__irq_set_preflow_handler(irq, pre_flow_handler);
502 }
503 
504 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
505 {
506 	struct ino_bucket *bucket;
507 	struct irq_handler_data *handler_data;
508 	unsigned int irq;
509 	int ino;
510 
511 	BUG_ON(tlb_type == hypervisor);
512 
513 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
514 	bucket = &ivector_table[ino];
515 	irq = bucket_get_irq(__pa(bucket));
516 	if (!irq) {
517 		irq = irq_alloc(0, ino);
518 		bucket_set_irq(__pa(bucket), irq);
519 		irq_set_chip_and_handler_name(irq, &sun4u_irq,
520 					      handle_fasteoi_irq, "IVEC");
521 	}
522 
523 	handler_data = irq_get_handler_data(irq);
524 	if (unlikely(handler_data))
525 		goto out;
526 
527 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
528 	if (unlikely(!handler_data)) {
529 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
530 		prom_halt();
531 	}
532 	irq_set_handler_data(irq, handler_data);
533 
534 	handler_data->imap  = imap;
535 	handler_data->iclr  = iclr;
536 
537 out:
538 	return irq;
539 }
540 
541 static unsigned int sun4v_build_common(unsigned long sysino,
542 				       struct irq_chip *chip)
543 {
544 	struct ino_bucket *bucket;
545 	struct irq_handler_data *handler_data;
546 	unsigned int irq;
547 
548 	BUG_ON(tlb_type != hypervisor);
549 
550 	bucket = &ivector_table[sysino];
551 	irq = bucket_get_irq(__pa(bucket));
552 	if (!irq) {
553 		irq = irq_alloc(0, sysino);
554 		bucket_set_irq(__pa(bucket), irq);
555 		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
556 					      "IVEC");
557 	}
558 
559 	handler_data = irq_get_handler_data(irq);
560 	if (unlikely(handler_data))
561 		goto out;
562 
563 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
564 	if (unlikely(!handler_data)) {
565 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
566 		prom_halt();
567 	}
568 	irq_set_handler_data(irq, handler_data);
569 
570 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
571 	 * is done by hypervisor calls on sun4v platforms, not by direct
572 	 * register accesses.
573 	 */
574 	handler_data->imap = ~0UL;
575 	handler_data->iclr = ~0UL;
576 
577 out:
578 	return irq;
579 }
580 
581 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
582 {
583 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
584 
585 	return sun4v_build_common(sysino, &sun4v_irq);
586 }
587 
588 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
589 {
590 	struct irq_handler_data *handler_data;
591 	unsigned long hv_err, cookie;
592 	struct ino_bucket *bucket;
593 	unsigned int irq;
594 
595 	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
596 	if (unlikely(!bucket))
597 		return 0;
598 
599 	/* The only reference we store to the IRQ bucket is
600 	 * by physical address which kmemleak can't see, tell
601 	 * it that this object explicitly is not a leak and
602 	 * should be scanned.
603 	 */
604 	kmemleak_not_leak(bucket);
605 
606 	__flush_dcache_range((unsigned long) bucket,
607 			     ((unsigned long) bucket +
608 			      sizeof(struct ino_bucket)));
609 
610 	irq = irq_alloc(devhandle, devino);
611 	bucket_set_irq(__pa(bucket), irq);
612 
613 	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
614 				      "IVEC");
615 
616 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
617 	if (unlikely(!handler_data))
618 		return 0;
619 
620 	/* In order to make the LDC channel startup sequence easier,
621 	 * especially wrt. locking, we do not let request_irq() enable
622 	 * the interrupt.
623 	 */
624 	irq_set_status_flags(irq, IRQ_NOAUTOEN);
625 	irq_set_handler_data(irq, handler_data);
626 
627 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
628 	 * is done by hypervisor calls on sun4v platforms, not by direct
629 	 * register accesses.
630 	 */
631 	handler_data->imap = ~0UL;
632 	handler_data->iclr = ~0UL;
633 
634 	cookie = ~__pa(bucket);
635 	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
636 	if (hv_err) {
637 		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
638 			    "err=%lu\n", devhandle, devino, hv_err);
639 		prom_halt();
640 	}
641 
642 	return irq;
643 }
644 
645 void ack_bad_irq(unsigned int irq)
646 {
647 	unsigned int ino = irq_table[irq].dev_ino;
648 
649 	if (!ino)
650 		ino = 0xdeadbeef;
651 
652 	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
653 	       ino, irq);
654 }
655 
656 void *hardirq_stack[NR_CPUS];
657 void *softirq_stack[NR_CPUS];
658 
659 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
660 {
661 	unsigned long pstate, bucket_pa;
662 	struct pt_regs *old_regs;
663 	void *orig_sp;
664 
665 	clear_softint(1 << pil);
666 
667 	old_regs = set_irq_regs(regs);
668 	irq_enter();
669 
670 	/* Grab an atomic snapshot of the pending IVECs.  */
671 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
672 			     "wrpr	%0, %3, %%pstate\n\t"
673 			     "ldx	[%2], %1\n\t"
674 			     "stx	%%g0, [%2]\n\t"
675 			     "wrpr	%0, 0x0, %%pstate\n\t"
676 			     : "=&r" (pstate), "=&r" (bucket_pa)
677 			     : "r" (irq_work_pa(smp_processor_id())),
678 			       "i" (PSTATE_IE)
679 			     : "memory");
680 
681 	orig_sp = set_hardirq_stack();
682 
683 	while (bucket_pa) {
684 		unsigned long next_pa;
685 		unsigned int irq;
686 
687 		next_pa = bucket_get_chain_pa(bucket_pa);
688 		irq = bucket_get_irq(bucket_pa);
689 		bucket_clear_chain_pa(bucket_pa);
690 
691 		generic_handle_irq(irq);
692 
693 		bucket_pa = next_pa;
694 	}
695 
696 	restore_hardirq_stack(orig_sp);
697 
698 	irq_exit();
699 	set_irq_regs(old_regs);
700 }
701 
702 void do_softirq(void)
703 {
704 	unsigned long flags;
705 
706 	if (in_interrupt())
707 		return;
708 
709 	local_irq_save(flags);
710 
711 	if (local_softirq_pending()) {
712 		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
713 
714 		sp += THREAD_SIZE - 192 - STACK_BIAS;
715 
716 		__asm__ __volatile__("mov %%sp, %0\n\t"
717 				     "mov %1, %%sp"
718 				     : "=&r" (orig_sp)
719 				     : "r" (sp));
720 		__do_softirq();
721 		__asm__ __volatile__("mov %0, %%sp"
722 				     : : "r" (orig_sp));
723 	}
724 
725 	local_irq_restore(flags);
726 }
727 
728 #ifdef CONFIG_HOTPLUG_CPU
729 void fixup_irqs(void)
730 {
731 	unsigned int irq;
732 
733 	for (irq = 0; irq < NR_IRQS; irq++) {
734 		struct irq_desc *desc = irq_to_desc(irq);
735 		struct irq_data *data = irq_desc_get_irq_data(desc);
736 		unsigned long flags;
737 
738 		raw_spin_lock_irqsave(&desc->lock, flags);
739 		if (desc->action && !irqd_is_per_cpu(data)) {
740 			if (data->chip->irq_set_affinity)
741 				data->chip->irq_set_affinity(data,
742 							     data->affinity,
743 							     false);
744 		}
745 		raw_spin_unlock_irqrestore(&desc->lock, flags);
746 	}
747 
748 	tick_ops->disable_irq();
749 }
750 #endif
751 
752 struct sun5_timer {
753 	u64	count0;
754 	u64	limit0;
755 	u64	count1;
756 	u64	limit1;
757 };
758 
759 static struct sun5_timer *prom_timers;
760 static u64 prom_limit0, prom_limit1;
761 
762 static void map_prom_timers(void)
763 {
764 	struct device_node *dp;
765 	const unsigned int *addr;
766 
767 	/* PROM timer node hangs out in the top level of device siblings... */
768 	dp = of_find_node_by_path("/");
769 	dp = dp->child;
770 	while (dp) {
771 		if (!strcmp(dp->name, "counter-timer"))
772 			break;
773 		dp = dp->sibling;
774 	}
775 
776 	/* Assume if node is not present, PROM uses different tick mechanism
777 	 * which we should not care about.
778 	 */
779 	if (!dp) {
780 		prom_timers = (struct sun5_timer *) 0;
781 		return;
782 	}
783 
784 	/* If PROM is really using this, it must be mapped by him. */
785 	addr = of_get_property(dp, "address", NULL);
786 	if (!addr) {
787 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
788 		prom_timers = (struct sun5_timer *) 0;
789 		return;
790 	}
791 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
792 }
793 
794 static void kill_prom_timer(void)
795 {
796 	if (!prom_timers)
797 		return;
798 
799 	/* Save them away for later. */
800 	prom_limit0 = prom_timers->limit0;
801 	prom_limit1 = prom_timers->limit1;
802 
803 	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
804 	 * We turn both off here just to be paranoid.
805 	 */
806 	prom_timers->limit0 = 0;
807 	prom_timers->limit1 = 0;
808 
809 	/* Wheee, eat the interrupt packet too... */
810 	__asm__ __volatile__(
811 "	mov	0x40, %%g2\n"
812 "	ldxa	[%%g0] %0, %%g1\n"
813 "	ldxa	[%%g2] %1, %%g1\n"
814 "	stxa	%%g0, [%%g0] %0\n"
815 "	membar	#Sync\n"
816 	: /* no outputs */
817 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
818 	: "g1", "g2");
819 }
820 
821 void notrace init_irqwork_curcpu(void)
822 {
823 	int cpu = hard_smp_processor_id();
824 
825 	trap_block[cpu].irq_worklist_pa = 0UL;
826 }
827 
828 /* Please be very careful with register_one_mondo() and
829  * sun4v_register_mondo_queues().
830  *
831  * On SMP this gets invoked from the CPU trampoline before
832  * the cpu has fully taken over the trap table from OBP,
833  * and it's kernel stack + %g6 thread register state is
834  * not fully cooked yet.
835  *
836  * Therefore you cannot make any OBP calls, not even prom_printf,
837  * from these two routines.
838  */
839 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
840 {
841 	unsigned long num_entries = (qmask + 1) / 64;
842 	unsigned long status;
843 
844 	status = sun4v_cpu_qconf(type, paddr, num_entries);
845 	if (status != HV_EOK) {
846 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
847 			    "err %lu\n", type, paddr, num_entries, status);
848 		prom_halt();
849 	}
850 }
851 
852 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
853 {
854 	struct trap_per_cpu *tb = &trap_block[this_cpu];
855 
856 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
857 			   tb->cpu_mondo_qmask);
858 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
859 			   tb->dev_mondo_qmask);
860 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
861 			   tb->resum_qmask);
862 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
863 			   tb->nonresum_qmask);
864 }
865 
866 /* Each queue region must be a power of 2 multiple of 64 bytes in
867  * size.  The base real address must be aligned to the size of the
868  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
869  */
870 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
871 {
872 	unsigned long size = PAGE_ALIGN(qmask + 1);
873 	unsigned long order = get_order(size);
874 	unsigned long p;
875 
876 	p = __get_free_pages(GFP_KERNEL, order);
877 	if (!p) {
878 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
879 		prom_halt();
880 	}
881 
882 	*pa_ptr = __pa(p);
883 }
884 
885 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
886 {
887 #ifdef CONFIG_SMP
888 	unsigned long page;
889 
890 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
891 
892 	page = get_zeroed_page(GFP_KERNEL);
893 	if (!page) {
894 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
895 		prom_halt();
896 	}
897 
898 	tb->cpu_mondo_block_pa = __pa(page);
899 	tb->cpu_list_pa = __pa(page + 64);
900 #endif
901 }
902 
903 /* Allocate mondo and error queues for all possible cpus.  */
904 static void __init sun4v_init_mondo_queues(void)
905 {
906 	int cpu;
907 
908 	for_each_possible_cpu(cpu) {
909 		struct trap_per_cpu *tb = &trap_block[cpu];
910 
911 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
912 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
913 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
914 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
915 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
916 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
917 				tb->nonresum_qmask);
918 	}
919 }
920 
921 static void __init init_send_mondo_info(void)
922 {
923 	int cpu;
924 
925 	for_each_possible_cpu(cpu) {
926 		struct trap_per_cpu *tb = &trap_block[cpu];
927 
928 		init_cpu_send_mondo_info(tb);
929 	}
930 }
931 
932 static struct irqaction timer_irq_action = {
933 	.name = "timer",
934 };
935 
936 /* Only invoked on boot processor. */
937 void __init init_IRQ(void)
938 {
939 	unsigned long size;
940 
941 	map_prom_timers();
942 	kill_prom_timer();
943 
944 	size = sizeof(struct ino_bucket) * NUM_IVECS;
945 	ivector_table = kzalloc(size, GFP_KERNEL);
946 	if (!ivector_table) {
947 		prom_printf("Fatal error, cannot allocate ivector_table\n");
948 		prom_halt();
949 	}
950 	__flush_dcache_range((unsigned long) ivector_table,
951 			     ((unsigned long) ivector_table) + size);
952 
953 	ivector_table_pa = __pa(ivector_table);
954 
955 	if (tlb_type == hypervisor)
956 		sun4v_init_mondo_queues();
957 
958 	init_send_mondo_info();
959 
960 	if (tlb_type == hypervisor) {
961 		/* Load up the boot cpu's entries.  */
962 		sun4v_register_mondo_queues(hard_smp_processor_id());
963 	}
964 
965 	/* We need to clear any IRQ's pending in the soft interrupt
966 	 * registers, a spurious one could be left around from the
967 	 * PROM timer which we just disabled.
968 	 */
969 	clear_softint(get_softint());
970 
971 	/* Now that ivector table is initialized, it is safe
972 	 * to receive IRQ vector traps.  We will normally take
973 	 * one or two right now, in case some device PROM used
974 	 * to boot us wants to speak to us.  We just ignore them.
975 	 */
976 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
977 			     "or	%%g1, %0, %%g1\n\t"
978 			     "wrpr	%%g1, 0x0, %%pstate"
979 			     : /* No outputs */
980 			     : "i" (PSTATE_IE)
981 			     : "g1");
982 
983 	irq_to_desc(0)->action = &timer_irq_action;
984 }
985