1 /* $Id: ioport.c,v 1.45 2001/10/30 04:54:21 davem Exp $ 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 39 #include <asm/io.h> 40 #include <asm/vaddrs.h> 41 #include <asm/oplib.h> 42 #include <asm/prom.h> 43 #include <asm/of_device.h> 44 #include <asm/sbus.h> 45 #include <asm/page.h> 46 #include <asm/pgalloc.h> 47 #include <asm/dma.h> 48 49 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */ 50 51 struct resource *_sparc_find_resource(struct resource *r, unsigned long); 52 53 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 54 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 55 unsigned long size, char *name); 56 static void _sparc_free_io(struct resource *res); 57 58 /* This points to the next to use virtual memory for DVMA mappings */ 59 static struct resource _sparc_dvma = { 60 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 61 }; 62 /* This points to the start of I/O mappings, cluable from outside. */ 63 /*ext*/ struct resource sparc_iomap = { 64 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 65 }; 66 67 /* 68 * Our mini-allocator... 69 * Boy this is gross! We need it because we must map I/O for 70 * timers and interrupt controller before the kmalloc is available. 71 */ 72 73 #define XNMLN 15 74 #define XNRES 10 /* SS-10 uses 8 */ 75 76 struct xresource { 77 struct resource xres; /* Must be first */ 78 int xflag; /* 1 == used */ 79 char xname[XNMLN+1]; 80 }; 81 82 static struct xresource xresv[XNRES]; 83 84 static struct xresource *xres_alloc(void) { 85 struct xresource *xrp; 86 int n; 87 88 xrp = xresv; 89 for (n = 0; n < XNRES; n++) { 90 if (xrp->xflag == 0) { 91 xrp->xflag = 1; 92 return xrp; 93 } 94 xrp++; 95 } 96 return NULL; 97 } 98 99 static void xres_free(struct xresource *xrp) { 100 xrp->xflag = 0; 101 } 102 103 /* 104 * These are typically used in PCI drivers 105 * which are trying to be cross-platform. 106 * 107 * Bus type is always zero on IIep. 108 */ 109 void __iomem *ioremap(unsigned long offset, unsigned long size) 110 { 111 char name[14]; 112 113 sprintf(name, "phys_%08x", (u32)offset); 114 return _sparc_alloc_io(0, offset, size, name); 115 } 116 117 /* 118 * Comlimentary to ioremap(). 119 */ 120 void iounmap(volatile void __iomem *virtual) 121 { 122 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 123 struct resource *res; 124 125 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 126 printk("free_io/iounmap: cannot free %lx\n", vaddr); 127 return; 128 } 129 _sparc_free_io(res); 130 131 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 132 xres_free((struct xresource *)res); 133 } else { 134 kfree(res); 135 } 136 } 137 138 /* 139 */ 140 void __iomem *sbus_ioremap(struct resource *phyres, unsigned long offset, 141 unsigned long size, char *name) 142 { 143 return _sparc_alloc_io(phyres->flags & 0xF, 144 phyres->start + offset, size, name); 145 } 146 147 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 148 unsigned long size, char *name) 149 { 150 return _sparc_alloc_io(res->flags & 0xF, 151 res->start + offset, 152 size, name); 153 } 154 EXPORT_SYMBOL(of_ioremap); 155 156 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 157 { 158 iounmap(base); 159 } 160 EXPORT_SYMBOL(of_iounmap); 161 162 /* 163 */ 164 void sbus_iounmap(volatile void __iomem *addr, unsigned long size) 165 { 166 iounmap(addr); 167 } 168 169 /* 170 * Meat of mapping 171 */ 172 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 173 unsigned long size, char *name) 174 { 175 static int printed_full; 176 struct xresource *xres; 177 struct resource *res; 178 char *tack; 179 int tlen; 180 void __iomem *va; /* P3 diag */ 181 182 if (name == NULL) name = "???"; 183 184 if ((xres = xres_alloc()) != 0) { 185 tack = xres->xname; 186 res = &xres->xres; 187 } else { 188 if (!printed_full) { 189 printk("ioremap: done with statics, switching to malloc\n"); 190 printed_full = 1; 191 } 192 tlen = strlen(name); 193 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 194 if (tack == NULL) return NULL; 195 memset(tack, 0, sizeof(struct resource)); 196 res = (struct resource *) tack; 197 tack += sizeof (struct resource); 198 } 199 200 strlcpy(tack, name, XNMLN+1); 201 res->name = tack; 202 203 va = _sparc_ioremap(res, busno, phys, size); 204 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 205 return va; 206 } 207 208 /* 209 */ 210 static void __iomem * 211 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 212 { 213 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 214 215 if (allocate_resource(&sparc_iomap, res, 216 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 217 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 218 /* Usually we cannot see printks in this case. */ 219 prom_printf("alloc_io_res(%s): cannot occupy\n", 220 (res->name != NULL)? res->name: "???"); 221 prom_halt(); 222 } 223 224 pa &= PAGE_MASK; 225 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 226 227 return (void __iomem *)(unsigned long)(res->start + offset); 228 } 229 230 /* 231 * Comlimentary to _sparc_ioremap(). 232 */ 233 static void _sparc_free_io(struct resource *res) 234 { 235 unsigned long plen; 236 237 plen = res->end - res->start + 1; 238 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 239 sparc_unmapiorange(res->start, plen); 240 release_resource(res); 241 } 242 243 #ifdef CONFIG_SBUS 244 245 void sbus_set_sbus64(struct sbus_dev *sdev, int x) 246 { 247 printk("sbus_set_sbus64: unsupported\n"); 248 } 249 250 extern unsigned int sun4d_build_irq(struct sbus_dev *sdev, int irq); 251 void __init sbus_fill_device_irq(struct sbus_dev *sdev) 252 { 253 struct linux_prom_irqs irqs[PROMINTR_MAX]; 254 int len; 255 256 len = prom_getproperty(sdev->prom_node, "intr", 257 (char *)irqs, sizeof(irqs)); 258 if (len != -1) { 259 sdev->num_irqs = len / 8; 260 if (sdev->num_irqs == 0) { 261 sdev->irqs[0] = 0; 262 } else if (sparc_cpu_model == sun4d) { 263 for (len = 0; len < sdev->num_irqs; len++) 264 sdev->irqs[len] = 265 sun4d_build_irq(sdev, irqs[len].pri); 266 } else { 267 for (len = 0; len < sdev->num_irqs; len++) 268 sdev->irqs[len] = irqs[len].pri; 269 } 270 } else { 271 int interrupts[PROMINTR_MAX]; 272 273 /* No "intr" node found-- check for "interrupts" node. 274 * This node contains SBus interrupt levels, not IPLs 275 * as in "intr", and no vector values. We convert 276 * SBus interrupt levels to PILs (platform specific). 277 */ 278 len = prom_getproperty(sdev->prom_node, "interrupts", 279 (char *)interrupts, sizeof(interrupts)); 280 if (len == -1) { 281 sdev->irqs[0] = 0; 282 sdev->num_irqs = 0; 283 } else { 284 sdev->num_irqs = len / sizeof(int); 285 for (len = 0; len < sdev->num_irqs; len++) { 286 sdev->irqs[len] = 287 sbint_to_irq(sdev, interrupts[len]); 288 } 289 } 290 } 291 } 292 293 /* 294 * Allocate a chunk of memory suitable for DMA. 295 * Typically devices use them for control blocks. 296 * CPU may access them without any explicit flushing. 297 * 298 * XXX Some clever people know that sdev is not used and supply NULL. Watch. 299 */ 300 void *sbus_alloc_consistent(struct sbus_dev *sdev, long len, u32 *dma_addrp) 301 { 302 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 303 unsigned long va; 304 struct resource *res; 305 int order; 306 307 /* XXX why are some lenghts signed, others unsigned? */ 308 if (len <= 0) { 309 return NULL; 310 } 311 /* XXX So what is maxphys for us and how do drivers know it? */ 312 if (len > 256*1024) { /* __get_free_pages() limit */ 313 return NULL; 314 } 315 316 order = get_order(len_total); 317 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 318 goto err_nopages; 319 320 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 321 goto err_nomem; 322 323 if (allocate_resource(&_sparc_dvma, res, len_total, 324 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 325 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 326 goto err_nova; 327 } 328 mmu_inval_dma_area(va, len_total); 329 // XXX The mmu_map_dma_area does this for us below, see comments. 330 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 331 /* 332 * XXX That's where sdev would be used. Currently we load 333 * all iommu tables with the same translations. 334 */ 335 if (mmu_map_dma_area(dma_addrp, va, res->start, len_total) != 0) 336 goto err_noiommu; 337 338 /* Set the resource name, if known. */ 339 if (sdev) { 340 res->name = sdev->prom_name; 341 } 342 343 return (void *)(unsigned long)res->start; 344 345 err_noiommu: 346 release_resource(res); 347 err_nova: 348 free_pages(va, order); 349 err_nomem: 350 kfree(res); 351 err_nopages: 352 return NULL; 353 } 354 355 void sbus_free_consistent(struct sbus_dev *sdev, long n, void *p, u32 ba) 356 { 357 struct resource *res; 358 struct page *pgv; 359 360 if ((res = _sparc_find_resource(&_sparc_dvma, 361 (unsigned long)p)) == NULL) { 362 printk("sbus_free_consistent: cannot free %p\n", p); 363 return; 364 } 365 366 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 367 printk("sbus_free_consistent: unaligned va %p\n", p); 368 return; 369 } 370 371 n = (n + PAGE_SIZE-1) & PAGE_MASK; 372 if ((res->end-res->start)+1 != n) { 373 printk("sbus_free_consistent: region 0x%lx asked 0x%lx\n", 374 (long)((res->end-res->start)+1), n); 375 return; 376 } 377 378 release_resource(res); 379 kfree(res); 380 381 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */ 382 pgv = mmu_translate_dvma(ba); 383 mmu_unmap_dma_area(ba, n); 384 385 __free_pages(pgv, get_order(n)); 386 } 387 388 /* 389 * Map a chunk of memory so that devices can see it. 390 * CPU view of this memory may be inconsistent with 391 * a device view and explicit flushing is necessary. 392 */ 393 dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *va, size_t len, int direction) 394 { 395 /* XXX why are some lenghts signed, others unsigned? */ 396 if (len <= 0) { 397 return 0; 398 } 399 /* XXX So what is maxphys for us and how do drivers know it? */ 400 if (len > 256*1024) { /* __get_free_pages() limit */ 401 return 0; 402 } 403 return mmu_get_scsi_one(va, len, sdev->bus); 404 } 405 406 void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t ba, size_t n, int direction) 407 { 408 mmu_release_scsi_one(ba, n, sdev->bus); 409 } 410 411 int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 412 { 413 mmu_get_scsi_sgl(sg, n, sdev->bus); 414 415 /* 416 * XXX sparc64 can return a partial length here. sun4c should do this 417 * but it currently panics if it can't fulfill the request - Anton 418 */ 419 return n; 420 } 421 422 void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 423 { 424 mmu_release_scsi_sgl(sg, n, sdev->bus); 425 } 426 427 /* 428 */ 429 void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t ba, size_t size, int direction) 430 { 431 #if 0 432 unsigned long va; 433 struct resource *res; 434 435 /* We do not need the resource, just print a message if invalid. */ 436 res = _sparc_find_resource(&_sparc_dvma, ba); 437 if (res == NULL) 438 panic("sbus_dma_sync_single: 0x%x\n", ba); 439 440 va = page_address(mmu_translate_dvma(ba)); /* XXX higmem */ 441 /* 442 * XXX This bogosity will be fixed with the iommu rewrite coming soon 443 * to a kernel near you. - Anton 444 */ 445 /* mmu_inval_dma_area(va, (size + PAGE_SIZE-1) & PAGE_MASK); */ 446 #endif 447 } 448 449 void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t ba, size_t size, int direction) 450 { 451 #if 0 452 unsigned long va; 453 struct resource *res; 454 455 /* We do not need the resource, just print a message if invalid. */ 456 res = _sparc_find_resource(&_sparc_dvma, ba); 457 if (res == NULL) 458 panic("sbus_dma_sync_single: 0x%x\n", ba); 459 460 va = page_address(mmu_translate_dvma(ba)); /* XXX higmem */ 461 /* 462 * XXX This bogosity will be fixed with the iommu rewrite coming soon 463 * to a kernel near you. - Anton 464 */ 465 /* mmu_inval_dma_area(va, (size + PAGE_SIZE-1) & PAGE_MASK); */ 466 #endif 467 } 468 469 void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 470 { 471 printk("sbus_dma_sync_sg_for_cpu: not implemented yet\n"); 472 } 473 474 void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int n, int direction) 475 { 476 printk("sbus_dma_sync_sg_for_device: not implemented yet\n"); 477 } 478 479 /* Support code for sbus_init(). */ 480 /* 481 * XXX This functions appears to be a distorted version of 482 * prom_sbus_ranges_init(), with all sun4d stuff cut away. 483 * Ask DaveM what is going on here, how is sun4d supposed to work... XXX 484 */ 485 /* added back sun4d patch from Thomas Bogendoerfer - should be OK (crn) */ 486 void __init sbus_arch_bus_ranges_init(struct device_node *pn, struct sbus_bus *sbus) 487 { 488 int parent_node = pn->node; 489 490 if (sparc_cpu_model == sun4d) { 491 struct linux_prom_ranges iounit_ranges[PROMREG_MAX]; 492 int num_iounit_ranges, len; 493 494 len = prom_getproperty(parent_node, "ranges", 495 (char *) iounit_ranges, 496 sizeof (iounit_ranges)); 497 if (len != -1) { 498 num_iounit_ranges = 499 (len / sizeof(struct linux_prom_ranges)); 500 prom_adjust_ranges(sbus->sbus_ranges, 501 sbus->num_sbus_ranges, 502 iounit_ranges, num_iounit_ranges); 503 } 504 } 505 } 506 507 void __init sbus_setup_iommu(struct sbus_bus *sbus, struct device_node *dp) 508 { 509 #ifndef CONFIG_SUN4 510 struct device_node *parent = dp->parent; 511 512 if (sparc_cpu_model != sun4d && 513 parent != NULL && 514 !strcmp(parent->name, "iommu")) { 515 extern void iommu_init(int iommu_node, struct sbus_bus *sbus); 516 517 iommu_init(parent->node, sbus); 518 } 519 520 if (sparc_cpu_model == sun4d) { 521 extern void iounit_init(int sbi_node, int iounit_node, 522 struct sbus_bus *sbus); 523 524 iounit_init(dp->node, parent->node, sbus); 525 } 526 #endif 527 } 528 529 void __init sbus_setup_arch_props(struct sbus_bus *sbus, struct device_node *dp) 530 { 531 if (sparc_cpu_model == sun4d) { 532 struct device_node *parent = dp->parent; 533 534 sbus->devid = of_getintprop_default(parent, "device-id", 0); 535 sbus->board = of_getintprop_default(parent, "board#", 0); 536 } 537 } 538 539 int __init sbus_arch_preinit(void) 540 { 541 extern void register_proc_sparc_ioport(void); 542 543 register_proc_sparc_ioport(); 544 545 #ifdef CONFIG_SUN4 546 { 547 extern void sun4_dvma_init(void); 548 sun4_dvma_init(); 549 } 550 return 1; 551 #else 552 return 0; 553 #endif 554 } 555 556 void __init sbus_arch_postinit(void) 557 { 558 if (sparc_cpu_model == sun4d) { 559 extern void sun4d_init_sbi_irq(void); 560 sun4d_init_sbi_irq(); 561 } 562 } 563 #endif /* CONFIG_SBUS */ 564 565 #ifdef CONFIG_PCI 566 567 /* Allocate and map kernel buffer using consistent mode DMA for a device. 568 * hwdev should be valid struct pci_dev pointer for PCI devices. 569 */ 570 void *pci_alloc_consistent(struct pci_dev *pdev, size_t len, dma_addr_t *pba) 571 { 572 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 573 unsigned long va; 574 struct resource *res; 575 int order; 576 577 if (len == 0) { 578 return NULL; 579 } 580 if (len > 256*1024) { /* __get_free_pages() limit */ 581 return NULL; 582 } 583 584 order = get_order(len_total); 585 va = __get_free_pages(GFP_KERNEL, order); 586 if (va == 0) { 587 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 588 return NULL; 589 } 590 591 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 592 free_pages(va, order); 593 printk("pci_alloc_consistent: no core\n"); 594 return NULL; 595 } 596 597 if (allocate_resource(&_sparc_dvma, res, len_total, 598 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 599 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 600 free_pages(va, order); 601 kfree(res); 602 return NULL; 603 } 604 mmu_inval_dma_area(va, len_total); 605 #if 0 606 /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n", 607 (long)va, (long)res->start, (long)virt_to_phys(va), len_total); 608 #endif 609 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 610 611 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 612 return (void *) res->start; 613 } 614 615 /* Free and unmap a consistent DMA buffer. 616 * cpu_addr is what was returned from pci_alloc_consistent, 617 * size must be the same as what as passed into pci_alloc_consistent, 618 * and likewise dma_addr must be the same as what *dma_addrp was set to. 619 * 620 * References to the memory and mappings assosciated with cpu_addr/dma_addr 621 * past this call are illegal. 622 */ 623 void pci_free_consistent(struct pci_dev *pdev, size_t n, void *p, dma_addr_t ba) 624 { 625 struct resource *res; 626 unsigned long pgp; 627 628 if ((res = _sparc_find_resource(&_sparc_dvma, 629 (unsigned long)p)) == NULL) { 630 printk("pci_free_consistent: cannot free %p\n", p); 631 return; 632 } 633 634 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 635 printk("pci_free_consistent: unaligned va %p\n", p); 636 return; 637 } 638 639 n = (n + PAGE_SIZE-1) & PAGE_MASK; 640 if ((res->end-res->start)+1 != n) { 641 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 642 (long)((res->end-res->start)+1), (long)n); 643 return; 644 } 645 646 pgp = (unsigned long) phys_to_virt(ba); /* bus_to_virt actually */ 647 mmu_inval_dma_area(pgp, n); 648 sparc_unmapiorange((unsigned long)p, n); 649 650 release_resource(res); 651 kfree(res); 652 653 free_pages(pgp, get_order(n)); 654 } 655 656 /* Map a single buffer of the indicated size for DMA in streaming mode. 657 * The 32-bit bus address to use is returned. 658 * 659 * Once the device is given the dma address, the device owns this memory 660 * until either pci_unmap_single or pci_dma_sync_single_* is performed. 661 */ 662 dma_addr_t pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, 663 int direction) 664 { 665 BUG_ON(direction == PCI_DMA_NONE); 666 /* IIep is write-through, not flushing. */ 667 return virt_to_phys(ptr); 668 } 669 670 /* Unmap a single streaming mode DMA translation. The dma_addr and size 671 * must match what was provided for in a previous pci_map_single call. All 672 * other usages are undefined. 673 * 674 * After this call, reads by the cpu to the buffer are guaranteed to see 675 * whatever the device wrote there. 676 */ 677 void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t ba, size_t size, 678 int direction) 679 { 680 BUG_ON(direction == PCI_DMA_NONE); 681 if (direction != PCI_DMA_TODEVICE) { 682 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 683 (size + PAGE_SIZE-1) & PAGE_MASK); 684 } 685 } 686 687 /* 688 * Same as pci_map_single, but with pages. 689 */ 690 dma_addr_t pci_map_page(struct pci_dev *hwdev, struct page *page, 691 unsigned long offset, size_t size, int direction) 692 { 693 BUG_ON(direction == PCI_DMA_NONE); 694 /* IIep is write-through, not flushing. */ 695 return page_to_phys(page) + offset; 696 } 697 698 void pci_unmap_page(struct pci_dev *hwdev, 699 dma_addr_t dma_address, size_t size, int direction) 700 { 701 BUG_ON(direction == PCI_DMA_NONE); 702 /* mmu_inval_dma_area XXX */ 703 } 704 705 /* Map a set of buffers described by scatterlist in streaming 706 * mode for DMA. This is the scather-gather version of the 707 * above pci_map_single interface. Here the scatter gather list 708 * elements are each tagged with the appropriate dma address 709 * and length. They are obtained via sg_dma_{address,length}(SG). 710 * 711 * NOTE: An implementation may be able to use a smaller number of 712 * DMA address/length pairs than there are SG table elements. 713 * (for example via virtual mapping capabilities) 714 * The routine returns the number of addr/length pairs actually 715 * used, at most nents. 716 * 717 * Device ownership issues as mentioned above for pci_map_single are 718 * the same here. 719 */ 720 int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, 721 int direction) 722 { 723 int n; 724 725 BUG_ON(direction == PCI_DMA_NONE); 726 /* IIep is write-through, not flushing. */ 727 for (n = 0; n < nents; n++) { 728 BUG_ON(page_address(sg->page) == NULL); 729 sg->dvma_address = 730 virt_to_phys(page_address(sg->page)) + sg->offset; 731 sg->dvma_length = sg->length; 732 sg++; 733 } 734 return nents; 735 } 736 737 /* Unmap a set of streaming mode DMA translations. 738 * Again, cpu read rules concerning calls here are the same as for 739 * pci_unmap_single() above. 740 */ 741 void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, 742 int direction) 743 { 744 int n; 745 746 BUG_ON(direction == PCI_DMA_NONE); 747 if (direction != PCI_DMA_TODEVICE) { 748 for (n = 0; n < nents; n++) { 749 BUG_ON(page_address(sg->page) == NULL); 750 mmu_inval_dma_area( 751 (unsigned long) page_address(sg->page), 752 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 753 sg++; 754 } 755 } 756 } 757 758 /* Make physical memory consistent for a single 759 * streaming mode DMA translation before or after a transfer. 760 * 761 * If you perform a pci_map_single() but wish to interrogate the 762 * buffer using the cpu, yet do not wish to teardown the PCI dma 763 * mapping, you must call this function before doing so. At the 764 * next point you give the PCI dma address back to the card, you 765 * must first perform a pci_dma_sync_for_device, and then the 766 * device again owns the buffer. 767 */ 768 void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction) 769 { 770 BUG_ON(direction == PCI_DMA_NONE); 771 if (direction != PCI_DMA_TODEVICE) { 772 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 773 (size + PAGE_SIZE-1) & PAGE_MASK); 774 } 775 } 776 777 void pci_dma_sync_single_for_device(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction) 778 { 779 BUG_ON(direction == PCI_DMA_NONE); 780 if (direction != PCI_DMA_TODEVICE) { 781 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 782 (size + PAGE_SIZE-1) & PAGE_MASK); 783 } 784 } 785 786 /* Make physical memory consistent for a set of streaming 787 * mode DMA translations after a transfer. 788 * 789 * The same as pci_dma_sync_single_* but for a scatter-gather list, 790 * same rules and usage. 791 */ 792 void pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction) 793 { 794 int n; 795 796 BUG_ON(direction == PCI_DMA_NONE); 797 if (direction != PCI_DMA_TODEVICE) { 798 for (n = 0; n < nents; n++) { 799 BUG_ON(page_address(sg->page) == NULL); 800 mmu_inval_dma_area( 801 (unsigned long) page_address(sg->page), 802 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 803 sg++; 804 } 805 } 806 } 807 808 void pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction) 809 { 810 int n; 811 812 BUG_ON(direction == PCI_DMA_NONE); 813 if (direction != PCI_DMA_TODEVICE) { 814 for (n = 0; n < nents; n++) { 815 BUG_ON(page_address(sg->page) == NULL); 816 mmu_inval_dma_area( 817 (unsigned long) page_address(sg->page), 818 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 819 sg++; 820 } 821 } 822 } 823 #endif /* CONFIG_PCI */ 824 825 #ifdef CONFIG_PROC_FS 826 827 static int 828 _sparc_io_get_info(char *buf, char **start, off_t fpos, int length, int *eof, 829 void *data) 830 { 831 char *p = buf, *e = buf + length; 832 struct resource *r; 833 const char *nm; 834 835 for (r = ((struct resource *)data)->child; r != NULL; r = r->sibling) { 836 if (p + 32 >= e) /* Better than nothing */ 837 break; 838 if ((nm = r->name) == 0) nm = "???"; 839 p += sprintf(p, "%016llx-%016llx: %s\n", 840 (unsigned long long)r->start, 841 (unsigned long long)r->end, nm); 842 } 843 844 return p-buf; 845 } 846 847 #endif /* CONFIG_PROC_FS */ 848 849 /* 850 * This is a version of find_resource and it belongs to kernel/resource.c. 851 * Until we have agreement with Linus and Martin, it lingers here. 852 * 853 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 854 * This probably warrants some sort of hashing. 855 */ 856 struct resource * 857 _sparc_find_resource(struct resource *root, unsigned long hit) 858 { 859 struct resource *tmp; 860 861 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 862 if (tmp->start <= hit && tmp->end >= hit) 863 return tmp; 864 } 865 return NULL; 866 } 867 868 void register_proc_sparc_ioport(void) 869 { 870 #ifdef CONFIG_PROC_FS 871 create_proc_read_entry("io_map",0,NULL,_sparc_io_get_info,&sparc_iomap); 872 create_proc_read_entry("dvma_map",0,NULL,_sparc_io_get_info,&_sparc_dvma); 873 #endif 874 } 875