xref: /linux/arch/sh/mm/ioremap.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * arch/sh/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  * This is needed for high PCI addresses that aren't mapped in the
6  * 640k-1MB IO memory area on PC's
7  *
8  * (C) Copyright 1995 1996 Linus Torvalds
9  * (C) Copyright 2005, 2006 Paul Mundt
10  *
11  * This file is subject to the terms and conditions of the GNU General
12  * Public License. See the file "COPYING" in the main directory of this
13  * archive for more details.
14  */
15 #include <linux/vmalloc.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/pci.h>
19 #include <linux/io.h>
20 #include <asm/page.h>
21 #include <asm/pgalloc.h>
22 #include <asm/addrspace.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 
26 /*
27  * Remap an arbitrary physical address space into the kernel virtual
28  * address space. Needed when the kernel wants to access high addresses
29  * directly.
30  *
31  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
32  * have to convert them into an offset in a page-aligned mapping, but the
33  * caller shouldn't need to know that small detail.
34  */
35 void __iomem *__ioremap(unsigned long phys_addr, unsigned long size,
36 			unsigned long flags)
37 {
38 	struct vm_struct * area;
39 	unsigned long offset, last_addr, addr, orig_addr;
40 	pgprot_t pgprot;
41 
42 	/* Don't allow wraparound or zero size */
43 	last_addr = phys_addr + size - 1;
44 	if (!size || last_addr < phys_addr)
45 		return NULL;
46 
47 	/*
48 	 * If we're on an SH7751 or SH7780 PCI controller, PCI memory is
49 	 * mapped at the end of the address space (typically 0xfd000000)
50 	 * in a non-translatable area, so mapping through page tables for
51 	 * this area is not only pointless, but also fundamentally
52 	 * broken. Just return the physical address instead.
53 	 *
54 	 * For boards that map a small PCI memory aperture somewhere in
55 	 * P1/P2 space, ioremap() will already do the right thing,
56 	 * and we'll never get this far.
57 	 */
58 	if (is_pci_memaddr(phys_addr) && is_pci_memaddr(last_addr))
59 		return (void __iomem *)phys_addr;
60 
61 	/*
62 	 * Don't allow anybody to remap normal RAM that we're using..
63 	 */
64 	if (phys_addr < virt_to_phys(high_memory))
65 		return NULL;
66 
67 	/*
68 	 * Mappings have to be page-aligned
69 	 */
70 	offset = phys_addr & ~PAGE_MASK;
71 	phys_addr &= PAGE_MASK;
72 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
73 
74 	/*
75 	 * Ok, go for it..
76 	 */
77 	area = get_vm_area(size, VM_IOREMAP);
78 	if (!area)
79 		return NULL;
80 	area->phys_addr = phys_addr;
81 	orig_addr = addr = (unsigned long)area->addr;
82 
83 #ifdef CONFIG_32BIT
84 	/*
85 	 * First try to remap through the PMB once a valid VMA has been
86 	 * established. Smaller allocations (or the rest of the size
87 	 * remaining after a PMB mapping due to the size not being
88 	 * perfectly aligned on a PMB size boundary) are then mapped
89 	 * through the UTLB using conventional page tables.
90 	 *
91 	 * PMB entries are all pre-faulted.
92 	 */
93 	if (unlikely(size >= 0x1000000)) {
94 		unsigned long mapped = pmb_remap(addr, phys_addr, size, flags);
95 
96 		if (likely(mapped)) {
97 			addr		+= mapped;
98 			phys_addr	+= mapped;
99 			size		-= mapped;
100 		}
101 	}
102 #endif
103 
104 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL_NOCACHE) | flags);
105 	if (likely(size))
106 		if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
107 			vunmap((void *)orig_addr);
108 			return NULL;
109 		}
110 
111 	return (void __iomem *)(offset + (char *)orig_addr);
112 }
113 EXPORT_SYMBOL(__ioremap);
114 
115 void __iounmap(void __iomem *addr)
116 {
117 	unsigned long vaddr = (unsigned long __force)addr;
118 	struct vm_struct *p;
119 
120 	if (PXSEG(vaddr) < P3SEG || is_pci_memaddr(vaddr))
121 		return;
122 
123 #ifdef CONFIG_32BIT
124 	/*
125 	 * Purge any PMB entries that may have been established for this
126 	 * mapping, then proceed with conventional VMA teardown.
127 	 *
128 	 * XXX: Note that due to the way that remove_vm_area() does
129 	 * matching of the resultant VMA, we aren't able to fast-forward
130 	 * the address past the PMB space until the end of the VMA where
131 	 * the page tables reside. As such, unmap_vm_area() will be
132 	 * forced to linearly scan over the area until it finds the page
133 	 * tables where PTEs that need to be unmapped actually reside,
134 	 * which is far from optimal. Perhaps we need to use a separate
135 	 * VMA for the PMB mappings?
136 	 *					-- PFM.
137 	 */
138 	pmb_unmap(vaddr);
139 #endif
140 
141 	p = remove_vm_area((void *)(vaddr & PAGE_MASK));
142 	if (!p) {
143 		printk(KERN_ERR "%s: bad address %p\n", __FUNCTION__, addr);
144 		return;
145 	}
146 
147 	kfree(p);
148 }
149 EXPORT_SYMBOL(__iounmap);
150