1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/scatterlist.h> 40 #include <linux/of_device.h> 41 42 #include <asm/io.h> 43 #include <asm/vaddrs.h> 44 #include <asm/oplib.h> 45 #include <asm/prom.h> 46 #include <asm/page.h> 47 #include <asm/pgalloc.h> 48 #include <asm/dma.h> 49 #include <asm/iommu.h> 50 #include <asm/io-unit.h> 51 #include <asm/leon.h> 52 53 #ifdef CONFIG_SPARC_LEON 54 #define mmu_inval_dma_area(p, l) leon_flush_dcache_all() 55 #else 56 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */ 57 #endif 58 59 static struct resource *_sparc_find_resource(struct resource *r, 60 unsigned long); 61 62 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 63 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 64 unsigned long size, char *name); 65 static void _sparc_free_io(struct resource *res); 66 67 static void register_proc_sparc_ioport(void); 68 69 /* This points to the next to use virtual memory for DVMA mappings */ 70 static struct resource _sparc_dvma = { 71 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 72 }; 73 /* This points to the start of I/O mappings, cluable from outside. */ 74 /*ext*/ struct resource sparc_iomap = { 75 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 76 }; 77 78 /* 79 * Our mini-allocator... 80 * Boy this is gross! We need it because we must map I/O for 81 * timers and interrupt controller before the kmalloc is available. 82 */ 83 84 #define XNMLN 15 85 #define XNRES 10 /* SS-10 uses 8 */ 86 87 struct xresource { 88 struct resource xres; /* Must be first */ 89 int xflag; /* 1 == used */ 90 char xname[XNMLN+1]; 91 }; 92 93 static struct xresource xresv[XNRES]; 94 95 static struct xresource *xres_alloc(void) { 96 struct xresource *xrp; 97 int n; 98 99 xrp = xresv; 100 for (n = 0; n < XNRES; n++) { 101 if (xrp->xflag == 0) { 102 xrp->xflag = 1; 103 return xrp; 104 } 105 xrp++; 106 } 107 return NULL; 108 } 109 110 static void xres_free(struct xresource *xrp) { 111 xrp->xflag = 0; 112 } 113 114 /* 115 * These are typically used in PCI drivers 116 * which are trying to be cross-platform. 117 * 118 * Bus type is always zero on IIep. 119 */ 120 void __iomem *ioremap(unsigned long offset, unsigned long size) 121 { 122 char name[14]; 123 124 sprintf(name, "phys_%08x", (u32)offset); 125 return _sparc_alloc_io(0, offset, size, name); 126 } 127 EXPORT_SYMBOL(ioremap); 128 129 /* 130 * Comlimentary to ioremap(). 131 */ 132 void iounmap(volatile void __iomem *virtual) 133 { 134 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 135 struct resource *res; 136 137 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 138 printk("free_io/iounmap: cannot free %lx\n", vaddr); 139 return; 140 } 141 _sparc_free_io(res); 142 143 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 144 xres_free((struct xresource *)res); 145 } else { 146 kfree(res); 147 } 148 } 149 EXPORT_SYMBOL(iounmap); 150 151 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 152 unsigned long size, char *name) 153 { 154 return _sparc_alloc_io(res->flags & 0xF, 155 res->start + offset, 156 size, name); 157 } 158 EXPORT_SYMBOL(of_ioremap); 159 160 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 161 { 162 iounmap(base); 163 } 164 EXPORT_SYMBOL(of_iounmap); 165 166 /* 167 * Meat of mapping 168 */ 169 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 170 unsigned long size, char *name) 171 { 172 static int printed_full; 173 struct xresource *xres; 174 struct resource *res; 175 char *tack; 176 int tlen; 177 void __iomem *va; /* P3 diag */ 178 179 if (name == NULL) name = "???"; 180 181 if ((xres = xres_alloc()) != 0) { 182 tack = xres->xname; 183 res = &xres->xres; 184 } else { 185 if (!printed_full) { 186 printk("ioremap: done with statics, switching to malloc\n"); 187 printed_full = 1; 188 } 189 tlen = strlen(name); 190 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 191 if (tack == NULL) return NULL; 192 memset(tack, 0, sizeof(struct resource)); 193 res = (struct resource *) tack; 194 tack += sizeof (struct resource); 195 } 196 197 strlcpy(tack, name, XNMLN+1); 198 res->name = tack; 199 200 va = _sparc_ioremap(res, busno, phys, size); 201 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 202 return va; 203 } 204 205 /* 206 */ 207 static void __iomem * 208 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 209 { 210 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 211 212 if (allocate_resource(&sparc_iomap, res, 213 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 214 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 215 /* Usually we cannot see printks in this case. */ 216 prom_printf("alloc_io_res(%s): cannot occupy\n", 217 (res->name != NULL)? res->name: "???"); 218 prom_halt(); 219 } 220 221 pa &= PAGE_MASK; 222 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 223 224 return (void __iomem *)(unsigned long)(res->start + offset); 225 } 226 227 /* 228 * Comlimentary to _sparc_ioremap(). 229 */ 230 static void _sparc_free_io(struct resource *res) 231 { 232 unsigned long plen; 233 234 plen = res->end - res->start + 1; 235 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 236 sparc_unmapiorange(res->start, plen); 237 release_resource(res); 238 } 239 240 #ifdef CONFIG_SBUS 241 242 void sbus_set_sbus64(struct device *dev, int x) 243 { 244 printk("sbus_set_sbus64: unsupported\n"); 245 } 246 EXPORT_SYMBOL(sbus_set_sbus64); 247 248 /* 249 * Allocate a chunk of memory suitable for DMA. 250 * Typically devices use them for control blocks. 251 * CPU may access them without any explicit flushing. 252 */ 253 static void *sbus_alloc_coherent(struct device *dev, size_t len, 254 dma_addr_t *dma_addrp, gfp_t gfp) 255 { 256 struct platform_device *op = to_platform_device(dev); 257 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 258 unsigned long va; 259 struct resource *res; 260 int order; 261 262 /* XXX why are some lengths signed, others unsigned? */ 263 if (len <= 0) { 264 return NULL; 265 } 266 /* XXX So what is maxphys for us and how do drivers know it? */ 267 if (len > 256*1024) { /* __get_free_pages() limit */ 268 return NULL; 269 } 270 271 order = get_order(len_total); 272 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 273 goto err_nopages; 274 275 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 276 goto err_nomem; 277 278 if (allocate_resource(&_sparc_dvma, res, len_total, 279 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 280 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 281 goto err_nova; 282 } 283 mmu_inval_dma_area(va, len_total); 284 // XXX The mmu_map_dma_area does this for us below, see comments. 285 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 286 /* 287 * XXX That's where sdev would be used. Currently we load 288 * all iommu tables with the same translations. 289 */ 290 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 291 goto err_noiommu; 292 293 res->name = op->dev.of_node->name; 294 295 return (void *)(unsigned long)res->start; 296 297 err_noiommu: 298 release_resource(res); 299 err_nova: 300 free_pages(va, order); 301 err_nomem: 302 kfree(res); 303 err_nopages: 304 return NULL; 305 } 306 307 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 308 dma_addr_t ba) 309 { 310 struct resource *res; 311 struct page *pgv; 312 313 if ((res = _sparc_find_resource(&_sparc_dvma, 314 (unsigned long)p)) == NULL) { 315 printk("sbus_free_consistent: cannot free %p\n", p); 316 return; 317 } 318 319 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 320 printk("sbus_free_consistent: unaligned va %p\n", p); 321 return; 322 } 323 324 n = (n + PAGE_SIZE-1) & PAGE_MASK; 325 if ((res->end-res->start)+1 != n) { 326 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 327 (long)((res->end-res->start)+1), n); 328 return; 329 } 330 331 release_resource(res); 332 kfree(res); 333 334 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */ 335 pgv = virt_to_page(p); 336 mmu_unmap_dma_area(dev, ba, n); 337 338 __free_pages(pgv, get_order(n)); 339 } 340 341 /* 342 * Map a chunk of memory so that devices can see it. 343 * CPU view of this memory may be inconsistent with 344 * a device view and explicit flushing is necessary. 345 */ 346 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 347 unsigned long offset, size_t len, 348 enum dma_data_direction dir, 349 struct dma_attrs *attrs) 350 { 351 void *va = page_address(page) + offset; 352 353 /* XXX why are some lengths signed, others unsigned? */ 354 if (len <= 0) { 355 return 0; 356 } 357 /* XXX So what is maxphys for us and how do drivers know it? */ 358 if (len > 256*1024) { /* __get_free_pages() limit */ 359 return 0; 360 } 361 return mmu_get_scsi_one(dev, va, len); 362 } 363 364 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 365 enum dma_data_direction dir, struct dma_attrs *attrs) 366 { 367 mmu_release_scsi_one(dev, ba, n); 368 } 369 370 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 371 enum dma_data_direction dir, struct dma_attrs *attrs) 372 { 373 mmu_get_scsi_sgl(dev, sg, n); 374 375 /* 376 * XXX sparc64 can return a partial length here. sun4c should do this 377 * but it currently panics if it can't fulfill the request - Anton 378 */ 379 return n; 380 } 381 382 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 383 enum dma_data_direction dir, struct dma_attrs *attrs) 384 { 385 mmu_release_scsi_sgl(dev, sg, n); 386 } 387 388 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 389 int n, enum dma_data_direction dir) 390 { 391 BUG(); 392 } 393 394 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 395 int n, enum dma_data_direction dir) 396 { 397 BUG(); 398 } 399 400 struct dma_map_ops sbus_dma_ops = { 401 .alloc_coherent = sbus_alloc_coherent, 402 .free_coherent = sbus_free_coherent, 403 .map_page = sbus_map_page, 404 .unmap_page = sbus_unmap_page, 405 .map_sg = sbus_map_sg, 406 .unmap_sg = sbus_unmap_sg, 407 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 408 .sync_sg_for_device = sbus_sync_sg_for_device, 409 }; 410 411 struct dma_map_ops *dma_ops = &sbus_dma_ops; 412 EXPORT_SYMBOL(dma_ops); 413 414 static int __init sparc_register_ioport(void) 415 { 416 register_proc_sparc_ioport(); 417 418 return 0; 419 } 420 421 arch_initcall(sparc_register_ioport); 422 423 #endif /* CONFIG_SBUS */ 424 425 #ifdef CONFIG_PCI 426 427 /* Allocate and map kernel buffer using consistent mode DMA for a device. 428 * hwdev should be valid struct pci_dev pointer for PCI devices. 429 */ 430 static void *pci32_alloc_coherent(struct device *dev, size_t len, 431 dma_addr_t *pba, gfp_t gfp) 432 { 433 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 434 unsigned long va; 435 struct resource *res; 436 int order; 437 438 if (len == 0) { 439 return NULL; 440 } 441 if (len > 256*1024) { /* __get_free_pages() limit */ 442 return NULL; 443 } 444 445 order = get_order(len_total); 446 va = __get_free_pages(GFP_KERNEL, order); 447 if (va == 0) { 448 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 449 return NULL; 450 } 451 452 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 453 free_pages(va, order); 454 printk("pci_alloc_consistent: no core\n"); 455 return NULL; 456 } 457 458 if (allocate_resource(&_sparc_dvma, res, len_total, 459 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 460 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 461 free_pages(va, order); 462 kfree(res); 463 return NULL; 464 } 465 mmu_inval_dma_area(va, len_total); 466 #if 0 467 /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n", 468 (long)va, (long)res->start, (long)virt_to_phys(va), len_total); 469 #endif 470 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 471 472 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 473 return (void *) res->start; 474 } 475 476 /* Free and unmap a consistent DMA buffer. 477 * cpu_addr is what was returned from pci_alloc_consistent, 478 * size must be the same as what as passed into pci_alloc_consistent, 479 * and likewise dma_addr must be the same as what *dma_addrp was set to. 480 * 481 * References to the memory and mappings associated with cpu_addr/dma_addr 482 * past this call are illegal. 483 */ 484 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 485 dma_addr_t ba) 486 { 487 struct resource *res; 488 unsigned long pgp; 489 490 if ((res = _sparc_find_resource(&_sparc_dvma, 491 (unsigned long)p)) == NULL) { 492 printk("pci_free_consistent: cannot free %p\n", p); 493 return; 494 } 495 496 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 497 printk("pci_free_consistent: unaligned va %p\n", p); 498 return; 499 } 500 501 n = (n + PAGE_SIZE-1) & PAGE_MASK; 502 if ((res->end-res->start)+1 != n) { 503 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 504 (long)((res->end-res->start)+1), (long)n); 505 return; 506 } 507 508 pgp = (unsigned long) phys_to_virt(ba); /* bus_to_virt actually */ 509 mmu_inval_dma_area(pgp, n); 510 sparc_unmapiorange((unsigned long)p, n); 511 512 release_resource(res); 513 kfree(res); 514 515 free_pages(pgp, get_order(n)); 516 } 517 518 /* 519 * Same as pci_map_single, but with pages. 520 */ 521 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 522 unsigned long offset, size_t size, 523 enum dma_data_direction dir, 524 struct dma_attrs *attrs) 525 { 526 /* IIep is write-through, not flushing. */ 527 return page_to_phys(page) + offset; 528 } 529 530 /* Map a set of buffers described by scatterlist in streaming 531 * mode for DMA. This is the scather-gather version of the 532 * above pci_map_single interface. Here the scatter gather list 533 * elements are each tagged with the appropriate dma address 534 * and length. They are obtained via sg_dma_{address,length}(SG). 535 * 536 * NOTE: An implementation may be able to use a smaller number of 537 * DMA address/length pairs than there are SG table elements. 538 * (for example via virtual mapping capabilities) 539 * The routine returns the number of addr/length pairs actually 540 * used, at most nents. 541 * 542 * Device ownership issues as mentioned above for pci_map_single are 543 * the same here. 544 */ 545 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 546 int nents, enum dma_data_direction dir, 547 struct dma_attrs *attrs) 548 { 549 struct scatterlist *sg; 550 int n; 551 552 /* IIep is write-through, not flushing. */ 553 for_each_sg(sgl, sg, nents, n) { 554 BUG_ON(page_address(sg_page(sg)) == NULL); 555 sg->dma_address = virt_to_phys(sg_virt(sg)); 556 sg->dma_length = sg->length; 557 } 558 return nents; 559 } 560 561 /* Unmap a set of streaming mode DMA translations. 562 * Again, cpu read rules concerning calls here are the same as for 563 * pci_unmap_single() above. 564 */ 565 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 566 int nents, enum dma_data_direction dir, 567 struct dma_attrs *attrs) 568 { 569 struct scatterlist *sg; 570 int n; 571 572 if (dir != PCI_DMA_TODEVICE) { 573 for_each_sg(sgl, sg, nents, n) { 574 BUG_ON(page_address(sg_page(sg)) == NULL); 575 mmu_inval_dma_area( 576 (unsigned long) page_address(sg_page(sg)), 577 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 578 } 579 } 580 } 581 582 /* Make physical memory consistent for a single 583 * streaming mode DMA translation before or after a transfer. 584 * 585 * If you perform a pci_map_single() but wish to interrogate the 586 * buffer using the cpu, yet do not wish to teardown the PCI dma 587 * mapping, you must call this function before doing so. At the 588 * next point you give the PCI dma address back to the card, you 589 * must first perform a pci_dma_sync_for_device, and then the 590 * device again owns the buffer. 591 */ 592 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 593 size_t size, enum dma_data_direction dir) 594 { 595 if (dir != PCI_DMA_TODEVICE) { 596 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 597 (size + PAGE_SIZE-1) & PAGE_MASK); 598 } 599 } 600 601 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 602 size_t size, enum dma_data_direction dir) 603 { 604 if (dir != PCI_DMA_TODEVICE) { 605 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 606 (size + PAGE_SIZE-1) & PAGE_MASK); 607 } 608 } 609 610 /* Make physical memory consistent for a set of streaming 611 * mode DMA translations after a transfer. 612 * 613 * The same as pci_dma_sync_single_* but for a scatter-gather list, 614 * same rules and usage. 615 */ 616 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 617 int nents, enum dma_data_direction dir) 618 { 619 struct scatterlist *sg; 620 int n; 621 622 if (dir != PCI_DMA_TODEVICE) { 623 for_each_sg(sgl, sg, nents, n) { 624 BUG_ON(page_address(sg_page(sg)) == NULL); 625 mmu_inval_dma_area( 626 (unsigned long) page_address(sg_page(sg)), 627 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 628 } 629 } 630 } 631 632 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 633 int nents, enum dma_data_direction dir) 634 { 635 struct scatterlist *sg; 636 int n; 637 638 if (dir != PCI_DMA_TODEVICE) { 639 for_each_sg(sgl, sg, nents, n) { 640 BUG_ON(page_address(sg_page(sg)) == NULL); 641 mmu_inval_dma_area( 642 (unsigned long) page_address(sg_page(sg)), 643 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 644 } 645 } 646 } 647 648 struct dma_map_ops pci32_dma_ops = { 649 .alloc_coherent = pci32_alloc_coherent, 650 .free_coherent = pci32_free_coherent, 651 .map_page = pci32_map_page, 652 .map_sg = pci32_map_sg, 653 .unmap_sg = pci32_unmap_sg, 654 .sync_single_for_cpu = pci32_sync_single_for_cpu, 655 .sync_single_for_device = pci32_sync_single_for_device, 656 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 657 .sync_sg_for_device = pci32_sync_sg_for_device, 658 }; 659 EXPORT_SYMBOL(pci32_dma_ops); 660 661 #endif /* CONFIG_PCI */ 662 663 /* 664 * Return whether the given PCI device DMA address mask can be 665 * supported properly. For example, if your device can only drive the 666 * low 24-bits during PCI bus mastering, then you would pass 667 * 0x00ffffff as the mask to this function. 668 */ 669 int dma_supported(struct device *dev, u64 mask) 670 { 671 #ifdef CONFIG_PCI 672 if (dev->bus == &pci_bus_type) 673 return 1; 674 #endif 675 return 0; 676 } 677 EXPORT_SYMBOL(dma_supported); 678 679 #ifdef CONFIG_PROC_FS 680 681 static int sparc_io_proc_show(struct seq_file *m, void *v) 682 { 683 struct resource *root = m->private, *r; 684 const char *nm; 685 686 for (r = root->child; r != NULL; r = r->sibling) { 687 if ((nm = r->name) == 0) nm = "???"; 688 seq_printf(m, "%016llx-%016llx: %s\n", 689 (unsigned long long)r->start, 690 (unsigned long long)r->end, nm); 691 } 692 693 return 0; 694 } 695 696 static int sparc_io_proc_open(struct inode *inode, struct file *file) 697 { 698 return single_open(file, sparc_io_proc_show, PDE(inode)->data); 699 } 700 701 static const struct file_operations sparc_io_proc_fops = { 702 .owner = THIS_MODULE, 703 .open = sparc_io_proc_open, 704 .read = seq_read, 705 .llseek = seq_lseek, 706 .release = single_release, 707 }; 708 #endif /* CONFIG_PROC_FS */ 709 710 /* 711 * This is a version of find_resource and it belongs to kernel/resource.c. 712 * Until we have agreement with Linus and Martin, it lingers here. 713 * 714 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 715 * This probably warrants some sort of hashing. 716 */ 717 static struct resource *_sparc_find_resource(struct resource *root, 718 unsigned long hit) 719 { 720 struct resource *tmp; 721 722 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 723 if (tmp->start <= hit && tmp->end >= hit) 724 return tmp; 725 } 726 return NULL; 727 } 728 729 static void register_proc_sparc_ioport(void) 730 { 731 #ifdef CONFIG_PROC_FS 732 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap); 733 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma); 734 #endif 735 } 736