1 #ifndef _SPARC64_HYPERVISOR_H 2 #define _SPARC64_HYPERVISOR_H 3 4 /* Sun4v hypervisor interfaces and defines. 5 * 6 * Hypervisor calls are made via traps to software traps number 0x80 7 * and above. Registers %o0 to %o5 serve as argument, status, and 8 * return value registers. 9 * 10 * There are two kinds of these traps. First there are the normal 11 * "fast traps" which use software trap 0x80 and encode the function 12 * to invoke by number in register %o5. Argument and return value 13 * handling is as follows: 14 * 15 * ----------------------------------------------- 16 * | %o5 | function number | undefined | 17 * | %o0 | argument 0 | return status | 18 * | %o1 | argument 1 | return value 1 | 19 * | %o2 | argument 2 | return value 2 | 20 * | %o3 | argument 3 | return value 3 | 21 * | %o4 | argument 4 | return value 4 | 22 * ----------------------------------------------- 23 * 24 * The second type are "hyper-fast traps" which encode the function 25 * number in the software trap number itself. So these use trap 26 * numbers > 0x80. The register usage for hyper-fast traps is as 27 * follows: 28 * 29 * ----------------------------------------------- 30 * | %o0 | argument 0 | return status | 31 * | %o1 | argument 1 | return value 1 | 32 * | %o2 | argument 2 | return value 2 | 33 * | %o3 | argument 3 | return value 3 | 34 * | %o4 | argument 4 | return value 4 | 35 * ----------------------------------------------- 36 * 37 * Registers providing explicit arguments to the hypervisor calls 38 * are volatile across the call. Upon return their values are 39 * undefined unless explicitly specified as containing a particular 40 * return value by the specific call. The return status is always 41 * returned in register %o0, zero indicates a successful execution of 42 * the hypervisor call and other values indicate an error status as 43 * defined below. So, for example, if a hyper-fast trap takes 44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across 45 * the call and %o3, %o4, and %o5 would be preserved. 46 * 47 * If the hypervisor trap is invalid, or the fast trap function number 48 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits 49 * of the argument and return values are significant. 50 */ 51 52 /* Trap numbers. */ 53 #define HV_FAST_TRAP 0x80 54 #define HV_MMU_MAP_ADDR_TRAP 0x83 55 #define HV_MMU_UNMAP_ADDR_TRAP 0x84 56 #define HV_TTRACE_ADDENTRY_TRAP 0x85 57 #define HV_CORE_TRAP 0xff 58 59 /* Error codes. */ 60 #define HV_EOK 0 /* Successful return */ 61 #define HV_ENOCPU 1 /* Invalid CPU id */ 62 #define HV_ENORADDR 2 /* Invalid real address */ 63 #define HV_ENOINTR 3 /* Invalid interrupt id */ 64 #define HV_EBADPGSZ 4 /* Invalid pagesize encoding */ 65 #define HV_EBADTSB 5 /* Invalid TSB description */ 66 #define HV_EINVAL 6 /* Invalid argument */ 67 #define HV_EBADTRAP 7 /* Invalid function number */ 68 #define HV_EBADALIGN 8 /* Invalid address alignment */ 69 #define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */ 70 #define HV_ENOACCESS 10 /* No access to resource */ 71 #define HV_EIO 11 /* I/O error */ 72 #define HV_ECPUERROR 12 /* CPU in error state */ 73 #define HV_ENOTSUPPORTED 13 /* Function not supported */ 74 #define HV_ENOMAP 14 /* No mapping found */ 75 #define HV_ETOOMANY 15 /* Too many items specified */ 76 #define HV_ECHANNEL 16 /* Invalid LDC channel */ 77 #define HV_EBUSY 17 /* Resource busy */ 78 79 /* mach_exit() 80 * TRAP: HV_FAST_TRAP 81 * FUNCTION: HV_FAST_MACH_EXIT 82 * ARG0: exit code 83 * ERRORS: This service does not return. 84 * 85 * Stop all CPUs in the virtual domain and place them into the stopped 86 * state. The 64-bit exit code may be passed to a service entity as 87 * the domain's exit status. On systems without a service entity, the 88 * domain will undergo a reset, and the boot firmware will be 89 * reloaded. 90 * 91 * This function will never return to the guest that invokes it. 92 * 93 * Note: By convention an exit code of zero denotes a successful exit by 94 * the guest code. A non-zero exit code denotes a guest specific 95 * error indication. 96 * 97 */ 98 #define HV_FAST_MACH_EXIT 0x00 99 100 #ifndef __ASSEMBLY__ 101 void sun4v_mach_exit(unsigned long exit_code); 102 #endif 103 104 /* Domain services. */ 105 106 /* mach_desc() 107 * TRAP: HV_FAST_TRAP 108 * FUNCTION: HV_FAST_MACH_DESC 109 * ARG0: buffer 110 * ARG1: length 111 * RET0: status 112 * RET1: length 113 * ERRORS: HV_EBADALIGN Buffer is badly aligned 114 * HV_ENORADDR Buffer is to an illegal real address. 115 * HV_EINVAL Buffer length is too small for complete 116 * machine description. 117 * 118 * Copy the most current machine description into the buffer indicated 119 * by the real address in ARG0. The buffer provided must be 16 byte 120 * aligned. Upon success or HV_EINVAL, this service returns the 121 * actual size of the machine description in the RET1 return value. 122 * 123 * Note: A method of determining the appropriate buffer size for the 124 * machine description is to first call this service with a buffer 125 * length of 0 bytes. 126 */ 127 #define HV_FAST_MACH_DESC 0x01 128 129 #ifndef __ASSEMBLY__ 130 unsigned long sun4v_mach_desc(unsigned long buffer_pa, 131 unsigned long buf_len, 132 unsigned long *real_buf_len); 133 #endif 134 135 /* mach_sir() 136 * TRAP: HV_FAST_TRAP 137 * FUNCTION: HV_FAST_MACH_SIR 138 * ERRORS: This service does not return. 139 * 140 * Perform a software initiated reset of the virtual machine domain. 141 * All CPUs are captured as soon as possible, all hardware devices are 142 * returned to the entry default state, and the domain is restarted at 143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one 144 * of the CPUs. The single CPU restarted is selected as determined by 145 * platform specific policy. Memory is preserved across this 146 * operation. 147 */ 148 #define HV_FAST_MACH_SIR 0x02 149 150 #ifndef __ASSEMBLY__ 151 void sun4v_mach_sir(void); 152 #endif 153 154 /* mach_set_watchdog() 155 * TRAP: HV_FAST_TRAP 156 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG 157 * ARG0: timeout in milliseconds 158 * RET0: status 159 * RET1: time remaining in milliseconds 160 * 161 * A guest uses this API to set a watchdog timer. Once the gues has set 162 * the timer, it must call the timer service again either to disable or 163 * postpone the expiration. If the timer expires before being reset or 164 * disabled, then the hypervisor take a platform specific action leading 165 * to guest termination within a bounded time period. The platform action 166 * may include recovery actions such as reporting the expiration to a 167 * Service Processor, and/or automatically restarting the gues. 168 * 169 * The 'timeout' parameter is specified in milliseconds, however the 170 * implementated granularity is given by the 'watchdog-resolution' 171 * property in the 'platform' node of the guest's machine description. 172 * The largest allowed timeout value is specified by the 173 * 'watchdog-max-timeout' property of the 'platform' node. 174 * 175 * If the 'timeout' argument is not zero, the watchdog timer is set to 176 * expire after a minimum of 'timeout' milliseconds. 177 * 178 * If the 'timeout' argument is zero, the watchdog timer is disabled. 179 * 180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout' 181 * property, the hypervisor leaves the watchdog timer state unchanged, 182 * and returns a status of EINVAL. 183 * 184 * The 'time remaining' return value is valid regardless of whether the 185 * return status is EOK or EINVAL. A non-zero return value indicates the 186 * number of milliseconds that were remaining until the timer was to expire. 187 * If less than one millisecond remains, the return value is '1'. If the 188 * watchdog timer was disabled at the time of the call, the return value is 189 * zero. 190 * 191 * If the hypervisor cannot support the exact timeout value requested, but 192 * can support a larger timeout value, the hypervisor may round the actual 193 * timeout to a value larger than the requested timeout, consequently the 194 * 'time remaining' return value may be larger than the previously requested 195 * timeout value. 196 * 197 * Any guest OS debugger should be aware that the watchdog service may be in 198 * use. Consequently, it is recommended that the watchdog service is 199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then 200 * re-enabled upon returning to normal execution. The API has been designed 201 * with this in mind, and the 'time remaining' result of the disable call may 202 * be used directly as the timeout argument of the re-enable call. 203 */ 204 #define HV_FAST_MACH_SET_WATCHDOG 0x05 205 206 #ifndef __ASSEMBLY__ 207 unsigned long sun4v_mach_set_watchdog(unsigned long timeout, 208 unsigned long *orig_timeout); 209 #endif 210 211 /* CPU services. 212 * 213 * CPUs represent devices that can execute software threads. A single 214 * chip that contains multiple cores or strands is represented as 215 * multiple CPUs with unique CPU identifiers. CPUs are exported to 216 * OBP via the machine description (and to the OS via the OBP device 217 * tree). CPUs are always in one of three states: stopped, running, 218 * or error. 219 * 220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a 221 * CPU within a logical domain. Operations that are to be performed 222 * on multiple CPUs specify them via a CPU list. A CPU list is an 223 * array in real memory, of which each 16-bit word is a CPU ID. CPU 224 * lists are passed through the API as two arguments. The first is 225 * the number of entries (16-bit words) in the CPU list, and the 226 * second is the (real address) pointer to the CPU ID list. 227 */ 228 229 /* cpu_start() 230 * TRAP: HV_FAST_TRAP 231 * FUNCTION: HV_FAST_CPU_START 232 * ARG0: CPU ID 233 * ARG1: PC 234 * ARG2: RTBA 235 * ARG3: target ARG0 236 * RET0: status 237 * ERRORS: ENOCPU Invalid CPU ID 238 * EINVAL Target CPU ID is not in the stopped state 239 * ENORADDR Invalid PC or RTBA real address 240 * EBADALIGN Unaligned PC or unaligned RTBA 241 * EWOULDBLOCK Starting resources are not available 242 * 243 * Start CPU with given CPU ID with PC in %pc and with a real trap 244 * base address value of RTBA. The indicated CPU must be in the 245 * stopped state. The supplied RTBA must be aligned on a 256 byte 246 * boundary. On successful completion, the specified CPU will be in 247 * the running state and will be supplied with "target ARG0" in %o0 248 * and RTBA in %tba. 249 */ 250 #define HV_FAST_CPU_START 0x10 251 252 #ifndef __ASSEMBLY__ 253 unsigned long sun4v_cpu_start(unsigned long cpuid, 254 unsigned long pc, 255 unsigned long rtba, 256 unsigned long arg0); 257 #endif 258 259 /* cpu_stop() 260 * TRAP: HV_FAST_TRAP 261 * FUNCTION: HV_FAST_CPU_STOP 262 * ARG0: CPU ID 263 * RET0: status 264 * ERRORS: ENOCPU Invalid CPU ID 265 * EINVAL Target CPU ID is the current cpu 266 * EINVAL Target CPU ID is not in the running state 267 * EWOULDBLOCK Stopping resources are not available 268 * ENOTSUPPORTED Not supported on this platform 269 * 270 * The specified CPU is stopped. The indicated CPU must be in the 271 * running state. On completion, it will be in the stopped state. It 272 * is not legal to stop the current CPU. 273 * 274 * Note: As this service cannot be used to stop the current cpu, this service 275 * may not be used to stop the last running CPU in a domain. To stop 276 * and exit a running domain, a guest must use the mach_exit() service. 277 */ 278 #define HV_FAST_CPU_STOP 0x11 279 280 #ifndef __ASSEMBLY__ 281 unsigned long sun4v_cpu_stop(unsigned long cpuid); 282 #endif 283 284 /* cpu_yield() 285 * TRAP: HV_FAST_TRAP 286 * FUNCTION: HV_FAST_CPU_YIELD 287 * RET0: status 288 * ERRORS: No possible error. 289 * 290 * Suspend execution on the current CPU. Execution will resume when 291 * an interrupt (device, %stick_compare, or cross-call) is targeted to 292 * the CPU. On some CPUs, this API may be used by the hypervisor to 293 * save power by disabling hardware strands. 294 */ 295 #define HV_FAST_CPU_YIELD 0x12 296 297 #ifndef __ASSEMBLY__ 298 unsigned long sun4v_cpu_yield(void); 299 #endif 300 301 /* cpu_qconf() 302 * TRAP: HV_FAST_TRAP 303 * FUNCTION: HV_FAST_CPU_QCONF 304 * ARG0: queue 305 * ARG1: base real address 306 * ARG2: number of entries 307 * RET0: status 308 * ERRORS: ENORADDR Invalid base real address 309 * EINVAL Invalid queue or number of entries is less 310 * than 2 or too large. 311 * EBADALIGN Base real address is not correctly aligned 312 * for size. 313 * 314 * Configure the given queue to be placed at the given base real 315 * address, with the given number of entries. The number of entries 316 * must be a power of 2. The base real address must be aligned 317 * exactly to match the queue size. Each queue entry is 64 bytes 318 * long, so for example a 32 entry queue must be aligned on a 2048 319 * byte real address boundary. 320 * 321 * The specified queue is unconfigured if the number of entries is given 322 * as zero. 323 * 324 * For the current version of this API service, the argument queue is defined 325 * as follows: 326 * 327 * queue description 328 * ----- ------------------------- 329 * 0x3c cpu mondo queue 330 * 0x3d device mondo queue 331 * 0x3e resumable error queue 332 * 0x3f non-resumable error queue 333 * 334 * Note: The maximum number of entries for each queue for a specific cpu may 335 * be determined from the machine description. 336 */ 337 #define HV_FAST_CPU_QCONF 0x14 338 #define HV_CPU_QUEUE_CPU_MONDO 0x3c 339 #define HV_CPU_QUEUE_DEVICE_MONDO 0x3d 340 #define HV_CPU_QUEUE_RES_ERROR 0x3e 341 #define HV_CPU_QUEUE_NONRES_ERROR 0x3f 342 343 #ifndef __ASSEMBLY__ 344 unsigned long sun4v_cpu_qconf(unsigned long type, 345 unsigned long queue_paddr, 346 unsigned long num_queue_entries); 347 #endif 348 349 /* cpu_qinfo() 350 * TRAP: HV_FAST_TRAP 351 * FUNCTION: HV_FAST_CPU_QINFO 352 * ARG0: queue 353 * RET0: status 354 * RET1: base real address 355 * RET1: number of entries 356 * ERRORS: EINVAL Invalid queue 357 * 358 * Return the configuration info for the given queue. The base real 359 * address and number of entries of the defined queue are returned. 360 * The queue argument values are the same as for cpu_qconf() above. 361 * 362 * If the specified queue is a valid queue number, but no queue has 363 * been defined, the number of entries will be set to zero and the 364 * base real address returned is undefined. 365 */ 366 #define HV_FAST_CPU_QINFO 0x15 367 368 /* cpu_mondo_send() 369 * TRAP: HV_FAST_TRAP 370 * FUNCTION: HV_FAST_CPU_MONDO_SEND 371 * ARG0-1: CPU list 372 * ARG2: data real address 373 * RET0: status 374 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list 375 * is not 2-byte aligned. 376 * ENORADDR Invalid data mondo address, or invalid cpu list 377 * address. 378 * ENOCPU Invalid cpu in CPU list 379 * EWOULDBLOCK Some or all of the listed CPUs did not receive 380 * the mondo 381 * ECPUERROR One or more of the listed CPUs are in error 382 * state, use HV_FAST_CPU_STATE to see which ones 383 * EINVAL CPU list includes caller's CPU ID 384 * 385 * Send a mondo interrupt to the CPUs in the given CPU list with the 386 * 64-bytes at the given data real address. The data must be 64-byte 387 * aligned. The mondo data will be delivered to the cpu_mondo queues 388 * of the recipient CPUs. 389 * 390 * In all cases, error or not, the CPUs in the CPU list to which the 391 * mondo has been successfully delivered will be indicated by having 392 * their entry in CPU list updated with the value 0xffff. 393 */ 394 #define HV_FAST_CPU_MONDO_SEND 0x42 395 396 #ifndef __ASSEMBLY__ 397 unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, 398 unsigned long cpu_list_pa, 399 unsigned long mondo_block_pa); 400 #endif 401 402 /* cpu_myid() 403 * TRAP: HV_FAST_TRAP 404 * FUNCTION: HV_FAST_CPU_MYID 405 * RET0: status 406 * RET1: CPU ID 407 * ERRORS: No errors defined. 408 * 409 * Return the hypervisor ID handle for the current CPU. Use by a 410 * virtual CPU to discover it's own identity. 411 */ 412 #define HV_FAST_CPU_MYID 0x16 413 414 /* cpu_state() 415 * TRAP: HV_FAST_TRAP 416 * FUNCTION: HV_FAST_CPU_STATE 417 * ARG0: CPU ID 418 * RET0: status 419 * RET1: state 420 * ERRORS: ENOCPU Invalid CPU ID 421 * 422 * Retrieve the current state of the CPU with the given CPU ID. 423 */ 424 #define HV_FAST_CPU_STATE 0x17 425 #define HV_CPU_STATE_STOPPED 0x01 426 #define HV_CPU_STATE_RUNNING 0x02 427 #define HV_CPU_STATE_ERROR 0x03 428 429 #ifndef __ASSEMBLY__ 430 long sun4v_cpu_state(unsigned long cpuid); 431 #endif 432 433 /* cpu_set_rtba() 434 * TRAP: HV_FAST_TRAP 435 * FUNCTION: HV_FAST_CPU_SET_RTBA 436 * ARG0: RTBA 437 * RET0: status 438 * RET1: previous RTBA 439 * ERRORS: ENORADDR Invalid RTBA real address 440 * EBADALIGN RTBA is incorrectly aligned for a trap table 441 * 442 * Set the real trap base address of the local cpu to the given RTBA. 443 * The supplied RTBA must be aligned on a 256 byte boundary. Upon 444 * success the previous value of the RTBA is returned in RET1. 445 * 446 * Note: This service does not affect %tba 447 */ 448 #define HV_FAST_CPU_SET_RTBA 0x18 449 450 /* cpu_set_rtba() 451 * TRAP: HV_FAST_TRAP 452 * FUNCTION: HV_FAST_CPU_GET_RTBA 453 * RET0: status 454 * RET1: previous RTBA 455 * ERRORS: No possible error. 456 * 457 * Returns the current value of RTBA in RET1. 458 */ 459 #define HV_FAST_CPU_GET_RTBA 0x19 460 461 /* MMU services. 462 * 463 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls. 464 */ 465 #ifndef __ASSEMBLY__ 466 struct hv_tsb_descr { 467 unsigned short pgsz_idx; 468 unsigned short assoc; 469 unsigned int num_ttes; /* in TTEs */ 470 unsigned int ctx_idx; 471 unsigned int pgsz_mask; 472 unsigned long tsb_base; 473 unsigned long resv; 474 }; 475 #endif 476 #define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00 477 #define HV_TSB_DESCR_ASSOC_OFFSET 0x02 478 #define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04 479 #define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08 480 #define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c 481 #define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10 482 #define HV_TSB_DESCR_RESV_OFFSET 0x18 483 484 /* Page size bitmask. */ 485 #define HV_PGSZ_MASK_8K (1 << 0) 486 #define HV_PGSZ_MASK_64K (1 << 1) 487 #define HV_PGSZ_MASK_512K (1 << 2) 488 #define HV_PGSZ_MASK_4MB (1 << 3) 489 #define HV_PGSZ_MASK_32MB (1 << 4) 490 #define HV_PGSZ_MASK_256MB (1 << 5) 491 #define HV_PGSZ_MASK_2GB (1 << 6) 492 #define HV_PGSZ_MASK_16GB (1 << 7) 493 494 /* Page size index. The value given in the TSB descriptor must correspond 495 * to the smallest page size specified in the pgsz_mask page size bitmask. 496 */ 497 #define HV_PGSZ_IDX_8K 0 498 #define HV_PGSZ_IDX_64K 1 499 #define HV_PGSZ_IDX_512K 2 500 #define HV_PGSZ_IDX_4MB 3 501 #define HV_PGSZ_IDX_32MB 4 502 #define HV_PGSZ_IDX_256MB 5 503 #define HV_PGSZ_IDX_2GB 6 504 #define HV_PGSZ_IDX_16GB 7 505 506 /* MMU fault status area. 507 * 508 * MMU related faults have their status and fault address information 509 * placed into a memory region made available by privileged code. Each 510 * virtual processor must make a mmu_fault_area_conf() call to tell the 511 * hypervisor where that processor's fault status should be stored. 512 * 513 * The fault status block is a multiple of 64-bytes and must be aligned 514 * on a 64-byte boundary. 515 */ 516 #ifndef __ASSEMBLY__ 517 struct hv_fault_status { 518 unsigned long i_fault_type; 519 unsigned long i_fault_addr; 520 unsigned long i_fault_ctx; 521 unsigned long i_reserved[5]; 522 unsigned long d_fault_type; 523 unsigned long d_fault_addr; 524 unsigned long d_fault_ctx; 525 unsigned long d_reserved[5]; 526 }; 527 #endif 528 #define HV_FAULT_I_TYPE_OFFSET 0x00 529 #define HV_FAULT_I_ADDR_OFFSET 0x08 530 #define HV_FAULT_I_CTX_OFFSET 0x10 531 #define HV_FAULT_D_TYPE_OFFSET 0x40 532 #define HV_FAULT_D_ADDR_OFFSET 0x48 533 #define HV_FAULT_D_CTX_OFFSET 0x50 534 535 #define HV_FAULT_TYPE_FAST_MISS 1 536 #define HV_FAULT_TYPE_FAST_PROT 2 537 #define HV_FAULT_TYPE_MMU_MISS 3 538 #define HV_FAULT_TYPE_INV_RA 4 539 #define HV_FAULT_TYPE_PRIV_VIOL 5 540 #define HV_FAULT_TYPE_PROT_VIOL 6 541 #define HV_FAULT_TYPE_NFO 7 542 #define HV_FAULT_TYPE_NFO_SEFF 8 543 #define HV_FAULT_TYPE_INV_VA 9 544 #define HV_FAULT_TYPE_INV_ASI 10 545 #define HV_FAULT_TYPE_NC_ATOMIC 11 546 #define HV_FAULT_TYPE_PRIV_ACT 12 547 #define HV_FAULT_TYPE_RESV1 13 548 #define HV_FAULT_TYPE_UNALIGNED 14 549 #define HV_FAULT_TYPE_INV_PGSZ 15 550 /* Values 16 --> -2 are reserved. */ 551 #define HV_FAULT_TYPE_MULTIPLE -1 552 553 /* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(), 554 * and mmu_{map,unmap}_perm_addr(). 555 */ 556 #define HV_MMU_DMMU 0x01 557 #define HV_MMU_IMMU 0x02 558 #define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU) 559 560 /* mmu_map_addr() 561 * TRAP: HV_MMU_MAP_ADDR_TRAP 562 * ARG0: virtual address 563 * ARG1: mmu context 564 * ARG2: TTE 565 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 566 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 567 * EBADPGSZ Invalid page size value 568 * ENORADDR Invalid real address in TTE 569 * 570 * Create a non-permanent mapping using the given TTE, virtual 571 * address, and mmu context. The flags argument determines which 572 * (data, or instruction, or both) TLB the mapping gets loaded into. 573 * 574 * The behavior is undefined if the valid bit is clear in the TTE. 575 * 576 * Note: This API call is for privileged code to specify temporary translation 577 * mappings without the need to create and manage a TSB. 578 */ 579 580 /* mmu_unmap_addr() 581 * TRAP: HV_MMU_UNMAP_ADDR_TRAP 582 * ARG0: virtual address 583 * ARG1: mmu context 584 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 585 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 586 * 587 * Demaps the given virtual address in the given mmu context on this 588 * CPU. This function is intended to be used to demap pages mapped 589 * with mmu_map_addr. This service is equivalent to invoking 590 * mmu_demap_page() with only the current CPU in the CPU list. The 591 * flags argument determines which (data, or instruction, or both) TLB 592 * the mapping gets unmapped from. 593 * 594 * Attempting to perform an unmap operation for a previously defined 595 * permanent mapping will have undefined results. 596 */ 597 598 /* mmu_tsb_ctx0() 599 * TRAP: HV_FAST_TRAP 600 * FUNCTION: HV_FAST_MMU_TSB_CTX0 601 * ARG0: number of TSB descriptions 602 * ARG1: TSB descriptions pointer 603 * RET0: status 604 * ERRORS: ENORADDR Invalid TSB descriptions pointer or 605 * TSB base within a descriptor 606 * EBADALIGN TSB descriptions pointer is not aligned 607 * to an 8-byte boundary, or TSB base 608 * within a descriptor is not aligned for 609 * the given TSB size 610 * EBADPGSZ Invalid page size in a TSB descriptor 611 * EBADTSB Invalid associativity or size in a TSB 612 * descriptor 613 * EINVAL Invalid number of TSB descriptions, or 614 * invalid context index in a TSB 615 * descriptor, or index page size not 616 * equal to smallest page size in page 617 * size bitmask field. 618 * 619 * Configures the TSBs for the current CPU for virtual addresses with 620 * context zero. The TSB descriptions pointer is a pointer to an 621 * array of the given number of TSB descriptions. 622 * 623 * Note: The maximum number of TSBs available to a virtual CPU is given by the 624 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the 625 * machine description. 626 */ 627 #define HV_FAST_MMU_TSB_CTX0 0x20 628 629 #ifndef __ASSEMBLY__ 630 unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions, 631 unsigned long tsb_desc_ra); 632 #endif 633 634 /* mmu_tsb_ctxnon0() 635 * TRAP: HV_FAST_TRAP 636 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0 637 * ARG0: number of TSB descriptions 638 * ARG1: TSB descriptions pointer 639 * RET0: status 640 * ERRORS: Same as for mmu_tsb_ctx0() above. 641 * 642 * Configures the TSBs for the current CPU for virtual addresses with 643 * non-zero contexts. The TSB descriptions pointer is a pointer to an 644 * array of the given number of TSB descriptions. 645 * 646 * Note: A maximum of 16 TSBs may be specified in the TSB description list. 647 */ 648 #define HV_FAST_MMU_TSB_CTXNON0 0x21 649 650 /* mmu_demap_page() 651 * TRAP: HV_FAST_TRAP 652 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE 653 * ARG0: reserved, must be zero 654 * ARG1: reserved, must be zero 655 * ARG2: virtual address 656 * ARG3: mmu context 657 * ARG4: flags (HV_MMU_{IMMU,DMMU}) 658 * RET0: status 659 * ERRORS: EINVAL Invalid virtual address, context, or 660 * flags value 661 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 662 * 663 * Demaps any page mapping of the given virtual address in the given 664 * mmu context for the current virtual CPU. Any virtually tagged 665 * caches are guaranteed to be kept consistent. The flags argument 666 * determines which TLB (instruction, or data, or both) participate in 667 * the operation. 668 * 669 * ARG0 and ARG1 are both reserved and must be set to zero. 670 */ 671 #define HV_FAST_MMU_DEMAP_PAGE 0x22 672 673 /* mmu_demap_ctx() 674 * TRAP: HV_FAST_TRAP 675 * FUNCTION: HV_FAST_MMU_DEMAP_CTX 676 * ARG0: reserved, must be zero 677 * ARG1: reserved, must be zero 678 * ARG2: mmu context 679 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 680 * RET0: status 681 * ERRORS: EINVAL Invalid context or flags value 682 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 683 * 684 * Demaps all non-permanent virtual page mappings previously specified 685 * for the given context for the current virtual CPU. Any virtual 686 * tagged caches are guaranteed to be kept consistent. The flags 687 * argument determines which TLB (instruction, or data, or both) 688 * participate in the operation. 689 * 690 * ARG0 and ARG1 are both reserved and must be set to zero. 691 */ 692 #define HV_FAST_MMU_DEMAP_CTX 0x23 693 694 /* mmu_demap_all() 695 * TRAP: HV_FAST_TRAP 696 * FUNCTION: HV_FAST_MMU_DEMAP_ALL 697 * ARG0: reserved, must be zero 698 * ARG1: reserved, must be zero 699 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 700 * RET0: status 701 * ERRORS: EINVAL Invalid flags value 702 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 703 * 704 * Demaps all non-permanent virtual page mappings previously specified 705 * for the current virtual CPU. Any virtual tagged caches are 706 * guaranteed to be kept consistent. The flags argument determines 707 * which TLB (instruction, or data, or both) participate in the 708 * operation. 709 * 710 * ARG0 and ARG1 are both reserved and must be set to zero. 711 */ 712 #define HV_FAST_MMU_DEMAP_ALL 0x24 713 714 #ifndef __ASSEMBLY__ 715 void sun4v_mmu_demap_all(void); 716 #endif 717 718 /* mmu_map_perm_addr() 719 * TRAP: HV_FAST_TRAP 720 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR 721 * ARG0: virtual address 722 * ARG1: reserved, must be zero 723 * ARG2: TTE 724 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 725 * RET0: status 726 * ERRORS: EINVAL Invalid virtual address or flags value 727 * EBADPGSZ Invalid page size value 728 * ENORADDR Invalid real address in TTE 729 * ETOOMANY Too many mappings (max of 8 reached) 730 * 731 * Create a permanent mapping using the given TTE and virtual address 732 * for context 0 on the calling virtual CPU. A maximum of 8 such 733 * permanent mappings may be specified by privileged code. Mappings 734 * may be removed with mmu_unmap_perm_addr(). 735 * 736 * The behavior is undefined if a TTE with the valid bit clear is given. 737 * 738 * Note: This call is used to specify address space mappings for which 739 * privileged code does not expect to receive misses. For example, 740 * this mechanism can be used to map kernel nucleus code and data. 741 */ 742 #define HV_FAST_MMU_MAP_PERM_ADDR 0x25 743 744 #ifndef __ASSEMBLY__ 745 unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr, 746 unsigned long set_to_zero, 747 unsigned long tte, 748 unsigned long flags); 749 #endif 750 751 /* mmu_fault_area_conf() 752 * TRAP: HV_FAST_TRAP 753 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF 754 * ARG0: real address 755 * RET0: status 756 * RET1: previous mmu fault area real address 757 * ERRORS: ENORADDR Invalid real address 758 * EBADALIGN Invalid alignment for fault area 759 * 760 * Configure the MMU fault status area for the calling CPU. A 64-byte 761 * aligned real address specifies where MMU fault status information 762 * is placed. The return value is the previously specified area, or 0 763 * for the first invocation. Specifying a fault area at real address 764 * 0 is not allowed. 765 */ 766 #define HV_FAST_MMU_FAULT_AREA_CONF 0x26 767 768 /* mmu_enable() 769 * TRAP: HV_FAST_TRAP 770 * FUNCTION: HV_FAST_MMU_ENABLE 771 * ARG0: enable flag 772 * ARG1: return target address 773 * RET0: status 774 * ERRORS: ENORADDR Invalid real address when disabling 775 * translation. 776 * EBADALIGN The return target address is not 777 * aligned to an instruction. 778 * EINVAL The enable flag request the current 779 * operating mode (e.g. disable if already 780 * disabled) 781 * 782 * Enable or disable virtual address translation for the calling CPU 783 * within the virtual machine domain. If the enable flag is zero, 784 * translation is disabled, any non-zero value will enable 785 * translation. 786 * 787 * When this function returns, the newly selected translation mode 788 * will be active. If the mmu is being enabled, then the return 789 * target address is a virtual address else it is a real address. 790 * 791 * Upon successful completion, control will be returned to the given 792 * return target address (ie. the cpu will jump to that address). On 793 * failure, the previous mmu mode remains and the trap simply returns 794 * as normal with the appropriate error code in RET0. 795 */ 796 #define HV_FAST_MMU_ENABLE 0x27 797 798 /* mmu_unmap_perm_addr() 799 * TRAP: HV_FAST_TRAP 800 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR 801 * ARG0: virtual address 802 * ARG1: reserved, must be zero 803 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 804 * RET0: status 805 * ERRORS: EINVAL Invalid virtual address or flags value 806 * ENOMAP Specified mapping was not found 807 * 808 * Demaps any permanent page mapping (established via 809 * mmu_map_perm_addr()) at the given virtual address for context 0 on 810 * the current virtual CPU. Any virtual tagged caches are guaranteed 811 * to be kept consistent. 812 */ 813 #define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28 814 815 /* mmu_tsb_ctx0_info() 816 * TRAP: HV_FAST_TRAP 817 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO 818 * ARG0: max TSBs 819 * ARG1: buffer pointer 820 * RET0: status 821 * RET1: number of TSBs 822 * ERRORS: EINVAL Supplied buffer is too small 823 * EBADALIGN The buffer pointer is badly aligned 824 * ENORADDR Invalid real address for buffer pointer 825 * 826 * Return the TSB configuration as previous defined by mmu_tsb_ctx0() 827 * into the provided buffer. The size of the buffer is given in ARG1 828 * in terms of the number of TSB description entries. 829 * 830 * Upon return, RET1 always contains the number of TSB descriptions 831 * previously configured. If zero TSBs were configured, EOK is 832 * returned with RET1 containing 0. 833 */ 834 #define HV_FAST_MMU_TSB_CTX0_INFO 0x29 835 836 /* mmu_tsb_ctxnon0_info() 837 * TRAP: HV_FAST_TRAP 838 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO 839 * ARG0: max TSBs 840 * ARG1: buffer pointer 841 * RET0: status 842 * RET1: number of TSBs 843 * ERRORS: EINVAL Supplied buffer is too small 844 * EBADALIGN The buffer pointer is badly aligned 845 * ENORADDR Invalid real address for buffer pointer 846 * 847 * Return the TSB configuration as previous defined by 848 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer 849 * is given in ARG1 in terms of the number of TSB description entries. 850 * 851 * Upon return, RET1 always contains the number of TSB descriptions 852 * previously configured. If zero TSBs were configured, EOK is 853 * returned with RET1 containing 0. 854 */ 855 #define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a 856 857 /* mmu_fault_area_info() 858 * TRAP: HV_FAST_TRAP 859 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO 860 * RET0: status 861 * RET1: fault area real address 862 * ERRORS: No errors defined. 863 * 864 * Return the currently defined MMU fault status area for the current 865 * CPU. The real address of the fault status area is returned in 866 * RET1, or 0 is returned in RET1 if no fault status area is defined. 867 * 868 * Note: mmu_fault_area_conf() may be called with the return value (RET1) 869 * from this service if there is a need to save and restore the fault 870 * area for a cpu. 871 */ 872 #define HV_FAST_MMU_FAULT_AREA_INFO 0x2b 873 874 /* Cache and Memory services. */ 875 876 /* mem_scrub() 877 * TRAP: HV_FAST_TRAP 878 * FUNCTION: HV_FAST_MEM_SCRUB 879 * ARG0: real address 880 * ARG1: length 881 * RET0: status 882 * RET1: length scrubbed 883 * ERRORS: ENORADDR Invalid real address 884 * EBADALIGN Start address or length are not correctly 885 * aligned 886 * EINVAL Length is zero 887 * 888 * Zero the memory contents in the range real address to real address 889 * plus length minus 1. Also, valid ECC will be generated for that 890 * memory address range. Scrubbing is started at the given real 891 * address, but may not scrub the entire given length. The actual 892 * length scrubbed will be returned in RET1. 893 * 894 * The real address and length must be aligned on an 8K boundary, or 895 * contain the start address and length from a sun4v error report. 896 * 897 * Note: There are two uses for this function. The first use is to block clear 898 * and initialize memory and the second is to scrub an u ncorrectable 899 * error reported via a resumable or non-resumable trap. The second 900 * use requires the arguments to be equal to the real address and length 901 * provided in a sun4v memory error report. 902 */ 903 #define HV_FAST_MEM_SCRUB 0x31 904 905 /* mem_sync() 906 * TRAP: HV_FAST_TRAP 907 * FUNCTION: HV_FAST_MEM_SYNC 908 * ARG0: real address 909 * ARG1: length 910 * RET0: status 911 * RET1: length synced 912 * ERRORS: ENORADDR Invalid real address 913 * EBADALIGN Start address or length are not correctly 914 * aligned 915 * EINVAL Length is zero 916 * 917 * Force the next access within the real address to real address plus 918 * length minus 1 to be fetches from main system memory. Less than 919 * the given length may be synced, the actual amount synced is 920 * returned in RET1. The real address and length must be aligned on 921 * an 8K boundary. 922 */ 923 #define HV_FAST_MEM_SYNC 0x32 924 925 /* Time of day services. 926 * 927 * The hypervisor maintains the time of day on a per-domain basis. 928 * Changing the time of day in one domain does not affect the time of 929 * day on any other domain. 930 * 931 * Time is described by a single unsigned 64-bit word which is the 932 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1, 933 * 1970). 934 */ 935 936 /* tod_get() 937 * TRAP: HV_FAST_TRAP 938 * FUNCTION: HV_FAST_TOD_GET 939 * RET0: status 940 * RET1: TOD 941 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 942 * ENOTSUPPORTED If TOD not supported on this platform 943 * 944 * Return the current time of day. May block if TOD access is 945 * temporarily not possible. 946 */ 947 #define HV_FAST_TOD_GET 0x50 948 949 #ifndef __ASSEMBLY__ 950 unsigned long sun4v_tod_get(unsigned long *time); 951 #endif 952 953 /* tod_set() 954 * TRAP: HV_FAST_TRAP 955 * FUNCTION: HV_FAST_TOD_SET 956 * ARG0: TOD 957 * RET0: status 958 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 959 * ENOTSUPPORTED If TOD not supported on this platform 960 * 961 * The current time of day is set to the value specified in ARG0. May 962 * block if TOD access is temporarily not possible. 963 */ 964 #define HV_FAST_TOD_SET 0x51 965 966 #ifndef __ASSEMBLY__ 967 unsigned long sun4v_tod_set(unsigned long time); 968 #endif 969 970 /* Console services */ 971 972 /* con_getchar() 973 * TRAP: HV_FAST_TRAP 974 * FUNCTION: HV_FAST_CONS_GETCHAR 975 * RET0: status 976 * RET1: character 977 * ERRORS: EWOULDBLOCK No character available. 978 * 979 * Returns a character from the console device. If no character is 980 * available then an EWOULDBLOCK error is returned. If a character is 981 * available, then the returned status is EOK and the character value 982 * is in RET1. 983 * 984 * A virtual BREAK is represented by the 64-bit value -1. 985 * 986 * A virtual HUP signal is represented by the 64-bit value -2. 987 */ 988 #define HV_FAST_CONS_GETCHAR 0x60 989 990 /* con_putchar() 991 * TRAP: HV_FAST_TRAP 992 * FUNCTION: HV_FAST_CONS_PUTCHAR 993 * ARG0: character 994 * RET0: status 995 * ERRORS: EINVAL Illegal character 996 * EWOULDBLOCK Output buffer currently full, would block 997 * 998 * Send a character to the console device. Only character values 999 * between 0 and 255 may be used. Values outside this range are 1000 * invalid except for the 64-bit value -1 which is used to send a 1001 * virtual BREAK. 1002 */ 1003 #define HV_FAST_CONS_PUTCHAR 0x61 1004 1005 /* con_read() 1006 * TRAP: HV_FAST_TRAP 1007 * FUNCTION: HV_FAST_CONS_READ 1008 * ARG0: buffer real address 1009 * ARG1: buffer size in bytes 1010 * RET0: status 1011 * RET1: bytes read or BREAK or HUP 1012 * ERRORS: EWOULDBLOCK No character available. 1013 * 1014 * Reads characters into a buffer from the console device. If no 1015 * character is available then an EWOULDBLOCK error is returned. 1016 * If a character is available, then the returned status is EOK 1017 * and the number of bytes read into the given buffer is provided 1018 * in RET1. 1019 * 1020 * A virtual BREAK is represented by the 64-bit RET1 value -1. 1021 * 1022 * A virtual HUP signal is represented by the 64-bit RET1 value -2. 1023 * 1024 * If BREAK or HUP are indicated, no bytes were read into buffer. 1025 */ 1026 #define HV_FAST_CONS_READ 0x62 1027 1028 /* con_write() 1029 * TRAP: HV_FAST_TRAP 1030 * FUNCTION: HV_FAST_CONS_WRITE 1031 * ARG0: buffer real address 1032 * ARG1: buffer size in bytes 1033 * RET0: status 1034 * RET1: bytes written 1035 * ERRORS: EWOULDBLOCK Output buffer currently full, would block 1036 * 1037 * Send a characters in buffer to the console device. Breaks must be 1038 * sent using con_putchar(). 1039 */ 1040 #define HV_FAST_CONS_WRITE 0x63 1041 1042 #ifndef __ASSEMBLY__ 1043 long sun4v_con_getchar(long *status); 1044 long sun4v_con_putchar(long c); 1045 long sun4v_con_read(unsigned long buffer, 1046 unsigned long size, 1047 unsigned long *bytes_read); 1048 unsigned long sun4v_con_write(unsigned long buffer, 1049 unsigned long size, 1050 unsigned long *bytes_written); 1051 #endif 1052 1053 /* mach_set_soft_state() 1054 * TRAP: HV_FAST_TRAP 1055 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE 1056 * ARG0: software state 1057 * ARG1: software state description pointer 1058 * RET0: status 1059 * ERRORS: EINVAL software state not valid or software state 1060 * description is not NULL terminated 1061 * ENORADDR software state description pointer is not a 1062 * valid real address 1063 * EBADALIGNED software state description is not correctly 1064 * aligned 1065 * 1066 * This allows the guest to report it's soft state to the hypervisor. There 1067 * are two primary components to this state. The first part states whether 1068 * the guest software is running or not. The second containts optional 1069 * details specific to the software. 1070 * 1071 * The software state argument is defined below in HV_SOFT_STATE_*, and 1072 * indicates whether the guest is operating normally or in a transitional 1073 * state. 1074 * 1075 * The software state description argument is a real address of a data buffer 1076 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL 1077 * terminated 7-bit ASCII string of up to 31 characters not including the 1078 * NULL termination. 1079 */ 1080 #define HV_FAST_MACH_SET_SOFT_STATE 0x70 1081 #define HV_SOFT_STATE_NORMAL 0x01 1082 #define HV_SOFT_STATE_TRANSITION 0x02 1083 1084 #ifndef __ASSEMBLY__ 1085 unsigned long sun4v_mach_set_soft_state(unsigned long soft_state, 1086 unsigned long msg_string_ra); 1087 #endif 1088 1089 /* mach_get_soft_state() 1090 * TRAP: HV_FAST_TRAP 1091 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE 1092 * ARG0: software state description pointer 1093 * RET0: status 1094 * RET1: software state 1095 * ERRORS: ENORADDR software state description pointer is not a 1096 * valid real address 1097 * EBADALIGNED software state description is not correctly 1098 * aligned 1099 * 1100 * Retrieve the current value of the guest's software state. The rules 1101 * for the software state pointer are the same as for mach_set_soft_state() 1102 * above. 1103 */ 1104 #define HV_FAST_MACH_GET_SOFT_STATE 0x71 1105 1106 /* svc_send() 1107 * TRAP: HV_FAST_TRAP 1108 * FUNCTION: HV_FAST_SVC_SEND 1109 * ARG0: service ID 1110 * ARG1: buffer real address 1111 * ARG2: buffer size 1112 * RET0: STATUS 1113 * RET1: sent_bytes 1114 * 1115 * Be careful, all output registers are clobbered by this operation, 1116 * so for example it is not possible to save away a value in %o4 1117 * across the trap. 1118 */ 1119 #define HV_FAST_SVC_SEND 0x80 1120 1121 /* svc_recv() 1122 * TRAP: HV_FAST_TRAP 1123 * FUNCTION: HV_FAST_SVC_RECV 1124 * ARG0: service ID 1125 * ARG1: buffer real address 1126 * ARG2: buffer size 1127 * RET0: STATUS 1128 * RET1: recv_bytes 1129 * 1130 * Be careful, all output registers are clobbered by this operation, 1131 * so for example it is not possible to save away a value in %o4 1132 * across the trap. 1133 */ 1134 #define HV_FAST_SVC_RECV 0x81 1135 1136 /* svc_getstatus() 1137 * TRAP: HV_FAST_TRAP 1138 * FUNCTION: HV_FAST_SVC_GETSTATUS 1139 * ARG0: service ID 1140 * RET0: STATUS 1141 * RET1: status bits 1142 */ 1143 #define HV_FAST_SVC_GETSTATUS 0x82 1144 1145 /* svc_setstatus() 1146 * TRAP: HV_FAST_TRAP 1147 * FUNCTION: HV_FAST_SVC_SETSTATUS 1148 * ARG0: service ID 1149 * ARG1: bits to set 1150 * RET0: STATUS 1151 */ 1152 #define HV_FAST_SVC_SETSTATUS 0x83 1153 1154 /* svc_clrstatus() 1155 * TRAP: HV_FAST_TRAP 1156 * FUNCTION: HV_FAST_SVC_CLRSTATUS 1157 * ARG0: service ID 1158 * ARG1: bits to clear 1159 * RET0: STATUS 1160 */ 1161 #define HV_FAST_SVC_CLRSTATUS 0x84 1162 1163 #ifndef __ASSEMBLY__ 1164 unsigned long sun4v_svc_send(unsigned long svc_id, 1165 unsigned long buffer, 1166 unsigned long buffer_size, 1167 unsigned long *sent_bytes); 1168 unsigned long sun4v_svc_recv(unsigned long svc_id, 1169 unsigned long buffer, 1170 unsigned long buffer_size, 1171 unsigned long *recv_bytes); 1172 unsigned long sun4v_svc_getstatus(unsigned long svc_id, 1173 unsigned long *status_bits); 1174 unsigned long sun4v_svc_setstatus(unsigned long svc_id, 1175 unsigned long status_bits); 1176 unsigned long sun4v_svc_clrstatus(unsigned long svc_id, 1177 unsigned long status_bits); 1178 #endif 1179 1180 /* Trap trace services. 1181 * 1182 * The hypervisor provides a trap tracing capability for privileged 1183 * code running on each virtual CPU. Privileged code provides a 1184 * round-robin trap trace queue within which the hypervisor writes 1185 * 64-byte entries detailing hyperprivileged traps taken n behalf of 1186 * privileged code. This is provided as a debugging capability for 1187 * privileged code. 1188 * 1189 * The trap trace control structure is 64-bytes long and placed at the 1190 * start (offset 0) of the trap trace buffer, and is described as 1191 * follows: 1192 */ 1193 #ifndef __ASSEMBLY__ 1194 struct hv_trap_trace_control { 1195 unsigned long head_offset; 1196 unsigned long tail_offset; 1197 unsigned long __reserved[0x30 / sizeof(unsigned long)]; 1198 }; 1199 #endif 1200 #define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00 1201 #define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08 1202 1203 /* The head offset is the offset of the most recently completed entry 1204 * in the trap-trace buffer. The tail offset is the offset of the 1205 * next entry to be written. The control structure is owned and 1206 * modified by the hypervisor. A guest may not modify the control 1207 * structure contents. Attempts to do so will result in undefined 1208 * behavior for the guest. 1209 * 1210 * Each trap trace buffer entry is laid out as follows: 1211 */ 1212 #ifndef __ASSEMBLY__ 1213 struct hv_trap_trace_entry { 1214 unsigned char type; /* Hypervisor or guest entry? */ 1215 unsigned char hpstate; /* Hyper-privileged state */ 1216 unsigned char tl; /* Trap level */ 1217 unsigned char gl; /* Global register level */ 1218 unsigned short tt; /* Trap type */ 1219 unsigned short tag; /* Extended trap identifier */ 1220 unsigned long tstate; /* Trap state */ 1221 unsigned long tick; /* Tick */ 1222 unsigned long tpc; /* Trap PC */ 1223 unsigned long f1; /* Entry specific */ 1224 unsigned long f2; /* Entry specific */ 1225 unsigned long f3; /* Entry specific */ 1226 unsigned long f4; /* Entry specific */ 1227 }; 1228 #endif 1229 #define HV_TRAP_TRACE_ENTRY_TYPE 0x00 1230 #define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01 1231 #define HV_TRAP_TRACE_ENTRY_TL 0x02 1232 #define HV_TRAP_TRACE_ENTRY_GL 0x03 1233 #define HV_TRAP_TRACE_ENTRY_TT 0x04 1234 #define HV_TRAP_TRACE_ENTRY_TAG 0x06 1235 #define HV_TRAP_TRACE_ENTRY_TSTATE 0x08 1236 #define HV_TRAP_TRACE_ENTRY_TICK 0x10 1237 #define HV_TRAP_TRACE_ENTRY_TPC 0x18 1238 #define HV_TRAP_TRACE_ENTRY_F1 0x20 1239 #define HV_TRAP_TRACE_ENTRY_F2 0x28 1240 #define HV_TRAP_TRACE_ENTRY_F3 0x30 1241 #define HV_TRAP_TRACE_ENTRY_F4 0x38 1242 1243 /* The type field is encoded as follows. */ 1244 #define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */ 1245 #define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */ 1246 #define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */ 1247 1248 /* ttrace_buf_conf() 1249 * TRAP: HV_FAST_TRAP 1250 * FUNCTION: HV_FAST_TTRACE_BUF_CONF 1251 * ARG0: real address 1252 * ARG1: number of entries 1253 * RET0: status 1254 * RET1: number of entries 1255 * ERRORS: ENORADDR Invalid real address 1256 * EINVAL Size is too small 1257 * EBADALIGN Real address not aligned on 64-byte boundary 1258 * 1259 * Requests hypervisor trap tracing and declares a virtual CPU's trap 1260 * trace buffer to the hypervisor. The real address supplies the real 1261 * base address of the trap trace queue and must be 64-byte aligned. 1262 * Specifying a value of 0 for the number of entries disables trap 1263 * tracing for the calling virtual CPU. The buffer allocated must be 1264 * sized for a power of two number of 64-byte trap trace entries plus 1265 * an initial 64-byte control structure. 1266 * 1267 * This may be invoked any number of times so that a virtual CPU may 1268 * relocate a trap trace buffer or create "snapshots" of information. 1269 * 1270 * If the real address is illegal or badly aligned, then trap tracing 1271 * is disabled and an error is returned. 1272 * 1273 * Upon failure with EINVAL, this service call returns in RET1 the 1274 * minimum number of buffer entries required. Upon other failures 1275 * RET1 is undefined. 1276 */ 1277 #define HV_FAST_TTRACE_BUF_CONF 0x90 1278 1279 /* ttrace_buf_info() 1280 * TRAP: HV_FAST_TRAP 1281 * FUNCTION: HV_FAST_TTRACE_BUF_INFO 1282 * RET0: status 1283 * RET1: real address 1284 * RET2: size 1285 * ERRORS: None defined. 1286 * 1287 * Returns the size and location of the previously declared trap-trace 1288 * buffer. In the event that no buffer was previously defined, or the 1289 * buffer is disabled, this call will return a size of zero bytes. 1290 */ 1291 #define HV_FAST_TTRACE_BUF_INFO 0x91 1292 1293 /* ttrace_enable() 1294 * TRAP: HV_FAST_TRAP 1295 * FUNCTION: HV_FAST_TTRACE_ENABLE 1296 * ARG0: enable 1297 * RET0: status 1298 * RET1: previous enable state 1299 * ERRORS: EINVAL No trap trace buffer currently defined 1300 * 1301 * Enable or disable trap tracing, and return the previous enabled 1302 * state in RET1. Future systems may define various flags for the 1303 * enable argument (ARG0), for the moment a guest should pass 1304 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all 1305 * tracing - which will ensure future compatibility. 1306 */ 1307 #define HV_FAST_TTRACE_ENABLE 0x92 1308 1309 /* ttrace_freeze() 1310 * TRAP: HV_FAST_TRAP 1311 * FUNCTION: HV_FAST_TTRACE_FREEZE 1312 * ARG0: freeze 1313 * RET0: status 1314 * RET1: previous freeze state 1315 * ERRORS: EINVAL No trap trace buffer currently defined 1316 * 1317 * Freeze or unfreeze trap tracing, returning the previous freeze 1318 * state in RET1. A guest should pass a non-zero value to freeze and 1319 * a zero value to unfreeze all tracing. The returned previous state 1320 * is 0 for not frozen and 1 for frozen. 1321 */ 1322 #define HV_FAST_TTRACE_FREEZE 0x93 1323 1324 /* ttrace_addentry() 1325 * TRAP: HV_TTRACE_ADDENTRY_TRAP 1326 * ARG0: tag (16-bits) 1327 * ARG1: data word 0 1328 * ARG2: data word 1 1329 * ARG3: data word 2 1330 * ARG4: data word 3 1331 * RET0: status 1332 * ERRORS: EINVAL No trap trace buffer currently defined 1333 * 1334 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0 1335 * is modified - none of the other registers holding arguments are 1336 * volatile across this hypervisor service. 1337 */ 1338 1339 /* Core dump services. 1340 * 1341 * Since the hypervisor viraulizes and thus obscures a lot of the 1342 * physical machine layout and state, traditional OS crash dumps can 1343 * be difficult to diagnose especially when the problem is a 1344 * configuration error of some sort. 1345 * 1346 * The dump services provide an opaque buffer into which the 1347 * hypervisor can place it's internal state in order to assist in 1348 * debugging such situations. The contents are opaque and extremely 1349 * platform and hypervisor implementation specific. The guest, during 1350 * a core dump, requests that the hypervisor update any information in 1351 * the dump buffer in preparation to being dumped as part of the 1352 * domain's memory image. 1353 */ 1354 1355 /* dump_buf_update() 1356 * TRAP: HV_FAST_TRAP 1357 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE 1358 * ARG0: real address 1359 * ARG1: size 1360 * RET0: status 1361 * RET1: required size of dump buffer 1362 * ERRORS: ENORADDR Invalid real address 1363 * EBADALIGN Real address is not aligned on a 64-byte 1364 * boundary 1365 * EINVAL Size is non-zero but less than minimum size 1366 * required 1367 * ENOTSUPPORTED Operation not supported on current logical 1368 * domain 1369 * 1370 * Declare a domain dump buffer to the hypervisor. The real address 1371 * provided for the domain dump buffer must be 64-byte aligned. The 1372 * size specifies the size of the dump buffer and may be larger than 1373 * the minimum size specified in the machine description. The 1374 * hypervisor will fill the dump buffer with opaque data. 1375 * 1376 * Note: A guest may elect to include dump buffer contents as part of a crash 1377 * dump to assist with debugging. This function may be called any number 1378 * of times so that a guest may relocate a dump buffer, or create 1379 * "snapshots" of any dump-buffer information. Each call to 1380 * dump_buf_update() atomically declares the new dump buffer to the 1381 * hypervisor. 1382 * 1383 * A specified size of 0 unconfigures the dump buffer. If the real 1384 * address is illegal or badly aligned, then any currently active dump 1385 * buffer is disabled and an error is returned. 1386 * 1387 * In the event that the call fails with EINVAL, RET1 contains the 1388 * minimum size requires by the hypervisor for a valid dump buffer. 1389 */ 1390 #define HV_FAST_DUMP_BUF_UPDATE 0x94 1391 1392 /* dump_buf_info() 1393 * TRAP: HV_FAST_TRAP 1394 * FUNCTION: HV_FAST_DUMP_BUF_INFO 1395 * RET0: status 1396 * RET1: real address of current dump buffer 1397 * RET2: size of current dump buffer 1398 * ERRORS: No errors defined. 1399 * 1400 * Return the currently configures dump buffer description. A 1401 * returned size of 0 bytes indicates an undefined dump buffer. In 1402 * this case the return address in RET1 is undefined. 1403 */ 1404 #define HV_FAST_DUMP_BUF_INFO 0x95 1405 1406 /* Device interrupt services. 1407 * 1408 * Device interrupts are allocated to system bus bridges by the hypervisor, 1409 * and described to OBP in the machine description. OBP then describes 1410 * these interrupts to the OS via properties in the device tree. 1411 * 1412 * Terminology: 1413 * 1414 * cpuid Unique opaque value which represents a target cpu. 1415 * 1416 * devhandle Device handle. It uniquely identifies a device, and 1417 * consistes of the lower 28-bits of the hi-cell of the 1418 * first entry of the device's "reg" property in the 1419 * OBP device tree. 1420 * 1421 * devino Device interrupt number. Specifies the relative 1422 * interrupt number within the device. The unique 1423 * combination of devhandle and devino are used to 1424 * identify a specific device interrupt. 1425 * 1426 * Note: The devino value is the same as the values in the 1427 * "interrupts" property or "interrupt-map" property 1428 * in the OBP device tree for that device. 1429 * 1430 * sysino System interrupt number. A 64-bit unsigned interger 1431 * representing a unique interrupt within a virtual 1432 * machine. 1433 * 1434 * intr_state A flag representing the interrupt state for a given 1435 * sysino. The state values are defined below. 1436 * 1437 * intr_enabled A flag representing the 'enabled' state for a given 1438 * sysino. The enable values are defined below. 1439 */ 1440 1441 #define HV_INTR_STATE_IDLE 0 /* Nothing pending */ 1442 #define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */ 1443 #define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */ 1444 1445 #define HV_INTR_DISABLED 0 /* sysino not enabled */ 1446 #define HV_INTR_ENABLED 1 /* sysino enabled */ 1447 1448 /* intr_devino_to_sysino() 1449 * TRAP: HV_FAST_TRAP 1450 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO 1451 * ARG0: devhandle 1452 * ARG1: devino 1453 * RET0: status 1454 * RET1: sysino 1455 * ERRORS: EINVAL Invalid devhandle/devino 1456 * 1457 * Converts a device specific interrupt number of the given 1458 * devhandle/devino into a system specific ino (sysino). 1459 */ 1460 #define HV_FAST_INTR_DEVINO2SYSINO 0xa0 1461 1462 #ifndef __ASSEMBLY__ 1463 unsigned long sun4v_devino_to_sysino(unsigned long devhandle, 1464 unsigned long devino); 1465 #endif 1466 1467 /* intr_getenabled() 1468 * TRAP: HV_FAST_TRAP 1469 * FUNCTION: HV_FAST_INTR_GETENABLED 1470 * ARG0: sysino 1471 * RET0: status 1472 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1473 * ERRORS: EINVAL Invalid sysino 1474 * 1475 * Returns interrupt enabled state in RET1 for the interrupt defined 1476 * by the given sysino. 1477 */ 1478 #define HV_FAST_INTR_GETENABLED 0xa1 1479 1480 #ifndef __ASSEMBLY__ 1481 unsigned long sun4v_intr_getenabled(unsigned long sysino); 1482 #endif 1483 1484 /* intr_setenabled() 1485 * TRAP: HV_FAST_TRAP 1486 * FUNCTION: HV_FAST_INTR_SETENABLED 1487 * ARG0: sysino 1488 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1489 * RET0: status 1490 * ERRORS: EINVAL Invalid sysino or intr_enabled value 1491 * 1492 * Set the 'enabled' state of the interrupt sysino. 1493 */ 1494 #define HV_FAST_INTR_SETENABLED 0xa2 1495 1496 #ifndef __ASSEMBLY__ 1497 unsigned long sun4v_intr_setenabled(unsigned long sysino, 1498 unsigned long intr_enabled); 1499 #endif 1500 1501 /* intr_getstate() 1502 * TRAP: HV_FAST_TRAP 1503 * FUNCTION: HV_FAST_INTR_GETSTATE 1504 * ARG0: sysino 1505 * RET0: status 1506 * RET1: intr_state (HV_INTR_STATE_*) 1507 * ERRORS: EINVAL Invalid sysino 1508 * 1509 * Returns current state of the interrupt defined by the given sysino. 1510 */ 1511 #define HV_FAST_INTR_GETSTATE 0xa3 1512 1513 #ifndef __ASSEMBLY__ 1514 unsigned long sun4v_intr_getstate(unsigned long sysino); 1515 #endif 1516 1517 /* intr_setstate() 1518 * TRAP: HV_FAST_TRAP 1519 * FUNCTION: HV_FAST_INTR_SETSTATE 1520 * ARG0: sysino 1521 * ARG1: intr_state (HV_INTR_STATE_*) 1522 * RET0: status 1523 * ERRORS: EINVAL Invalid sysino or intr_state value 1524 * 1525 * Sets the current state of the interrupt described by the given sysino 1526 * value. 1527 * 1528 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending 1529 * interrupt for sysino. 1530 */ 1531 #define HV_FAST_INTR_SETSTATE 0xa4 1532 1533 #ifndef __ASSEMBLY__ 1534 unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state); 1535 #endif 1536 1537 /* intr_gettarget() 1538 * TRAP: HV_FAST_TRAP 1539 * FUNCTION: HV_FAST_INTR_GETTARGET 1540 * ARG0: sysino 1541 * RET0: status 1542 * RET1: cpuid 1543 * ERRORS: EINVAL Invalid sysino 1544 * 1545 * Returns CPU that is the current target of the interrupt defined by 1546 * the given sysino. The CPU value returned is undefined if the target 1547 * has not been set via intr_settarget(). 1548 */ 1549 #define HV_FAST_INTR_GETTARGET 0xa5 1550 1551 #ifndef __ASSEMBLY__ 1552 unsigned long sun4v_intr_gettarget(unsigned long sysino); 1553 #endif 1554 1555 /* intr_settarget() 1556 * TRAP: HV_FAST_TRAP 1557 * FUNCTION: HV_FAST_INTR_SETTARGET 1558 * ARG0: sysino 1559 * ARG1: cpuid 1560 * RET0: status 1561 * ERRORS: EINVAL Invalid sysino 1562 * ENOCPU Invalid cpuid 1563 * 1564 * Set the target CPU for the interrupt defined by the given sysino. 1565 */ 1566 #define HV_FAST_INTR_SETTARGET 0xa6 1567 1568 #ifndef __ASSEMBLY__ 1569 unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid); 1570 #endif 1571 1572 /* vintr_get_cookie() 1573 * TRAP: HV_FAST_TRAP 1574 * FUNCTION: HV_FAST_VINTR_GET_COOKIE 1575 * ARG0: device handle 1576 * ARG1: device ino 1577 * RET0: status 1578 * RET1: cookie 1579 */ 1580 #define HV_FAST_VINTR_GET_COOKIE 0xa7 1581 1582 /* vintr_set_cookie() 1583 * TRAP: HV_FAST_TRAP 1584 * FUNCTION: HV_FAST_VINTR_SET_COOKIE 1585 * ARG0: device handle 1586 * ARG1: device ino 1587 * ARG2: cookie 1588 * RET0: status 1589 */ 1590 #define HV_FAST_VINTR_SET_COOKIE 0xa8 1591 1592 /* vintr_get_valid() 1593 * TRAP: HV_FAST_TRAP 1594 * FUNCTION: HV_FAST_VINTR_GET_VALID 1595 * ARG0: device handle 1596 * ARG1: device ino 1597 * RET0: status 1598 * RET1: valid state 1599 */ 1600 #define HV_FAST_VINTR_GET_VALID 0xa9 1601 1602 /* vintr_set_valid() 1603 * TRAP: HV_FAST_TRAP 1604 * FUNCTION: HV_FAST_VINTR_SET_VALID 1605 * ARG0: device handle 1606 * ARG1: device ino 1607 * ARG2: valid state 1608 * RET0: status 1609 */ 1610 #define HV_FAST_VINTR_SET_VALID 0xaa 1611 1612 /* vintr_get_state() 1613 * TRAP: HV_FAST_TRAP 1614 * FUNCTION: HV_FAST_VINTR_GET_STATE 1615 * ARG0: device handle 1616 * ARG1: device ino 1617 * RET0: status 1618 * RET1: state 1619 */ 1620 #define HV_FAST_VINTR_GET_STATE 0xab 1621 1622 /* vintr_set_state() 1623 * TRAP: HV_FAST_TRAP 1624 * FUNCTION: HV_FAST_VINTR_SET_STATE 1625 * ARG0: device handle 1626 * ARG1: device ino 1627 * ARG2: state 1628 * RET0: status 1629 */ 1630 #define HV_FAST_VINTR_SET_STATE 0xac 1631 1632 /* vintr_get_target() 1633 * TRAP: HV_FAST_TRAP 1634 * FUNCTION: HV_FAST_VINTR_GET_TARGET 1635 * ARG0: device handle 1636 * ARG1: device ino 1637 * RET0: status 1638 * RET1: cpuid 1639 */ 1640 #define HV_FAST_VINTR_GET_TARGET 0xad 1641 1642 /* vintr_set_target() 1643 * TRAP: HV_FAST_TRAP 1644 * FUNCTION: HV_FAST_VINTR_SET_TARGET 1645 * ARG0: device handle 1646 * ARG1: device ino 1647 * ARG2: cpuid 1648 * RET0: status 1649 */ 1650 #define HV_FAST_VINTR_SET_TARGET 0xae 1651 1652 #ifndef __ASSEMBLY__ 1653 unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle, 1654 unsigned long dev_ino, 1655 unsigned long *cookie); 1656 unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle, 1657 unsigned long dev_ino, 1658 unsigned long cookie); 1659 unsigned long sun4v_vintr_get_valid(unsigned long dev_handle, 1660 unsigned long dev_ino, 1661 unsigned long *valid); 1662 unsigned long sun4v_vintr_set_valid(unsigned long dev_handle, 1663 unsigned long dev_ino, 1664 unsigned long valid); 1665 unsigned long sun4v_vintr_get_state(unsigned long dev_handle, 1666 unsigned long dev_ino, 1667 unsigned long *state); 1668 unsigned long sun4v_vintr_set_state(unsigned long dev_handle, 1669 unsigned long dev_ino, 1670 unsigned long state); 1671 unsigned long sun4v_vintr_get_target(unsigned long dev_handle, 1672 unsigned long dev_ino, 1673 unsigned long *cpuid); 1674 unsigned long sun4v_vintr_set_target(unsigned long dev_handle, 1675 unsigned long dev_ino, 1676 unsigned long cpuid); 1677 #endif 1678 1679 /* PCI IO services. 1680 * 1681 * See the terminology descriptions in the device interrupt services 1682 * section above as those apply here too. Here are terminology 1683 * definitions specific to these PCI IO services: 1684 * 1685 * tsbnum TSB number. Indentifies which io-tsb is used. 1686 * For this version of the specification, tsbnum 1687 * must be zero. 1688 * 1689 * tsbindex TSB index. Identifies which entry in the TSB 1690 * is used. The first entry is zero. 1691 * 1692 * tsbid A 64-bit aligned data structure which contains 1693 * a tsbnum and a tsbindex. Bits 63:32 contain the 1694 * tsbnum and bits 31:00 contain the tsbindex. 1695 * 1696 * Use the HV_PCI_TSBID() macro to construct such 1697 * values. 1698 * 1699 * io_attributes IO attributes for IOMMU mappings. One of more 1700 * of the attritbute bits are stores in a 64-bit 1701 * value. The values are defined below. 1702 * 1703 * r_addr 64-bit real address 1704 * 1705 * pci_device PCI device address. A PCI device address identifies 1706 * a specific device on a specific PCI bus segment. 1707 * A PCI device address ia a 32-bit unsigned integer 1708 * with the following format: 1709 * 1710 * 00000000.bbbbbbbb.dddddfff.00000000 1711 * 1712 * Use the HV_PCI_DEVICE_BUILD() macro to construct 1713 * such values. 1714 * 1715 * pci_config_offset 1716 * PCI configureation space offset. For conventional 1717 * PCI a value between 0 and 255. For extended 1718 * configuration space, a value between 0 and 4095. 1719 * 1720 * Note: For PCI configuration space accesses, the offset 1721 * must be aligned to the access size. 1722 * 1723 * error_flag A return value which specifies if the action succeeded 1724 * or failed. 0 means no error, non-0 means some error 1725 * occurred while performing the service. 1726 * 1727 * io_sync_direction 1728 * Direction definition for pci_dma_sync(), defined 1729 * below in HV_PCI_SYNC_*. 1730 * 1731 * io_page_list A list of io_page_addresses, an io_page_address is 1732 * a real address. 1733 * 1734 * io_page_list_p A pointer to an io_page_list. 1735 * 1736 * "size based byte swap" - Some functions do size based byte swapping 1737 * which allows sw to access pointers and 1738 * counters in native form when the processor 1739 * operates in a different endianness than the 1740 * IO bus. Size-based byte swapping converts a 1741 * multi-byte field between big-endian and 1742 * little-endian format. 1743 */ 1744 1745 #define HV_PCI_MAP_ATTR_READ 0x01 1746 #define HV_PCI_MAP_ATTR_WRITE 0x02 1747 1748 #define HV_PCI_DEVICE_BUILD(b,d,f) \ 1749 ((((b) & 0xff) << 16) | \ 1750 (((d) & 0x1f) << 11) | \ 1751 (((f) & 0x07) << 8)) 1752 1753 #define HV_PCI_TSBID(__tsb_num, __tsb_index) \ 1754 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index))) 1755 1756 #define HV_PCI_SYNC_FOR_DEVICE 0x01 1757 #define HV_PCI_SYNC_FOR_CPU 0x02 1758 1759 /* pci_iommu_map() 1760 * TRAP: HV_FAST_TRAP 1761 * FUNCTION: HV_FAST_PCI_IOMMU_MAP 1762 * ARG0: devhandle 1763 * ARG1: tsbid 1764 * ARG2: #ttes 1765 * ARG3: io_attributes 1766 * ARG4: io_page_list_p 1767 * RET0: status 1768 * RET1: #ttes mapped 1769 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes 1770 * EBADALIGN Improperly aligned real address 1771 * ENORADDR Invalid real address 1772 * 1773 * Create IOMMU mappings in the sun4v device defined by the given 1774 * devhandle. The mappings are created in the TSB defined by the 1775 * tsbnum component of the given tsbid. The first mapping is created 1776 * in the TSB i ndex defined by the tsbindex component of the given tsbid. 1777 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex, 1778 * the second at tsbnum, tsbindex + 1, etc. 1779 * 1780 * All mappings are created with the attributes defined by the io_attributes 1781 * argument. The page mapping addresses are described in the io_page_list 1782 * defined by the given io_page_list_p, which is a pointer to the io_page_list. 1783 * The first entry in the io_page_list is the address for the first iotte, the 1784 * 2nd for the 2nd iotte, and so on. 1785 * 1786 * Each io_page_address in the io_page_list must be appropriately aligned. 1787 * #ttes must be greater than zero. For this version of the spec, the tsbnum 1788 * component of the given tsbid must be zero. 1789 * 1790 * Returns the actual number of mappings creates, which may be less than 1791 * or equal to the argument #ttes. If the function returns a value which 1792 * is less than the #ttes, the caller may continus to call the function with 1793 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are 1794 * mapped. 1795 * 1796 * Note: This function does not imply an iotte cache flush. The guest must 1797 * demap an entry before re-mapping it. 1798 */ 1799 #define HV_FAST_PCI_IOMMU_MAP 0xb0 1800 1801 /* pci_iommu_demap() 1802 * TRAP: HV_FAST_TRAP 1803 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP 1804 * ARG0: devhandle 1805 * ARG1: tsbid 1806 * ARG2: #ttes 1807 * RET0: status 1808 * RET1: #ttes demapped 1809 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1810 * 1811 * Demap and flush IOMMU mappings in the device defined by the given 1812 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum 1813 * component of the given tsbid, starting at the TSB index defined by the 1814 * tsbindex component of the given tsbid. 1815 * 1816 * For this version of the spec, the tsbnum of the given tsbid must be zero. 1817 * #ttes must be greater than zero. 1818 * 1819 * Returns the actual number of ttes demapped, which may be less than or equal 1820 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller 1821 * may continue to call this function with updated tsbid and #ttes arguments 1822 * until all pages are demapped. 1823 * 1824 * Note: Entries do not have to be mapped to be demapped. A demap of an 1825 * unmapped page will flush the entry from the tte cache. 1826 */ 1827 #define HV_FAST_PCI_IOMMU_DEMAP 0xb1 1828 1829 /* pci_iommu_getmap() 1830 * TRAP: HV_FAST_TRAP 1831 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP 1832 * ARG0: devhandle 1833 * ARG1: tsbid 1834 * RET0: status 1835 * RET1: io_attributes 1836 * RET2: real address 1837 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1838 * ENOMAP Mapping is not valid, no translation exists 1839 * 1840 * Read and return the mapping in the device described by the given devhandle 1841 * and tsbid. If successful, the io_attributes shall be returned in RET1 1842 * and the page address of the mapping shall be returned in RET2. 1843 * 1844 * For this version of the spec, the tsbnum component of the given tsbid 1845 * must be zero. 1846 */ 1847 #define HV_FAST_PCI_IOMMU_GETMAP 0xb2 1848 1849 /* pci_iommu_getbypass() 1850 * TRAP: HV_FAST_TRAP 1851 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS 1852 * ARG0: devhandle 1853 * ARG1: real address 1854 * ARG2: io_attributes 1855 * RET0: status 1856 * RET1: io_addr 1857 * ERRORS: EINVAL Invalid devhandle/io_attributes 1858 * ENORADDR Invalid real address 1859 * ENOTSUPPORTED Function not supported in this implementation. 1860 * 1861 * Create a "special" mapping in the device described by the given devhandle, 1862 * for the given real address and attributes. Return the IO address in RET1 1863 * if successful. 1864 */ 1865 #define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3 1866 1867 /* pci_config_get() 1868 * TRAP: HV_FAST_TRAP 1869 * FUNCTION: HV_FAST_PCI_CONFIG_GET 1870 * ARG0: devhandle 1871 * ARG1: pci_device 1872 * ARG2: pci_config_offset 1873 * ARG3: size 1874 * RET0: status 1875 * RET1: error_flag 1876 * RET2: data 1877 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1878 * EBADALIGN pci_config_offset not size aligned 1879 * ENOACCESS Access to this offset is not permitted 1880 * 1881 * Read PCI configuration space for the adapter described by the given 1882 * devhandle. Read size (1, 2, or 4) bytes of data from the given 1883 * pci_device, at pci_config_offset from the beginning of the device's 1884 * configuration space. If there was no error, RET1 is set to zero and 1885 * RET2 is set to the data read. Insignificant bits in RET2 are not 1886 * guaranteed to have any specific value and therefore must be ignored. 1887 * 1888 * The data returned in RET2 is size based byte swapped. 1889 * 1890 * If an error occurs during the read, set RET1 to a non-zero value. The 1891 * given pci_config_offset must be 'size' aligned. 1892 */ 1893 #define HV_FAST_PCI_CONFIG_GET 0xb4 1894 1895 /* pci_config_put() 1896 * TRAP: HV_FAST_TRAP 1897 * FUNCTION: HV_FAST_PCI_CONFIG_PUT 1898 * ARG0: devhandle 1899 * ARG1: pci_device 1900 * ARG2: pci_config_offset 1901 * ARG3: size 1902 * ARG4: data 1903 * RET0: status 1904 * RET1: error_flag 1905 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1906 * EBADALIGN pci_config_offset not size aligned 1907 * ENOACCESS Access to this offset is not permitted 1908 * 1909 * Write PCI configuration space for the adapter described by the given 1910 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation, 1911 * at pci_config_offset from the beginning of the device's configuration 1912 * space. The data argument contains the data to be written to configuration 1913 * space. Prior to writing, the data is size based byte swapped. 1914 * 1915 * If an error occurs during the write access, do not generate an error 1916 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero. 1917 * The given pci_config_offset must be 'size' aligned. 1918 * 1919 * This function is permitted to read from offset zero in the configuration 1920 * space described by the given pci_device if necessary to ensure that the 1921 * write access to config space completes. 1922 */ 1923 #define HV_FAST_PCI_CONFIG_PUT 0xb5 1924 1925 /* pci_peek() 1926 * TRAP: HV_FAST_TRAP 1927 * FUNCTION: HV_FAST_PCI_PEEK 1928 * ARG0: devhandle 1929 * ARG1: real address 1930 * ARG2: size 1931 * RET0: status 1932 * RET1: error_flag 1933 * RET2: data 1934 * ERRORS: EINVAL Invalid devhandle or size 1935 * EBADALIGN Improperly aligned real address 1936 * ENORADDR Bad real address 1937 * ENOACCESS Guest access prohibited 1938 * 1939 * Attempt to read the IO address given by the given devhandle, real address, 1940 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single 1941 * access operation using the given size. If an error occurs when reading 1942 * from the given location, do not generate an error report, but return a 1943 * non-zero value in RET1. If the read was successful, return zero in RET1 1944 * and return the actual data read in RET2. The data returned is size based 1945 * byte swapped. 1946 * 1947 * Non-significant bits in RET2 are not guaranteed to have any specific value 1948 * and therefore must be ignored. If RET1 is returned as non-zero, the data 1949 * value is not guaranteed to have any specific value and should be ignored. 1950 * 1951 * The caller must have permission to read from the given devhandle, real 1952 * address, which must be an IO address. The argument real address must be a 1953 * size aligned address. 1954 * 1955 * The hypervisor implementation of this function must block access to any 1956 * IO address that the guest does not have explicit permission to access. 1957 */ 1958 #define HV_FAST_PCI_PEEK 0xb6 1959 1960 /* pci_poke() 1961 * TRAP: HV_FAST_TRAP 1962 * FUNCTION: HV_FAST_PCI_POKE 1963 * ARG0: devhandle 1964 * ARG1: real address 1965 * ARG2: size 1966 * ARG3: data 1967 * ARG4: pci_device 1968 * RET0: status 1969 * RET1: error_flag 1970 * ERRORS: EINVAL Invalid devhandle, size, or pci_device 1971 * EBADALIGN Improperly aligned real address 1972 * ENORADDR Bad real address 1973 * ENOACCESS Guest access prohibited 1974 * ENOTSUPPORTED Function is not supported by implementation 1975 * 1976 * Attempt to write data to the IO address given by the given devhandle, 1977 * real address, and size. Size must be 1, 2, 4, or 8. The write is 1978 * performed as a single access operation using the given size. Prior to 1979 * writing the data is size based swapped. 1980 * 1981 * If an error occurs when writing to the given location, do not generate an 1982 * error report, but return a non-zero value in RET1. If the write was 1983 * successful, return zero in RET1. 1984 * 1985 * pci_device describes the configuration address of the device being 1986 * written to. The implementation may safely read from offset 0 with 1987 * the configuration space of the device described by devhandle and 1988 * pci_device in order to guarantee that the write portion of the operation 1989 * completes 1990 * 1991 * Any error that occurs due to the read shall be reported using the normal 1992 * error reporting mechanisms .. the read error is not suppressed. 1993 * 1994 * The caller must have permission to write to the given devhandle, real 1995 * address, which must be an IO address. The argument real address must be a 1996 * size aligned address. The caller must have permission to read from 1997 * the given devhandle, pci_device cofiguration space offset 0. 1998 * 1999 * The hypervisor implementation of this function must block access to any 2000 * IO address that the guest does not have explicit permission to access. 2001 */ 2002 #define HV_FAST_PCI_POKE 0xb7 2003 2004 /* pci_dma_sync() 2005 * TRAP: HV_FAST_TRAP 2006 * FUNCTION: HV_FAST_PCI_DMA_SYNC 2007 * ARG0: devhandle 2008 * ARG1: real address 2009 * ARG2: size 2010 * ARG3: io_sync_direction 2011 * RET0: status 2012 * RET1: #synced 2013 * ERRORS: EINVAL Invalid devhandle or io_sync_direction 2014 * ENORADDR Bad real address 2015 * 2016 * Synchronize a memory region described by the given real address and size, 2017 * for the device defined by the given devhandle using the direction(s) 2018 * defined by the given io_sync_direction. The argument size is the size of 2019 * the memory region in bytes. 2020 * 2021 * Return the actual number of bytes synchronized in the return value #synced, 2022 * which may be less than or equal to the argument size. If the return 2023 * value #synced is less than size, the caller must continue to call this 2024 * function with updated real address and size arguments until the entire 2025 * memory region is synchronized. 2026 */ 2027 #define HV_FAST_PCI_DMA_SYNC 0xb8 2028 2029 /* PCI MSI services. */ 2030 2031 #define HV_MSITYPE_MSI32 0x00 2032 #define HV_MSITYPE_MSI64 0x01 2033 2034 #define HV_MSIQSTATE_IDLE 0x00 2035 #define HV_MSIQSTATE_ERROR 0x01 2036 2037 #define HV_MSIQ_INVALID 0x00 2038 #define HV_MSIQ_VALID 0x01 2039 2040 #define HV_MSISTATE_IDLE 0x00 2041 #define HV_MSISTATE_DELIVERED 0x01 2042 2043 #define HV_MSIVALID_INVALID 0x00 2044 #define HV_MSIVALID_VALID 0x01 2045 2046 #define HV_PCIE_MSGTYPE_PME_MSG 0x18 2047 #define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b 2048 #define HV_PCIE_MSGTYPE_CORR_MSG 0x30 2049 #define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31 2050 #define HV_PCIE_MSGTYPE_FATAL_MSG 0x33 2051 2052 #define HV_MSG_INVALID 0x00 2053 #define HV_MSG_VALID 0x01 2054 2055 /* pci_msiq_conf() 2056 * TRAP: HV_FAST_TRAP 2057 * FUNCTION: HV_FAST_PCI_MSIQ_CONF 2058 * ARG0: devhandle 2059 * ARG1: msiqid 2060 * ARG2: real address 2061 * ARG3: number of entries 2062 * RET0: status 2063 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries 2064 * EBADALIGN Improperly aligned real address 2065 * ENORADDR Bad real address 2066 * 2067 * Configure the MSI queue given by the devhandle and msiqid arguments, 2068 * and to be placed at the given real address and be of the given 2069 * number of entries. The real address must be aligned exactly to match 2070 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry 2071 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ 2072 * Head and Tail are initialized so that the MSI-EQ is 'empty'. 2073 * 2074 * Implementation Note: Certain implementations have fixed sized queues. In 2075 * that case, number of entries must contain the correct 2076 * value. 2077 */ 2078 #define HV_FAST_PCI_MSIQ_CONF 0xc0 2079 2080 /* pci_msiq_info() 2081 * TRAP: HV_FAST_TRAP 2082 * FUNCTION: HV_FAST_PCI_MSIQ_INFO 2083 * ARG0: devhandle 2084 * ARG1: msiqid 2085 * RET0: status 2086 * RET1: real address 2087 * RET2: number of entries 2088 * ERRORS: EINVAL Invalid devhandle or msiqid 2089 * 2090 * Return the configuration information for the MSI queue described 2091 * by the given devhandle and msiqid. The base address of the queue 2092 * is returned in ARG1 and the number of entries is returned in ARG2. 2093 * If the queue is unconfigured, the real address is undefined and the 2094 * number of entries will be returned as zero. 2095 */ 2096 #define HV_FAST_PCI_MSIQ_INFO 0xc1 2097 2098 /* pci_msiq_getvalid() 2099 * TRAP: HV_FAST_TRAP 2100 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2101 * ARG0: devhandle 2102 * ARG1: msiqid 2103 * RET0: status 2104 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2105 * ERRORS: EINVAL Invalid devhandle or msiqid 2106 * 2107 * Get the valid state of the MSI-EQ described by the given devhandle and 2108 * msiqid. 2109 */ 2110 #define HV_FAST_PCI_MSIQ_GETVALID 0xc2 2111 2112 /* pci_msiq_setvalid() 2113 * TRAP: HV_FAST_TRAP 2114 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID 2115 * ARG0: devhandle 2116 * ARG1: msiqid 2117 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2118 * RET0: status 2119 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid 2120 * value or MSI EQ is uninitialized 2121 * 2122 * Set the valid state of the MSI-EQ described by the given devhandle and 2123 * msiqid to the given msiqvalid. 2124 */ 2125 #define HV_FAST_PCI_MSIQ_SETVALID 0xc3 2126 2127 /* pci_msiq_getstate() 2128 * TRAP: HV_FAST_TRAP 2129 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE 2130 * ARG0: devhandle 2131 * ARG1: msiqid 2132 * RET0: status 2133 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2134 * ERRORS: EINVAL Invalid devhandle or msiqid 2135 * 2136 * Get the state of the MSI-EQ described by the given devhandle and 2137 * msiqid. 2138 */ 2139 #define HV_FAST_PCI_MSIQ_GETSTATE 0xc4 2140 2141 /* pci_msiq_getvalid() 2142 * TRAP: HV_FAST_TRAP 2143 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2144 * ARG0: devhandle 2145 * ARG1: msiqid 2146 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2147 * RET0: status 2148 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate 2149 * value or MSI EQ is uninitialized 2150 * 2151 * Set the state of the MSI-EQ described by the given devhandle and 2152 * msiqid to the given msiqvalid. 2153 */ 2154 #define HV_FAST_PCI_MSIQ_SETSTATE 0xc5 2155 2156 /* pci_msiq_gethead() 2157 * TRAP: HV_FAST_TRAP 2158 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD 2159 * ARG0: devhandle 2160 * ARG1: msiqid 2161 * RET0: status 2162 * RET1: msiqhead 2163 * ERRORS: EINVAL Invalid devhandle or msiqid 2164 * 2165 * Get the current MSI EQ queue head for the MSI-EQ described by the 2166 * given devhandle and msiqid. 2167 */ 2168 #define HV_FAST_PCI_MSIQ_GETHEAD 0xc6 2169 2170 /* pci_msiq_sethead() 2171 * TRAP: HV_FAST_TRAP 2172 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD 2173 * ARG0: devhandle 2174 * ARG1: msiqid 2175 * ARG2: msiqhead 2176 * RET0: status 2177 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead, 2178 * or MSI EQ is uninitialized 2179 * 2180 * Set the current MSI EQ queue head for the MSI-EQ described by the 2181 * given devhandle and msiqid. 2182 */ 2183 #define HV_FAST_PCI_MSIQ_SETHEAD 0xc7 2184 2185 /* pci_msiq_gettail() 2186 * TRAP: HV_FAST_TRAP 2187 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL 2188 * ARG0: devhandle 2189 * ARG1: msiqid 2190 * RET0: status 2191 * RET1: msiqtail 2192 * ERRORS: EINVAL Invalid devhandle or msiqid 2193 * 2194 * Get the current MSI EQ queue tail for the MSI-EQ described by the 2195 * given devhandle and msiqid. 2196 */ 2197 #define HV_FAST_PCI_MSIQ_GETTAIL 0xc8 2198 2199 /* pci_msi_getvalid() 2200 * TRAP: HV_FAST_TRAP 2201 * FUNCTION: HV_FAST_PCI_MSI_GETVALID 2202 * ARG0: devhandle 2203 * ARG1: msinum 2204 * RET0: status 2205 * RET1: msivalidstate 2206 * ERRORS: EINVAL Invalid devhandle or msinum 2207 * 2208 * Get the current valid/enabled state for the MSI defined by the 2209 * given devhandle and msinum. 2210 */ 2211 #define HV_FAST_PCI_MSI_GETVALID 0xc9 2212 2213 /* pci_msi_setvalid() 2214 * TRAP: HV_FAST_TRAP 2215 * FUNCTION: HV_FAST_PCI_MSI_SETVALID 2216 * ARG0: devhandle 2217 * ARG1: msinum 2218 * ARG2: msivalidstate 2219 * RET0: status 2220 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate 2221 * 2222 * Set the current valid/enabled state for the MSI defined by the 2223 * given devhandle and msinum. 2224 */ 2225 #define HV_FAST_PCI_MSI_SETVALID 0xca 2226 2227 /* pci_msi_getmsiq() 2228 * TRAP: HV_FAST_TRAP 2229 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ 2230 * ARG0: devhandle 2231 * ARG1: msinum 2232 * RET0: status 2233 * RET1: msiqid 2234 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound 2235 * 2236 * Get the MSI EQ that the MSI defined by the given devhandle and 2237 * msinum is bound to. 2238 */ 2239 #define HV_FAST_PCI_MSI_GETMSIQ 0xcb 2240 2241 /* pci_msi_setmsiq() 2242 * TRAP: HV_FAST_TRAP 2243 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ 2244 * ARG0: devhandle 2245 * ARG1: msinum 2246 * ARG2: msitype 2247 * ARG3: msiqid 2248 * RET0: status 2249 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid 2250 * 2251 * Set the MSI EQ that the MSI defined by the given devhandle and 2252 * msinum is bound to. 2253 */ 2254 #define HV_FAST_PCI_MSI_SETMSIQ 0xcc 2255 2256 /* pci_msi_getstate() 2257 * TRAP: HV_FAST_TRAP 2258 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE 2259 * ARG0: devhandle 2260 * ARG1: msinum 2261 * RET0: status 2262 * RET1: msistate 2263 * ERRORS: EINVAL Invalid devhandle or msinum 2264 * 2265 * Get the state of the MSI defined by the given devhandle and msinum. 2266 * If not initialized, return HV_MSISTATE_IDLE. 2267 */ 2268 #define HV_FAST_PCI_MSI_GETSTATE 0xcd 2269 2270 /* pci_msi_setstate() 2271 * TRAP: HV_FAST_TRAP 2272 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE 2273 * ARG0: devhandle 2274 * ARG1: msinum 2275 * ARG2: msistate 2276 * RET0: status 2277 * ERRORS: EINVAL Invalid devhandle or msinum or msistate 2278 * 2279 * Set the state of the MSI defined by the given devhandle and msinum. 2280 */ 2281 #define HV_FAST_PCI_MSI_SETSTATE 0xce 2282 2283 /* pci_msg_getmsiq() 2284 * TRAP: HV_FAST_TRAP 2285 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ 2286 * ARG0: devhandle 2287 * ARG1: msgtype 2288 * RET0: status 2289 * RET1: msiqid 2290 * ERRORS: EINVAL Invalid devhandle or msgtype 2291 * 2292 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype. 2293 */ 2294 #define HV_FAST_PCI_MSG_GETMSIQ 0xd0 2295 2296 /* pci_msg_setmsiq() 2297 * TRAP: HV_FAST_TRAP 2298 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ 2299 * ARG0: devhandle 2300 * ARG1: msgtype 2301 * ARG2: msiqid 2302 * RET0: status 2303 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid 2304 * 2305 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype. 2306 */ 2307 #define HV_FAST_PCI_MSG_SETMSIQ 0xd1 2308 2309 /* pci_msg_getvalid() 2310 * TRAP: HV_FAST_TRAP 2311 * FUNCTION: HV_FAST_PCI_MSG_GETVALID 2312 * ARG0: devhandle 2313 * ARG1: msgtype 2314 * RET0: status 2315 * RET1: msgvalidstate 2316 * ERRORS: EINVAL Invalid devhandle or msgtype 2317 * 2318 * Get the valid/enabled state of the MSG defined by the given 2319 * devhandle and msgtype. 2320 */ 2321 #define HV_FAST_PCI_MSG_GETVALID 0xd2 2322 2323 /* pci_msg_setvalid() 2324 * TRAP: HV_FAST_TRAP 2325 * FUNCTION: HV_FAST_PCI_MSG_SETVALID 2326 * ARG0: devhandle 2327 * ARG1: msgtype 2328 * ARG2: msgvalidstate 2329 * RET0: status 2330 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate 2331 * 2332 * Set the valid/enabled state of the MSG defined by the given 2333 * devhandle and msgtype. 2334 */ 2335 #define HV_FAST_PCI_MSG_SETVALID 0xd3 2336 2337 /* Logical Domain Channel services. */ 2338 2339 #define LDC_CHANNEL_DOWN 0 2340 #define LDC_CHANNEL_UP 1 2341 #define LDC_CHANNEL_RESETTING 2 2342 2343 /* ldc_tx_qconf() 2344 * TRAP: HV_FAST_TRAP 2345 * FUNCTION: HV_FAST_LDC_TX_QCONF 2346 * ARG0: channel ID 2347 * ARG1: real address base of queue 2348 * ARG2: num entries in queue 2349 * RET0: status 2350 * 2351 * Configure transmit queue for the LDC endpoint specified by the 2352 * given channel ID, to be placed at the given real address, and 2353 * be of the given num entries. Num entries must be a power of two. 2354 * The real address base of the queue must be aligned on the queue 2355 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2356 * queue must be aligned on a 2048 byte real address boundary. 2357 * 2358 * Upon configuration of a valid transmit queue the head and tail 2359 * pointers are set to a hypervisor specific identical value indicating 2360 * that the queue initially is empty. 2361 * 2362 * The endpoint's transmit queue is un-configured if num entries is zero. 2363 * 2364 * The maximum number of entries for each queue for a specific cpu may be 2365 * determined from the machine description. A transmit queue may be 2366 * specified even in the event that the LDC is down (peer endpoint has no 2367 * receive queue specified). Transmission will begin as soon as the peer 2368 * endpoint defines a receive queue. 2369 * 2370 * It is recommended that a guest wait for a transmit queue to empty prior 2371 * to reconfiguring it, or un-configuring it. Re or un-configuring of a 2372 * non-empty transmit queue behaves exactly as defined above, however it 2373 * is undefined as to how many of the pending entries in the original queue 2374 * will be delivered prior to the re-configuration taking effect. 2375 * Furthermore, as the queue configuration causes a reset of the head and 2376 * tail pointers there is no way for a guest to determine how many entries 2377 * have been sent after the configuration operation. 2378 */ 2379 #define HV_FAST_LDC_TX_QCONF 0xe0 2380 2381 /* ldc_tx_qinfo() 2382 * TRAP: HV_FAST_TRAP 2383 * FUNCTION: HV_FAST_LDC_TX_QINFO 2384 * ARG0: channel ID 2385 * RET0: status 2386 * RET1: real address base of queue 2387 * RET2: num entries in queue 2388 * 2389 * Return the configuration info for the transmit queue of LDC endpoint 2390 * defined by the given channel ID. The real address is the currently 2391 * defined real address base of the defined queue, and num entries is the 2392 * size of the queue in terms of number of entries. 2393 * 2394 * If the specified channel ID is a valid endpoint number, but no transmit 2395 * queue has been defined this service will return success, but with num 2396 * entries set to zero and the real address will have an undefined value. 2397 */ 2398 #define HV_FAST_LDC_TX_QINFO 0xe1 2399 2400 /* ldc_tx_get_state() 2401 * TRAP: HV_FAST_TRAP 2402 * FUNCTION: HV_FAST_LDC_TX_GET_STATE 2403 * ARG0: channel ID 2404 * RET0: status 2405 * RET1: head offset 2406 * RET2: tail offset 2407 * RET3: channel state 2408 * 2409 * Return the transmit state, and the head and tail queue pointers, for 2410 * the transmit queue of the LDC endpoint defined by the given channel ID. 2411 * The head and tail values are the byte offset of the head and tail 2412 * positions of the transmit queue for the specified endpoint. 2413 */ 2414 #define HV_FAST_LDC_TX_GET_STATE 0xe2 2415 2416 /* ldc_tx_set_qtail() 2417 * TRAP: HV_FAST_TRAP 2418 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL 2419 * ARG0: channel ID 2420 * ARG1: tail offset 2421 * RET0: status 2422 * 2423 * Update the tail pointer for the transmit queue associated with the LDC 2424 * endpoint defined by the given channel ID. The tail offset specified 2425 * must be aligned on a 64 byte boundary, and calculated so as to increase 2426 * the number of pending entries on the transmit queue. Any attempt to 2427 * decrease the number of pending transmit queue entires is considered 2428 * an invalid tail offset and will result in an EINVAL error. 2429 * 2430 * Since the tail of the transmit queue may not be moved backwards, the 2431 * transmit queue may be flushed by configuring a new transmit queue, 2432 * whereupon the hypervisor will configure the initial transmit head and 2433 * tail pointers to be equal. 2434 */ 2435 #define HV_FAST_LDC_TX_SET_QTAIL 0xe3 2436 2437 /* ldc_rx_qconf() 2438 * TRAP: HV_FAST_TRAP 2439 * FUNCTION: HV_FAST_LDC_RX_QCONF 2440 * ARG0: channel ID 2441 * ARG1: real address base of queue 2442 * ARG2: num entries in queue 2443 * RET0: status 2444 * 2445 * Configure receive queue for the LDC endpoint specified by the 2446 * given channel ID, to be placed at the given real address, and 2447 * be of the given num entries. Num entries must be a power of two. 2448 * The real address base of the queue must be aligned on the queue 2449 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2450 * queue must be aligned on a 2048 byte real address boundary. 2451 * 2452 * The endpoint's transmit queue is un-configured if num entries is zero. 2453 * 2454 * If a valid receive queue is specified for a local endpoint the LDC is 2455 * in the up state for the purpose of transmission to this endpoint. 2456 * 2457 * The maximum number of entries for each queue for a specific cpu may be 2458 * determined from the machine description. 2459 * 2460 * As receive queue configuration causes a reset of the queue's head and 2461 * tail pointers there is no way for a gues to determine how many entries 2462 * have been received between a preceding ldc_get_rx_state() API call 2463 * and the completion of the configuration operation. It should be noted 2464 * that datagram delivery is not guaranteed via domain channels anyway, 2465 * and therefore any higher protocol should be resilient to datagram 2466 * loss if necessary. However, to overcome this specific race potential 2467 * it is recommended, for example, that a higher level protocol be employed 2468 * to ensure either retransmission, or ensure that no datagrams are pending 2469 * on the peer endpoint's transmit queue prior to the configuration process. 2470 */ 2471 #define HV_FAST_LDC_RX_QCONF 0xe4 2472 2473 /* ldc_rx_qinfo() 2474 * TRAP: HV_FAST_TRAP 2475 * FUNCTION: HV_FAST_LDC_RX_QINFO 2476 * ARG0: channel ID 2477 * RET0: status 2478 * RET1: real address base of queue 2479 * RET2: num entries in queue 2480 * 2481 * Return the configuration info for the receive queue of LDC endpoint 2482 * defined by the given channel ID. The real address is the currently 2483 * defined real address base of the defined queue, and num entries is the 2484 * size of the queue in terms of number of entries. 2485 * 2486 * If the specified channel ID is a valid endpoint number, but no receive 2487 * queue has been defined this service will return success, but with num 2488 * entries set to zero and the real address will have an undefined value. 2489 */ 2490 #define HV_FAST_LDC_RX_QINFO 0xe5 2491 2492 /* ldc_rx_get_state() 2493 * TRAP: HV_FAST_TRAP 2494 * FUNCTION: HV_FAST_LDC_RX_GET_STATE 2495 * ARG0: channel ID 2496 * RET0: status 2497 * RET1: head offset 2498 * RET2: tail offset 2499 * RET3: channel state 2500 * 2501 * Return the receive state, and the head and tail queue pointers, for 2502 * the receive queue of the LDC endpoint defined by the given channel ID. 2503 * The head and tail values are the byte offset of the head and tail 2504 * positions of the receive queue for the specified endpoint. 2505 */ 2506 #define HV_FAST_LDC_RX_GET_STATE 0xe6 2507 2508 /* ldc_rx_set_qhead() 2509 * TRAP: HV_FAST_TRAP 2510 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD 2511 * ARG0: channel ID 2512 * ARG1: head offset 2513 * RET0: status 2514 * 2515 * Update the head pointer for the receive queue associated with the LDC 2516 * endpoint defined by the given channel ID. The head offset specified 2517 * must be aligned on a 64 byte boundary, and calculated so as to decrease 2518 * the number of pending entries on the receive queue. Any attempt to 2519 * increase the number of pending receive queue entires is considered 2520 * an invalid head offset and will result in an EINVAL error. 2521 * 2522 * The receive queue may be flushed by setting the head offset equal 2523 * to the current tail offset. 2524 */ 2525 #define HV_FAST_LDC_RX_SET_QHEAD 0xe7 2526 2527 /* LDC Map Table Entry. Each slot is defined by a translation table 2528 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit 2529 * hypervisor invalidation cookie. 2530 */ 2531 #define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */ 2532 #define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */ 2533 #define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */ 2534 #define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */ 2535 #define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */ 2536 #define LDC_MTE_EXEC 0x0000000000000040 /* execute */ 2537 #define LDC_MTE_WRITE 0x0000000000000020 /* read */ 2538 #define LDC_MTE_READ 0x0000000000000010 /* write */ 2539 #define LDC_MTE_SZALL 0x000000000000000f /* page size bits */ 2540 #define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */ 2541 #define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */ 2542 #define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */ 2543 #define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */ 2544 #define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */ 2545 #define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */ 2546 #define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */ 2547 #define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */ 2548 2549 #ifndef __ASSEMBLY__ 2550 struct ldc_mtable_entry { 2551 unsigned long mte; 2552 unsigned long cookie; 2553 }; 2554 #endif 2555 2556 /* ldc_set_map_table() 2557 * TRAP: HV_FAST_TRAP 2558 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE 2559 * ARG0: channel ID 2560 * ARG1: table real address 2561 * ARG2: num entries 2562 * RET0: status 2563 * 2564 * Register the MTE table at the given table real address, with the 2565 * specified num entries, for the LDC indicated by the given channel 2566 * ID. 2567 */ 2568 #define HV_FAST_LDC_SET_MAP_TABLE 0xea 2569 2570 /* ldc_get_map_table() 2571 * TRAP: HV_FAST_TRAP 2572 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE 2573 * ARG0: channel ID 2574 * RET0: status 2575 * RET1: table real address 2576 * RET2: num entries 2577 * 2578 * Return the configuration of the current mapping table registered 2579 * for the given channel ID. 2580 */ 2581 #define HV_FAST_LDC_GET_MAP_TABLE 0xeb 2582 2583 #define LDC_COPY_IN 0 2584 #define LDC_COPY_OUT 1 2585 2586 /* ldc_copy() 2587 * TRAP: HV_FAST_TRAP 2588 * FUNCTION: HV_FAST_LDC_COPY 2589 * ARG0: channel ID 2590 * ARG1: LDC_COPY_* direction code 2591 * ARG2: target real address 2592 * ARG3: local real address 2593 * ARG4: length in bytes 2594 * RET0: status 2595 * RET1: actual length in bytes 2596 */ 2597 #define HV_FAST_LDC_COPY 0xec 2598 2599 #define LDC_MEM_READ 1 2600 #define LDC_MEM_WRITE 2 2601 #define LDC_MEM_EXEC 4 2602 2603 /* ldc_mapin() 2604 * TRAP: HV_FAST_TRAP 2605 * FUNCTION: HV_FAST_LDC_MAPIN 2606 * ARG0: channel ID 2607 * ARG1: cookie 2608 * RET0: status 2609 * RET1: real address 2610 * RET2: LDC_MEM_* permissions 2611 */ 2612 #define HV_FAST_LDC_MAPIN 0xed 2613 2614 /* ldc_unmap() 2615 * TRAP: HV_FAST_TRAP 2616 * FUNCTION: HV_FAST_LDC_UNMAP 2617 * ARG0: real address 2618 * RET0: status 2619 */ 2620 #define HV_FAST_LDC_UNMAP 0xee 2621 2622 /* ldc_revoke() 2623 * TRAP: HV_FAST_TRAP 2624 * FUNCTION: HV_FAST_LDC_REVOKE 2625 * ARG0: channel ID 2626 * ARG1: cookie 2627 * ARG2: ldc_mtable_entry cookie 2628 * RET0: status 2629 */ 2630 #define HV_FAST_LDC_REVOKE 0xef 2631 2632 #ifndef __ASSEMBLY__ 2633 unsigned long sun4v_ldc_tx_qconf(unsigned long channel, 2634 unsigned long ra, 2635 unsigned long num_entries); 2636 unsigned long sun4v_ldc_tx_qinfo(unsigned long channel, 2637 unsigned long *ra, 2638 unsigned long *num_entries); 2639 unsigned long sun4v_ldc_tx_get_state(unsigned long channel, 2640 unsigned long *head_off, 2641 unsigned long *tail_off, 2642 unsigned long *chan_state); 2643 unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel, 2644 unsigned long tail_off); 2645 unsigned long sun4v_ldc_rx_qconf(unsigned long channel, 2646 unsigned long ra, 2647 unsigned long num_entries); 2648 unsigned long sun4v_ldc_rx_qinfo(unsigned long channel, 2649 unsigned long *ra, 2650 unsigned long *num_entries); 2651 unsigned long sun4v_ldc_rx_get_state(unsigned long channel, 2652 unsigned long *head_off, 2653 unsigned long *tail_off, 2654 unsigned long *chan_state); 2655 unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel, 2656 unsigned long head_off); 2657 unsigned long sun4v_ldc_set_map_table(unsigned long channel, 2658 unsigned long ra, 2659 unsigned long num_entries); 2660 unsigned long sun4v_ldc_get_map_table(unsigned long channel, 2661 unsigned long *ra, 2662 unsigned long *num_entries); 2663 unsigned long sun4v_ldc_copy(unsigned long channel, 2664 unsigned long dir_code, 2665 unsigned long tgt_raddr, 2666 unsigned long lcl_raddr, 2667 unsigned long len, 2668 unsigned long *actual_len); 2669 unsigned long sun4v_ldc_mapin(unsigned long channel, 2670 unsigned long cookie, 2671 unsigned long *ra, 2672 unsigned long *perm); 2673 unsigned long sun4v_ldc_unmap(unsigned long ra); 2674 unsigned long sun4v_ldc_revoke(unsigned long channel, 2675 unsigned long cookie, 2676 unsigned long mte_cookie); 2677 #endif 2678 2679 /* Performance counter services. */ 2680 2681 #define HV_PERF_JBUS_PERF_CTRL_REG 0x00 2682 #define HV_PERF_JBUS_PERF_CNT_REG 0x01 2683 #define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02 2684 #define HV_PERF_DRAM_PERF_CNT_REG_0 0x03 2685 #define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04 2686 #define HV_PERF_DRAM_PERF_CNT_REG_1 0x05 2687 #define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06 2688 #define HV_PERF_DRAM_PERF_CNT_REG_2 0x07 2689 #define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08 2690 #define HV_PERF_DRAM_PERF_CNT_REG_3 0x09 2691 2692 /* get_perfreg() 2693 * TRAP: HV_FAST_TRAP 2694 * FUNCTION: HV_FAST_GET_PERFREG 2695 * ARG0: performance reg number 2696 * RET0: status 2697 * RET1: performance reg value 2698 * ERRORS: EINVAL Invalid performance register number 2699 * ENOACCESS No access allowed to performance counters 2700 * 2701 * Read the value of the given DRAM/JBUS performance counter/control register. 2702 */ 2703 #define HV_FAST_GET_PERFREG 0x100 2704 2705 /* set_perfreg() 2706 * TRAP: HV_FAST_TRAP 2707 * FUNCTION: HV_FAST_SET_PERFREG 2708 * ARG0: performance reg number 2709 * ARG1: performance reg value 2710 * RET0: status 2711 * ERRORS: EINVAL Invalid performance register number 2712 * ENOACCESS No access allowed to performance counters 2713 * 2714 * Write the given performance reg value to the given DRAM/JBUS 2715 * performance counter/control register. 2716 */ 2717 #define HV_FAST_SET_PERFREG 0x101 2718 2719 #define HV_N2_PERF_SPARC_CTL 0x0 2720 #define HV_N2_PERF_DRAM_CTL0 0x1 2721 #define HV_N2_PERF_DRAM_CNT0 0x2 2722 #define HV_N2_PERF_DRAM_CTL1 0x3 2723 #define HV_N2_PERF_DRAM_CNT1 0x4 2724 #define HV_N2_PERF_DRAM_CTL2 0x5 2725 #define HV_N2_PERF_DRAM_CNT2 0x6 2726 #define HV_N2_PERF_DRAM_CTL3 0x7 2727 #define HV_N2_PERF_DRAM_CNT3 0x8 2728 2729 #define HV_FAST_N2_GET_PERFREG 0x104 2730 #define HV_FAST_N2_SET_PERFREG 0x105 2731 2732 #ifndef __ASSEMBLY__ 2733 unsigned long sun4v_niagara_getperf(unsigned long reg, 2734 unsigned long *val); 2735 unsigned long sun4v_niagara_setperf(unsigned long reg, 2736 unsigned long val); 2737 unsigned long sun4v_niagara2_getperf(unsigned long reg, 2738 unsigned long *val); 2739 unsigned long sun4v_niagara2_setperf(unsigned long reg, 2740 unsigned long val); 2741 #endif 2742 2743 /* MMU statistics services. 2744 * 2745 * The hypervisor maintains MMU statistics and privileged code provides 2746 * a buffer where these statistics can be collected. It is continually 2747 * updated once configured. The layout is as follows: 2748 */ 2749 #ifndef __ASSEMBLY__ 2750 struct hv_mmu_statistics { 2751 unsigned long immu_tsb_hits_ctx0_8k_tte; 2752 unsigned long immu_tsb_ticks_ctx0_8k_tte; 2753 unsigned long immu_tsb_hits_ctx0_64k_tte; 2754 unsigned long immu_tsb_ticks_ctx0_64k_tte; 2755 unsigned long __reserved1[2]; 2756 unsigned long immu_tsb_hits_ctx0_4mb_tte; 2757 unsigned long immu_tsb_ticks_ctx0_4mb_tte; 2758 unsigned long __reserved2[2]; 2759 unsigned long immu_tsb_hits_ctx0_256mb_tte; 2760 unsigned long immu_tsb_ticks_ctx0_256mb_tte; 2761 unsigned long __reserved3[4]; 2762 unsigned long immu_tsb_hits_ctxnon0_8k_tte; 2763 unsigned long immu_tsb_ticks_ctxnon0_8k_tte; 2764 unsigned long immu_tsb_hits_ctxnon0_64k_tte; 2765 unsigned long immu_tsb_ticks_ctxnon0_64k_tte; 2766 unsigned long __reserved4[2]; 2767 unsigned long immu_tsb_hits_ctxnon0_4mb_tte; 2768 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte; 2769 unsigned long __reserved5[2]; 2770 unsigned long immu_tsb_hits_ctxnon0_256mb_tte; 2771 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte; 2772 unsigned long __reserved6[4]; 2773 unsigned long dmmu_tsb_hits_ctx0_8k_tte; 2774 unsigned long dmmu_tsb_ticks_ctx0_8k_tte; 2775 unsigned long dmmu_tsb_hits_ctx0_64k_tte; 2776 unsigned long dmmu_tsb_ticks_ctx0_64k_tte; 2777 unsigned long __reserved7[2]; 2778 unsigned long dmmu_tsb_hits_ctx0_4mb_tte; 2779 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte; 2780 unsigned long __reserved8[2]; 2781 unsigned long dmmu_tsb_hits_ctx0_256mb_tte; 2782 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte; 2783 unsigned long __reserved9[4]; 2784 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte; 2785 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte; 2786 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte; 2787 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte; 2788 unsigned long __reserved10[2]; 2789 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte; 2790 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte; 2791 unsigned long __reserved11[2]; 2792 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte; 2793 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte; 2794 unsigned long __reserved12[4]; 2795 }; 2796 #endif 2797 2798 /* mmustat_conf() 2799 * TRAP: HV_FAST_TRAP 2800 * FUNCTION: HV_FAST_MMUSTAT_CONF 2801 * ARG0: real address 2802 * RET0: status 2803 * RET1: real address 2804 * ERRORS: ENORADDR Invalid real address 2805 * EBADALIGN Real address not aligned on 64-byte boundary 2806 * EBADTRAP API not supported on this processor 2807 * 2808 * Enable MMU statistic gathering using the buffer at the given real 2809 * address on the current virtual CPU. The new buffer real address 2810 * is given in ARG1, and the previously specified buffer real address 2811 * is returned in RET1, or is returned as zero for the first invocation. 2812 * 2813 * If the passed in real address argument is zero, this will disable 2814 * MMU statistic collection on the current virtual CPU. If an error is 2815 * returned then no statistics are collected. 2816 * 2817 * The buffer contents should be initialized to all zeros before being 2818 * given to the hypervisor or else the statistics will be meaningless. 2819 */ 2820 #define HV_FAST_MMUSTAT_CONF 0x102 2821 2822 /* mmustat_info() 2823 * TRAP: HV_FAST_TRAP 2824 * FUNCTION: HV_FAST_MMUSTAT_INFO 2825 * RET0: status 2826 * RET1: real address 2827 * ERRORS: EBADTRAP API not supported on this processor 2828 * 2829 * Return the current state and real address of the currently configured 2830 * MMU statistics buffer on the current virtual CPU. 2831 */ 2832 #define HV_FAST_MMUSTAT_INFO 0x103 2833 2834 #ifndef __ASSEMBLY__ 2835 unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra); 2836 unsigned long sun4v_mmustat_info(unsigned long *ra); 2837 #endif 2838 2839 /* NCS crypto services */ 2840 2841 /* ncs_request() sub-function numbers */ 2842 #define HV_NCS_QCONF 0x01 2843 #define HV_NCS_QTAIL_UPDATE 0x02 2844 2845 #ifndef __ASSEMBLY__ 2846 struct hv_ncs_queue_entry { 2847 /* MAU Control Register */ 2848 unsigned long mau_control; 2849 #define MAU_CONTROL_INV_PARITY 0x0000000000002000 2850 #define MAU_CONTROL_STRAND 0x0000000000001800 2851 #define MAU_CONTROL_BUSY 0x0000000000000400 2852 #define MAU_CONTROL_INT 0x0000000000000200 2853 #define MAU_CONTROL_OP 0x00000000000001c0 2854 #define MAU_CONTROL_OP_SHIFT 6 2855 #define MAU_OP_LOAD_MA_MEMORY 0x0 2856 #define MAU_OP_STORE_MA_MEMORY 0x1 2857 #define MAU_OP_MODULAR_MULT 0x2 2858 #define MAU_OP_MODULAR_REDUCE 0x3 2859 #define MAU_OP_MODULAR_EXP_LOOP 0x4 2860 #define MAU_CONTROL_LEN 0x000000000000003f 2861 #define MAU_CONTROL_LEN_SHIFT 0 2862 2863 /* Real address of bytes to load or store bytes 2864 * into/out-of the MAU. 2865 */ 2866 unsigned long mau_mpa; 2867 2868 /* Modular Arithmetic MA Offset Register. */ 2869 unsigned long mau_ma; 2870 2871 /* Modular Arithmetic N Prime Register. */ 2872 unsigned long mau_np; 2873 }; 2874 2875 struct hv_ncs_qconf_arg { 2876 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 2877 unsigned long base; /* Real address base of queue */ 2878 unsigned long end; /* Real address end of queue */ 2879 unsigned long num_ents; /* Number of entries in queue */ 2880 }; 2881 2882 struct hv_ncs_qtail_update_arg { 2883 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 2884 unsigned long tail; /* New tail index to use */ 2885 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */ 2886 #define HV_NCS_SYNCFLAG_SYNC 0x00 2887 #define HV_NCS_SYNCFLAG_ASYNC 0x01 2888 }; 2889 #endif 2890 2891 /* ncs_request() 2892 * TRAP: HV_FAST_TRAP 2893 * FUNCTION: HV_FAST_NCS_REQUEST 2894 * ARG0: NCS sub-function 2895 * ARG1: sub-function argument real address 2896 * ARG2: size in bytes of sub-function argument 2897 * RET0: status 2898 * 2899 * The MAU chip of the Niagara processor is not directly accessible 2900 * to privileged code, instead it is programmed indirectly via this 2901 * hypervisor API. 2902 * 2903 * The interfaces defines a queue of MAU operations to perform. 2904 * Privileged code registers a queue with the hypervisor by invoking 2905 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the 2906 * base, end, and number of entries of the queue. Each queue entry 2907 * contains a MAU register struct block. 2908 * 2909 * The privileged code then proceeds to add entries to the queue and 2910 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only 2911 * synchronous operations are supported by the current hypervisor, 2912 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to 2913 * completion and return HV_EOK, or return an error code. 2914 * 2915 * The real address of the sub-function argument must be aligned on at 2916 * least an 8-byte boundary. 2917 * 2918 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte 2919 * offset, into the queue and must be less than or equal the 'num_ents' 2920 * argument given in the HV_NCS_QCONF call. 2921 */ 2922 #define HV_FAST_NCS_REQUEST 0x110 2923 2924 #ifndef __ASSEMBLY__ 2925 unsigned long sun4v_ncs_request(unsigned long request, 2926 unsigned long arg_ra, 2927 unsigned long arg_size); 2928 #endif 2929 2930 #define HV_FAST_FIRE_GET_PERFREG 0x120 2931 #define HV_FAST_FIRE_SET_PERFREG 0x121 2932 2933 #define HV_FAST_REBOOT_DATA_SET 0x172 2934 2935 #ifndef __ASSEMBLY__ 2936 unsigned long sun4v_reboot_data_set(unsigned long ra, 2937 unsigned long len); 2938 #endif 2939 2940 #define HV_FAST_VT_GET_PERFREG 0x184 2941 #define HV_FAST_VT_SET_PERFREG 0x185 2942 2943 #ifndef __ASSEMBLY__ 2944 unsigned long sun4v_vt_get_perfreg(unsigned long reg_num, 2945 unsigned long *reg_val); 2946 unsigned long sun4v_vt_set_perfreg(unsigned long reg_num, 2947 unsigned long reg_val); 2948 #endif 2949 2950 #define HV_FAST_T5_GET_PERFREG 0x1a8 2951 #define HV_FAST_T5_SET_PERFREG 0x1a9 2952 2953 #ifndef __ASSEMBLY__ 2954 unsigned long sun4v_t5_get_perfreg(unsigned long reg_num, 2955 unsigned long *reg_val); 2956 unsigned long sun4v_t5_set_perfreg(unsigned long reg_num, 2957 unsigned long reg_val); 2958 #endif 2959 2960 /* Function numbers for HV_CORE_TRAP. */ 2961 #define HV_CORE_SET_VER 0x00 2962 #define HV_CORE_PUTCHAR 0x01 2963 #define HV_CORE_EXIT 0x02 2964 #define HV_CORE_GET_VER 0x03 2965 2966 /* Hypervisor API groups for use with HV_CORE_SET_VER and 2967 * HV_CORE_GET_VER. 2968 */ 2969 #define HV_GRP_SUN4V 0x0000 2970 #define HV_GRP_CORE 0x0001 2971 #define HV_GRP_INTR 0x0002 2972 #define HV_GRP_SOFT_STATE 0x0003 2973 #define HV_GRP_TM 0x0080 2974 #define HV_GRP_PCI 0x0100 2975 #define HV_GRP_LDOM 0x0101 2976 #define HV_GRP_SVC_CHAN 0x0102 2977 #define HV_GRP_NCS 0x0103 2978 #define HV_GRP_RNG 0x0104 2979 #define HV_GRP_PBOOT 0x0105 2980 #define HV_GRP_TPM 0x0107 2981 #define HV_GRP_SDIO 0x0108 2982 #define HV_GRP_SDIO_ERR 0x0109 2983 #define HV_GRP_REBOOT_DATA 0x0110 2984 #define HV_GRP_NIAG_PERF 0x0200 2985 #define HV_GRP_FIRE_PERF 0x0201 2986 #define HV_GRP_N2_CPU 0x0202 2987 #define HV_GRP_NIU 0x0204 2988 #define HV_GRP_VF_CPU 0x0205 2989 #define HV_GRP_KT_CPU 0x0209 2990 #define HV_GRP_VT_CPU 0x020c 2991 #define HV_GRP_T5_CPU 0x0211 2992 #define HV_GRP_DIAG 0x0300 2993 2994 #ifndef __ASSEMBLY__ 2995 unsigned long sun4v_get_version(unsigned long group, 2996 unsigned long *major, 2997 unsigned long *minor); 2998 unsigned long sun4v_set_version(unsigned long group, 2999 unsigned long major, 3000 unsigned long minor, 3001 unsigned long *actual_minor); 3002 3003 int sun4v_hvapi_register(unsigned long group, unsigned long major, 3004 unsigned long *minor); 3005 void sun4v_hvapi_unregister(unsigned long group); 3006 int sun4v_hvapi_get(unsigned long group, 3007 unsigned long *major, 3008 unsigned long *minor); 3009 void sun4v_hvapi_init(void); 3010 #endif 3011 3012 #endif /* !(_SPARC64_HYPERVISOR_H) */ 3013