1 /* 2 * Interrupt request handling routines. On the 3 * Sparc the IRQs are basically 'cast in stone' 4 * and you are supposed to probe the prom's device 5 * node trees to find out who's got which IRQ. 6 * 7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 8 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 9 * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com) 10 * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) 11 * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org) 12 */ 13 14 #include <linux/kernel_stat.h> 15 #include <linux/seq_file.h> 16 #include <linux/export.h> 17 18 #include <asm/cacheflush.h> 19 #include <asm/cpudata.h> 20 #include <asm/pcic.h> 21 #include <asm/leon.h> 22 23 #include "kernel.h" 24 #include "irq.h" 25 26 #ifdef CONFIG_SMP 27 #define SMP_NOP2 "nop; nop;\n\t" 28 #define SMP_NOP3 "nop; nop; nop;\n\t" 29 #else 30 #define SMP_NOP2 31 #define SMP_NOP3 32 #endif /* SMP */ 33 34 /* platform specific irq setup */ 35 struct sparc_irq_config sparc_irq_config; 36 37 unsigned long arch_local_irq_save(void) 38 { 39 unsigned long retval; 40 unsigned long tmp; 41 42 __asm__ __volatile__( 43 "rd %%psr, %0\n\t" 44 SMP_NOP3 /* Sun4m + Cypress + SMP bug */ 45 "or %0, %2, %1\n\t" 46 "wr %1, 0, %%psr\n\t" 47 "nop; nop; nop\n" 48 : "=&r" (retval), "=r" (tmp) 49 : "i" (PSR_PIL) 50 : "memory"); 51 52 return retval; 53 } 54 EXPORT_SYMBOL(arch_local_irq_save); 55 56 void arch_local_irq_enable(void) 57 { 58 unsigned long tmp; 59 60 __asm__ __volatile__( 61 "rd %%psr, %0\n\t" 62 SMP_NOP3 /* Sun4m + Cypress + SMP bug */ 63 "andn %0, %1, %0\n\t" 64 "wr %0, 0, %%psr\n\t" 65 "nop; nop; nop\n" 66 : "=&r" (tmp) 67 : "i" (PSR_PIL) 68 : "memory"); 69 } 70 EXPORT_SYMBOL(arch_local_irq_enable); 71 72 void arch_local_irq_restore(unsigned long old_psr) 73 { 74 unsigned long tmp; 75 76 __asm__ __volatile__( 77 "rd %%psr, %0\n\t" 78 "and %2, %1, %2\n\t" 79 SMP_NOP2 /* Sun4m + Cypress + SMP bug */ 80 "andn %0, %1, %0\n\t" 81 "wr %0, %2, %%psr\n\t" 82 "nop; nop; nop\n" 83 : "=&r" (tmp) 84 : "i" (PSR_PIL), "r" (old_psr) 85 : "memory"); 86 } 87 EXPORT_SYMBOL(arch_local_irq_restore); 88 89 /* 90 * Dave Redman (djhr@tadpole.co.uk) 91 * 92 * IRQ numbers.. These are no longer restricted to 15.. 93 * 94 * this is done to enable SBUS cards and onboard IO to be masked 95 * correctly. using the interrupt level isn't good enough. 96 * 97 * For example: 98 * A device interrupting at sbus level6 and the Floppy both come in 99 * at IRQ11, but enabling and disabling them requires writing to 100 * different bits in the SLAVIO/SEC. 101 * 102 * As a result of these changes sun4m machines could now support 103 * directed CPU interrupts using the existing enable/disable irq code 104 * with tweaks. 105 * 106 * Sun4d complicates things even further. IRQ numbers are arbitrary 107 * 32-bit values in that case. Since this is similar to sparc64, 108 * we adopt a virtual IRQ numbering scheme as is done there. 109 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS 110 * just becomes a limit of how many interrupt sources we can handle in 111 * a single system. Even fully loaded SS2000 machines top off at 112 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64 113 * is more than enough. 114 * 115 * We keep a map of per-PIL enable interrupts. These get wired 116 * up via the irq_chip->startup() method which gets invoked by 117 * the generic IRQ layer during request_irq(). 118 */ 119 120 121 /* Table of allocated irqs. Unused entries has irq == 0 */ 122 static struct irq_bucket irq_table[NR_IRQS]; 123 /* Protect access to irq_table */ 124 static DEFINE_SPINLOCK(irq_table_lock); 125 126 /* Map between the irq identifier used in hw to the irq_bucket. */ 127 struct irq_bucket *irq_map[SUN4D_MAX_IRQ]; 128 /* Protect access to irq_map */ 129 static DEFINE_SPINLOCK(irq_map_lock); 130 131 /* Allocate a new irq from the irq_table */ 132 unsigned int irq_alloc(unsigned int real_irq, unsigned int pil) 133 { 134 unsigned long flags; 135 unsigned int i; 136 137 spin_lock_irqsave(&irq_table_lock, flags); 138 for (i = 1; i < NR_IRQS; i++) { 139 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil) 140 goto found; 141 } 142 143 for (i = 1; i < NR_IRQS; i++) { 144 if (!irq_table[i].irq) 145 break; 146 } 147 148 if (i < NR_IRQS) { 149 irq_table[i].real_irq = real_irq; 150 irq_table[i].irq = i; 151 irq_table[i].pil = pil; 152 } else { 153 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); 154 i = 0; 155 } 156 found: 157 spin_unlock_irqrestore(&irq_table_lock, flags); 158 159 return i; 160 } 161 162 /* Based on a single pil handler_irq may need to call several 163 * interrupt handlers. Use irq_map as entry to irq_table, 164 * and let each entry in irq_table point to the next entry. 165 */ 166 void irq_link(unsigned int irq) 167 { 168 struct irq_bucket *p; 169 unsigned long flags; 170 unsigned int pil; 171 172 BUG_ON(irq >= NR_IRQS); 173 174 spin_lock_irqsave(&irq_map_lock, flags); 175 176 p = &irq_table[irq]; 177 pil = p->pil; 178 BUG_ON(pil > SUN4D_MAX_IRQ); 179 p->next = irq_map[pil]; 180 irq_map[pil] = p; 181 182 spin_unlock_irqrestore(&irq_map_lock, flags); 183 } 184 185 void irq_unlink(unsigned int irq) 186 { 187 struct irq_bucket *p, **pnext; 188 unsigned long flags; 189 190 BUG_ON(irq >= NR_IRQS); 191 192 spin_lock_irqsave(&irq_map_lock, flags); 193 194 p = &irq_table[irq]; 195 BUG_ON(p->pil > SUN4D_MAX_IRQ); 196 pnext = &irq_map[p->pil]; 197 while (*pnext != p) 198 pnext = &(*pnext)->next; 199 *pnext = p->next; 200 201 spin_unlock_irqrestore(&irq_map_lock, flags); 202 } 203 204 205 /* /proc/interrupts printing */ 206 int arch_show_interrupts(struct seq_file *p, int prec) 207 { 208 int j; 209 210 #ifdef CONFIG_SMP 211 seq_printf(p, "RES: "); 212 for_each_online_cpu(j) 213 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count); 214 seq_printf(p, " IPI rescheduling interrupts\n"); 215 seq_printf(p, "CAL: "); 216 for_each_online_cpu(j) 217 seq_printf(p, "%10u ", cpu_data(j).irq_call_count); 218 seq_printf(p, " IPI function call interrupts\n"); 219 #endif 220 seq_printf(p, "NMI: "); 221 for_each_online_cpu(j) 222 seq_printf(p, "%10u ", cpu_data(j).counter); 223 seq_printf(p, " Non-maskable interrupts\n"); 224 return 0; 225 } 226 227 void handler_irq(unsigned int pil, struct pt_regs *regs) 228 { 229 struct pt_regs *old_regs; 230 struct irq_bucket *p; 231 232 BUG_ON(pil > 15); 233 old_regs = set_irq_regs(regs); 234 irq_enter(); 235 236 p = irq_map[pil]; 237 while (p) { 238 struct irq_bucket *next = p->next; 239 240 generic_handle_irq(p->irq); 241 p = next; 242 } 243 irq_exit(); 244 set_irq_regs(old_regs); 245 } 246 247 #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE) 248 static unsigned int floppy_irq; 249 250 int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler) 251 { 252 unsigned int cpu_irq; 253 int err; 254 255 #if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON 256 struct tt_entry *trap_table; 257 #endif 258 259 err = request_irq(irq, irq_handler, 0, "floppy", NULL); 260 if (err) 261 return -1; 262 263 /* Save for later use in floppy interrupt handler */ 264 floppy_irq = irq; 265 266 cpu_irq = (irq & (NR_IRQS - 1)); 267 268 /* Dork with trap table if we get this far. */ 269 #define INSTANTIATE(table) \ 270 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \ 271 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \ 272 SPARC_BRANCH((unsigned long) floppy_hardint, \ 273 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\ 274 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \ 275 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP; 276 277 INSTANTIATE(sparc_ttable) 278 #if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON 279 trap_table = &trapbase_cpu1; 280 INSTANTIATE(trap_table) 281 trap_table = &trapbase_cpu2; 282 INSTANTIATE(trap_table) 283 trap_table = &trapbase_cpu3; 284 INSTANTIATE(trap_table) 285 #endif 286 #undef INSTANTIATE 287 /* 288 * XXX Correct thing whould be to flush only I- and D-cache lines 289 * which contain the handler in question. But as of time of the 290 * writing we have no CPU-neutral interface to fine-grained flushes. 291 */ 292 flush_cache_all(); 293 return 0; 294 } 295 EXPORT_SYMBOL(sparc_floppy_request_irq); 296 297 /* 298 * These variables are used to access state from the assembler 299 * interrupt handler, floppy_hardint, so we cannot put these in 300 * the floppy driver image because that would not work in the 301 * modular case. 302 */ 303 volatile unsigned char *fdc_status; 304 EXPORT_SYMBOL(fdc_status); 305 306 char *pdma_vaddr; 307 EXPORT_SYMBOL(pdma_vaddr); 308 309 unsigned long pdma_size; 310 EXPORT_SYMBOL(pdma_size); 311 312 volatile int doing_pdma; 313 EXPORT_SYMBOL(doing_pdma); 314 315 char *pdma_base; 316 EXPORT_SYMBOL(pdma_base); 317 318 unsigned long pdma_areasize; 319 EXPORT_SYMBOL(pdma_areasize); 320 321 /* Use the generic irq support to call floppy_interrupt 322 * which was setup using request_irq() in sparc_floppy_request_irq(). 323 * We only have one floppy interrupt so we do not need to check 324 * for additional handlers being wired up by irq_link() 325 */ 326 void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs) 327 { 328 struct pt_regs *old_regs; 329 330 old_regs = set_irq_regs(regs); 331 irq_enter(); 332 generic_handle_irq(floppy_irq); 333 irq_exit(); 334 set_irq_regs(old_regs); 335 } 336 #endif 337 338 /* djhr 339 * This could probably be made indirect too and assigned in the CPU 340 * bits of the code. That would be much nicer I think and would also 341 * fit in with the idea of being able to tune your kernel for your machine 342 * by removing unrequired machine and device support. 343 * 344 */ 345 346 void __init init_IRQ(void) 347 { 348 switch (sparc_cpu_model) { 349 case sun4c: 350 case sun4: 351 sun4c_init_IRQ(); 352 break; 353 354 case sun4m: 355 pcic_probe(); 356 if (pcic_present()) 357 sun4m_pci_init_IRQ(); 358 else 359 sun4m_init_IRQ(); 360 break; 361 362 case sun4d: 363 sun4d_init_IRQ(); 364 break; 365 366 case sparc_leon: 367 leon_init_IRQ(); 368 break; 369 370 default: 371 prom_printf("Cannot initialize IRQs on this Sun machine..."); 372 break; 373 } 374 btfixup(); 375 } 376 377