1 // SPDX-License-Identifier: GPL-2.0 2 /* irq.c: UltraSparc IRQ handling/init/registry. 3 * 4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) 7 */ 8 9 #include <linux/sched.h> 10 #include <linux/linkage.h> 11 #include <linux/ptrace.h> 12 #include <linux/errno.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/random.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/ftrace.h> 24 #include <linux/irq.h> 25 26 #include <asm/ptrace.h> 27 #include <asm/processor.h> 28 #include <linux/atomic.h> 29 #include <asm/irq.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/upa.h> 33 #include <asm/oplib.h> 34 #include <asm/prom.h> 35 #include <asm/timer.h> 36 #include <asm/smp.h> 37 #include <asm/starfire.h> 38 #include <linux/uaccess.h> 39 #include <asm/cache.h> 40 #include <asm/cpudata.h> 41 #include <asm/auxio.h> 42 #include <asm/head.h> 43 #include <asm/hypervisor.h> 44 #include <asm/cacheflush.h> 45 #include <asm/softirq_stack.h> 46 47 #include "entry.h" 48 #include "cpumap.h" 49 #include "kstack.h" 50 51 struct ino_bucket *ivector_table; 52 unsigned long ivector_table_pa; 53 54 /* On several sun4u processors, it is illegal to mix bypass and 55 * non-bypass accesses. Therefore we access all INO buckets 56 * using bypass accesses only. 57 */ 58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) 59 { 60 unsigned long ret; 61 62 __asm__ __volatile__("ldxa [%1] %2, %0" 63 : "=&r" (ret) 64 : "r" (bucket_pa + 65 offsetof(struct ino_bucket, 66 __irq_chain_pa)), 67 "i" (ASI_PHYS_USE_EC)); 68 69 return ret; 70 } 71 72 static void bucket_clear_chain_pa(unsigned long bucket_pa) 73 { 74 __asm__ __volatile__("stxa %%g0, [%0] %1" 75 : /* no outputs */ 76 : "r" (bucket_pa + 77 offsetof(struct ino_bucket, 78 __irq_chain_pa)), 79 "i" (ASI_PHYS_USE_EC)); 80 } 81 82 static unsigned int bucket_get_irq(unsigned long bucket_pa) 83 { 84 unsigned int ret; 85 86 __asm__ __volatile__("lduwa [%1] %2, %0" 87 : "=&r" (ret) 88 : "r" (bucket_pa + 89 offsetof(struct ino_bucket, 90 __irq)), 91 "i" (ASI_PHYS_USE_EC)); 92 93 return ret; 94 } 95 96 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) 97 { 98 __asm__ __volatile__("stwa %0, [%1] %2" 99 : /* no outputs */ 100 : "r" (irq), 101 "r" (bucket_pa + 102 offsetof(struct ino_bucket, 103 __irq)), 104 "i" (ASI_PHYS_USE_EC)); 105 } 106 107 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) 108 109 static unsigned long hvirq_major __initdata; 110 static int __init early_hvirq_major(char *p) 111 { 112 int rc = kstrtoul(p, 10, &hvirq_major); 113 114 return rc; 115 } 116 early_param("hvirq", early_hvirq_major); 117 118 static int hv_irq_version; 119 120 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie 121 * based interfaces, but: 122 * 123 * 1) Several OSs, Solaris and Linux included, use them even when only 124 * negotiating version 1.0 (or failing to negotiate at all). So the 125 * hypervisor has a workaround that provides the VIRQ interfaces even 126 * when only verion 1.0 of the API is in use. 127 * 128 * 2) Second, and more importantly, with major version 2.0 these VIRQ 129 * interfaces only were actually hooked up for LDC interrupts, even 130 * though the Hypervisor specification clearly stated: 131 * 132 * The new interrupt API functions will be available to a guest 133 * when it negotiates version 2.0 in the interrupt API group 0x2. When 134 * a guest negotiates version 2.0, all interrupt sources will only 135 * support using the cookie interface, and any attempt to use the 136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the 137 * ENOTSUPPORTED error being returned. 138 * 139 * with an emphasis on "all interrupt sources". 140 * 141 * To correct this, major version 3.0 was created which does actually 142 * support VIRQs for all interrupt sources (not just LDC devices). So 143 * if we want to move completely over the cookie based VIRQs we must 144 * negotiate major version 3.0 or later of HV_GRP_INTR. 145 */ 146 static bool sun4v_cookie_only_virqs(void) 147 { 148 if (hv_irq_version >= 3) 149 return true; 150 return false; 151 } 152 153 static void __init irq_init_hv(void) 154 { 155 unsigned long hv_error, major, minor = 0; 156 157 if (tlb_type != hypervisor) 158 return; 159 160 if (hvirq_major) 161 major = hvirq_major; 162 else 163 major = 3; 164 165 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor); 166 if (!hv_error) 167 hv_irq_version = major; 168 else 169 hv_irq_version = 1; 170 171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n", 172 hv_irq_version, 173 sun4v_cookie_only_virqs() ? "enabled" : "disabled"); 174 } 175 176 /* This function is for the timer interrupt.*/ 177 int __init arch_probe_nr_irqs(void) 178 { 179 return 1; 180 } 181 182 #define DEFAULT_NUM_IVECS (0xfffU) 183 static unsigned int nr_ivec = DEFAULT_NUM_IVECS; 184 #define NUM_IVECS (nr_ivec) 185 186 static unsigned int __init size_nr_ivec(void) 187 { 188 if (tlb_type == hypervisor) { 189 switch (sun4v_chip_type) { 190 /* Athena's devhandle|devino is large.*/ 191 case SUN4V_CHIP_SPARC64X: 192 nr_ivec = 0xffff; 193 break; 194 } 195 } 196 return nr_ivec; 197 } 198 199 struct irq_handler_data { 200 union { 201 struct { 202 unsigned int dev_handle; 203 unsigned int dev_ino; 204 }; 205 unsigned long sysino; 206 }; 207 struct ino_bucket bucket; 208 unsigned long iclr; 209 unsigned long imap; 210 }; 211 212 static inline unsigned int irq_data_to_handle(struct irq_data *data) 213 { 214 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 215 216 return ihd->dev_handle; 217 } 218 219 static inline unsigned int irq_data_to_ino(struct irq_data *data) 220 { 221 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 222 223 return ihd->dev_ino; 224 } 225 226 static inline unsigned long irq_data_to_sysino(struct irq_data *data) 227 { 228 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); 229 230 return ihd->sysino; 231 } 232 233 void irq_free(unsigned int irq) 234 { 235 void *data = irq_get_handler_data(irq); 236 237 kfree(data); 238 irq_set_handler_data(irq, NULL); 239 irq_free_descs(irq, 1); 240 } 241 242 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino) 243 { 244 int irq; 245 246 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL); 247 if (irq <= 0) 248 goto out; 249 250 return irq; 251 out: 252 return 0; 253 } 254 255 static unsigned int cookie_exists(u32 devhandle, unsigned int devino) 256 { 257 unsigned long hv_err, cookie; 258 struct ino_bucket *bucket; 259 unsigned int irq = 0U; 260 261 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie); 262 if (hv_err) { 263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err); 264 goto out; 265 } 266 267 if (cookie & ((1UL << 63UL))) { 268 cookie = ~cookie; 269 bucket = (struct ino_bucket *) __va(cookie); 270 irq = bucket->__irq; 271 } 272 out: 273 return irq; 274 } 275 276 static unsigned int sysino_exists(u32 devhandle, unsigned int devino) 277 { 278 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); 279 struct ino_bucket *bucket; 280 unsigned int irq; 281 282 bucket = &ivector_table[sysino]; 283 irq = bucket_get_irq(__pa(bucket)); 284 285 return irq; 286 } 287 288 void ack_bad_irq(unsigned int irq) 289 { 290 pr_crit("BAD IRQ ack %d\n", irq); 291 } 292 293 void irq_install_pre_handler(int irq, 294 void (*func)(unsigned int, void *, void *), 295 void *arg1, void *arg2) 296 { 297 pr_warn("IRQ pre handler NOT supported.\n"); 298 } 299 300 /* 301 * /proc/interrupts printing: 302 */ 303 int arch_show_interrupts(struct seq_file *p, int prec) 304 { 305 int j; 306 307 seq_printf(p, "NMI: "); 308 for_each_online_cpu(j) 309 seq_printf(p, "%10u ", cpu_data(j).__nmi_count); 310 seq_printf(p, " Non-maskable interrupts\n"); 311 return 0; 312 } 313 314 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) 315 { 316 unsigned int tid; 317 318 if (this_is_starfire) { 319 tid = starfire_translate(imap, cpuid); 320 tid <<= IMAP_TID_SHIFT; 321 tid &= IMAP_TID_UPA; 322 } else { 323 if (tlb_type == cheetah || tlb_type == cheetah_plus) { 324 unsigned long ver; 325 326 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 327 if ((ver >> 32UL) == __JALAPENO_ID || 328 (ver >> 32UL) == __SERRANO_ID) { 329 tid = cpuid << IMAP_TID_SHIFT; 330 tid &= IMAP_TID_JBUS; 331 } else { 332 unsigned int a = cpuid & 0x1f; 333 unsigned int n = (cpuid >> 5) & 0x1f; 334 335 tid = ((a << IMAP_AID_SHIFT) | 336 (n << IMAP_NID_SHIFT)); 337 tid &= (IMAP_AID_SAFARI | 338 IMAP_NID_SAFARI); 339 } 340 } else { 341 tid = cpuid << IMAP_TID_SHIFT; 342 tid &= IMAP_TID_UPA; 343 } 344 } 345 346 return tid; 347 } 348 349 #ifdef CONFIG_SMP 350 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) 351 { 352 cpumask_t mask; 353 int cpuid; 354 355 cpumask_copy(&mask, affinity); 356 if (cpumask_equal(&mask, cpu_online_mask)) { 357 cpuid = map_to_cpu(irq); 358 } else { 359 cpumask_t tmp; 360 361 cpumask_and(&tmp, cpu_online_mask, &mask); 362 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp); 363 } 364 365 return cpuid; 366 } 367 #else 368 #define irq_choose_cpu(irq, affinity) \ 369 real_hard_smp_processor_id() 370 #endif 371 372 static void sun4u_irq_enable(struct irq_data *data) 373 { 374 struct irq_handler_data *handler_data; 375 376 handler_data = irq_data_get_irq_handler_data(data); 377 if (likely(handler_data)) { 378 unsigned long cpuid, imap, val; 379 unsigned int tid; 380 381 cpuid = irq_choose_cpu(data->irq, 382 irq_data_get_affinity_mask(data)); 383 imap = handler_data->imap; 384 385 tid = sun4u_compute_tid(imap, cpuid); 386 387 val = upa_readq(imap); 388 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 389 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 390 val |= tid | IMAP_VALID; 391 upa_writeq(val, imap); 392 upa_writeq(ICLR_IDLE, handler_data->iclr); 393 } 394 } 395 396 static int sun4u_set_affinity(struct irq_data *data, 397 const struct cpumask *mask, bool force) 398 { 399 struct irq_handler_data *handler_data; 400 401 handler_data = irq_data_get_irq_handler_data(data); 402 if (likely(handler_data)) { 403 unsigned long cpuid, imap, val; 404 unsigned int tid; 405 406 cpuid = irq_choose_cpu(data->irq, mask); 407 imap = handler_data->imap; 408 409 tid = sun4u_compute_tid(imap, cpuid); 410 411 val = upa_readq(imap); 412 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | 413 IMAP_AID_SAFARI | IMAP_NID_SAFARI); 414 val |= tid | IMAP_VALID; 415 upa_writeq(val, imap); 416 upa_writeq(ICLR_IDLE, handler_data->iclr); 417 } 418 419 return 0; 420 } 421 422 /* Don't do anything. The desc->status check for IRQ_DISABLED in 423 * handler_irq() will skip the handler call and that will leave the 424 * interrupt in the sent state. The next ->enable() call will hit the 425 * ICLR register to reset the state machine. 426 * 427 * This scheme is necessary, instead of clearing the Valid bit in the 428 * IMAP register, to handle the case of IMAP registers being shared by 429 * multiple INOs (and thus ICLR registers). Since we use a different 430 * virtual IRQ for each shared IMAP instance, the generic code thinks 431 * there is only one user so it prematurely calls ->disable() on 432 * free_irq(). 433 * 434 * We have to provide an explicit ->disable() method instead of using 435 * NULL to get the default. The reason is that if the generic code 436 * sees that, it also hooks up a default ->shutdown method which 437 * invokes ->mask() which we do not want. See irq_chip_set_defaults(). 438 */ 439 static void sun4u_irq_disable(struct irq_data *data) 440 { 441 } 442 443 static void sun4u_irq_eoi(struct irq_data *data) 444 { 445 struct irq_handler_data *handler_data; 446 447 handler_data = irq_data_get_irq_handler_data(data); 448 if (likely(handler_data)) 449 upa_writeq(ICLR_IDLE, handler_data->iclr); 450 } 451 452 static void sun4v_irq_enable(struct irq_data *data) 453 { 454 unsigned long cpuid = irq_choose_cpu(data->irq, 455 irq_data_get_affinity_mask(data)); 456 unsigned int ino = irq_data_to_sysino(data); 457 int err; 458 459 err = sun4v_intr_settarget(ino, cpuid); 460 if (err != HV_EOK) 461 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 462 "err(%d)\n", ino, cpuid, err); 463 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 464 if (err != HV_EOK) 465 printk(KERN_ERR "sun4v_intr_setstate(%x): " 466 "err(%d)\n", ino, err); 467 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); 468 if (err != HV_EOK) 469 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", 470 ino, err); 471 } 472 473 static int sun4v_set_affinity(struct irq_data *data, 474 const struct cpumask *mask, bool force) 475 { 476 unsigned long cpuid = irq_choose_cpu(data->irq, mask); 477 unsigned int ino = irq_data_to_sysino(data); 478 int err; 479 480 err = sun4v_intr_settarget(ino, cpuid); 481 if (err != HV_EOK) 482 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " 483 "err(%d)\n", ino, cpuid, err); 484 485 return 0; 486 } 487 488 static void sun4v_irq_disable(struct irq_data *data) 489 { 490 unsigned int ino = irq_data_to_sysino(data); 491 int err; 492 493 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); 494 if (err != HV_EOK) 495 printk(KERN_ERR "sun4v_intr_setenabled(%x): " 496 "err(%d)\n", ino, err); 497 } 498 499 static void sun4v_irq_eoi(struct irq_data *data) 500 { 501 unsigned int ino = irq_data_to_sysino(data); 502 int err; 503 504 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); 505 if (err != HV_EOK) 506 printk(KERN_ERR "sun4v_intr_setstate(%x): " 507 "err(%d)\n", ino, err); 508 } 509 510 static void sun4v_virq_enable(struct irq_data *data) 511 { 512 unsigned long dev_handle = irq_data_to_handle(data); 513 unsigned long dev_ino = irq_data_to_ino(data); 514 unsigned long cpuid; 515 int err; 516 517 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data)); 518 519 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 520 if (err != HV_EOK) 521 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 522 "err(%d)\n", 523 dev_handle, dev_ino, cpuid, err); 524 err = sun4v_vintr_set_state(dev_handle, dev_ino, 525 HV_INTR_STATE_IDLE); 526 if (err != HV_EOK) 527 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 528 "HV_INTR_STATE_IDLE): err(%d)\n", 529 dev_handle, dev_ino, err); 530 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 531 HV_INTR_ENABLED); 532 if (err != HV_EOK) 533 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 534 "HV_INTR_ENABLED): err(%d)\n", 535 dev_handle, dev_ino, err); 536 } 537 538 static int sun4v_virt_set_affinity(struct irq_data *data, 539 const struct cpumask *mask, bool force) 540 { 541 unsigned long dev_handle = irq_data_to_handle(data); 542 unsigned long dev_ino = irq_data_to_ino(data); 543 unsigned long cpuid; 544 int err; 545 546 cpuid = irq_choose_cpu(data->irq, mask); 547 548 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); 549 if (err != HV_EOK) 550 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " 551 "err(%d)\n", 552 dev_handle, dev_ino, cpuid, err); 553 554 return 0; 555 } 556 557 static void sun4v_virq_disable(struct irq_data *data) 558 { 559 unsigned long dev_handle = irq_data_to_handle(data); 560 unsigned long dev_ino = irq_data_to_ino(data); 561 int err; 562 563 564 err = sun4v_vintr_set_valid(dev_handle, dev_ino, 565 HV_INTR_DISABLED); 566 if (err != HV_EOK) 567 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 568 "HV_INTR_DISABLED): err(%d)\n", 569 dev_handle, dev_ino, err); 570 } 571 572 static void sun4v_virq_eoi(struct irq_data *data) 573 { 574 unsigned long dev_handle = irq_data_to_handle(data); 575 unsigned long dev_ino = irq_data_to_ino(data); 576 int err; 577 578 err = sun4v_vintr_set_state(dev_handle, dev_ino, 579 HV_INTR_STATE_IDLE); 580 if (err != HV_EOK) 581 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," 582 "HV_INTR_STATE_IDLE): err(%d)\n", 583 dev_handle, dev_ino, err); 584 } 585 586 static struct irq_chip sun4u_irq = { 587 .name = "sun4u", 588 .irq_enable = sun4u_irq_enable, 589 .irq_disable = sun4u_irq_disable, 590 .irq_eoi = sun4u_irq_eoi, 591 .irq_set_affinity = sun4u_set_affinity, 592 .flags = IRQCHIP_EOI_IF_HANDLED, 593 }; 594 595 static struct irq_chip sun4v_irq = { 596 .name = "sun4v", 597 .irq_enable = sun4v_irq_enable, 598 .irq_disable = sun4v_irq_disable, 599 .irq_eoi = sun4v_irq_eoi, 600 .irq_set_affinity = sun4v_set_affinity, 601 .flags = IRQCHIP_EOI_IF_HANDLED, 602 }; 603 604 static struct irq_chip sun4v_virq = { 605 .name = "vsun4v", 606 .irq_enable = sun4v_virq_enable, 607 .irq_disable = sun4v_virq_disable, 608 .irq_eoi = sun4v_virq_eoi, 609 .irq_set_affinity = sun4v_virt_set_affinity, 610 .flags = IRQCHIP_EOI_IF_HANDLED, 611 }; 612 613 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) 614 { 615 struct irq_handler_data *handler_data; 616 struct ino_bucket *bucket; 617 unsigned int irq; 618 int ino; 619 620 BUG_ON(tlb_type == hypervisor); 621 622 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; 623 bucket = &ivector_table[ino]; 624 irq = bucket_get_irq(__pa(bucket)); 625 if (!irq) { 626 irq = irq_alloc(0, ino); 627 bucket_set_irq(__pa(bucket), irq); 628 irq_set_chip_and_handler_name(irq, &sun4u_irq, 629 handle_fasteoi_irq, "IVEC"); 630 } 631 632 handler_data = irq_get_handler_data(irq); 633 if (unlikely(handler_data)) 634 goto out; 635 636 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 637 if (unlikely(!handler_data)) { 638 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); 639 prom_halt(); 640 } 641 irq_set_handler_data(irq, handler_data); 642 643 handler_data->imap = imap; 644 handler_data->iclr = iclr; 645 646 out: 647 return irq; 648 } 649 650 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino, 651 void (*handler_data_init)(struct irq_handler_data *data, 652 u32 devhandle, unsigned int devino), 653 struct irq_chip *chip) 654 { 655 struct irq_handler_data *data; 656 unsigned int irq; 657 658 irq = irq_alloc(devhandle, devino); 659 if (!irq) 660 goto out; 661 662 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); 663 if (unlikely(!data)) { 664 pr_err("IRQ handler data allocation failed.\n"); 665 irq_free(irq); 666 irq = 0; 667 goto out; 668 } 669 670 irq_set_handler_data(irq, data); 671 handler_data_init(data, devhandle, devino); 672 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC"); 673 data->imap = ~0UL; 674 data->iclr = ~0UL; 675 out: 676 return irq; 677 } 678 679 static unsigned long cookie_assign(unsigned int irq, u32 devhandle, 680 unsigned int devino) 681 { 682 struct irq_handler_data *ihd = irq_get_handler_data(irq); 683 unsigned long hv_error, cookie; 684 685 /* handler_irq needs to find the irq. cookie is seen signed in 686 * sun4v_dev_mondo and treated as a non ivector_table delivery. 687 */ 688 ihd->bucket.__irq = irq; 689 cookie = ~__pa(&ihd->bucket); 690 691 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie); 692 if (hv_error) 693 pr_err("HV vintr set cookie failed = %ld\n", hv_error); 694 695 return hv_error; 696 } 697 698 static void cookie_handler_data(struct irq_handler_data *data, 699 u32 devhandle, unsigned int devino) 700 { 701 data->dev_handle = devhandle; 702 data->dev_ino = devino; 703 } 704 705 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino, 706 struct irq_chip *chip) 707 { 708 unsigned long hv_error; 709 unsigned int irq; 710 711 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip); 712 713 hv_error = cookie_assign(irq, devhandle, devino); 714 if (hv_error) { 715 irq_free(irq); 716 irq = 0; 717 } 718 719 return irq; 720 } 721 722 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino) 723 { 724 unsigned int irq; 725 726 irq = cookie_exists(devhandle, devino); 727 if (irq) 728 goto out; 729 730 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 731 732 out: 733 return irq; 734 } 735 736 static void sysino_set_bucket(unsigned int irq) 737 { 738 struct irq_handler_data *ihd = irq_get_handler_data(irq); 739 struct ino_bucket *bucket; 740 unsigned long sysino; 741 742 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino); 743 BUG_ON(sysino >= nr_ivec); 744 bucket = &ivector_table[sysino]; 745 bucket_set_irq(__pa(bucket), irq); 746 } 747 748 static void sysino_handler_data(struct irq_handler_data *data, 749 u32 devhandle, unsigned int devino) 750 { 751 unsigned long sysino; 752 753 sysino = sun4v_devino_to_sysino(devhandle, devino); 754 data->sysino = sysino; 755 } 756 757 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino, 758 struct irq_chip *chip) 759 { 760 unsigned int irq; 761 762 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip); 763 if (!irq) 764 goto out; 765 766 sysino_set_bucket(irq); 767 out: 768 return irq; 769 } 770 771 static int sun4v_build_sysino(u32 devhandle, unsigned int devino) 772 { 773 int irq; 774 775 irq = sysino_exists(devhandle, devino); 776 if (irq) 777 goto out; 778 779 irq = sysino_build_irq(devhandle, devino, &sun4v_irq); 780 out: 781 return irq; 782 } 783 784 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) 785 { 786 unsigned int irq; 787 788 if (sun4v_cookie_only_virqs()) 789 irq = sun4v_build_cookie(devhandle, devino); 790 else 791 irq = sun4v_build_sysino(devhandle, devino); 792 793 return irq; 794 } 795 796 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) 797 { 798 int irq; 799 800 irq = cookie_build_irq(devhandle, devino, &sun4v_virq); 801 if (!irq) 802 goto out; 803 804 /* This is borrowed from the original function. 805 */ 806 irq_set_status_flags(irq, IRQ_NOAUTOEN); 807 808 out: 809 return irq; 810 } 811 812 void *hardirq_stack[NR_CPUS]; 813 void *softirq_stack[NR_CPUS]; 814 815 void __irq_entry handler_irq(int pil, struct pt_regs *regs) 816 { 817 unsigned long pstate, bucket_pa; 818 struct pt_regs *old_regs; 819 void *orig_sp; 820 821 clear_softint(1 << pil); 822 823 old_regs = set_irq_regs(regs); 824 irq_enter(); 825 826 /* Grab an atomic snapshot of the pending IVECs. */ 827 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 828 "wrpr %0, %3, %%pstate\n\t" 829 "ldx [%2], %1\n\t" 830 "stx %%g0, [%2]\n\t" 831 "wrpr %0, 0x0, %%pstate\n\t" 832 : "=&r" (pstate), "=&r" (bucket_pa) 833 : "r" (irq_work_pa(smp_processor_id())), 834 "i" (PSTATE_IE) 835 : "memory"); 836 837 orig_sp = set_hardirq_stack(); 838 839 while (bucket_pa) { 840 unsigned long next_pa; 841 unsigned int irq; 842 843 next_pa = bucket_get_chain_pa(bucket_pa); 844 irq = bucket_get_irq(bucket_pa); 845 bucket_clear_chain_pa(bucket_pa); 846 847 generic_handle_irq(irq); 848 849 bucket_pa = next_pa; 850 } 851 852 restore_hardirq_stack(orig_sp); 853 854 irq_exit(); 855 set_irq_regs(old_regs); 856 } 857 858 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK 859 void do_softirq_own_stack(void) 860 { 861 void *orig_sp, *sp = softirq_stack[smp_processor_id()]; 862 863 sp += THREAD_SIZE - 192 - STACK_BIAS; 864 865 __asm__ __volatile__("mov %%sp, %0\n\t" 866 "mov %1, %%sp" 867 : "=&r" (orig_sp) 868 : "r" (sp)); 869 __do_softirq(); 870 __asm__ __volatile__("mov %0, %%sp" 871 : : "r" (orig_sp)); 872 } 873 #endif 874 875 #ifdef CONFIG_HOTPLUG_CPU 876 void fixup_irqs(void) 877 { 878 unsigned int irq; 879 880 for (irq = 0; irq < NR_IRQS; irq++) { 881 struct irq_desc *desc = irq_to_desc(irq); 882 struct irq_data *data; 883 unsigned long flags; 884 885 if (!desc) 886 continue; 887 data = irq_desc_get_irq_data(desc); 888 raw_spin_lock_irqsave(&desc->lock, flags); 889 if (desc->action && !irqd_is_per_cpu(data)) { 890 if (data->chip->irq_set_affinity) 891 data->chip->irq_set_affinity(data, 892 irq_data_get_affinity_mask(data), 893 false); 894 } 895 raw_spin_unlock_irqrestore(&desc->lock, flags); 896 } 897 898 tick_ops->disable_irq(); 899 } 900 #endif 901 902 struct sun5_timer { 903 u64 count0; 904 u64 limit0; 905 u64 count1; 906 u64 limit1; 907 }; 908 909 static struct sun5_timer *prom_timers; 910 static u64 prom_limit0, prom_limit1; 911 912 static void map_prom_timers(void) 913 { 914 struct device_node *dp; 915 const unsigned int *addr; 916 917 /* PROM timer node hangs out in the top level of device siblings... */ 918 dp = of_find_node_by_path("/"); 919 dp = dp->child; 920 while (dp) { 921 if (of_node_name_eq(dp, "counter-timer")) 922 break; 923 dp = dp->sibling; 924 } 925 926 /* Assume if node is not present, PROM uses different tick mechanism 927 * which we should not care about. 928 */ 929 if (!dp) { 930 prom_timers = (struct sun5_timer *) 0; 931 return; 932 } 933 934 /* If PROM is really using this, it must be mapped by him. */ 935 addr = of_get_property(dp, "address", NULL); 936 if (!addr) { 937 prom_printf("PROM does not have timer mapped, trying to continue.\n"); 938 prom_timers = (struct sun5_timer *) 0; 939 return; 940 } 941 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); 942 } 943 944 static void kill_prom_timer(void) 945 { 946 if (!prom_timers) 947 return; 948 949 /* Save them away for later. */ 950 prom_limit0 = prom_timers->limit0; 951 prom_limit1 = prom_timers->limit1; 952 953 /* Just as in sun4c PROM uses timer which ticks at IRQ 14. 954 * We turn both off here just to be paranoid. 955 */ 956 prom_timers->limit0 = 0; 957 prom_timers->limit1 = 0; 958 959 /* Wheee, eat the interrupt packet too... */ 960 __asm__ __volatile__( 961 " mov 0x40, %%g2\n" 962 " ldxa [%%g0] %0, %%g1\n" 963 " ldxa [%%g2] %1, %%g1\n" 964 " stxa %%g0, [%%g0] %0\n" 965 " membar #Sync\n" 966 : /* no outputs */ 967 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) 968 : "g1", "g2"); 969 } 970 971 void notrace init_irqwork_curcpu(void) 972 { 973 int cpu = hard_smp_processor_id(); 974 975 trap_block[cpu].irq_worklist_pa = 0UL; 976 } 977 978 /* Please be very careful with register_one_mondo() and 979 * sun4v_register_mondo_queues(). 980 * 981 * On SMP this gets invoked from the CPU trampoline before 982 * the cpu has fully taken over the trap table from OBP, 983 * and it's kernel stack + %g6 thread register state is 984 * not fully cooked yet. 985 * 986 * Therefore you cannot make any OBP calls, not even prom_printf, 987 * from these two routines. 988 */ 989 static void notrace register_one_mondo(unsigned long paddr, unsigned long type, 990 unsigned long qmask) 991 { 992 unsigned long num_entries = (qmask + 1) / 64; 993 unsigned long status; 994 995 status = sun4v_cpu_qconf(type, paddr, num_entries); 996 if (status != HV_EOK) { 997 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " 998 "err %lu\n", type, paddr, num_entries, status); 999 prom_halt(); 1000 } 1001 } 1002 1003 void notrace sun4v_register_mondo_queues(int this_cpu) 1004 { 1005 struct trap_per_cpu *tb = &trap_block[this_cpu]; 1006 1007 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, 1008 tb->cpu_mondo_qmask); 1009 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, 1010 tb->dev_mondo_qmask); 1011 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, 1012 tb->resum_qmask); 1013 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, 1014 tb->nonresum_qmask); 1015 } 1016 1017 /* Each queue region must be a power of 2 multiple of 64 bytes in 1018 * size. The base real address must be aligned to the size of the 1019 * region. Thus, an 8KB queue must be 8KB aligned, for example. 1020 */ 1021 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) 1022 { 1023 unsigned long size = PAGE_ALIGN(qmask + 1); 1024 unsigned long order = get_order(size); 1025 unsigned long p; 1026 1027 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1028 if (!p) { 1029 prom_printf("SUN4V: Error, cannot allocate queue.\n"); 1030 prom_halt(); 1031 } 1032 1033 *pa_ptr = __pa(p); 1034 } 1035 1036 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) 1037 { 1038 #ifdef CONFIG_SMP 1039 unsigned long page; 1040 void *mondo, *p; 1041 1042 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE); 1043 1044 /* Make sure mondo block is 64byte aligned */ 1045 p = kzalloc(127, GFP_KERNEL); 1046 if (!p) { 1047 prom_printf("SUN4V: Error, cannot allocate mondo block.\n"); 1048 prom_halt(); 1049 } 1050 mondo = (void *)(((unsigned long)p + 63) & ~0x3f); 1051 tb->cpu_mondo_block_pa = __pa(mondo); 1052 1053 page = get_zeroed_page(GFP_KERNEL); 1054 if (!page) { 1055 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n"); 1056 prom_halt(); 1057 } 1058 1059 tb->cpu_list_pa = __pa(page); 1060 #endif 1061 } 1062 1063 /* Allocate mondo and error queues for all possible cpus. */ 1064 static void __init sun4v_init_mondo_queues(void) 1065 { 1066 int cpu; 1067 1068 for_each_possible_cpu(cpu) { 1069 struct trap_per_cpu *tb = &trap_block[cpu]; 1070 1071 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); 1072 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); 1073 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); 1074 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); 1075 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); 1076 alloc_one_queue(&tb->nonresum_kernel_buf_pa, 1077 tb->nonresum_qmask); 1078 } 1079 } 1080 1081 static void __init init_send_mondo_info(void) 1082 { 1083 int cpu; 1084 1085 for_each_possible_cpu(cpu) { 1086 struct trap_per_cpu *tb = &trap_block[cpu]; 1087 1088 init_cpu_send_mondo_info(tb); 1089 } 1090 } 1091 1092 static struct irqaction timer_irq_action = { 1093 .name = "timer", 1094 }; 1095 1096 static void __init irq_ivector_init(void) 1097 { 1098 unsigned long size, order; 1099 unsigned int ivecs; 1100 1101 /* If we are doing cookie only VIRQs then we do not need the ivector 1102 * table to process interrupts. 1103 */ 1104 if (sun4v_cookie_only_virqs()) 1105 return; 1106 1107 ivecs = size_nr_ivec(); 1108 size = sizeof(struct ino_bucket) * ivecs; 1109 order = get_order(size); 1110 ivector_table = (struct ino_bucket *) 1111 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1112 if (!ivector_table) { 1113 prom_printf("Fatal error, cannot allocate ivector_table\n"); 1114 prom_halt(); 1115 } 1116 __flush_dcache_range((unsigned long) ivector_table, 1117 ((unsigned long) ivector_table) + size); 1118 1119 ivector_table_pa = __pa(ivector_table); 1120 } 1121 1122 /* Only invoked on boot processor.*/ 1123 void __init init_IRQ(void) 1124 { 1125 irq_init_hv(); 1126 irq_ivector_init(); 1127 map_prom_timers(); 1128 kill_prom_timer(); 1129 1130 if (tlb_type == hypervisor) 1131 sun4v_init_mondo_queues(); 1132 1133 init_send_mondo_info(); 1134 1135 if (tlb_type == hypervisor) { 1136 /* Load up the boot cpu's entries. */ 1137 sun4v_register_mondo_queues(hard_smp_processor_id()); 1138 } 1139 1140 /* We need to clear any IRQ's pending in the soft interrupt 1141 * registers, a spurious one could be left around from the 1142 * PROM timer which we just disabled. 1143 */ 1144 clear_softint(get_softint()); 1145 1146 /* Now that ivector table is initialized, it is safe 1147 * to receive IRQ vector traps. We will normally take 1148 * one or two right now, in case some device PROM used 1149 * to boot us wants to speak to us. We just ignore them. 1150 */ 1151 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" 1152 "or %%g1, %0, %%g1\n\t" 1153 "wrpr %%g1, 0x0, %%pstate" 1154 : /* No outputs */ 1155 : "i" (PSTATE_IE) 1156 : "g1"); 1157 1158 irq_to_desc(0)->action = &timer_irq_action; 1159 } 1160