1 /* 2 * ioport.c: Simple io mapping allocator. 3 * 4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) 6 * 7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. 8 * 9 * 2000/01/29 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 11 * things are ok. 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a 13 * pointer into the big page mapping 14 * <rth> zait: so what? 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page())) 16 * <zaitcev> Hmm 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). 18 * So far so good. 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of 20 * remap_it_my_way()). 21 * <zaitcev> How do you find the address to pass to free_pages()? 22 * <rth> zait: walk the page tables? It's only two or three level after all. 23 * <rth> zait: you have to walk them anyway to remove the mapping. 24 * <zaitcev> Hmm 25 * <zaitcev> Sounds reasonable 26 */ 27 28 #include <linux/module.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/errno.h> 32 #include <linux/types.h> 33 #include <linux/ioport.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/pci.h> /* struct pci_dev */ 37 #include <linux/proc_fs.h> 38 #include <linux/scatterlist.h> 39 #include <linux/of_device.h> 40 41 #include <asm/io.h> 42 #include <asm/vaddrs.h> 43 #include <asm/oplib.h> 44 #include <asm/prom.h> 45 #include <asm/page.h> 46 #include <asm/pgalloc.h> 47 #include <asm/dma.h> 48 #include <asm/iommu.h> 49 #include <asm/io-unit.h> 50 51 #define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */ 52 53 static struct resource *_sparc_find_resource(struct resource *r, 54 unsigned long); 55 56 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); 57 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 58 unsigned long size, char *name); 59 static void _sparc_free_io(struct resource *res); 60 61 static void register_proc_sparc_ioport(void); 62 63 /* This points to the next to use virtual memory for DVMA mappings */ 64 static struct resource _sparc_dvma = { 65 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 66 }; 67 /* This points to the start of I/O mappings, cluable from outside. */ 68 /*ext*/ struct resource sparc_iomap = { 69 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 70 }; 71 72 /* 73 * Our mini-allocator... 74 * Boy this is gross! We need it because we must map I/O for 75 * timers and interrupt controller before the kmalloc is available. 76 */ 77 78 #define XNMLN 15 79 #define XNRES 10 /* SS-10 uses 8 */ 80 81 struct xresource { 82 struct resource xres; /* Must be first */ 83 int xflag; /* 1 == used */ 84 char xname[XNMLN+1]; 85 }; 86 87 static struct xresource xresv[XNRES]; 88 89 static struct xresource *xres_alloc(void) { 90 struct xresource *xrp; 91 int n; 92 93 xrp = xresv; 94 for (n = 0; n < XNRES; n++) { 95 if (xrp->xflag == 0) { 96 xrp->xflag = 1; 97 return xrp; 98 } 99 xrp++; 100 } 101 return NULL; 102 } 103 104 static void xres_free(struct xresource *xrp) { 105 xrp->xflag = 0; 106 } 107 108 /* 109 * These are typically used in PCI drivers 110 * which are trying to be cross-platform. 111 * 112 * Bus type is always zero on IIep. 113 */ 114 void __iomem *ioremap(unsigned long offset, unsigned long size) 115 { 116 char name[14]; 117 118 sprintf(name, "phys_%08x", (u32)offset); 119 return _sparc_alloc_io(0, offset, size, name); 120 } 121 EXPORT_SYMBOL(ioremap); 122 123 /* 124 * Comlimentary to ioremap(). 125 */ 126 void iounmap(volatile void __iomem *virtual) 127 { 128 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; 129 struct resource *res; 130 131 if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) { 132 printk("free_io/iounmap: cannot free %lx\n", vaddr); 133 return; 134 } 135 _sparc_free_io(res); 136 137 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { 138 xres_free((struct xresource *)res); 139 } else { 140 kfree(res); 141 } 142 } 143 EXPORT_SYMBOL(iounmap); 144 145 void __iomem *of_ioremap(struct resource *res, unsigned long offset, 146 unsigned long size, char *name) 147 { 148 return _sparc_alloc_io(res->flags & 0xF, 149 res->start + offset, 150 size, name); 151 } 152 EXPORT_SYMBOL(of_ioremap); 153 154 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 155 { 156 iounmap(base); 157 } 158 EXPORT_SYMBOL(of_iounmap); 159 160 /* 161 * Meat of mapping 162 */ 163 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, 164 unsigned long size, char *name) 165 { 166 static int printed_full; 167 struct xresource *xres; 168 struct resource *res; 169 char *tack; 170 int tlen; 171 void __iomem *va; /* P3 diag */ 172 173 if (name == NULL) name = "???"; 174 175 if ((xres = xres_alloc()) != 0) { 176 tack = xres->xname; 177 res = &xres->xres; 178 } else { 179 if (!printed_full) { 180 printk("ioremap: done with statics, switching to malloc\n"); 181 printed_full = 1; 182 } 183 tlen = strlen(name); 184 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); 185 if (tack == NULL) return NULL; 186 memset(tack, 0, sizeof(struct resource)); 187 res = (struct resource *) tack; 188 tack += sizeof (struct resource); 189 } 190 191 strlcpy(tack, name, XNMLN+1); 192 res->name = tack; 193 194 va = _sparc_ioremap(res, busno, phys, size); 195 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ 196 return va; 197 } 198 199 /* 200 */ 201 static void __iomem * 202 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) 203 { 204 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); 205 206 if (allocate_resource(&sparc_iomap, res, 207 (offset + sz + PAGE_SIZE-1) & PAGE_MASK, 208 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { 209 /* Usually we cannot see printks in this case. */ 210 prom_printf("alloc_io_res(%s): cannot occupy\n", 211 (res->name != NULL)? res->name: "???"); 212 prom_halt(); 213 } 214 215 pa &= PAGE_MASK; 216 sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1); 217 218 return (void __iomem *)(unsigned long)(res->start + offset); 219 } 220 221 /* 222 * Comlimentary to _sparc_ioremap(). 223 */ 224 static void _sparc_free_io(struct resource *res) 225 { 226 unsigned long plen; 227 228 plen = res->end - res->start + 1; 229 BUG_ON((plen & (PAGE_SIZE-1)) != 0); 230 sparc_unmapiorange(res->start, plen); 231 release_resource(res); 232 } 233 234 #ifdef CONFIG_SBUS 235 236 void sbus_set_sbus64(struct device *dev, int x) 237 { 238 printk("sbus_set_sbus64: unsupported\n"); 239 } 240 EXPORT_SYMBOL(sbus_set_sbus64); 241 242 /* 243 * Allocate a chunk of memory suitable for DMA. 244 * Typically devices use them for control blocks. 245 * CPU may access them without any explicit flushing. 246 */ 247 static void *sbus_alloc_coherent(struct device *dev, size_t len, 248 dma_addr_t *dma_addrp, gfp_t gfp) 249 { 250 struct of_device *op = to_of_device(dev); 251 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 252 unsigned long va; 253 struct resource *res; 254 int order; 255 256 /* XXX why are some lengths signed, others unsigned? */ 257 if (len <= 0) { 258 return NULL; 259 } 260 /* XXX So what is maxphys for us and how do drivers know it? */ 261 if (len > 256*1024) { /* __get_free_pages() limit */ 262 return NULL; 263 } 264 265 order = get_order(len_total); 266 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0) 267 goto err_nopages; 268 269 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) 270 goto err_nomem; 271 272 if (allocate_resource(&_sparc_dvma, res, len_total, 273 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 274 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total); 275 goto err_nova; 276 } 277 mmu_inval_dma_area(va, len_total); 278 // XXX The mmu_map_dma_area does this for us below, see comments. 279 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 280 /* 281 * XXX That's where sdev would be used. Currently we load 282 * all iommu tables with the same translations. 283 */ 284 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0) 285 goto err_noiommu; 286 287 res->name = op->node->name; 288 289 return (void *)(unsigned long)res->start; 290 291 err_noiommu: 292 release_resource(res); 293 err_nova: 294 free_pages(va, order); 295 err_nomem: 296 kfree(res); 297 err_nopages: 298 return NULL; 299 } 300 301 static void sbus_free_coherent(struct device *dev, size_t n, void *p, 302 dma_addr_t ba) 303 { 304 struct resource *res; 305 struct page *pgv; 306 307 if ((res = _sparc_find_resource(&_sparc_dvma, 308 (unsigned long)p)) == NULL) { 309 printk("sbus_free_consistent: cannot free %p\n", p); 310 return; 311 } 312 313 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 314 printk("sbus_free_consistent: unaligned va %p\n", p); 315 return; 316 } 317 318 n = (n + PAGE_SIZE-1) & PAGE_MASK; 319 if ((res->end-res->start)+1 != n) { 320 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n", 321 (long)((res->end-res->start)+1), n); 322 return; 323 } 324 325 release_resource(res); 326 kfree(res); 327 328 /* mmu_inval_dma_area(va, n); */ /* it's consistent, isn't it */ 329 pgv = virt_to_page(p); 330 mmu_unmap_dma_area(dev, ba, n); 331 332 __free_pages(pgv, get_order(n)); 333 } 334 335 /* 336 * Map a chunk of memory so that devices can see it. 337 * CPU view of this memory may be inconsistent with 338 * a device view and explicit flushing is necessary. 339 */ 340 static dma_addr_t sbus_map_page(struct device *dev, struct page *page, 341 unsigned long offset, size_t len, 342 enum dma_data_direction dir, 343 struct dma_attrs *attrs) 344 { 345 void *va = page_address(page) + offset; 346 347 /* XXX why are some lengths signed, others unsigned? */ 348 if (len <= 0) { 349 return 0; 350 } 351 /* XXX So what is maxphys for us and how do drivers know it? */ 352 if (len > 256*1024) { /* __get_free_pages() limit */ 353 return 0; 354 } 355 return mmu_get_scsi_one(dev, va, len); 356 } 357 358 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n, 359 enum dma_data_direction dir, struct dma_attrs *attrs) 360 { 361 mmu_release_scsi_one(dev, ba, n); 362 } 363 364 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, 365 enum dma_data_direction dir, struct dma_attrs *attrs) 366 { 367 mmu_get_scsi_sgl(dev, sg, n); 368 369 /* 370 * XXX sparc64 can return a partial length here. sun4c should do this 371 * but it currently panics if it can't fulfill the request - Anton 372 */ 373 return n; 374 } 375 376 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, 377 enum dma_data_direction dir, struct dma_attrs *attrs) 378 { 379 mmu_release_scsi_sgl(dev, sg, n); 380 } 381 382 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 383 int n, enum dma_data_direction dir) 384 { 385 BUG(); 386 } 387 388 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 389 int n, enum dma_data_direction dir) 390 { 391 BUG(); 392 } 393 394 struct dma_map_ops sbus_dma_ops = { 395 .alloc_coherent = sbus_alloc_coherent, 396 .free_coherent = sbus_free_coherent, 397 .map_page = sbus_map_page, 398 .unmap_page = sbus_unmap_page, 399 .map_sg = sbus_map_sg, 400 .unmap_sg = sbus_unmap_sg, 401 .sync_sg_for_cpu = sbus_sync_sg_for_cpu, 402 .sync_sg_for_device = sbus_sync_sg_for_device, 403 }; 404 405 struct dma_map_ops *dma_ops = &sbus_dma_ops; 406 EXPORT_SYMBOL(dma_ops); 407 408 static int __init sparc_register_ioport(void) 409 { 410 register_proc_sparc_ioport(); 411 412 return 0; 413 } 414 415 arch_initcall(sparc_register_ioport); 416 417 #endif /* CONFIG_SBUS */ 418 419 #ifdef CONFIG_PCI 420 421 /* Allocate and map kernel buffer using consistent mode DMA for a device. 422 * hwdev should be valid struct pci_dev pointer for PCI devices. 423 */ 424 static void *pci32_alloc_coherent(struct device *dev, size_t len, 425 dma_addr_t *pba, gfp_t gfp) 426 { 427 unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK; 428 unsigned long va; 429 struct resource *res; 430 int order; 431 432 if (len == 0) { 433 return NULL; 434 } 435 if (len > 256*1024) { /* __get_free_pages() limit */ 436 return NULL; 437 } 438 439 order = get_order(len_total); 440 va = __get_free_pages(GFP_KERNEL, order); 441 if (va == 0) { 442 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); 443 return NULL; 444 } 445 446 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { 447 free_pages(va, order); 448 printk("pci_alloc_consistent: no core\n"); 449 return NULL; 450 } 451 452 if (allocate_resource(&_sparc_dvma, res, len_total, 453 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { 454 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); 455 free_pages(va, order); 456 kfree(res); 457 return NULL; 458 } 459 mmu_inval_dma_area(va, len_total); 460 #if 0 461 /* P3 */ printk("pci_alloc_consistent: kva %lx uncva %lx phys %lx size %lx\n", 462 (long)va, (long)res->start, (long)virt_to_phys(va), len_total); 463 #endif 464 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total); 465 466 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ 467 return (void *) res->start; 468 } 469 470 /* Free and unmap a consistent DMA buffer. 471 * cpu_addr is what was returned from pci_alloc_consistent, 472 * size must be the same as what as passed into pci_alloc_consistent, 473 * and likewise dma_addr must be the same as what *dma_addrp was set to. 474 * 475 * References to the memory and mappings associated with cpu_addr/dma_addr 476 * past this call are illegal. 477 */ 478 static void pci32_free_coherent(struct device *dev, size_t n, void *p, 479 dma_addr_t ba) 480 { 481 struct resource *res; 482 unsigned long pgp; 483 484 if ((res = _sparc_find_resource(&_sparc_dvma, 485 (unsigned long)p)) == NULL) { 486 printk("pci_free_consistent: cannot free %p\n", p); 487 return; 488 } 489 490 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { 491 printk("pci_free_consistent: unaligned va %p\n", p); 492 return; 493 } 494 495 n = (n + PAGE_SIZE-1) & PAGE_MASK; 496 if ((res->end-res->start)+1 != n) { 497 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", 498 (long)((res->end-res->start)+1), (long)n); 499 return; 500 } 501 502 pgp = (unsigned long) phys_to_virt(ba); /* bus_to_virt actually */ 503 mmu_inval_dma_area(pgp, n); 504 sparc_unmapiorange((unsigned long)p, n); 505 506 release_resource(res); 507 kfree(res); 508 509 free_pages(pgp, get_order(n)); 510 } 511 512 /* 513 * Same as pci_map_single, but with pages. 514 */ 515 static dma_addr_t pci32_map_page(struct device *dev, struct page *page, 516 unsigned long offset, size_t size, 517 enum dma_data_direction dir, 518 struct dma_attrs *attrs) 519 { 520 /* IIep is write-through, not flushing. */ 521 return page_to_phys(page) + offset; 522 } 523 524 /* Map a set of buffers described by scatterlist in streaming 525 * mode for DMA. This is the scather-gather version of the 526 * above pci_map_single interface. Here the scatter gather list 527 * elements are each tagged with the appropriate dma address 528 * and length. They are obtained via sg_dma_{address,length}(SG). 529 * 530 * NOTE: An implementation may be able to use a smaller number of 531 * DMA address/length pairs than there are SG table elements. 532 * (for example via virtual mapping capabilities) 533 * The routine returns the number of addr/length pairs actually 534 * used, at most nents. 535 * 536 * Device ownership issues as mentioned above for pci_map_single are 537 * the same here. 538 */ 539 static int pci32_map_sg(struct device *device, struct scatterlist *sgl, 540 int nents, enum dma_data_direction dir, 541 struct dma_attrs *attrs) 542 { 543 struct scatterlist *sg; 544 int n; 545 546 /* IIep is write-through, not flushing. */ 547 for_each_sg(sgl, sg, nents, n) { 548 BUG_ON(page_address(sg_page(sg)) == NULL); 549 sg->dma_address = virt_to_phys(sg_virt(sg)); 550 sg->dma_length = sg->length; 551 } 552 return nents; 553 } 554 555 /* Unmap a set of streaming mode DMA translations. 556 * Again, cpu read rules concerning calls here are the same as for 557 * pci_unmap_single() above. 558 */ 559 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl, 560 int nents, enum dma_data_direction dir, 561 struct dma_attrs *attrs) 562 { 563 struct scatterlist *sg; 564 int n; 565 566 if (dir != PCI_DMA_TODEVICE) { 567 for_each_sg(sgl, sg, nents, n) { 568 BUG_ON(page_address(sg_page(sg)) == NULL); 569 mmu_inval_dma_area( 570 (unsigned long) page_address(sg_page(sg)), 571 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 572 } 573 } 574 } 575 576 /* Make physical memory consistent for a single 577 * streaming mode DMA translation before or after a transfer. 578 * 579 * If you perform a pci_map_single() but wish to interrogate the 580 * buffer using the cpu, yet do not wish to teardown the PCI dma 581 * mapping, you must call this function before doing so. At the 582 * next point you give the PCI dma address back to the card, you 583 * must first perform a pci_dma_sync_for_device, and then the 584 * device again owns the buffer. 585 */ 586 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba, 587 size_t size, enum dma_data_direction dir) 588 { 589 if (dir != PCI_DMA_TODEVICE) { 590 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 591 (size + PAGE_SIZE-1) & PAGE_MASK); 592 } 593 } 594 595 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba, 596 size_t size, enum dma_data_direction dir) 597 { 598 if (dir != PCI_DMA_TODEVICE) { 599 mmu_inval_dma_area((unsigned long)phys_to_virt(ba), 600 (size + PAGE_SIZE-1) & PAGE_MASK); 601 } 602 } 603 604 /* Make physical memory consistent for a set of streaming 605 * mode DMA translations after a transfer. 606 * 607 * The same as pci_dma_sync_single_* but for a scatter-gather list, 608 * same rules and usage. 609 */ 610 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 611 int nents, enum dma_data_direction dir) 612 { 613 struct scatterlist *sg; 614 int n; 615 616 if (dir != PCI_DMA_TODEVICE) { 617 for_each_sg(sgl, sg, nents, n) { 618 BUG_ON(page_address(sg_page(sg)) == NULL); 619 mmu_inval_dma_area( 620 (unsigned long) page_address(sg_page(sg)), 621 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 622 } 623 } 624 } 625 626 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, 627 int nents, enum dma_data_direction dir) 628 { 629 struct scatterlist *sg; 630 int n; 631 632 if (dir != PCI_DMA_TODEVICE) { 633 for_each_sg(sgl, sg, nents, n) { 634 BUG_ON(page_address(sg_page(sg)) == NULL); 635 mmu_inval_dma_area( 636 (unsigned long) page_address(sg_page(sg)), 637 (sg->length + PAGE_SIZE-1) & PAGE_MASK); 638 } 639 } 640 } 641 642 struct dma_map_ops pci32_dma_ops = { 643 .alloc_coherent = pci32_alloc_coherent, 644 .free_coherent = pci32_free_coherent, 645 .map_page = pci32_map_page, 646 .map_sg = pci32_map_sg, 647 .unmap_sg = pci32_unmap_sg, 648 .sync_single_for_cpu = pci32_sync_single_for_cpu, 649 .sync_single_for_device = pci32_sync_single_for_device, 650 .sync_sg_for_cpu = pci32_sync_sg_for_cpu, 651 .sync_sg_for_device = pci32_sync_sg_for_device, 652 }; 653 EXPORT_SYMBOL(pci32_dma_ops); 654 655 #endif /* CONFIG_PCI */ 656 657 /* 658 * Return whether the given PCI device DMA address mask can be 659 * supported properly. For example, if your device can only drive the 660 * low 24-bits during PCI bus mastering, then you would pass 661 * 0x00ffffff as the mask to this function. 662 */ 663 int dma_supported(struct device *dev, u64 mask) 664 { 665 #ifdef CONFIG_PCI 666 if (dev->bus == &pci_bus_type) 667 return 1; 668 #endif 669 return 0; 670 } 671 EXPORT_SYMBOL(dma_supported); 672 673 int dma_set_mask(struct device *dev, u64 dma_mask) 674 { 675 #ifdef CONFIG_PCI 676 if (dev->bus == &pci_bus_type) 677 return pci_set_dma_mask(to_pci_dev(dev), dma_mask); 678 #endif 679 return -EOPNOTSUPP; 680 } 681 EXPORT_SYMBOL(dma_set_mask); 682 683 684 #ifdef CONFIG_PROC_FS 685 686 static int 687 _sparc_io_get_info(char *buf, char **start, off_t fpos, int length, int *eof, 688 void *data) 689 { 690 char *p = buf, *e = buf + length; 691 struct resource *r; 692 const char *nm; 693 694 for (r = ((struct resource *)data)->child; r != NULL; r = r->sibling) { 695 if (p + 32 >= e) /* Better than nothing */ 696 break; 697 if ((nm = r->name) == 0) nm = "???"; 698 p += sprintf(p, "%016llx-%016llx: %s\n", 699 (unsigned long long)r->start, 700 (unsigned long long)r->end, nm); 701 } 702 703 return p-buf; 704 } 705 706 #endif /* CONFIG_PROC_FS */ 707 708 /* 709 * This is a version of find_resource and it belongs to kernel/resource.c. 710 * Until we have agreement with Linus and Martin, it lingers here. 711 * 712 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. 713 * This probably warrants some sort of hashing. 714 */ 715 static struct resource *_sparc_find_resource(struct resource *root, 716 unsigned long hit) 717 { 718 struct resource *tmp; 719 720 for (tmp = root->child; tmp != 0; tmp = tmp->sibling) { 721 if (tmp->start <= hit && tmp->end >= hit) 722 return tmp; 723 } 724 return NULL; 725 } 726 727 static void register_proc_sparc_ioport(void) 728 { 729 #ifdef CONFIG_PROC_FS 730 create_proc_read_entry("io_map",0,NULL,_sparc_io_get_info,&sparc_iomap); 731 create_proc_read_entry("dvma_map",0,NULL,_sparc_io_get_info,&_sparc_dvma); 732 #endif 733 } 734