xref: /linux/arch/sh/mm/cache.c (revision 1553a1c48281243359a9529a10ddb551f3b967ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/sh/mm/cache.c
4  *
5  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
6  * Copyright (C) 2002 - 2010  Paul Mundt
7  */
8 #include <linux/mm.h>
9 #include <linux/init.h>
10 #include <linux/mutex.h>
11 #include <linux/fs.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/module.h>
15 #include <asm/mmu_context.h>
16 #include <asm/cacheflush.h>
17 
18 void (*local_flush_cache_all)(void *args) = cache_noop;
19 void (*local_flush_cache_mm)(void *args) = cache_noop;
20 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_page)(void *args) = cache_noop;
22 void (*local_flush_cache_range)(void *args) = cache_noop;
23 void (*local_flush_dcache_folio)(void *args) = cache_noop;
24 void (*local_flush_icache_range)(void *args) = cache_noop;
25 void (*local_flush_icache_folio)(void *args) = cache_noop;
26 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
27 
28 void (*__flush_wback_region)(void *start, int size);
29 EXPORT_SYMBOL(__flush_wback_region);
30 void (*__flush_purge_region)(void *start, int size);
31 EXPORT_SYMBOL(__flush_purge_region);
32 void (*__flush_invalidate_region)(void *start, int size);
33 EXPORT_SYMBOL(__flush_invalidate_region);
34 
35 static inline void noop__flush_region(void *start, int size)
36 {
37 }
38 
39 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
40                                    int wait)
41 {
42 	preempt_disable();
43 
44 	/* Needing IPI for cross-core flush is SHX3-specific. */
45 #ifdef CONFIG_CPU_SHX3
46 	/*
47 	 * It's possible that this gets called early on when IRQs are
48 	 * still disabled due to ioremapping by the boot CPU, so don't
49 	 * even attempt IPIs unless there are other CPUs online.
50 	 */
51 	if (num_online_cpus() > 1)
52 		smp_call_function(func, info, wait);
53 #endif
54 
55 	func(info);
56 
57 	preempt_enable();
58 }
59 
60 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
61 		       unsigned long vaddr, void *dst, const void *src,
62 		       unsigned long len)
63 {
64 	struct folio *folio = page_folio(page);
65 
66 	if (boot_cpu_data.dcache.n_aliases && folio_mapped(folio) &&
67 	    test_bit(PG_dcache_clean, &folio->flags)) {
68 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
69 		memcpy(vto, src, len);
70 		kunmap_coherent(vto);
71 	} else {
72 		memcpy(dst, src, len);
73 		if (boot_cpu_data.dcache.n_aliases)
74 			clear_bit(PG_dcache_clean, &folio->flags);
75 	}
76 
77 	if (vma->vm_flags & VM_EXEC)
78 		flush_cache_page(vma, vaddr, page_to_pfn(page));
79 }
80 
81 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
82 			 unsigned long vaddr, void *dst, const void *src,
83 			 unsigned long len)
84 {
85 	struct folio *folio = page_folio(page);
86 
87 	if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
88 	    test_bit(PG_dcache_clean, &folio->flags)) {
89 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
90 		memcpy(dst, vfrom, len);
91 		kunmap_coherent(vfrom);
92 	} else {
93 		memcpy(dst, src, len);
94 		if (boot_cpu_data.dcache.n_aliases)
95 			clear_bit(PG_dcache_clean, &folio->flags);
96 	}
97 }
98 
99 void copy_user_highpage(struct page *to, struct page *from,
100 			unsigned long vaddr, struct vm_area_struct *vma)
101 {
102 	struct folio *src = page_folio(from);
103 	void *vfrom, *vto;
104 
105 	vto = kmap_atomic(to);
106 
107 	if (boot_cpu_data.dcache.n_aliases && folio_mapped(src) &&
108 	    test_bit(PG_dcache_clean, &src->flags)) {
109 		vfrom = kmap_coherent(from, vaddr);
110 		copy_page(vto, vfrom);
111 		kunmap_coherent(vfrom);
112 	} else {
113 		vfrom = kmap_atomic(from);
114 		copy_page(vto, vfrom);
115 		kunmap_atomic(vfrom);
116 	}
117 
118 	if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
119 	    (vma->vm_flags & VM_EXEC))
120 		__flush_purge_region(vto, PAGE_SIZE);
121 
122 	kunmap_atomic(vto);
123 	/* Make sure this page is cleared on other CPU's too before using it */
124 	smp_wmb();
125 }
126 EXPORT_SYMBOL(copy_user_highpage);
127 
128 void clear_user_highpage(struct page *page, unsigned long vaddr)
129 {
130 	void *kaddr = kmap_atomic(page);
131 
132 	clear_page(kaddr);
133 
134 	if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
135 		__flush_purge_region(kaddr, PAGE_SIZE);
136 
137 	kunmap_atomic(kaddr);
138 }
139 EXPORT_SYMBOL(clear_user_highpage);
140 
141 void __update_cache(struct vm_area_struct *vma,
142 		    unsigned long address, pte_t pte)
143 {
144 	unsigned long pfn = pte_pfn(pte);
145 
146 	if (!boot_cpu_data.dcache.n_aliases)
147 		return;
148 
149 	if (pfn_valid(pfn)) {
150 		struct folio *folio = page_folio(pfn_to_page(pfn));
151 		int dirty = !test_and_set_bit(PG_dcache_clean, &folio->flags);
152 		if (dirty)
153 			__flush_purge_region(folio_address(folio),
154 						folio_size(folio));
155 	}
156 }
157 
158 void __flush_anon_page(struct page *page, unsigned long vmaddr)
159 {
160 	struct folio *folio = page_folio(page);
161 	unsigned long addr = (unsigned long) page_address(page);
162 
163 	if (pages_do_alias(addr, vmaddr)) {
164 		if (boot_cpu_data.dcache.n_aliases && folio_mapped(folio) &&
165 		    test_bit(PG_dcache_clean, &folio->flags)) {
166 			void *kaddr;
167 
168 			kaddr = kmap_coherent(page, vmaddr);
169 			/* XXX.. For now kunmap_coherent() does a purge */
170 			/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
171 			kunmap_coherent(kaddr);
172 		} else
173 			__flush_purge_region(folio_address(folio),
174 						folio_size(folio));
175 	}
176 }
177 
178 void flush_cache_all(void)
179 {
180 	cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
181 }
182 EXPORT_SYMBOL(flush_cache_all);
183 
184 void flush_cache_mm(struct mm_struct *mm)
185 {
186 	if (boot_cpu_data.dcache.n_aliases == 0)
187 		return;
188 
189 	cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
190 }
191 
192 void flush_cache_dup_mm(struct mm_struct *mm)
193 {
194 	if (boot_cpu_data.dcache.n_aliases == 0)
195 		return;
196 
197 	cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
198 }
199 
200 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
201 		      unsigned long pfn)
202 {
203 	struct flusher_data data;
204 
205 	data.vma = vma;
206 	data.addr1 = addr;
207 	data.addr2 = pfn;
208 
209 	cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
210 }
211 
212 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
213 		       unsigned long end)
214 {
215 	struct flusher_data data;
216 
217 	data.vma = vma;
218 	data.addr1 = start;
219 	data.addr2 = end;
220 
221 	cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
222 }
223 EXPORT_SYMBOL(flush_cache_range);
224 
225 void flush_dcache_folio(struct folio *folio)
226 {
227 	cacheop_on_each_cpu(local_flush_dcache_folio, folio, 1);
228 }
229 EXPORT_SYMBOL(flush_dcache_folio);
230 
231 void flush_icache_range(unsigned long start, unsigned long end)
232 {
233 	struct flusher_data data;
234 
235 	data.vma = NULL;
236 	data.addr1 = start;
237 	data.addr2 = end;
238 
239 	cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
240 }
241 EXPORT_SYMBOL(flush_icache_range);
242 
243 void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
244 		unsigned int nr)
245 {
246 	/* Nothing uses the VMA, so just pass the folio along */
247 	cacheop_on_each_cpu(local_flush_icache_folio, page_folio(page), 1);
248 }
249 
250 void flush_cache_sigtramp(unsigned long address)
251 {
252 	cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
253 }
254 
255 static void compute_alias(struct cache_info *c)
256 {
257 #ifdef CONFIG_MMU
258 	c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
259 #else
260 	c->alias_mask = 0;
261 #endif
262 	c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
263 }
264 
265 static void __init emit_cache_params(void)
266 {
267 	printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
268 		boot_cpu_data.icache.ways,
269 		boot_cpu_data.icache.sets,
270 		boot_cpu_data.icache.way_incr);
271 	printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
272 		boot_cpu_data.icache.entry_mask,
273 		boot_cpu_data.icache.alias_mask,
274 		boot_cpu_data.icache.n_aliases);
275 	printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
276 		boot_cpu_data.dcache.ways,
277 		boot_cpu_data.dcache.sets,
278 		boot_cpu_data.dcache.way_incr);
279 	printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
280 		boot_cpu_data.dcache.entry_mask,
281 		boot_cpu_data.dcache.alias_mask,
282 		boot_cpu_data.dcache.n_aliases);
283 
284 	/*
285 	 * Emit Secondary Cache parameters if the CPU has a probed L2.
286 	 */
287 	if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
288 		printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
289 			boot_cpu_data.scache.ways,
290 			boot_cpu_data.scache.sets,
291 			boot_cpu_data.scache.way_incr);
292 		printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
293 			boot_cpu_data.scache.entry_mask,
294 			boot_cpu_data.scache.alias_mask,
295 			boot_cpu_data.scache.n_aliases);
296 	}
297 }
298 
299 void __init cpu_cache_init(void)
300 {
301 	unsigned int cache_disabled = 0;
302 
303 #ifdef SH_CCR
304 	cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
305 #endif
306 
307 	compute_alias(&boot_cpu_data.icache);
308 	compute_alias(&boot_cpu_data.dcache);
309 	compute_alias(&boot_cpu_data.scache);
310 
311 	__flush_wback_region		= noop__flush_region;
312 	__flush_purge_region		= noop__flush_region;
313 	__flush_invalidate_region	= noop__flush_region;
314 
315 	/*
316 	 * No flushing is necessary in the disabled cache case so we can
317 	 * just keep the noop functions in local_flush_..() and __flush_..()
318 	 */
319 	if (unlikely(cache_disabled))
320 		goto skip;
321 
322 	if (boot_cpu_data.type == CPU_J2) {
323 		extern void __weak j2_cache_init(void);
324 
325 		j2_cache_init();
326 	} else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
327 		extern void __weak sh2_cache_init(void);
328 
329 		sh2_cache_init();
330 	}
331 
332 	if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
333 		extern void __weak sh2a_cache_init(void);
334 
335 		sh2a_cache_init();
336 	}
337 
338 	if (boot_cpu_data.family == CPU_FAMILY_SH3) {
339 		extern void __weak sh3_cache_init(void);
340 
341 		sh3_cache_init();
342 
343 		if ((boot_cpu_data.type == CPU_SH7705) &&
344 		    (boot_cpu_data.dcache.sets == 512)) {
345 			extern void __weak sh7705_cache_init(void);
346 
347 			sh7705_cache_init();
348 		}
349 	}
350 
351 	if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
352 	    (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
353 	    (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
354 		extern void __weak sh4_cache_init(void);
355 
356 		sh4_cache_init();
357 
358 		if ((boot_cpu_data.type == CPU_SH7786) ||
359 		    (boot_cpu_data.type == CPU_SHX3)) {
360 			extern void __weak shx3_cache_init(void);
361 
362 			shx3_cache_init();
363 		}
364 	}
365 
366 skip:
367 	emit_cache_params();
368 }
369