1 /* irq.c: UltraSparc IRQ handling/init/registry. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/linkage.h> 10 #include <linux/ptrace.h> 11 #include <linux/errno.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/ftrace.h> 23 #include <linux/irq.h> 24 #include <linux/kmemleak.h> 25 26 #include <asm/ptrace.h> 27 #include <asm/processor.h> 28 #include <linux/atomic.h> 29 #include <asm/system.h> 30 #include <asm/irq.h> 31 #include <asm/io.h> 32 #include <asm/iommu.h> 33 #include <asm/upa.h> 34 #include <asm/oplib.h> 35 #include <asm/prom.h> 36 #include <asm/timer.h> 37 #include <asm/smp.h> 38 #include <asm/starfire.h> 39 #include <asm/uaccess.h> 40 #include <asm/cache.h> 41 #include <asm/cpudata.h> 42 #include <asm/auxio.h> 43 #include <asm/head.h> 44 #include <asm/hypervisor.h> 45 #include <asm/cacheflush.h> 46 47 #include "entry.h" 48 #include "cpumap.h" 49 #include "kstack.h" 50 51 #define NUM_IVECS (IMAP_INR + 1) 52 53 struct ino_bucket *ivector_table; 54 unsigned long ivector_table_pa; 55 56 /* On several sun4u processors, it is illegal to mix bypass and 57 * non-bypass accesses. Therefore we access all INO buckets 58 * using bypass accesses only. 59 */ 60 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 61 { 62 unsigned long ret; 63 64 __asm__ __volatile__("ldxa [%1] %2, %0" 65 : "=&r" (ret) 66 : "r" (bucket_pa + 67 offsetof(struct ino_bucket, 68 __irq_chain_pa)), 69 "i" (ASI_PHYS_USE_EC)); 70 71 return ret; 72 } 73 74 static void bucket_clear_chain_pa(unsigned long bucket_pa) 75 { 76 __asm__ __volatile__("stxa %%g0, [%0] %1" 77 : /* no outputs */ 78 : "r" (bucket_pa + 79 offsetof(struct ino_bucket, 80 __irq_chain_pa)), 81 "i" (ASI_PHYS_USE_EC)); 82 } 83 84 static unsigned int bucket_get_irq(unsigned long bucket_pa) 85 { 86 unsigned int ret; 87 88 __asm__ __volatile__("lduwa [%1] %2, %0" 89 : "=&r" (ret) 90 : "r" (bucket_pa + 91 offsetof(struct ino_bucket, 92 __irq)), 93 "i" (ASI_PHYS_USE_EC)); 94 95 return ret; 96 } 97 98 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 99 { 100 __asm__ __volatile__("stwa %0, [%1] %2" 101 : /* no outputs */ 102 : "r" (irq), 103 "r" (bucket_pa + 104 offsetof(struct ino_bucket, 105 __irq)), 106 "i" (ASI_PHYS_USE_EC)); 107 } 108 109 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 110 111 static struct { 112 unsigned int dev_handle; 113 unsigned int dev_ino; 114 unsigned int in_use; 115 } irq_table[NR_IRQS]; 116 static DEFINE_SPINLOCK(irq_alloc_lock); 117 118 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 119 { 120 unsigned long flags; 121 unsigned char ent; 122 123 BUILD_BUG_ON(NR_IRQS >= 256); 124 125 spin_lock_irqsave(&irq_alloc_lock, flags); 126 127 for (ent = 1; ent < NR_IRQS; ent++) { 128 if (!irq_table[ent].in_use) 129 break; 130 } 131 if (ent >= NR_IRQS) { 132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 133 ent = 0; 134 } else { 135 irq_table[ent].dev_handle = dev_handle; 136 irq_table[ent].dev_ino = dev_ino; 137 irq_table[ent].in_use = 1; 138 } 139 140 spin_unlock_irqrestore(&irq_alloc_lock, flags); 141 142 return ent; 143 } 144 145 #ifdef CONFIG_PCI_MSI 146 void irq_free(unsigned int irq) 147 { 148 unsigned long flags; 149 150 if (irq >= NR_IRQS) 151 return; 152 153 spin_lock_irqsave(&irq_alloc_lock, flags); 154 155 irq_table[irq].in_use = 0; 156 157 spin_unlock_irqrestore(&irq_alloc_lock, flags); 158 } 159 #endif 160 161 /* 162 * /proc/interrupts printing: 163 */ 164 int arch_show_interrupts(struct seq_file *p, int prec) 165 { 166 int j; 167 168 seq_printf(p, "NMI: "); 169 for_each_online_cpu(j) 170 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 171 seq_printf(p, " Non-maskable interrupts\n"); 172 return 0; 173 } 174 175 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 176 { 177 unsigned int tid; 178 179 if (this_is_starfire) { 180 tid = starfire_translate(imap, cpuid); 181 tid <<= IMAP_TID_SHIFT; 182 tid &= IMAP_TID_UPA; 183 } else { 184 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 185 unsigned long ver; 186 187 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 188 if ((ver >> 32UL) == __JALAPENO_ID || 189 (ver >> 32UL) == __SERRANO_ID) { 190 tid = cpuid << IMAP_TID_SHIFT; 191 tid &= IMAP_TID_JBUS; 192 } else { 193 unsigned int a = cpuid & 0x1f; 194 unsigned int n = (cpuid >> 5) & 0x1f; 195 196 tid = ((a << IMAP_AID_SHIFT) | 197 (n << IMAP_NID_SHIFT)); 198 tid &= (IMAP_AID_SAFARI | 199 IMAP_NID_SAFARI); 200 } 201 } else { 202 tid = cpuid << IMAP_TID_SHIFT; 203 tid &= IMAP_TID_UPA; 204 } 205 } 206 207 return tid; 208 } 209 210 struct irq_handler_data { 211 unsigned long iclr; 212 unsigned long imap; 213 214 void (*pre_handler)(unsigned int, void *, void *); 215 void *arg1; 216 void *arg2; 217 }; 218 219 #ifdef CONFIG_SMP 220 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 221 { 222 cpumask_t mask; 223 int cpuid; 224 225 cpumask_copy(&mask, affinity); 226 if (cpumask_equal(&mask, cpu_online_mask)) { 227 cpuid = map_to_cpu(irq); 228 } else { 229 cpumask_t tmp; 230 231 cpumask_and(&tmp, cpu_online_mask, &mask); 232 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 233 } 234 235 return cpuid; 236 } 237 #else 238 #define irq_choose_cpu(irq, affinity) \ 239 real_hard_smp_processor_id() 240 #endif 241 242 static void sun4u_irq_enable(struct irq_data *data) 243 { 244 struct irq_handler_data *handler_data = data->handler_data; 245 246 if (likely(handler_data)) { 247 unsigned long cpuid, imap, val; 248 unsigned int tid; 249 250 cpuid = irq_choose_cpu(data->irq, data->affinity); 251 imap = handler_data->imap; 252 253 tid = sun4u_compute_tid(imap, cpuid); 254 255 val = upa_readq(imap); 256 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 257 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 258 val |= tid | IMAP_VALID; 259 upa_writeq(val, imap); 260 upa_writeq(ICLR_IDLE, handler_data->iclr); 261 } 262 } 263 264 static int sun4u_set_affinity(struct irq_data *data, 265 const struct cpumask *mask, bool force) 266 { 267 struct irq_handler_data *handler_data = data->handler_data; 268 269 if (likely(handler_data)) { 270 unsigned long cpuid, imap, val; 271 unsigned int tid; 272 273 cpuid = irq_choose_cpu(data->irq, mask); 274 imap = handler_data->imap; 275 276 tid = sun4u_compute_tid(imap, cpuid); 277 278 val = upa_readq(imap); 279 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 280 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 281 val |= tid | IMAP_VALID; 282 upa_writeq(val, imap); 283 upa_writeq(ICLR_IDLE, handler_data->iclr); 284 } 285 286 return 0; 287 } 288 289 /* Don't do anything. The desc->status check for IRQ_DISABLED in 290 * handler_irq() will skip the handler call and that will leave the 291 * interrupt in the sent state. The next ->enable() call will hit the 292 * ICLR register to reset the state machine. 293 * 294 * This scheme is necessary, instead of clearing the Valid bit in the 295 * IMAP register, to handle the case of IMAP registers being shared by 296 * multiple INOs (and thus ICLR registers). Since we use a different 297 * virtual IRQ for each shared IMAP instance, the generic code thinks 298 * there is only one user so it prematurely calls ->disable() on 299 * free_irq(). 300 * 301 * We have to provide an explicit ->disable() method instead of using 302 * NULL to get the default. The reason is that if the generic code 303 * sees that, it also hooks up a default ->shutdown method which 304 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 305 */ 306 static void sun4u_irq_disable(struct irq_data *data) 307 { 308 } 309 310 static void sun4u_irq_eoi(struct irq_data *data) 311 { 312 struct irq_handler_data *handler_data = data->handler_data; 313 314 if (likely(handler_data)) 315 upa_writeq(ICLR_IDLE, handler_data->iclr); 316 } 317 318 static void sun4v_irq_enable(struct irq_data *data) 319 { 320 unsigned int ino = irq_table[data->irq].dev_ino; 321 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity); 322 int err; 323 324 err = sun4v_intr_settarget(ino, cpuid); 325 if (err != HV_EOK) 326 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 327 "err(%d)\n", ino, cpuid, err); 328 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 329 if (err != HV_EOK) 330 printk(KERN_ERR "sun4v_intr_setstate(%x): " 331 "err(%d)\n", ino, err); 332 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 333 if (err != HV_EOK) 334 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 335 ino, err); 336 } 337 338 static int sun4v_set_affinity(struct irq_data *data, 339 const struct cpumask *mask, bool force) 340 { 341 unsigned int ino = irq_table[data->irq].dev_ino; 342 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 343 int err; 344 345 err = sun4v_intr_settarget(ino, cpuid); 346 if (err != HV_EOK) 347 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 348 "err(%d)\n", ino, cpuid, err); 349 350 return 0; 351 } 352 353 static void sun4v_irq_disable(struct irq_data *data) 354 { 355 unsigned int ino = irq_table[data->irq].dev_ino; 356 int err; 357 358 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 359 if (err != HV_EOK) 360 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 361 "err(%d)\n", ino, err); 362 } 363 364 static void sun4v_irq_eoi(struct irq_data *data) 365 { 366 unsigned int ino = irq_table[data->irq].dev_ino; 367 int err; 368 369 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 370 if (err != HV_EOK) 371 printk(KERN_ERR "sun4v_intr_setstate(%x): " 372 "err(%d)\n", ino, err); 373 } 374 375 static void sun4v_virq_enable(struct irq_data *data) 376 { 377 unsigned long cpuid, dev_handle, dev_ino; 378 int err; 379 380 cpuid = irq_choose_cpu(data->irq, data->affinity); 381 382 dev_handle = irq_table[data->irq].dev_handle; 383 dev_ino = irq_table[data->irq].dev_ino; 384 385 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 386 if (err != HV_EOK) 387 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 388 "err(%d)\n", 389 dev_handle, dev_ino, cpuid, err); 390 err = sun4v_vintr_set_state(dev_handle, dev_ino, 391 HV_INTR_STATE_IDLE); 392 if (err != HV_EOK) 393 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 394 "HV_INTR_STATE_IDLE): err(%d)\n", 395 dev_handle, dev_ino, err); 396 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 397 HV_INTR_ENABLED); 398 if (err != HV_EOK) 399 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 400 "HV_INTR_ENABLED): err(%d)\n", 401 dev_handle, dev_ino, err); 402 } 403 404 static int sun4v_virt_set_affinity(struct irq_data *data, 405 const struct cpumask *mask, bool force) 406 { 407 unsigned long cpuid, dev_handle, dev_ino; 408 int err; 409 410 cpuid = irq_choose_cpu(data->irq, mask); 411 412 dev_handle = irq_table[data->irq].dev_handle; 413 dev_ino = irq_table[data->irq].dev_ino; 414 415 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 416 if (err != HV_EOK) 417 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 418 "err(%d)\n", 419 dev_handle, dev_ino, cpuid, err); 420 421 return 0; 422 } 423 424 static void sun4v_virq_disable(struct irq_data *data) 425 { 426 unsigned long dev_handle, dev_ino; 427 int err; 428 429 dev_handle = irq_table[data->irq].dev_handle; 430 dev_ino = irq_table[data->irq].dev_ino; 431 432 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 433 HV_INTR_DISABLED); 434 if (err != HV_EOK) 435 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 436 "HV_INTR_DISABLED): err(%d)\n", 437 dev_handle, dev_ino, err); 438 } 439 440 static void sun4v_virq_eoi(struct irq_data *data) 441 { 442 unsigned long dev_handle, dev_ino; 443 int err; 444 445 dev_handle = irq_table[data->irq].dev_handle; 446 dev_ino = irq_table[data->irq].dev_ino; 447 448 err = sun4v_vintr_set_state(dev_handle, dev_ino, 449 HV_INTR_STATE_IDLE); 450 if (err != HV_EOK) 451 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 452 "HV_INTR_STATE_IDLE): err(%d)\n", 453 dev_handle, dev_ino, err); 454 } 455 456 static struct irq_chip sun4u_irq = { 457 .name = "sun4u", 458 .irq_enable = sun4u_irq_enable, 459 .irq_disable = sun4u_irq_disable, 460 .irq_eoi = sun4u_irq_eoi, 461 .irq_set_affinity = sun4u_set_affinity, 462 .flags = IRQCHIP_EOI_IF_HANDLED, 463 }; 464 465 static struct irq_chip sun4v_irq = { 466 .name = "sun4v", 467 .irq_enable = sun4v_irq_enable, 468 .irq_disable = sun4v_irq_disable, 469 .irq_eoi = sun4v_irq_eoi, 470 .irq_set_affinity = sun4v_set_affinity, 471 .flags = IRQCHIP_EOI_IF_HANDLED, 472 }; 473 474 static struct irq_chip sun4v_virq = { 475 .name = "vsun4v", 476 .irq_enable = sun4v_virq_enable, 477 .irq_disable = sun4v_virq_disable, 478 .irq_eoi = sun4v_virq_eoi, 479 .irq_set_affinity = sun4v_virt_set_affinity, 480 .flags = IRQCHIP_EOI_IF_HANDLED, 481 }; 482 483 static void pre_flow_handler(struct irq_data *d) 484 { 485 struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d); 486 unsigned int ino = irq_table[d->irq].dev_ino; 487 488 handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2); 489 } 490 491 void irq_install_pre_handler(int irq, 492 void (*func)(unsigned int, void *, void *), 493 void *arg1, void *arg2) 494 { 495 struct irq_handler_data *handler_data = irq_get_handler_data(irq); 496 497 handler_data->pre_handler = func; 498 handler_data->arg1 = arg1; 499 handler_data->arg2 = arg2; 500 501 __irq_set_preflow_handler(irq, pre_flow_handler); 502 } 503 504 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 505 { 506 struct ino_bucket *bucket; 507 struct irq_handler_data *handler_data; 508 unsigned int irq; 509 int ino; 510 511 BUG_ON(tlb_type == hypervisor); 512 513 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 514 bucket = &ivector_table[ino]; 515 irq = bucket_get_irq(__pa(bucket)); 516 if (!irq) { 517 irq = irq_alloc(0, ino); 518 bucket_set_irq(__pa(bucket), irq); 519 irq_set_chip_and_handler_name(irq, &sun4u_irq, 520 handle_fasteoi_irq, "IVEC"); 521 } 522 523 handler_data = irq_get_handler_data(irq); 524 if (unlikely(handler_data)) 525 goto out; 526 527 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 528 if (unlikely(!handler_data)) { 529 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 530 prom_halt(); 531 } 532 irq_set_handler_data(irq, handler_data); 533 534 handler_data->imap = imap; 535 handler_data->iclr = iclr; 536 537 out: 538 return irq; 539 } 540 541 static unsigned int sun4v_build_common(unsigned long sysino, 542 struct irq_chip *chip) 543 { 544 struct ino_bucket *bucket; 545 struct irq_handler_data *handler_data; 546 unsigned int irq; 547 548 BUG_ON(tlb_type != hypervisor); 549 550 bucket = &ivector_table[sysino]; 551 irq = bucket_get_irq(__pa(bucket)); 552 if (!irq) { 553 irq = irq_alloc(0, sysino); 554 bucket_set_irq(__pa(bucket), irq); 555 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, 556 "IVEC"); 557 } 558 559 handler_data = irq_get_handler_data(irq); 560 if (unlikely(handler_data)) 561 goto out; 562 563 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 564 if (unlikely(!handler_data)) { 565 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 566 prom_halt(); 567 } 568 irq_set_handler_data(irq, handler_data); 569 570 /* Catch accidental accesses to these things. IMAP/ICLR handling 571 * is done by hypervisor calls on sun4v platforms, not by direct 572 * register accesses. 573 */ 574 handler_data->imap = ~0UL; 575 handler_data->iclr = ~0UL; 576 577 out: 578 return irq; 579 } 580 581 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 582 { 583 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 584 585 return sun4v_build_common(sysino, &sun4v_irq); 586 } 587 588 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 589 { 590 struct irq_handler_data *handler_data; 591 unsigned long hv_err, cookie; 592 struct ino_bucket *bucket; 593 unsigned int irq; 594 595 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC); 596 if (unlikely(!bucket)) 597 return 0; 598 599 /* The only reference we store to the IRQ bucket is 600 * by physical address which kmemleak can't see, tell 601 * it that this object explicitly is not a leak and 602 * should be scanned. 603 */ 604 kmemleak_not_leak(bucket); 605 606 __flush_dcache_range((unsigned long) bucket, 607 ((unsigned long) bucket + 608 sizeof(struct ino_bucket))); 609 610 irq = irq_alloc(devhandle, devino); 611 bucket_set_irq(__pa(bucket), irq); 612 613 irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq, 614 "IVEC"); 615 616 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 617 if (unlikely(!handler_data)) 618 return 0; 619 620 /* In order to make the LDC channel startup sequence easier, 621 * especially wrt. locking, we do not let request_irq() enable 622 * the interrupt. 623 */ 624 irq_set_status_flags(irq, IRQ_NOAUTOEN); 625 irq_set_handler_data(irq, handler_data); 626 627 /* Catch accidental accesses to these things. IMAP/ICLR handling 628 * is done by hypervisor calls on sun4v platforms, not by direct 629 * register accesses. 630 */ 631 handler_data->imap = ~0UL; 632 handler_data->iclr = ~0UL; 633 634 cookie = ~__pa(bucket); 635 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie); 636 if (hv_err) { 637 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " 638 "err=%lu\n", devhandle, devino, hv_err); 639 prom_halt(); 640 } 641 642 return irq; 643 } 644 645 void ack_bad_irq(unsigned int irq) 646 { 647 unsigned int ino = irq_table[irq].dev_ino; 648 649 if (!ino) 650 ino = 0xdeadbeef; 651 652 printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n", 653 ino, irq); 654 } 655 656 void *hardirq_stack[NR_CPUS]; 657 void *softirq_stack[NR_CPUS]; 658 659 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 660 { 661 unsigned long pstate, bucket_pa; 662 struct pt_regs *old_regs; 663 void *orig_sp; 664 665 clear_softint(1 << pil); 666 667 old_regs = set_irq_regs(regs); 668 irq_enter(); 669 670 /* Grab an atomic snapshot of the pending IVECs. */ 671 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 672 "wrpr %0, %3, %%pstate\n\t" 673 "ldx [%2], %1\n\t" 674 "stx %%g0, [%2]\n\t" 675 "wrpr %0, 0x0, %%pstate\n\t" 676 : "=&r" (pstate), "=&r" (bucket_pa) 677 : "r" (irq_work_pa(smp_processor_id())), 678 "i" (PSTATE_IE) 679 : "memory"); 680 681 orig_sp = set_hardirq_stack(); 682 683 while (bucket_pa) { 684 unsigned long next_pa; 685 unsigned int irq; 686 687 next_pa = bucket_get_chain_pa(bucket_pa); 688 irq = bucket_get_irq(bucket_pa); 689 bucket_clear_chain_pa(bucket_pa); 690 691 generic_handle_irq(irq); 692 693 bucket_pa = next_pa; 694 } 695 696 restore_hardirq_stack(orig_sp); 697 698 irq_exit(); 699 set_irq_regs(old_regs); 700 } 701 702 void do_softirq(void) 703 { 704 unsigned long flags; 705 706 if (in_interrupt()) 707 return; 708 709 local_irq_save(flags); 710 711 if (local_softirq_pending()) { 712 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 713 714 sp += THREAD_SIZE - 192 - STACK_BIAS; 715 716 __asm__ __volatile__("mov %%sp, %0\n\t" 717 "mov %1, %%sp" 718 : "=&r" (orig_sp) 719 : "r" (sp)); 720 __do_softirq(); 721 __asm__ __volatile__("mov %0, %%sp" 722 : : "r" (orig_sp)); 723 } 724 725 local_irq_restore(flags); 726 } 727 728 #ifdef CONFIG_HOTPLUG_CPU 729 void fixup_irqs(void) 730 { 731 unsigned int irq; 732 733 for (irq = 0; irq < NR_IRQS; irq++) { 734 struct irq_desc *desc = irq_to_desc(irq); 735 struct irq_data *data = irq_desc_get_irq_data(desc); 736 unsigned long flags; 737 738 raw_spin_lock_irqsave(&desc->lock, flags); 739 if (desc->action && !irqd_is_per_cpu(data)) { 740 if (data->chip->irq_set_affinity) 741 data->chip->irq_set_affinity(data, 742 data->affinity, 743 false); 744 } 745 raw_spin_unlock_irqrestore(&desc->lock, flags); 746 } 747 748 tick_ops->disable_irq(); 749 } 750 #endif 751 752 struct sun5_timer { 753 u64 count0; 754 u64 limit0; 755 u64 count1; 756 u64 limit1; 757 }; 758 759 static struct sun5_timer *prom_timers; 760 static u64 prom_limit0, prom_limit1; 761 762 static void map_prom_timers(void) 763 { 764 struct device_node *dp; 765 const unsigned int *addr; 766 767 /* PROM timer node hangs out in the top level of device siblings... */ 768 dp = of_find_node_by_path("/"); 769 dp = dp->child; 770 while (dp) { 771 if (!strcmp(dp->name, "counter-timer")) 772 break; 773 dp = dp->sibling; 774 } 775 776 /* Assume if node is not present, PROM uses different tick mechanism 777 * which we should not care about. 778 */ 779 if (!dp) { 780 prom_timers = (struct sun5_timer *) 0; 781 return; 782 } 783 784 /* If PROM is really using this, it must be mapped by him. */ 785 addr = of_get_property(dp, "address", NULL); 786 if (!addr) { 787 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 788 prom_timers = (struct sun5_timer *) 0; 789 return; 790 } 791 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 792 } 793 794 static void kill_prom_timer(void) 795 { 796 if (!prom_timers) 797 return; 798 799 /* Save them away for later. */ 800 prom_limit0 = prom_timers->limit0; 801 prom_limit1 = prom_timers->limit1; 802 803 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. 804 * We turn both off here just to be paranoid. 805 */ 806 prom_timers->limit0 = 0; 807 prom_timers->limit1 = 0; 808 809 /* Wheee, eat the interrupt packet too... */ 810 __asm__ __volatile__( 811 " mov 0x40, %%g2\n" 812 " ldxa [%%g0] %0, %%g1\n" 813 " ldxa [%%g2] %1, %%g1\n" 814 " stxa %%g0, [%%g0] %0\n" 815 " membar #Sync\n" 816 : /* no outputs */ 817 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 818 : "g1", "g2"); 819 } 820 821 void notrace init_irqwork_curcpu(void) 822 { 823 int cpu = hard_smp_processor_id(); 824 825 trap_block[cpu].irq_worklist_pa = 0UL; 826 } 827 828 /* Please be very careful with register_one_mondo() and 829 * sun4v_register_mondo_queues(). 830 * 831 * On SMP this gets invoked from the CPU trampoline before 832 * the cpu has fully taken over the trap table from OBP, 833 * and it's kernel stack + %g6 thread register state is 834 * not fully cooked yet. 835 * 836 * Therefore you cannot make any OBP calls, not even prom_printf, 837 * from these two routines. 838 */ 839 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) 840 { 841 unsigned long num_entries = (qmask + 1) / 64; 842 unsigned long status; 843 844 status = sun4v_cpu_qconf(type, paddr, num_entries); 845 if (status != HV_EOK) { 846 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 847 "err %lu\n", type, paddr, num_entries, status); 848 prom_halt(); 849 } 850 } 851 852 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu) 853 { 854 struct trap_per_cpu *tb = &trap_block[this_cpu]; 855 856 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 857 tb->cpu_mondo_qmask); 858 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 859 tb->dev_mondo_qmask); 860 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 861 tb->resum_qmask); 862 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 863 tb->nonresum_qmask); 864 } 865 866 /* Each queue region must be a power of 2 multiple of 64 bytes in 867 * size. The base real address must be aligned to the size of the 868 * region. Thus, an 8KB queue must be 8KB aligned, for example. 869 */ 870 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 871 { 872 unsigned long size = PAGE_ALIGN(qmask + 1); 873 unsigned long order = get_order(size); 874 unsigned long p; 875 876 p = __get_free_pages(GFP_KERNEL, order); 877 if (!p) { 878 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 879 prom_halt(); 880 } 881 882 *pa_ptr = __pa(p); 883 } 884 885 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 886 { 887 #ifdef CONFIG_SMP 888 unsigned long page; 889 890 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); 891 892 page = get_zeroed_page(GFP_KERNEL); 893 if (!page) { 894 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); 895 prom_halt(); 896 } 897 898 tb->cpu_mondo_block_pa = __pa(page); 899 tb->cpu_list_pa = __pa(page + 64); 900 #endif 901 } 902 903 /* Allocate mondo and error queues for all possible cpus. */ 904 static void __init sun4v_init_mondo_queues(void) 905 { 906 int cpu; 907 908 for_each_possible_cpu(cpu) { 909 struct trap_per_cpu *tb = &trap_block[cpu]; 910 911 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 912 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 913 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 914 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 915 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 916 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 917 tb->nonresum_qmask); 918 } 919 } 920 921 static void __init init_send_mondo_info(void) 922 { 923 int cpu; 924 925 for_each_possible_cpu(cpu) { 926 struct trap_per_cpu *tb = &trap_block[cpu]; 927 928 init_cpu_send_mondo_info(tb); 929 } 930 } 931 932 static struct irqaction timer_irq_action = { 933 .name = "timer", 934 }; 935 936 /* Only invoked on boot processor. */ 937 void __init init_IRQ(void) 938 { 939 unsigned long size; 940 941 map_prom_timers(); 942 kill_prom_timer(); 943 944 size = sizeof(struct ino_bucket) * NUM_IVECS; 945 ivector_table = kzalloc(size, GFP_KERNEL); 946 if (!ivector_table) { 947 prom_printf("Fatal error, cannot allocate ivector_table\n"); 948 prom_halt(); 949 } 950 __flush_dcache_range((unsigned long) ivector_table, 951 ((unsigned long) ivector_table) + size); 952 953 ivector_table_pa = __pa(ivector_table); 954 955 if (tlb_type == hypervisor) 956 sun4v_init_mondo_queues(); 957 958 init_send_mondo_info(); 959 960 if (tlb_type == hypervisor) { 961 /* Load up the boot cpu's entries. */ 962 sun4v_register_mondo_queues(hard_smp_processor_id()); 963 } 964 965 /* We need to clear any IRQ's pending in the soft interrupt 966 * registers, a spurious one could be left around from the 967 * PROM timer which we just disabled. 968 */ 969 clear_softint(get_softint()); 970 971 /* Now that ivector table is initialized, it is safe 972 * to receive IRQ vector traps. We will normally take 973 * one or two right now, in case some device PROM used 974 * to boot us wants to speak to us. We just ignore them. 975 */ 976 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 977 "or %%g1, %0, %%g1\n\t" 978 "wrpr %%g1, 0x0, %%pstate" 979 : /* No outputs */ 980 : "i" (PSTATE_IE) 981 : "g1"); 982 983 irq_to_desc(0)->action = &timer_irq_action; 984 } 985